JP2013147686A - Method of producing bismuth anode for use in electrolytic refining - Google Patents

Method of producing bismuth anode for use in electrolytic refining Download PDF

Info

Publication number
JP2013147686A
JP2013147686A JP2012007500A JP2012007500A JP2013147686A JP 2013147686 A JP2013147686 A JP 2013147686A JP 2012007500 A JP2012007500 A JP 2012007500A JP 2012007500 A JP2012007500 A JP 2012007500A JP 2013147686 A JP2013147686 A JP 2013147686A
Authority
JP
Japan
Prior art keywords
bismuth
anode
silver
crude
tellurium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012007500A
Other languages
Japanese (ja)
Other versions
JP5755572B2 (en
Inventor
Naoto Funaki
直登 船木
Hifumi Nagai
燈文 永井
Hidetoshi Sasaoka
英俊 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012007500A priority Critical patent/JP5755572B2/en
Publication of JP2013147686A publication Critical patent/JP2013147686A/en
Application granted granted Critical
Publication of JP5755572B2 publication Critical patent/JP5755572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a bismuth anode for use in electrolytic refining, capable of decreasing the concentration of impurities having a risk of influencing eventual bismuth quality upon carrying out electrolytic refining, and a bismuth anode.SOLUTION: A method of producing an anode, includes adding elemental tellurium into crude bismuth prior to casting the crude bismuth to form an anode for use in electrolytic refining, melting the crude bismuth, and subsequently carrying out casting to obtain a bismuth anode. The crude bismuth contains silver and lead as impurities, and the amount of the elemental tellurium to be added is 0.5 to 4 times as much as the amount of the silver present in the crude bismuth. The crude bismuth is heated at least to 590°C and melted subsequent to adding tellurium thereinto, subsequently solid matters coagulating on the surface of the molten bismuth is removed, and subsequently the anode is cast. The anode for use in electrolytic refining of bismuth contains, by weight ratio, bismuth at least 90%, and tellurium and silver in a ratio of Te/Ag=0.5-4.

Description

本発明はビスマスの電解精製に供するための粗ビスマスアノードを製造する方法に関する。   The present invention relates to a method for producing a crude bismuth anode for use in electrolytic purification of bismuth.

ビスマスの製錬では硫化鉱から乾式法により製錬する方法が知られている。しかし最も多くビスマスを生産する方法は、銅や鉛の副生成物として溶液に溶け込んでいるものはイオン交換法、熔体は不純物塊として凝集−濃縮回収された後に浸出する等の方法でビスマス濃厚液を得、これを還元して粗ビスマス金属とした後に電解精製により高純度ビスマスを得る方法である。(非特許文献1、特許文献1、2)   In the smelting of bismuth, a method of smelting from sulfide ore by a dry method is known. However, the most bismuth-producing method is the bismuth-rich method, such as the ion-exchange method that dissolves in solution as a by-product of copper and lead, and the melt is flocculated and concentrated and recovered as an impurity mass. This is a method of obtaining a high-purity bismuth by electrolytic purification after obtaining a liquid and reducing it to a crude bismuth metal. (Non-Patent Document 1, Patent Documents 1 and 2)

このビスマスの電解精製においては電解液中の不純物濃度、中でも特に鉛(Pb)、銅(Cu)、銀(Ag)がその最終精製ビスマスの純度に大きな影響を及ぼす。   In the electrolytic purification of bismuth, the impurity concentration in the electrolytic solution, particularly lead (Pb), copper (Cu), and silver (Ag), has a great influence on the purity of the final purified bismuth.

例えば、特許文献1では、ビスマス密陀を電気炉にて熔解する際にカラミ、コークスに加えてFeSを装入し、Agが除去されたビスマス地金を得て、さらにこれを硫黄とともに陽極炉に装入し、硫黄とPb、Cuとを反応させて得られる渣(PbS,CuS)を除き、アノード板の形状に鋳造する技術が記載されている。また、特許文献2には、一般的なビスマスの還元回収方法が記載されている。   For example, in Patent Document 1, when melting bismuth bean paste in an electric furnace, FeS is charged in addition to calami and coke to obtain bismuth metal from which Ag is removed, and this is further added to the anode furnace along with sulfur. The technology of casting into the shape of an anode plate is described except for the residue (PbS, CuS) obtained by reacting sulfur with Pb and Cu. Patent Document 2 describes a general method for reducing and recovering bismuth.

近年、非鉄金属やレアメタルの原料として電子材料等のリサイクル原料が着目されているが、このリサイクル原料を使用したときでもビスマスは鉛製錬の副生成物として回収される。その場合も不純物の存在が問題となるが、リサイクル原料を使用した際の不純物の特徴として鉛、銅はもちろん銀の混入が多いことが挙げられる。   In recent years, recycling raw materials such as electronic materials have attracted attention as raw materials for non-ferrous metals and rare metals, but even when this recycled raw material is used, bismuth is recovered as a by-product of lead smelting. In this case as well, the presence of impurities becomes a problem, but as a feature of the impurities when using recycled raw materials, there is a large amount of silver as well as lead and copper.

特開2000−045087JP2000-045087 特開2010−196140JP2010-196140

田中和明 「よくわかる最新レアメタルの基本と仕組み」 秀和システムAkira Tanaka "Basics and Mechanism of the Latest Rare Metals That Can Be Understood" Hidekazu System

ところで、従来においては水鉛鉱や鉛製錬の不純物として回収したビスマスからビスマスアノードを作製することが多く、ビスマス以外の成分が含まれていてもその品位は低いものであり、ビスマスアノードを用いたビスマスの電解精製の条件を調整することにより精製ビスマスの不純物品位を抑えることが可能であった。しかしながら、鉱石よりも多くビスマス以外の成分を含む、リサイクル原料を用いることが求められている昨今の事情から、このような原料から作製されるビスマスアノードであっても電解精製ビスマスの不純物品位を抑えることが必要である。   By the way, in the past, bismuth anodes are often produced from bismuth recovered as impurities of lead ore or lead smelting, and even if components other than bismuth are included, the quality is low, and bismuth anodes were used. It was possible to suppress the impurity grade of refined bismuth by adjusting the conditions for electrolytic purification of bismuth. However, due to the recent situation where it is required to use recycled raw materials that contain more components than bismuth than ores, even the bismuth anodes made from such raw materials suppress the impurity grade of electrolytically refined bismuth. It is necessary.

多くの不純物は、電解精製の際にスライムとして沈殿するが、特に銀に関してはアノードから溶出すると安定な錯イオン、例えば塩化浴の場合は銀のクロロ錯イオンAgCl2 -となってしまい、電解液に残ってしまう。また、鉛は電解精製の際に沈殿するものの、例えば塩化鉛などは水に対して幾らか溶解性があるため、ある程度電解液に溶解してしまう。 Many impurities precipitate as slime during electrolytic refining, but particularly when silver is eluted from the anode, it becomes a stable complex ion, for example, a silver chloro complex ion AgCl 2 − in the case of a chlorination bath. Will remain. In addition, lead precipitates during electrolytic purification, but lead chloride, for example, is somewhat soluble in water and therefore dissolves in the electrolyte to some extent.

一方で、特許文献1に記載されたような硫黄を用いた銀、鉛等の除去技術を用いても、繰り返し除去を行えば、相当量の銀、鉛などの不純物を除くことが可能であるが、硫黄の取扱いには注意を要すること、またコスト的に問題が残るため、精製ビスマスの製品化という観点から検討の余地が残る。   On the other hand, it is possible to remove a considerable amount of impurities such as silver and lead if repeated removal is performed even using a removal technique such as silver and lead using sulfur as described in Patent Document 1. However, care must be taken when handling sulfur, and there remains a problem in terms of cost, so there is room for study from the viewpoint of commercialization of refined bismuth.

そこで、精製ビスマスの品位に影響を及ぼすであろう不純物が、電解精製時に溶出してしまったり、沈殿後電解液に溶解してしまうことが問題であるという観点に立ち返り、このような不純物が電解精製後に電解液に残らないような精製用のビスマスアノードが実現されれば、電解精製した高純度ビスマスが得られることになる。   Therefore, returning to the viewpoint that impurities that may affect the quality of the purified bismuth are eluted during electrolytic purification or dissolved in the electrolytic solution after precipitation, such impurities are electrolyzed. If a bismuth anode for purification that does not remain in the electrolytic solution after purification is realized, high-purity bismuth that has been electrolytically purified can be obtained.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、Biアノードを鋳造する際に600℃程度で融解し、単体Teを添加して銀、鉛をテルル化銀、テルル化鉛に変えておくことで水に対して不溶化させることができるため、得られたBiアノードを用いて電解精製を行った場合に電解液への溶出を抑制し、電解精製した高純度ビスマスが得られることを見出した。   As a result of intensive studies to solve the above problems, the inventors of the present invention melted at about 600 ° C. when casting a Bi anode, added simple Te to silver and lead to silver telluride and lead telluride. Since it can be insolubilized in water by changing to, elution into the electrolytic solution is suppressed when electrolytic purification is performed using the obtained Bi anode, and high-purity bismuth that is electrolytically purified can be obtained. I found out.

すなわち、本発明は以下の発明を包含する。
(1)粗ビスマスを電解精製用アノードに鋳造する前に、単体テルルを添加して融解後に鋳造することでビスマスアノードを得るアノードの製造方法。
(2)前記粗ビスマスは銀および鉛を不純物として含有する、(1)に記載の方法。
(3)前記単体テルルの添加量は粗ビスマス中の銀量の0.5〜4倍量とする(1)または(2)に記載の方法。
(4)前記粗ビスマスにテルル添加した後、590℃以上に加熱することを特徴とする(1)〜(3)のいずれかに記載の方法。
(5)前記融解後、ビスマス熔湯表面に凝集した固形物を除いたのちにアノードを鋳造すること特徴とする、(1)〜(4)のいずれかに記載の方法。
(6)重量比で、ビスマスを90%以上、テルルおよび銀をTe/Ag=0.5〜4の割合で含有するビスマス電解精製用アノード。
That is, the present invention includes the following inventions.
(1) A method for producing an anode in which a crude bismuth anode is obtained by adding simple tellurium and casting after melting before casting the crude bismuth on an electrolytic purification anode.
(2) The method according to (1), wherein the crude bismuth contains silver and lead as impurities.
(3) The method according to (1) or (2), wherein the amount of the simple tellurium added is 0.5 to 4 times the amount of silver in the crude bismuth.
(4) The method according to any one of (1) to (3), wherein tellurium is added to the crude bismuth and then heated to 590 ° C or higher.
(5) The method according to any one of (1) to (4), wherein after the melting, the solid is aggregated on the surface of the bismuth melt, and then the anode is cast.
(6) An anode for bismuth electrolytic purification containing 90% or more of bismuth and tellurium and silver in a ratio of Te / Ag = 0.5 to 4 by weight ratio.

本発明によれば、従来において粗ビスマスアノード中に含まれ、電解精製した際の最終ビスマス品位に影響を及ぼすおそれのある銀、鉛を、アノード鋳造時にテルル化物として不溶化することで電解ビスマスの最終品位に影響を及ぼす不純物濃度を下げることができる。   According to the present invention, the final content of electrolytic bismuth can be obtained by insolubilizing silver and lead, which are conventionally contained in a crude bismuth anode and may affect the final bismuth quality upon electrolytic purification, as telluride during casting of the anode. Impurity concentration affecting quality can be lowered.

一つの観点から、本発明はビスマス電解精製用アノードの製造方法を提供する。
この方法、は粗ビスマスを電解精製時に使用するアノードを鋳造する際に単体テルルを添加することを特徴としている。単体テルルが粗ビスマスとともに融解し、好ましくはさらに混和することにより、例えば不純物である銀(Ag)はAg2Teとなり不溶化する。
From one aspect, the present invention provides a method for manufacturing an anode for electrolytic purification of bismuth.
This method is characterized in that elemental tellurium is added when casting an anode in which crude bismuth is used for electrolytic purification. When simple tellurium is melted together with crude bismuth, and preferably further mixed, for example, silver (Ag), which is an impurity, becomes Ag 2 Te and is insolubilized.

本発明の方法はビスマス製錬における電解精製工程に用いるビスマスアノードの製造に対して適用することができるが、特に不純物として銀を多く含む原料から生産される粗ビスマス、例えばリサイクル工場における鉛の回収−製錬のバイプロダクトとして生産されるビスマスを用いてもビスマスの電解精製工程に好適なビスマスアノードを得ることができる。   The method of the present invention can be applied to the production of a bismuth anode used in an electrolytic purification process in bismuth smelting, but in particular, recovery of crude bismuth produced from a raw material rich in silver as an impurity, for example, lead in a recycling plant -Even if bismuth produced as a by-product of smelting is used, a bismuth anode suitable for the electrolytic purification process of bismuth can be obtained.

ビスマスの製錬では原料として銅製錬工程の中間排出物、鉛製錬の中間生成物が採用されることが多くビスマス精鉱(Bi23)から製錬される場合と比べると、銀、鉛、銅が不純物として混在し、種々の精製工程を経ても完全に分離することは難しい。そのため最終工程である電解精製前の粗ビスマスアノードには銀が1重量%、銅が0.1重量%程度含まれる。 In the smelting of bismuth, intermediate emissions from the copper smelting process and intermediate products of lead smelting are often used as raw materials. Compared to smelting from bismuth concentrate (Bi 2 S 3 ), silver, Lead and copper are mixed as impurities, and it is difficult to completely separate them through various purification processes. Therefore, the crude bismuth anode before electrolytic purification, which is the final step, contains about 1% by weight of silver and about 0.1% by weight of copper.

このような粗ビスマスアノードを用いて電解精製した場合、銀は電解液中に溶出し(塩化浴の場合は錯イオンAgCl2 -となる)電解ビスマス中に不純物として含有される。そのため本発明ではアノードを鋳造する際に単体テルルを添加して銀を不溶性のAg2Teにする。 When electrolytic purification is performed using such a crude bismuth anode, silver elutes in the electrolytic solution (in the case of a chloride bath, it becomes complex ion AgCl 2 ) and is contained as an impurity in electrolytic bismuth. Therefore, in the present invention, when tellurizing the anode, simple tellurium is added to make silver insoluble Ag 2 Te.

そこで、アノードを鋳造する時の粗ビスマスの融解温度をBi2Te3の融点590℃からAg2Teの融点960℃まで、より好ましくは600〜700℃とすることで効率的に銀をAg2Teに変えて、銀をビスマスの電解精製を行ったときに溶出しない形態とすることができる。このテルル化銀は、電解スライムとして回収され、銀のリサイクルに供することができる。 Therefore, the melting temperature of the crude bismuth when casting the anode from the melting point 590 ° C. of Bi 2 Te 3 to the melting point 960 ° C. of Ag 2 Te, efficiently silver and more preferably be 600 to 700 ° C. Ag 2 Instead of Te, silver can be in a form that does not elute when electrolytic purification of bismuth is performed. This silver telluride is recovered as electrolytic slime and can be used for silver recycling.

また、粗ビスマスに単体テルルを添加すると、不純物である鉛、銅なども鋳造カスとして、鋳造時のビスマス溶湯表面に固形物として浮上、凝集するため、これを除いて鋳造することによりアノード中の鉛品位を低下させることができる。この鋳造カスは分離して原料として用いることができるため、金属リサイクルの観点から有利である。また、仮に、アノードに残ったとしてもテルル化物の状態であり、水に対して不溶性であるため、電解精製したビスマスの品位には影響を及ぼさない。   In addition, when simple tellurium is added to crude bismuth, impurities such as lead and copper also float as casting solids on the bismuth molten metal surface at the time of casting, and agglomerate and agglomerate. Lead quality can be reduced. Since this cast residue can be separated and used as a raw material, it is advantageous from the viewpoint of metal recycling. Further, even if it remains on the anode, it is in a telluride state and is insoluble in water, so it does not affect the quality of the electrolytically purified bismuth.

単体テルルの添加量は、小さすぎるとAg2Teを形成するのに不足し、ビスマス電解精製の際のアノードとして用いたときに銀が電解液に溶出してしまうため、好ましくない。一方で、単体テルルの添加量は、大きすぎると電解精製する際に電圧が不安定となり電流効率の低下を引き起こすおそれがあるため、好ましくない。この観点から、単体テルルの添加量は粗ビスマス中の銀の含有量の0.5〜4倍重量程度が好ましく、さらに好ましくは1〜2倍重量程度である。 If the amount of the simple tellurium is too small, it is not preferable to form Ag 2 Te, and silver is eluted into the electrolyte when used as an anode for bismuth electrolytic purification. On the other hand, if the amount of simple tellurium added is too large, the voltage becomes unstable during electrolytic purification, which may cause a decrease in current efficiency. From this viewpoint, the amount of the simple tellurium added is preferably about 0.5 to 4 times the weight of silver in the crude bismuth, more preferably about 1 to 2 times the weight.

本発明により製造されたビスマスアノードを電解精製に供することで不純物の少ない高純度ビスマスを得ることができる。   High-purity bismuth with few impurities can be obtained by subjecting the bismuth anode produced according to the present invention to electrolytic purification.

別の観点から本発明は、このようにして得られたビスマス電解精製に好適なアノードを提供する。
このビスマス電解精製用アノードは、含有重量比で、ビスマスを90%以上、好ましくは98%以上、テルルおよび銀をTe/Ag=0.5〜4、好ましくは1〜2の割合で含有する。
従来においては精製用のアノード鋳造の際に銀を完全に除くことが困難であるため、電解精製後の電解液に銀が溶出してしまい、ビスマスの品位を落としていたが、このようなアノードを用いてビスマスの電解精製を行うことにより、アノードに銀がある程度含まれていても電解精製後の電解液への銀の溶出を抑えることができ、結果として精製ビスマスの品位を上げることができる。
From another point of view, the present invention provides an anode suitable for bismuth electrolytic purification thus obtained.
This anode for bismuth electrolytic purification contains bismuth in a ratio of 90% or more, preferably 98% or more, and tellurium and silver in a ratio of Te / Ag = 0.5-4, preferably 1-2.
In the past, it was difficult to completely remove silver during casting of the anode for refining, so silver was eluted in the electrolytic solution after electrolytic refining, and the quality of bismuth was reduced. By performing electrolytic purification of bismuth using, the elution of silver into the electrolytic solution after electrolytic purification can be suppressed even if the anode contains silver to some extent, and as a result, the quality of the purified bismuth can be improved. .

以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these.

(実施例1)
粗ビスマス100gを黒鉛坩堝に秤取り、銀と等量の単体テルルを添加した。大気雰囲気下、電気昇温炉で600℃まで加熱した。坩堝を振り、内容物を混和させて、15分後に炉から取り出し表面に浮遊している鋳造カスを取り除いた後、鋳型へ移してアノードを鋳造した。各成分を表1に示す。
Example 1
100 g of crude bismuth was weighed into a graphite crucible, and simple tellurium in an amount equivalent to silver was added. It heated to 600 degreeC with the electric heating furnace in the air atmosphere. The crucible was shaken and the contents were mixed. After 15 minutes, the cast residue was removed from the furnace and suspended on the surface, and then transferred to a mold to cast the anode. Each component is shown in Table 1.

Figure 2013147686
Figure 2013147686

なお、取り除いた鋳造カスに鉛が濃縮していることがわかり、鋳造前に溶湯表面からこれを除くことにより、ビスマス電解精製時におけるビスマスアノードから電解液への鉛の溶出を抑えることが出来る。   It can be seen that lead is concentrated in the removed cast residue, and by removing this from the surface of the molten metal before casting, elution of lead from the bismuth anode to the electrolyte during bismuth electrolytic purification can be suppressed.

Te添加アノードを電解液(Bi:40g/L、HCl:60g/L)に浸し、チタン板をカソードとして電流密度80A/m2、液温25℃で96時間通電して電着したビスマスを剥離した。 The Te-added anode is immersed in an electrolytic solution (Bi: 40 g / L, HCl: 60 g / L), and the electrodeposited bismuth is peeled off with a titanium plate as a cathode at a current density of 80 A / m 2 and a liquid temperature of 25 ° C. for 96 hours. did.

電解精製後の電着したビスマスならびに電解液中の成分は定量分析に供した。電着ビスマスは硝酸で溶解した後ICP−AESで濃度を決定した。電解液は適当に希釈した後ICP−AESで濃度を決定した。
電着したBi品位と精製後の電解液中の銀濃度を表2に示す。
Electrodeposited bismuth after electrolytic purification and components in the electrolyte were subjected to quantitative analysis. Electrodeposited bismuth was dissolved in nitric acid, and the concentration was determined by ICP-AES. The electrolyte solution was diluted appropriately and the concentration was determined by ICP-AES.
Table 2 shows the electrodeposited Bi quality and the silver concentration in the electrolyte after purification.

Figure 2013147686
Figure 2013147686

後述するように、テルルを添加しない場合は通常電着ビスマス中に含まれる銀品位は100ppm以上、電解液中の銀濃度は6mg/L程度となるため、本発明により鋳造されたアノードにより極めて高純度のビスマスが得られたことがわかる。   As will be described later, when no tellurium is added, the silver grade usually contained in electrodeposited bismuth is 100 ppm or more, and the silver concentration in the electrolyte is about 6 mg / L. It can be seen that pure bismuth was obtained.

(実施例2)
粗ビスマス100gを黒鉛坩堝に秤取り、銀の2倍量の単体テルルを添加した。実施例1と同様大気雰囲気下、電気昇温炉で600℃まで加熱した。15分後よく混和したことを確認して炉から取り出し表面に浮遊している鋳造カスを取り除いた後、鋳型へ移してアノードを鋳造した。
(Example 2)
100 g of crude bismuth was weighed in a graphite crucible, and simple tellurium twice the amount of silver was added. In the same manner as in Example 1, it was heated to 600 ° C. in an electric heating furnace in the air atmosphere. After 15 minutes, the mixture was confirmed to be well mixed and removed from the furnace to remove the cast residue floating on the surface. Then, the cast residue was transferred to a mold to cast the anode.

実施例1と同じく、電解液(Bi:40g/L、HCl:60g/L)に浸し、チタン板をカソードとして電流密度80A/m2、液温25℃で96時間通電して電着したビスマスを剥離した。電着ビスマスは硝酸で溶解した後ICP−AESで濃度を決定した。電解液は適当に希釈した後ICP−AESで濃度を決定した。
電着したBi品位と精製後の電解液中の銀濃度を表3に示す。
As in Example 1, bismuth was electrodeposited by immersing in an electrolytic solution (Bi: 40 g / L, HCl: 60 g / L), with a current density of 80 A / m 2 and a liquid temperature of 25 ° C. for 96 hours using a titanium plate as a cathode. Was peeled off. Electrodeposited bismuth was dissolved in nitric acid, and the concentration was determined by ICP-AES. The electrolyte solution was diluted appropriately and the concentration was determined by ICP-AES.
Table 3 shows the electrodeposited Bi quality and the silver concentration in the electrolyte after purification.

Figure 2013147686
Figure 2013147686

電解ビスマスは銀の含有率は低く抑えてあるものの、表2に示した実施例1の銀品位ならびに電解後の電解液の銀濃度より高いことがわかり、実用上十分なレベルではあるが、テルルを加えすぎると効果が薄れることが解る。   Although the electrolytic bismuth content is kept low, it can be seen that it is higher than the silver quality of Example 1 shown in Table 2 and the silver concentration of the electrolytic solution after electrolysis. It can be seen that the effect diminishes if too much is added.

(比較例1)
テルルを添加しないアノードを作製した以外は実施例1と同様にして電解精製したときのアノード品位ならびに電解ビスマスの品位を表4に示す。
(Comparative Example 1)
Table 4 shows the anode quality and electrolytic bismuth quality when electrolytically purified in the same manner as in Example 1 except that an anode not containing tellurium was prepared.

Figure 2013147686
Figure 2013147686

表4によれば、Teを添加せずにビスマスアノードを作製し、電解精製すると銀と鉛の品位が著しく高くなることがわかる。   According to Table 4, it can be seen that when a bismuth anode is prepared without adding Te and electrolytically refined, the quality of silver and lead is remarkably increased.

Claims (6)

粗ビスマスを電解精製用アノードに鋳造する前に、単体テルルを添加して融解後に鋳造することでビスマスアノードを得るアノードの製造方法。   A method for producing an anode in which a crude bismuth anode is obtained by adding simple tellurium and casting it after melting before casting the crude bismuth on an electrolytic purification anode. 前記粗ビスマスは銀および鉛を不純物として含有する、請求項1に記載の方法。   The method of claim 1, wherein the crude bismuth contains silver and lead as impurities. 前記単体テルルの添加量は粗ビスマス中の銀量の0.5〜4倍量とする請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the amount of the simple tellurium added is 0.5 to 4 times the amount of silver in the crude bismuth. 前記粗ビスマスにテルル添加した後、590℃以上に加熱することを特徴とする請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein after the tellurium is added to the crude bismuth, the mixture is heated to 590 ° C or higher. 前記融解後、ビスマス熔湯表面に凝集した固形物を除いたのちにアノードを鋳造すること特徴とする、請求項1〜4のいずれか一項に記載の方法。   5. The method according to claim 1, wherein after the melting, the anode is cast after removing solids aggregated on the surface of the bismuth melt. 重量比で、ビスマスを90%以上、テルルおよび銀をTe/Ag=0.5〜4の割合で含有するビスマス電解精製用アノード。   An anode for electrolytic purification of bismuth containing 90% or more of bismuth and tellurium and silver at a ratio of Te / Ag = 0.5-4 by weight.
JP2012007500A 2012-01-17 2012-01-17 Method for producing bismuth anode for electrolytic purification Active JP5755572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007500A JP5755572B2 (en) 2012-01-17 2012-01-17 Method for producing bismuth anode for electrolytic purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007500A JP5755572B2 (en) 2012-01-17 2012-01-17 Method for producing bismuth anode for electrolytic purification

Publications (2)

Publication Number Publication Date
JP2013147686A true JP2013147686A (en) 2013-08-01
JP5755572B2 JP5755572B2 (en) 2015-07-29

Family

ID=49045485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007500A Active JP5755572B2 (en) 2012-01-17 2012-01-17 Method for producing bismuth anode for electrolytic purification

Country Status (1)

Country Link
JP (1) JP5755572B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178641A (en) * 2014-03-18 2015-10-08 Jx日鉱日石金属株式会社 Electrolytic method for bismuth
JP2018016893A (en) * 2017-11-06 2018-02-01 Jx金属株式会社 Method for electrolyzing bismuth
CN109518009A (en) * 2018-12-28 2019-03-26 安徽工业大学 A method of synchronous recycling bismuth and tellurium from bismuth telluride base semiconductor waste material
CN110004298A (en) * 2019-04-04 2019-07-12 福建铭祥金属材料有限公司 A kind of industry dangerous waste Resource comprehensive utilization method
JP2019203199A (en) * 2019-07-23 2019-11-28 Jx金属株式会社 Electrolytic method of bismuth
CN114107699A (en) * 2021-12-07 2022-03-01 紫金铜业有限公司 Fire refining method for crude bismuth

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257492A (en) * 1985-05-09 1986-11-14 Furukawa Electric Co Ltd:The Production of anode for copper electrolysis
JPH02250995A (en) * 1989-03-22 1990-10-08 Furukawa Electric Co Ltd:The Production of high purity copper
JP2000045087A (en) * 1998-07-29 2000-02-15 Kamioka Kogyo Kk Production of high purity bismuth
JP2005054218A (en) * 2003-08-01 2005-03-03 Toho Zinc Co Ltd Anode for electrolytically refining iron, and electrolytic refining system for iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257492A (en) * 1985-05-09 1986-11-14 Furukawa Electric Co Ltd:The Production of anode for copper electrolysis
JPH02250995A (en) * 1989-03-22 1990-10-08 Furukawa Electric Co Ltd:The Production of high purity copper
JP2000045087A (en) * 1998-07-29 2000-02-15 Kamioka Kogyo Kk Production of high purity bismuth
JP2005054218A (en) * 2003-08-01 2005-03-03 Toho Zinc Co Ltd Anode for electrolytically refining iron, and electrolytic refining system for iron

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178641A (en) * 2014-03-18 2015-10-08 Jx日鉱日石金属株式会社 Electrolytic method for bismuth
JP2018016893A (en) * 2017-11-06 2018-02-01 Jx金属株式会社 Method for electrolyzing bismuth
CN109518009A (en) * 2018-12-28 2019-03-26 安徽工业大学 A method of synchronous recycling bismuth and tellurium from bismuth telluride base semiconductor waste material
CN109518009B (en) * 2018-12-28 2020-11-03 安徽工业大学 Method for synchronously recycling bismuth and tellurium from bismuth telluride-based semiconductor waste
CN110004298A (en) * 2019-04-04 2019-07-12 福建铭祥金属材料有限公司 A kind of industry dangerous waste Resource comprehensive utilization method
JP2019203199A (en) * 2019-07-23 2019-11-28 Jx金属株式会社 Electrolytic method of bismuth
CN114107699A (en) * 2021-12-07 2022-03-01 紫金铜业有限公司 Fire refining method for crude bismuth

Also Published As

Publication number Publication date
JP5755572B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
JP4298712B2 (en) Method for electrolytic purification of copper
JP4470689B2 (en) Indium recovery method using tin smelting
JP2013209732A (en) Method for recovering nickel
JP2007270243A (en) Dry type refining method for copper
CN104746105A (en) Device and method for separating antimony-containing alloy
JP2015086436A (en) Method for recovering valuable material
JP2014025121A (en) Electrolytic extraction method for tin and method for recovering tin
JP5066025B2 (en) Method for producing copper sulfate
RO132597A2 (en) Process for recovering precious metals from electrical and electronic waste by anodic dissolution in ionic liquids
JP4544414B2 (en) High purity metallic indium and its production method and application
JP4979751B2 (en) Electrolysis method of lead (1)
JPH04191340A (en) Production of high purity tin
JP4041590B2 (en) Method for producing high-purity bismuth having a purity of 5N or more
JP4797163B2 (en) Method for electrolysis of tellurium-containing crude lead
JP5482461B2 (en) Method for recovering copper from copper electrolysis waste liquid
JP2019203199A (en) Electrolytic method of bismuth
JP2013234356A (en) Pyrometallurgy process for lead using high impurity-containing lead slag as raw material
JP2012214307A (en) Method for recovering tellurium
JP4979752B2 (en) Electrolysis method of lead (6)
JP2010222625A (en) Electrolytic method (2) for lead
US2839461A (en) Electrolytic recovery of nickel
JP4538802B2 (en) Method for producing crude nickel sulfate
JP6592494B2 (en) Electrolysis method of bismuth
JP6457039B2 (en) Silver recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

R150 Certificate of patent or registration of utility model

Ref document number: 5755572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250