JP4665832B2 - Light emitting device and white light source and lighting device using the same - Google Patents

Light emitting device and white light source and lighting device using the same Download PDF

Info

Publication number
JP4665832B2
JP4665832B2 JP2006147091A JP2006147091A JP4665832B2 JP 4665832 B2 JP4665832 B2 JP 4665832B2 JP 2006147091 A JP2006147091 A JP 2006147091A JP 2006147091 A JP2006147091 A JP 2006147091A JP 4665832 B2 JP4665832 B2 JP 4665832B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
wavelength conversion
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006147091A
Other languages
Japanese (ja)
Other versions
JP2007317952A (en
Inventor
健一郎 田中
滋 奥田
祐也 山本
広行 関井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006147091A priority Critical patent/JP4665832B2/en
Publication of JP2007317952A publication Critical patent/JP2007317952A/en
Application granted granted Critical
Publication of JP4665832B2 publication Critical patent/JP4665832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To increase a light deriving efficiency and suppress a color shift in a light emitting device wherein, to achieve such a light emitting device as a white light source, its light emitting element of a light emitting diode, etc. is contained in a dome-form wavelength converting member, and the light radiated from the light emitting element is made outgoing by converting it into a desired-wavelength light. <P>SOLUTION: In the light emitting device, the cross-sectional shape of the outer surface of a transparent member 5 to become a light outgoing surface to air is so formed as to be a semi-ellipse R. The focuses F1, F2 of the semi-ellipse R are the two intersections where the outer tangential circle of a light emitting element 2 intersects a surface to perform the luminous-intensity control of the device. Further, the gap angle &theta; between the normal V at each point P and the line segment of the point P and the focus F1 (F2) is so set as to be smaller than the total-reflection angle of the transparent member 5. That is, the semi-ellipse R is so set as to fall within the scope between a semicircle R2 and a semi-ellipse R1 whose gap angle is smaller than the total-reflection angle of the transparent member 5. Therefore, while preventing the total reflection in the light outgoing surface of the transparent member 5 in comparison with a shell type shape, etc., a wavelength converting member 7 is so made to approximate closely to the light emitting element 2 that the light having a high center luminance and a few color shift can be obtained, that the light radiated from the side surface of the device is reduced, further, that the light deriving efficiency to the front-surface direction of the device can be increased. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、発光素子をドーム状の波長変換部材に内包し、前記発光素子から放射された光を所望の波長に変換して出射するようにした発光装置ならびにそれを用いる白色光源および照明装置に関する。   The present invention relates to a light-emitting device that includes a light-emitting element in a dome-shaped wavelength conversion member, converts the light emitted from the light-emitting element to a desired wavelength, and emits the light, and a white light source and an illumination device using the same. .

照明装置などに使用可能なように、上述のように発光素子をドーム状の波長変換部材に内包し、前記発光素子から放射された光を所望の波長に変換して出射するようにした典型的な従来技術の発光装置は、たとえば特許文献1で示されている。その従来技術によれば、砲弾型の発光ダイオードに蛍光物質を含有する透光性被覆材を被せることで、発光ダイオードの発光色を所望の色に変換させている。
特開平11−87784号公報
A typical example in which a light emitting element is included in a dome-shaped wavelength conversion member as described above so that the light emitted from the light emitting element is converted into a desired wavelength and emitted so that it can be used in an illumination device or the like. Such a prior art light-emitting device is disclosed in Patent Document 1, for example. According to the prior art, a light emitting diode light emitting diode is covered with a translucent coating material containing a fluorescent material, thereby converting the light emitting color of the light emitting diode into a desired color.
Japanese Patent Laid-Open No. 11-87784

上述の従来技術では、発光ダイオードが砲弾型形状であるので、大型であるとともに、側面からの放射分が多くなり(光出射面の法線の多くが側方を向き、正面方向への放射分が少ない)、光の取出し効率が低いという問題がある。また、波長変換部材と発光素子との間隔が遠くなるので、波長変換部材に照射される励起光の密度が低く、その結果、放射される光は、中心輝度の低い色ずれの多い光となる。   In the above-described prior art, since the light emitting diode has a bullet-shaped shape, it is large and has a large amount of radiation from the side surface (many normals of the light emitting surface face sideways and the radiation component in the front direction). There is a problem that the light extraction efficiency is low. Further, since the distance between the wavelength conversion member and the light emitting element is increased, the density of the excitation light applied to the wavelength conversion member is low, and as a result, the emitted light becomes light with low color intensity and high color shift. .

本発明の目的は、発光素子をドーム状の波長変換部材に内包し、前記発光素子から放射された光を所望の波長に変換して出射するにあたって、光取出し効率を高めることができるとともに、色ずれの少ない白色光源および照明装置を提供することである。   An object of the present invention is to encapsulate a light emitting element in a dome-shaped wavelength conversion member, improve the light extraction efficiency in converting the light emitted from the light emitting element into a desired wavelength and emitting it, To provide a white light source and an illuminating device with little deviation.

本発明の発光装置は、発光素子を基板とドーム状の波長変換部材との間に内包し、前記発光素子から放射された光を所望の波長に変換して出射するようにした発光装置において、前記ドーム状となる空気への光出射面を、前記基板に垂直で、かつ前記発光素子から放射された光を配光制御すべき面で切断した場合における断面形状が、前記の切断面と発光素子に外接する円との2交点を焦点とする半楕円であって、該半楕円上の各点における法線と前記各焦点との成す角が、前記光出射面を形成する部材の全反射角未満の角度となる半楕円から半円までの範囲であることを特徴とする。
The light-emitting device of the present invention is a light-emitting device that includes a light-emitting element between a substrate and a dome-shaped wavelength conversion member , converts light emitted from the light-emitting element into a desired wavelength, and emits the light. The light emission surface to the dome-shaped air is cut in a plane perpendicular to the substrate and the light emitted from the light-emitting element is to be light-distributed, and the cross-sectional shape is light emission from the cut surface. A semi-ellipse having a focal point at two intersections with a circle circumscribing the element, and the angle formed between the normal line at each point on the semi-ellipse and each focal point is the total reflection of the member forming the light emitting surface It is a range from a semi-ellipse to a semi-circle having an angle less than an angle.

上記の構成によれば、白色光源などの発光装置を実現するために、発光ダイオードなどの発光素子をドーム状の波長変換部材に内包し、前記発光素子から放射された光を所望の波長に変換して出射するようにした発光装置において、前記波長変換部材の外表面や、発光素子が透明部材で覆われている場合のその透明部材の外表面などのドーム状の空気への光出射面を、基板と垂直な配光制御すべき面で切断した断面形状を、前記の切断面と発光素子に外接する円との2交点を焦点とする半楕円の形状とする。したがって、前記2つの焦点は発光素子の光放射面が正方形や正6角形の場合、対角線上の隅角部となる。ただし、前記半楕円上の各点における法線と前記各焦点との成す角が、前記光出射面を形成する部材の全反射角、たとえば前記屈折率が1.53の樹脂の場合、40.8°未満でないと全反射してしまうので、その角度未満の角度となる半楕円、すなわち前記半楕円が発光素子の面方向に大きく潰れた扁平な形状とならないように、半円までの範囲で前記半楕円の形状を規定する。
According to said structure, in order to implement | achieve light-emitting devices, such as a white light source, light emitting elements, such as a light emitting diode, are included in a dome-shaped wavelength conversion member, and the light radiated | emitted from the said light emitting element is converted into a desired wavelength. In the light emitting device that emits light, the light emitting surface to the dome-shaped air, such as the outer surface of the wavelength conversion member or the outer surface of the transparent member when the light emitting element is covered with the transparent member, A cross-sectional shape cut by a surface perpendicular to the substrate to be subjected to light distribution control is a semi-elliptical shape having a focal point at two intersections between the cut surface and a circle circumscribing the light emitting element. Therefore, the two focal points are corners on a diagonal line when the light emitting surface of the light emitting element is a square or a regular hexagon. However, when the angle formed between the normal line at each point on the semi-ellipse and each focal point is the total reflection angle of the member forming the light exit surface, for example, the resin having a refractive index of 1.53, 40. If it is not less than 8 °, it will be totally reflected, so that a semi-ellipse having an angle less than that angle, that is, the semi-ellipse is not flattened in the plane direction of the light emitting element, so that it does not become a flat shape. The semi-elliptical shape is defined.

したがって、光出射面を扁平な半楕円形状〜半円形状としても、該光出射面での前記波長変換部材や透明部材と空気との屈折率の差による全反射を防止しつつ、半円以上の、たとえば砲弾型形状と比較して、小型化することができるとともに、側面からの放射分が少なくなり(前記光出射面の法線の多くを正面方向へ向けることで該正面方向への放射分が多くなり)、光の取出し効率を高めることができる。さらにまた、波長変換部材と発光素子との間隔が近くなるので、波長変換部材に照射される励起光の密度を高くすることが可能となり、その結果、中心輝度の高い色ずれの少ない光を波長変換部材から出射することが可能となる。   Therefore, even if the light exit surface is a flat semi-elliptical shape to a semi-circular shape, while preventing total reflection due to a difference in refractive index between the wavelength conversion member or the transparent member and air on the light exit surface, more than a semicircle Compared with, for example, a bullet-shaped shape, the size can be reduced and radiation from the side surface can be reduced (radiation in the front direction can be achieved by directing most of the normals of the light exit surface to the front direction). The light extraction efficiency can be increased. Furthermore, since the distance between the wavelength conversion member and the light emitting element is close, it is possible to increase the density of the excitation light irradiated to the wavelength conversion member. The light can be emitted from the conversion member.

また、本発明の発光装置では、前記発光素子は光を透過する性質を有する空気よりも屈折率の透明部材に内包され、さらに所定間隔の空隙を隔てて前記ドーム状の波長変換部材に内包されていることを特徴とする。 The light emitting device of the present invention, the light emitting element is enclosed in a transparent member of the high have refractive index than air having a property of transmitting light, further to the wavelength converting member of the dome-shaped at a gap of predetermined distance It is included.

上記の構成によれば、発光素子を、光を透過する性質を有するシリコーン等の高屈折率の透明部材で内包することによって、発光素子から発せられる光を効率良く取出すことができるとともに、発光素子を保護することもできる。   According to the above configuration, the light emitted from the light emitting element can be taken out efficiently by enclosing the light emitting element with a transparent member having a high refractive index such as silicone having a property of transmitting light. Can also be protected.

さらにまた、本発明の発光装置では、前記発光素子は基板に搭載され、その基板と前記透明部材とによって封止されており、前記透明部材は、周縁部が前記基板から離反するように形成される斜面を有することを特徴とする。   Furthermore, in the light emitting device of the present invention, the light emitting element is mounted on a substrate and is sealed by the substrate and the transparent member, and the transparent member is formed so that a peripheral portion is separated from the substrate. It is characterized by having a slope.

上記の構成によれば、前記高屈折率の透明部材の周縁部を斜面にカット(面取り)することで、該斜面は発光素子から側方に出射された光を前方に反射する反射面となり、光の利用効率を向上することができるとともに、ビーム角を小さくすることが可能となる。   According to the above configuration, by cutting (chamfering) the peripheral edge portion of the transparent member having a high refractive index into a slope, the slope becomes a reflective surface that reflects light emitted from the light-emitting element sideward, and The light utilization efficiency can be improved and the beam angle can be reduced.

また、本発明の発光装置では、前記透明部材は、ドーム状の外殻と、その外殻と発光素子との間に充填される内部材とによって構成され、前記内部材は外殻に比べて、相対的に屈折率の低い材料から成ることを特徴とする。   In the light emitting device of the present invention, the transparent member is constituted by a dome-shaped outer shell and an inner member filled between the outer shell and the light emitting element, and the inner member is compared with the outer shell. It is characterized by being made of a material having a relatively low refractive index.

上記の構成によれば、前記透明部材として、ドーム形状を有する外殻と、その外殻と発光素子との間に充填される内部材との2層構造を用い、さらに前記内部材を外殻に比べて相対的に屈折率の低い材料から形成する。   According to said structure, as said transparent member, the two-layer structure of the outer shell which has a dome shape, and the inner member with which it fills between the outer shell and a light emitting element is used, Furthermore, the said inner member is outer shell It is formed from a material having a relatively low refractive index compared to the above.

したがって、前記の屈折率の差によって、発光素子から側方(前記ドーム状の透明部材の周縁部方向)に出射された光も、内部材と外殻との界面で正面方向(前記ドームの天井方向)に屈折され、ドーム状の波長変換部材の天井部分に垂直に近い角度に入射するようになり、より色ずれを少なくすることができるとともに、前記空隙における空気層から波長変換部材への界面での全反射を防止することができ、前記の光取出し効率をより高めることができる。また、前記内部材に弾性を有する、ゲルやゴムを採用することによって、発光素子の保護も可能となる。   Accordingly, the light emitted from the light emitting element to the side (peripheral edge direction of the dome-shaped transparent member) due to the difference in refractive index is also directed to the front direction (ceiling of the dome) at the interface between the inner member and the outer shell. Direction) and incident at an angle close to perpendicular to the ceiling portion of the dome-shaped wavelength conversion member, and the color shift can be further reduced, and the interface from the air layer to the wavelength conversion member in the gap Can be prevented, and the light extraction efficiency can be further increased. In addition, the light-emitting element can be protected by employing an elastic gel or rubber for the inner member.

さらにまた、本発明の発光装置は、前記外殻の厚みが均一であることを特徴とする。   Furthermore, the light emitting device of the present invention is characterized in that the thickness of the outer shell is uniform.

上記の構成によれば、発光素子から出射された光が外殻を透過する際の光路長が略等しくなるので、前記透明部材の光出射面での輝度むらを低減することができる。   According to said structure, since the optical path length when the light radiate | emitted from the light emitting element permeate | transmits an outer shell becomes substantially equal, the brightness nonuniformity in the light-projection surface of the said transparent member can be reduced.

また、本発明の発光装置では、前記波長変換部材は、少なくとも発光素子と重なる領域が光の出射する方向に突出した凸部を有することを特徴とする。   In the light emitting device of the present invention, the wavelength conversion member has a convex portion that protrudes in a direction in which light is emitted at least in a region overlapping with the light emitting element.

上記の構成によれば、前記配光制御すべき面で見たときに、波長変換部材の光取出し面に凸レンズを形成する。前記凸レンズは、発光素子と重なる中心部のみに形成しても、或いは全体に形成してもよい。   According to said structure, a convex lens is formed in the light extraction surface of a wavelength conversion member when it sees on the surface which should perform the said light distribution control. The convex lens may be formed only in the central portion overlapping the light emitting element, or may be formed entirely.

したがって、前記凸レンズの集光効果によって、より中心輝度の高い光を出射することができる。   Therefore, light with higher central luminance can be emitted by the light condensing effect of the convex lens.

さらにまた、本発明の発光装置では、前記波長変換部材において入射光の波長を変換する蛍光体は、その濃度が、相対的に、発光素子側で濃く、該波長変換部材の出射面側で薄くなるように、連続的または段階的に分散されていることを特徴とする。   Furthermore, in the light emitting device of the present invention, the concentration of the phosphor that converts the wavelength of incident light in the wavelength conversion member is relatively high on the light emitting element side and thin on the emission surface side of the wavelength conversion member. It is characterized by being distributed continuously or stepwise.

上記の構成によれば、上述のように波長変換部材に凸レンズが形成されていても、その凸レンズ部分での波長変換は僅かであり、波長変換の殆どは、前記ドーム状の波長変換部材の内側(発光素子側)の全面に亘って行われる。   According to said structure, even if the convex lens is formed in the wavelength conversion member as mentioned above, the wavelength conversion in the convex lens part is slight, and most of wavelength conversion is inside the said dome-shaped wavelength conversion member. It is performed over the entire surface (on the light emitting element side).

したがって、前記凸レンズ部分を設けても、ドーム状の波長変換部材の周縁部から出射される光と、天井部分(凸レンズ部分)から出射される光との色のずれを小さくすることができる。   Therefore, even if the convex lens portion is provided, the color shift between the light emitted from the peripheral portion of the dome-shaped wavelength conversion member and the light emitted from the ceiling portion (convex lens portion) can be reduced.

また、本発明の発光装置では、前記波長変換部材は、前記透明部材と対向する内面に、発光素子からの光を透過し、該波長変換部材で波長変換されて発生した光を反射する波長フィルタを備えることを特徴とする。   In the light emitting device of the present invention, the wavelength conversion member transmits the light from the light emitting element to the inner surface facing the transparent member, and reflects the light generated by wavelength conversion by the wavelength conversion member. It is characterized by providing.

上記の構成によれば、たとえばSiOとTiOとを交互に積層して成る波長フィルタは、発光素子から波長変換部材に入射する光はそのまま透過させ、波長変換部材で波長変換されて発光素子側へ返って来た光は波長変換部材内に反射するので、前記光取出し効率を一層高くすることができる。また、波長フィルタによって、蛍光体で効率良く変換される波長帯の光のみを選択的に透過させることができ、変換後の光の色の均一性を高めることができる。さらにまた、一般に発光素子から放射される光は短波長帯であり、前記波長フィルタがその成分を透過させる場合、温度上昇の要因となる長波長帯の光が発光装置の外部から侵入し、発光素子へ到達するのを阻止することができ、発光素子の劣化を防ぐこともできる。 According to the above configuration, for example, the wavelength filter formed by alternately laminating SiO 2 and TiO 2 allows light incident on the wavelength conversion member from the light emitting element to pass through as it is, and is wavelength-converted by the wavelength conversion member to be the light emitting element. Since the light returning to the side is reflected in the wavelength conversion member, the light extraction efficiency can be further increased. In addition, the wavelength filter can selectively transmit only the light in the wavelength band that is efficiently converted by the phosphor, and the uniformity of the color of the converted light can be improved. Furthermore, in general, light emitted from a light emitting element is in a short wavelength band, and when the wavelength filter transmits the component, light in a long wavelength band that causes a temperature rise enters from the outside of the light emitting device and emits light. Reaching the element can be prevented and deterioration of the light emitting element can also be prevented.

さらにまた、本発明の発光装置は、前記波長変換部材と透明部材との少なくとも一方の光入出射面に反射防止構造を備えることを特徴とする。   Furthermore, the light-emitting device of the present invention is characterized in that an antireflection structure is provided on at least one light incident / exit surface of the wavelength converting member and the transparent member.

上記の構成によれば、前記波長変換部材と透明部材との少なくとも一方の光入出射面に、たとえばSiOとTiOとを交互に積層して成る反射防止膜や、前記所望の波長よりも短い間隔の凹凸構造を設けることで、たとえば4%程度生じる反射ロスを1%程度以下にまで抑えることができ、光取出し効率をさらに向上することができる。 According to the above configuration, for example, an antireflection film formed by alternately laminating SiO 2 and TiO 2 on at least one light incident / exit surface of the wavelength conversion member and the transparent member, or more than the desired wavelength. By providing a concave-convex structure with a short interval, for example, a reflection loss occurring about 4% can be suppressed to about 1% or less, and the light extraction efficiency can be further improved.

また、本発明の白色光源は、前記の発光装置を用いることを特徴とする。   The white light source of the present invention is characterized by using the above light emitting device.

上記の構成によれば、上記の発光装置を用いることで、光取出し効率を向上することができるとともに、色むらが生じ難い白色光源を実現することができる。   According to said structure, by using said light-emitting device, while being able to improve light extraction efficiency, the white light source which cannot produce color unevenness easily is realizable.

さらにまた、本発明の照明装置は、前記の白色光源に、前記波長変換部材の光出射面側に、該光出射面から出射された光を配光制御するための光学部材が配置されて成ることを特徴とする。   Furthermore, in the illumination device of the present invention, the white light source is provided with an optical member for controlling light distribution from the light exit surface on the light exit surface side of the wavelength conversion member. It is characterized by that.

上記の構成によれば、前記白色光源が発する光は拡散光であるので、レンズやプリズムなどの光学部材と組合わせて狭角の配光に制御することで、照明装置の用途を広げることができる。   According to the above configuration, since the light emitted from the white light source is diffused light, the use of the illumination device can be expanded by controlling the light distribution at a narrow angle in combination with an optical member such as a lens or a prism. it can.

本発明の発光装置は、以上のように、白色光源などの発光装置を実現するために、発光ダイオードなどの発光素子をドーム状の波長変換部材に内包し、前記発光素子から放射された光を所望の波長に変換して出射するようにした発光装置において、前記波長変換部材の外表面や、発光素子が透明部材で覆われている場合のその透明部材の外表面などの空気への光出射面を、配光制御すべき面で切断した断面形状を、前記面と発光素子に外接する円との2交点を焦点とする半楕円の形状とし、さらに前記半楕円上の各点における法線と前記各焦点との成す角が、前記光出射面を形成する部材の全反射角未満の角度となる半楕円から半円までの範囲とする。   As described above, the light-emitting device of the present invention includes a light-emitting element such as a light-emitting diode in a dome-shaped wavelength conversion member in order to realize a light-emitting device such as a white light source, and emits light emitted from the light-emitting element. In a light emitting device that converts to a desired wavelength and emits light, light is emitted to the air such as the outer surface of the wavelength converting member or the outer surface of the transparent member when the light emitting element is covered with a transparent member. A cross-sectional shape obtained by cutting a surface by a surface to be light-distributed is a semi-elliptical shape having a focal point at two intersections between the surface and a circle circumscribing the light-emitting element, and normal lines at points on the semi-ellipse. And an angle formed by each of the focal points is in a range from a semi-ellipse to a semi-circle having an angle less than the total reflection angle of the member forming the light emitting surface.

それゆえ、光出射面を扁平な半楕円形状〜半円形状としても、該光出射面での前記波長変換部材や透明部材と空気との屈折率の差による全反射を防止しつつ、半円以上の、たとえば砲弾型形状と比較して、小型化することができるとともに、側面からの放射分が少なくなり(前記光出射面の法線の多くを正面方向へ向けることで該正面方向への放射分が多くなり)、光の取出し効率を高めることができる。さらにまた、波長変換部材と発光素子との間隔が近くなるので、波長変換部材に照射される励起光の密度を高くすることが可能となり、その結果、中心輝度の高い色ずれの少ない光を波長変換部材から出射することが可能となる。   Therefore, even if the light emitting surface is a flat semi-elliptical to semicircular shape, while preventing total reflection due to a difference in refractive index between the wavelength conversion member and the transparent member and air on the light emitting surface, Compared with, for example, the above-mentioned bullet-shaped shape, the size can be reduced and the amount of radiation from the side surface can be reduced (by directing many of the normals of the light exit surface to the front direction, The amount of radiation increases) and the light extraction efficiency can be increased. Furthermore, since the distance between the wavelength conversion member and the light emitting element is close, it is possible to increase the density of the excitation light irradiated to the wavelength conversion member. The light can be emitted from the conversion member.

また、本発明の発光装置は、以上のように、前記発光素子を光を透過する性質を有する高屈折率の透明部材に内包し、さらに所定間隔の空隙を隔ててドーム状の波長変換部材に内包する。   In addition, as described above, the light-emitting device of the present invention includes the light-emitting element in a high-refractive-index transparent member having a property of transmitting light, and further forms a dome-shaped wavelength conversion member with a predetermined gap therebetween. Enclose.

それゆえ、高屈折率の透明部材で内包することによって、発光素子から発せられる光を効率良く取出すことができるとともに、発光素子を保護することもできる。   Therefore, by enclosing with a transparent member having a high refractive index, light emitted from the light emitting element can be taken out efficiently and the light emitting element can be protected.

さらにまた、本発明の発光装置は、以上のように、前記発光素子を基板に搭載して、その基板と前記透明部材とによって封止し、さらに前記高屈折率の透明部材の周縁部を斜面にカット(面取り)する。   Furthermore, in the light emitting device of the present invention, as described above, the light emitting element is mounted on a substrate and sealed by the substrate and the transparent member, and the peripheral portion of the transparent member having a high refractive index is inclined. Cut (chamfer).

それゆえ、該斜面は発光素子から側方に出射された光を前方に反射する反射面となり、光の利用効率を向上することができるとともに、ビーム角を小さくすることが可能となる。   Therefore, the inclined surface serves as a reflecting surface that reflects light emitted from the light emitting element to the side in the forward direction, so that the light use efficiency can be improved and the beam angle can be reduced.

また、本発明の発光装置は、以上のように、前記透明部材を、ドーム状の外殻と、その外殻と発光素子との間に充填される内部材との2層構造とし、前記内部材を外殻に比べて相対的に屈折率の低い材料から形成する。   In the light-emitting device of the present invention, as described above, the transparent member has a two-layer structure including a dome-shaped outer shell and an inner member filled between the outer shell and the light-emitting element. The material is formed from a material having a relatively low refractive index compared to the outer shell.

それゆえ、前記の屈折率の差によって、発光素子から側方(前記ドーム状の透明部材の周縁部方向)に出射された光も、内部材と外殻との界面で正面方向(前記ドームの天井方向)に屈折され、ドーム状の波長変換部材の天井部分に垂直に近い角度に入射するようになり、より色ずれを少なくすることができるとともに、前記空隙における空気層から波長変換部材への界面での全反射を防止することができ、前記光の取出し効率をより高めることができる。また、前記内部材に弾性を有する、ゲルやゴムを採用することによって、発光素子の保護も可能となる。   Therefore, due to the difference in refractive index, the light emitted from the light emitting element to the side (in the direction of the peripheral edge of the dome-shaped transparent member) is also front-facing (at the dome) at the interface between the inner member and the outer shell. Refracted in the direction of the ceiling), and enters the dome-shaped wavelength conversion member at an angle close to the vertical, so that the color shift can be further reduced, and the air layer in the gap from the air layer to the wavelength conversion member Total reflection at the interface can be prevented, and the light extraction efficiency can be further increased. In addition, the light-emitting element can be protected by employing an elastic gel or rubber for the inner member.

さらにまた、本発明の発光装置は、以上のように、前記外殻の厚みを均一とする。   Furthermore, the light emitting device of the present invention makes the thickness of the outer shell uniform as described above.

それゆえ、発光素子から出射された光が外殻を透過する際の光路長が略等しくなるので、前記透明部材の光出射面での輝度むらを低減することができる。   Therefore, since the light path lengths when the light emitted from the light emitting element passes through the outer shell are substantially equal, the unevenness in luminance on the light emitting surface of the transparent member can be reduced.

また、本発明の発光装置は、以上のように、前記配光制御すべき面で見たときに、波長変換部材の光取出し面に凸レンズを形成する。   In addition, as described above, the light emitting device of the present invention forms a convex lens on the light extraction surface of the wavelength conversion member when viewed from the surface on which the light distribution is to be controlled.

それゆえ、前記凸レンズの集光効果によって、より中心輝度の高い光を出射することができる。   Therefore, light with higher center luminance can be emitted by the light condensing effect of the convex lens.

さらにまた、本発明の発光装置は、以上のように、前記波長変換部材における蛍光体の濃度を、相対的に、発光素子側で濃く、該波長変換部材の出射面側で薄くなるようにする。   Furthermore, in the light emitting device of the present invention, as described above, the phosphor concentration in the wavelength conversion member is relatively high on the light emitting element side and thin on the emission surface side of the wavelength conversion member. .

それゆえ、上述のように波長変換部材に凸レンズが形成されていても、その凸レンズ部分での波長変換は僅かであり、波長変換の殆どは、前記ドーム状の波長変換部材の内側(発光素子側)の全面に亘って行われることになり、前記凸レンズ部分を設けても、ドーム状の波長変換部材の周縁部から出射される光と、天井部分(凸レンズ部分)から出射される光との色のずれを小さくすることができる。   Therefore, even if a convex lens is formed on the wavelength conversion member as described above, the wavelength conversion at the convex lens portion is slight, and most of the wavelength conversion is performed on the inner side of the dome-shaped wavelength conversion member (on the light emitting element side). ), Even if the convex lens portion is provided, the color of the light emitted from the peripheral portion of the dome-shaped wavelength conversion member and the light emitted from the ceiling portion (convex lens portion) The deviation can be reduced.

また、本発明の発光装置は、以上のように、前記波長変換部材の透明部材と対向する内面に、発光素子からの光を透過し、該波長変換部材で波長変換されて発生した光を反射する波長フィルタを備える。   Further, as described above, the light emitting device of the present invention transmits light from the light emitting element to the inner surface of the wavelength conversion member facing the transparent member, and reflects light generated by wavelength conversion by the wavelength conversion member. A wavelength filter is provided.

それゆえ、光取出し効率を一層高くすることができる。また、波長フィルタによって、蛍光体で効率良く変換される波長帯の光のみを選択的に透過させることができ、変換後の光の色の均一性を高めることができる。さらにまた、一般に発光素子から放射される光は短波長帯であり、前記波長フィルタがその成分を透過させる場合、温度上昇の要因となる長波長帯の光が発光装置の外部から侵入し、発光素子へ到達するのを阻止することができ、発光素子の劣化を防ぐこともできる。   Therefore, the light extraction efficiency can be further increased. In addition, the wavelength filter can selectively transmit only the light in the wavelength band that is efficiently converted by the phosphor, and the uniformity of the color of the converted light can be improved. Furthermore, in general, light emitted from a light emitting element is in a short wavelength band, and when the wavelength filter transmits the component, light in a long wavelength band that causes a temperature rise enters from the outside of the light emitting device and emits light. Reaching the element can be prevented and deterioration of the light emitting element can also be prevented.

さらにまた、本発明の発光装置は、以上のように、前記波長変換部材と透明部材との少なくとも一方の光入出射面に、反射防止膜や、前記所望の波長よりも短い間隔の凹凸構造を設ける。   Furthermore, as described above, the light emitting device of the present invention has an antireflection film or a concavo-convex structure with a shorter interval than the desired wavelength on at least one light incident / exit surface of the wavelength conversion member and the transparent member. Provide.

それゆえ、光取出し効率をさらに向上することができる。   Therefore, the light extraction efficiency can be further improved.

また、本発明の白色光源は、以上のように、前記の発光装置を用いる。   The white light source of the present invention uses the light emitting device as described above.

それゆえ、光取出し効率を向上することができるとともに、色むらが生じ難い白色光源を実現することができる。   Therefore, it is possible to improve the light extraction efficiency and realize a white light source that hardly causes color unevenness.

さらにまた、本発明の照明装置は、以上のように、前記白色光源が発する光は拡散光であるので、前記波長変換部材の光出射面側に、該光出射面から出射された光を配光制御するための光学部材を設ける。   Furthermore, in the illumination device of the present invention, as described above, since the light emitted from the white light source is diffused light, the light emitted from the light emitting surface is arranged on the light emitting surface side of the wavelength conversion member. An optical member for light control is provided.

それゆえ、レンズやプリズムなどの光学部材と組合わせて狭角の配光に制御することで、照明装置の用途を広げることができる。   Therefore, by combining with an optical member such as a lens or a prism to control the light distribution at a narrow angle, the application of the lighting device can be expanded.

[実施の形態1]
図1は本発明の実施の第1の形態に係る発光装置である白色光源1の断面図であり、図2はその透視斜視図である。この白色光源1は、大略的に、発光ダイオードなどから成り、青色や紫外などの短波長の光を放出する発光素子2と、その発光素子2を搭載する基板3と、前記発光素子2からの電極パターンの引回しや基板3へのボンディング方法などに応じて前記発光素子2と基板3との間に適宜介在されるサブ基板4と、前記発光素子2を内包し、前記基板3との間で気密に封止する透明部材5と、前記透明部材5の外側に所定の空隙6を開けて被せられ、前記発光素子2から放射された光を所望とする白色の各成分となる波長に変換して放射するドーム状の波長変換部材7とを備えて構成される。
[Embodiment 1]
FIG. 1 is a cross-sectional view of a white light source 1 which is a light emitting device according to a first embodiment of the present invention, and FIG. 2 is a perspective view thereof. The white light source 1 is generally composed of a light emitting diode or the like, and emits light of a short wavelength such as blue or ultraviolet, a substrate 3 on which the light emitting element 2 is mounted, and the light emitting element 2. A sub-substrate 4 appropriately interposed between the light-emitting element 2 and the substrate 3 in accordance with the routing of the electrode pattern, the bonding method to the substrate 3, etc. The transparent member 5 that is hermetically sealed with, and is covered with a predetermined gap 6 outside the transparent member 5, and the light emitted from the light-emitting element 2 is converted into a desired wavelength of each white component. And a dome-shaped wavelength conversion member 7 that radiates.

そして、注目すべきは、本実施の形態では、図1で示すような前記発光素子2から放射された光を配光制御すべき面での切断面において、空気への光出射面となる透明部材5の外表面の断面形状が、図2で示すように、発光素子2に外接する円L1と、前記配光制御すべき面との2交点を焦点F1,F2とする半楕円Rに形成され、さらに該半楕円R上の各点Pにおける法線Vと前記各焦点F1,F2との成す角θが、図1で示すように、前記光出射面を形成する透明部材5の全反射角未満の角度となる半楕円R1から半円R2までの範囲に設定されることである。なお、前記空隙6が設けられていない(透明部材5と波長変換部材7とが密着している)場合には、前記波長変換部材7の外表面が空気への光出射面となり、同様の形状に形成されればよい。   It should be noted that in the present embodiment, a transparent surface serving as a light emission surface to the air at a cut surface at a surface where the light emitted from the light emitting element 2 as shown in FIG. As shown in FIG. 2, the cross-sectional shape of the outer surface of the member 5 is formed into a semi-ellipse R having the focal points F1 and F2 at the two intersections between the circle L1 circumscribing the light-emitting element 2 and the surface to be controlled for light distribution. Further, the angle θ formed between the normal V at each point P on the semi-ellipse R and each of the focal points F1 and F2, as shown in FIG. 1, is the total reflection of the transparent member 5 that forms the light emitting surface. It is to be set in a range from the semi-ellipse R1 to the semi-circle R2 having an angle less than the angle. When the gap 6 is not provided (the transparent member 5 and the wavelength conversion member 7 are in close contact with each other), the outer surface of the wavelength conversion member 7 becomes a light emitting surface for air, and has the same shape. What is necessary is just to form.

ここで、前記2つの焦点F1,F2は、発光素子2の光放射面2aが図3(a)で示すような正方形の場合や、図3(b)で示すような正6角形の場合、対角線L2上の隅角部となる。これに対して、前記発光素子2が、図3(c)で示すような円形の場合、前記2つの焦点F1,F2は一直径線L3上となり、図3(d)で示すような三角形や、いびつな形状である場合は、前記配光制御すべき面での切断線L4上となる。   Here, the two focal points F1 and F2 have a light emitting surface 2a of the light emitting element 2 having a square shape as shown in FIG. 3A or a regular hexagon as shown in FIG. It becomes a corner portion on the diagonal line L2. On the other hand, when the light emitting element 2 is circular as shown in FIG. 3C, the two focal points F1 and F2 are on one diameter line L3. In the case of an irregular shape, it is on the cutting line L4 at the surface where the light distribution should be controlled.

前記透明部材5は、前記発光素子2から放射された光の波長に対して透光性を有する高屈折率の材料、たとえばシリコーンから成る。そして、前記角θは、透明部材5の屈折率nが、たとえば1.53とすると、sinθ=1/nから、θ=40.8°となる。したがって、透明部材5の外表面の断面形状が、θ≧40.8°とならない範囲の扁平な半楕円R1から、半円R2までの範囲に前記半楕円Rの形状を規定する。   The transparent member 5 is made of a material having a high refractive index, such as silicone, that is transparent to the wavelength of light emitted from the light emitting element 2. When the refractive index n of the transparent member 5 is 1.53, for example, the angle θ becomes θ = 40.8 ° from sin θ = 1 / n. Therefore, the shape of the semi-ellipse R is defined in a range from the flat semi-ellipse R1 in a range where the outer surface of the transparent member 5 does not satisfy θ ≧ 40.8 ° to the semi-circle R2.

図4は、前記半楕円R1の軌跡の求め方を説明するための図である。先ず、前記図3で示すように、発光素子2に対する前記外接円L1の半径Xを求める。次に、配光制御すべき面を設定し、その面での切断面において、発光素子2の光放射面(図1や図2の上面)の延長線(たとえば前記対角線L2の延長線)と半楕円R1との交点P2までの距離、すなわち半楕円R1の長径を2Aとすると、A=X/sinθから、その長径2Aを求める。続いて、前記角θが最も大きくなる前記外接円L1の中心P0に対する法線Vと半楕円R1との交点Pまでの距離、すなわち半楕円R1の短径を2Bとすると、B=X/tanθから、その短径2Bを求める。たとえば、X=0.767(mm)とすると、2A=2.164(mm)、2B=1.674(mm)となる。   FIG. 4 is a diagram for explaining how to obtain the locus of the semi-ellipse R1. First, as shown in FIG. 3, a radius X of the circumscribed circle L1 with respect to the light emitting element 2 is obtained. Next, a surface to be subjected to light distribution control is set, and an extension line (for example, an extension line of the diagonal line L2) of the light emitting surface of the light-emitting element 2 (upper surface in FIGS. If the distance to the intersection P2 with the semi-ellipse R1, that is, the major axis of the semi-ellipse R1, is 2A, the major axis 2A is obtained from A = X / sin θ. Subsequently, assuming that the distance to the intersection P between the normal V and the semi-ellipse R1 with respect to the center P0 of the circumscribed circle L1 where the angle θ is the largest, that is, the minor axis of the semi-ellipse R1 is 2B, B = X / tan θ From that, the minor axis 2B is obtained. For example, when X = 0.767 (mm), 2A = 2.164 (mm) and 2B = 1.664 (mm).

したがって、前記長径2Aおよび短径2Bから成る半楕円R1の外側に前記透明部材5の外表面(半楕円R)があれば全反射が起こらないことになり、前記サブ基板4やボンディングワイヤ8に対するクリアランスを満足できるように、前記半楕円R1から半円R2の範囲で半楕円Rの軌跡を設定すればよい。たとえば図2では、発光素子2の対向電極をサブ基板4上に引出しており、前記長径2Aは基板3側のボンディングパッド3aの外周まで内包するように設定され、前記短径2Bはボンディングワイヤ8の最高点よりも高く設定される。   Therefore, if the outer surface (semi-ellipse R) of the transparent member 5 is outside the semi-ellipse R1 composed of the major axis 2A and the minor axis 2B, total reflection does not occur. The locus of the semi-ellipse R may be set in the range from the semi-ellipse R1 to the semi-circle R2 so that the clearance can be satisfied. For example, in FIG. 2, the counter electrode of the light emitting element 2 is drawn on the sub-substrate 4, the major axis 2 </ b> A is set so as to be included up to the outer periphery of the bonding pad 3 a on the substrate 3 side, and the minor axis 2 </ b> B is the bonding wire 8. Set higher than the highest point.

なお、こうして決定された透明部材5の半楕円Rの形状に該当するのは、発光素子2の光放射面(図1や図2の上面)の延長線よりも光放射方向1a(図1で示す)側であり、それよりも基板3方向1b側については、前記半楕円Rの先端が基板3に対して垂直に垂下していたり、図1で示すように拡径していてもよく、少なくとも縮径していないことが好ましい。   Note that the shape of the semi-ellipse R of the transparent member 5 determined in this way corresponds to the light emission direction 1a (in FIG. 1) with respect to the extension line of the light emission surface of the light emitting element 2 (upper surface in FIGS. 1 and 2). The tip of the semi-ellipse R may hang vertically with respect to the substrate 3 or may have an increased diameter as shown in FIG. It is preferable that the diameter is not reduced.

このようにして空気への光出射面となる透明部材5の外表面を扁平な半楕円R1の形状から半円R2の形状の範囲で設定し、さらに波長変換部材7の断面形状も透明部材5に沿った形状とすることで、前記外表面での透明部材5と空気との屈折率の差による全反射を防止しつつ、半円R2以上の、たとえば砲弾型形状と比較して、白色光源1を小型化することができるとともに、側面からの放射分が少なくなり(前記光出射面の法線の多くを正面方向へ向けることで該正面方向への放射分が多くなり)、光の取出し効率を高め、配光制御を行うことができる。さらにまた、波長変換部材7と発光素子2との間隔が近くなるので、波長変換部材7に照射される励起光の密度を高くすることが可能となり、その結果、中心輝度の高い色ずれの少ない光を波長変換部材7から出射することが可能となる。   In this way, the outer surface of the transparent member 5 serving as a light emitting surface for air is set in the range of the shape of the flat semi-ellipse R1 to the shape of the semi-circle R2, and the cross-sectional shape of the wavelength conversion member 7 is also set to the transparent member 5. The shape of the white light source compared to, for example, a shell-shaped shape of a semicircle R2 or more, while preventing total reflection due to the difference in refractive index between the transparent member 5 and air on the outer surface. 1 can be reduced in size, and the amount of radiation from the side surface is reduced (the amount of radiation in the front direction is increased by directing many of the normals of the light emitting surface in the front direction), and light is extracted. Efficiency can be increased and light distribution control can be performed. Furthermore, since the distance between the wavelength conversion member 7 and the light emitting element 2 is reduced, it is possible to increase the density of the excitation light irradiated to the wavelength conversion member 7, and as a result, there is little color shift with high central luminance. Light can be emitted from the wavelength conversion member 7.

また、発光素子2を、光を透過する性質を持つ高屈折率の透明部材5で内包することによって、発光素子2から発せられる光を効率良く取出すことができるとともに、発光素子2を保護することもできる。   In addition, by encapsulating the light emitting element 2 with a transparent member 5 having a high refractive index that transmits light, the light emitted from the light emitting element 2 can be efficiently extracted and the light emitting element 2 can be protected. You can also.

[実施の形態2]
図5は本発明の実施の第2の形態に係る発光装置である白色光源11の断面図である。この白色光源11は、前述の白色光源1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この白色光源11では、透明部材15が、ドーム状の外殻15aと、その外殻15aと発光素子2との間に充填される内部材15bとによって構成され、前記内部材15bは外殻15aに比べて、相対的に屈折率の低い材料で、かつ弾性を有する材料、たとえばゲルやゴムから成ることである。
[Embodiment 2]
FIG. 5 is a cross-sectional view of a white light source 11 which is a light emitting device according to the second embodiment of the present invention. The white light source 11 is similar to the white light source 1 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in this white light source 11, the transparent member 15 is constituted by a dome-shaped outer shell 15 a and an inner member 15 b filled between the outer shell 15 a and the light emitting element 2. 15b is made of a material having a relatively low refractive index compared to the outer shell 15a and having elasticity, such as gel or rubber.

この白色光源11では、予め成形された外殻15aのドーム内に前記内部材15bが充填され、また発光素子2が搭載された基板3にも前記内部材15bが塗布されて発光素子2上にも被膜が形成された状態でそれらが組合わせられ、外殻15aの周縁部と基板3とが接着されるとともに、前記内部材15bが固化することで、外殻15a内に発光素子2が気密に封止されることになる。   In the white light source 11, the inner member 15 b is filled in the dome of the outer shell 15 a that is molded in advance, and the inner member 15 b is applied to the substrate 3 on which the light emitting element 2 is mounted. In the state in which the film is formed, they are combined, the peripheral edge of the outer shell 15a and the substrate 3 are bonded, and the inner member 15b is solidified, so that the light emitting element 2 is hermetically sealed in the outer shell 15a. It will be sealed.

このように透明部材15を、ドーム形状を有する外殻15aと、その外殻15aと発光素子2との間に充填される内部材15bとの2層構造とし、両部材間の屈折率に差を設けることによって、図5で示すように、発光素子2から側方(前記ドーム状の透明部材15の周縁部方向)に出射された光も、内部材15bと外殻15aとの界面で正面方向(前記ドームの天井方向)に屈折され、ドーム状の波長変換部材7の天井部分に垂直に近い角度に入射するようになり、より色ずれを少なくすることができるとともに、空隙6における空気層から波長変換部材7への界面での全反射を防止することができ、光の取出し効率をより高めることができる。また、前記内部材15bに弾性を有する前記ゲルやゴムを採用することによって、点灯による熱膨張と消灯による縮小とを繰返す際に、発光素子2と透明部材15との線膨張係数の違いによるストレスから、発光素子2やボンディングワイヤ8などを保護することもできる。   Thus, the transparent member 15 has a two-layer structure of the outer shell 15a having a dome shape and the inner member 15b filled between the outer shell 15a and the light emitting element 2, and the difference in refractive index between the two members is different. As shown in FIG. 5, the light emitted from the light emitting element 2 to the side (periphery of the dome-shaped transparent member 15) is also front-facing at the interface between the inner member 15b and the outer shell 15a. Is refracted in the direction (the ceiling direction of the dome) and is incident on the ceiling portion of the dome-shaped wavelength conversion member 7 at an angle close to the vertical, so that the color shift can be further reduced and the air layer in the gap 6 Therefore, it is possible to prevent total reflection at the interface from the light to the wavelength converting member 7 and to further increase the light extraction efficiency. Further, by employing the gel or rubber having elasticity for the inner member 15b, stress due to a difference in linear expansion coefficient between the light emitting element 2 and the transparent member 15 when repeating thermal expansion due to lighting and reduction due to extinction is repeated. Therefore, the light emitting element 2, the bonding wire 8, and the like can be protected.

[実施の形態3]
図6は、本発明の実施の第3の形態に係る発光装置である白色光源21の断面図である。この白色光源21は、前述の白色光源11に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この白色光源21では、透明部材25の外殻25aの厚みが均一に形成されていることである。外殻25aおよび内部材25bの材料は、たとえば前記の透明部材15の外殻15aおよび内部材15bとそれぞれ同一である。
[Embodiment 3]
FIG. 6 is a cross-sectional view of a white light source 21 that is a light emitting device according to a third embodiment of the present invention. The white light source 21 is similar to the white light source 11 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in the white light source 21, the thickness of the outer shell 25a of the transparent member 25 is formed uniformly. The materials of the outer shell 25a and the inner member 25b are, for example, the same as those of the outer shell 15a and the inner member 15b of the transparent member 15, respectively.

したがって、発光素子2から出射された光が、高屈折率の外殻25aを透過する際の光路長が略等しくなるので、透明部材25の光出射面での輝度むらを低減することができる。   Accordingly, the light path lengths when the light emitted from the light emitting element 2 passes through the outer shell 25a having a high refractive index are substantially equal, so that uneven brightness on the light emitting surface of the transparent member 25 can be reduced.

[実施の形態4]
図7は本発明の実施の第4の形態に係る発光装置である白色光源31の断面図である。この白色光源31は、前述の白色光源11に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この白色光源31では、透明部材35の外殻35aは、周縁部が前記基板3から離反するように形成される斜面35cを有することである。さらにこの白色光源31では、前記斜面35cには、反射増加膜38が形成されている。前記斜面35cの傾斜角度は、透明部材35の前記周縁部に入射した光を全反射させる角度に設定される。この外殻35aは、たとえば図8で示すような金型39a,39bによって成形することができ、成形されたドーム内に内部材35bが充填され、発光素子2を搭載した基板3と一体化される。
[Embodiment 4]
FIG. 7 is a cross-sectional view of a white light source 31 which is a light emitting device according to the fourth embodiment of the present invention. The white light source 31 is similar to the white light source 11 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in the white light source 31, the outer shell 35 a of the transparent member 35 has an inclined surface 35 c formed so that the peripheral edge is separated from the substrate 3. Further, in the white light source 31, a reflection increasing film 38 is formed on the inclined surface 35c. The inclination angle of the inclined surface 35 c is set to an angle that totally reflects light incident on the peripheral edge of the transparent member 35. The outer shell 35a can be molded by, for example, molds 39a and 39b as shown in FIG. 8, and the molded dome is filled with the inner member 35b and integrated with the substrate 3 on which the light emitting element 2 is mounted. The

このように高屈折率の外殻35aの周縁部を斜面にカット(面取り)することで、図7で示すように、前記周縁部方向に出射され、有効に活用できなかった光を前記斜面35cおよび反射増加膜38が前方へ反射して、光の利用効率を向上することができるとともに、ビーム角を小さくすることが可能となる。   By thus cutting (chamfering) the peripheral edge of the high refractive index outer shell 35a into a slope, as shown in FIG. 7, the light emitted in the direction of the peripheral edge and cannot be used effectively is the slope 35c. Further, the reflection increasing film 38 is reflected forward, so that the light use efficiency can be improved and the beam angle can be reduced.

[実施の形態5]
図9は本発明の実施の第5の形態に係る発光装置である白色光源41a,41b,41cの断面図である。これらの白色光源41a,41b,41cは、前述の白色光源1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、これらの白色光源41a,41b,41cでは、前記配光制御すべき面で見たときに、波長変換部材47a,47b,47cの光取出し面に、少なくとも発光素子2と重なる領域が光の出射する方向に突出した凸部48a,48b,48cを有することである。
[Embodiment 5]
FIG. 9 is a cross-sectional view of white light sources 41a, 41b and 41c which are light emitting devices according to the fifth embodiment of the present invention. These white light sources 41a, 41b, and 41c are similar to the above-described white light source 1, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in these white light sources 41a, 41b, and 41c, regions that overlap at least the light emitting element 2 on the light extraction surfaces of the wavelength conversion members 47a, 47b, and 47c when viewed from the surface on which the light distribution is to be controlled. Has protrusions 48a, 48b, and 48c protruding in the light emitting direction.

図9(a)の白色光源41aでは、発光素子2と重なる中心部のみに、凸レンズとなる前記凸部48aが形成されている。また、図9(b)の白色光源41bでは、波長変換部材47bの全体が凸レンズとなる前記凸部48bに形成されている。一方、図9(c)の白色光源41cでは、前記中心部に凸レンズとなる凸部48cが形成され、周縁部にはフレネル反射を低減する凹凸48dが形成されている。   In the white light source 41a of FIG. 9A, the convex portion 48a serving as a convex lens is formed only in the central portion overlapping the light emitting element 2. Moreover, in the white light source 41b of FIG.9 (b), the whole wavelength conversion member 47b is formed in the said convex part 48b used as a convex lens. On the other hand, in the white light source 41c shown in FIG. 9C, a convex portion 48c serving as a convex lens is formed at the central portion, and an uneven portion 48d for reducing Fresnel reflection is formed at the peripheral portion.

さらに、前記波長変換部材47a,47b,47cにおいて、入射光の波長を変換する蛍光体は、その濃度が、図10で示すように、相対的に、発光素子2側で濃く、該波長変換部材47a,47b,47cの出射面側で薄くなるように、連続的または段階的に分散されている。図10(a)では連続的に、図10(b)では複数の段階的に、図10(c)では単一の段階的に、前記蛍光体の濃度が変化されていることを示している。たとえば、図10(c)の波長変換部材では2色成型で、図10(b)の波長変換部材では多段成型で、それぞれ形成することができる。   Further, in the wavelength conversion members 47a, 47b, and 47c, the phosphor that converts the wavelength of incident light has a relatively high concentration on the light emitting element 2 side as shown in FIG. 47a, 47b, and 47c are dispersed continuously or stepwise so as to be thin on the exit surface side. FIG. 10A shows that the concentration of the phosphor is changed continuously, in FIG. 10B in a plurality of steps, and in FIG. 10C, in a single step. . For example, the wavelength conversion member of FIG. 10C can be formed by two-color molding, and the wavelength conversion member of FIG. 10B can be formed by multistage molding.

このように構成することで、発光素子2からの光や波長変換部材47a,47b,47cで生成された変換光を集光し、中心の光強度を周縁部の光強度に比べて特に強くすることが可能となる。また、前記の集光を、このように波長変換部材47a,47b,47cの外表面で行うと、前記透明部材15の外殻15aで行う場合に比べて、配光を制御する面が光源である発光素子2から遠くなり、前記配光を制御する面から見て光源が点光源に近くなり、制御が容易である。また、図9(c)のような形状を用いることで、波長変換部材47c全体の厚みを薄くすることができる。   With this configuration, the light from the light-emitting element 2 and the converted light generated by the wavelength conversion members 47a, 47b, and 47c are collected, and the center light intensity is particularly increased compared to the light intensity at the peripheral portion. It becomes possible. Further, when the light condensing is performed on the outer surfaces of the wavelength conversion members 47a, 47b, 47c in this way, the surface for controlling the light distribution is a light source as compared with the case where the light condensing is performed on the outer shell 15a of the transparent member 15. The light source is closer to the point light source when viewed from the surface where the light distribution is controlled, and it is easy to control. Moreover, the thickness of the whole wavelength conversion member 47c can be made thin by using a shape like FIG.9 (c).

さらにまた、波長変換部材47a,47b,47cにおける蛍光体の濃度を、発光素子2側で濃く、出射面側で薄くなるように変化することで、上述のように波長変換部材47a,47b,47cに凸レンズが形成されていても、その凸レンズ部分での波長変換は僅かであり、波長変換の殆どは、前記ドーム状の波長変換部材の内側(発光素子2側)の全面に亘って均等に行われることになる。したがって、前記凸レンズ部分を設けても、ドーム状の波長変換部材47a,47b,47cにおいて、凸レンズが設けられていない薄肉の周縁部から出射される光と、凸レンズが設けられている厚肉の天井部分から出射される光との色ずれを小さくすることができる。詳しくは、たとえば青色の発光素子で励起し、均一に分散させた緑色+赤色の蛍光体や黄色蛍光体で波長変換する場合には、厚みの厚い部分では黄色に近くなるのに対して、上述のように厚み方向に濃度分布を持たせることで、厚みの異なる部分においても同様の変換光割合を得ることが可能となる。最も極端な例であれば、蛍光体が均一に分散された厚み一定の層が発光素子側に形成され、光取り出し面側には蛍光体を含まない凸レンズ層から成る波長変換部材を用いれば、色むらを解消し、かつ、変換された光および発光素子2からの光を波長変換部材の光取り出し面の凸レンズで効率よく集光することが可能となり、中心の輝度が高い白色光源を得ることが可能となる。   Furthermore, the wavelength conversion members 47a, 47b, and 47c are changed as described above by changing the phosphor concentration in the wavelength conversion members 47a, 47b, and 47c so that it is darker on the light emitting element 2 side and thinner on the emission surface side. Even if a convex lens is formed, the wavelength conversion at the convex lens portion is slight, and most of the wavelength conversion is performed uniformly over the entire inner surface (on the light emitting element 2 side) of the dome-shaped wavelength conversion member. It will be. Therefore, even if the convex lens portion is provided, light emitted from a thin peripheral portion where the convex lens is not provided in the dome-shaped wavelength conversion members 47a, 47b and 47c, and a thick ceiling where the convex lens is provided. The color shift from the light emitted from the portion can be reduced. More specifically, for example, when wavelength conversion is performed with a green + red phosphor or a yellow phosphor that is excited with a blue light emitting element and is uniformly dispersed, the thick portion is close to yellow. By providing the concentration distribution in the thickness direction as described above, it is possible to obtain a similar ratio of converted light even in portions having different thicknesses. In the most extreme example, if a wavelength conversion member made of a convex lens layer that does not include a phosphor is formed on the light-emitting element side, a constant-thickness layer in which the phosphor is uniformly dispersed is formed on the light-emitting element side. It is possible to eliminate color unevenness and efficiently collect the converted light and the light from the light emitting element 2 with the convex lens on the light extraction surface of the wavelength conversion member, and obtain a white light source with high central luminance. Is possible.

また、蛍光体で変換された光は、その蛍光体の全周囲方向に発せられるので、光取り出し面側に位置する蛍光体からの光は光取り出し面に対して急な角度で入射し、全反射する光の成分が多くなるのに対して、上述のように発光素子2側の光取り出し面から離れたところに多くの蛍光体を分散させておくことで、該蛍光体で発せられた光は光取り出し面に対して垂直方向に入射する光の成分が増加し、波長変換部材47a,47b,47cに閉じ込められる光の成分を低減して、該波長変換部材47a,47b,47cの光取出し効率を向上することも可能となる。   In addition, since the light converted by the phosphor is emitted in the entire circumferential direction of the phosphor, the light from the phosphor located on the light extraction surface side is incident on the light extraction surface at a steep angle, While the amount of reflected light components increases, the light emitted from the phosphors can be obtained by dispersing many phosphors away from the light extraction surface on the light emitting element 2 side as described above. The light component incident in the direction perpendicular to the light extraction surface increases, the light component confined in the wavelength conversion members 47a, 47b, and 47c is reduced, and the light extraction of the wavelength conversion members 47a, 47b, and 47c is performed. It is also possible to improve efficiency.

[実施の形態6]
図11は、本発明の実施の第6の形態に係る発光装置である白色光源51の断面図である。この白色光源51は、前述の白色光源11に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この白色光源51では、前記波長変換部材7の前記透明部材15と対向する内面に、図12で示すように、発光素子2から該波長変換部材7に入射する光はそのまま透過させ、該波長変換部材7で波長変換されて発光素子2側へ返って来た光は反射する波長フィルタ58が形成されていることである。
[Embodiment 6]
FIG. 11 is a cross-sectional view of a white light source 51 that is a light emitting device according to a sixth embodiment of the present invention. The white light source 51 is similar to the white light source 11 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in this white light source 51, the light incident on the wavelength conversion member 7 from the light emitting element 2 is transmitted as it is on the inner surface of the wavelength conversion member 7 facing the transparent member 15 as shown in FIG. In addition, a wavelength filter 58 that reflects the light that has been wavelength-converted by the wavelength conversion member 7 and returned to the light emitting element 2 side is formed.

前記波長フィルタ58は、たとえばSiOとTiOとを交互に積層して成り、図13において参照符号α1で示すように前記発光ダイオードなどの発光素子2が或る一定の幅の波長帯の光を発生するものであり、かつ波長変換部材7で波長変換された光が参照符号α2で示すように前記の波長帯から離間している場合には、参照符号α3で示すように、それらの波長帯の間に前記波長フィルタ58の透過特性を設定しておくことで、上述のように発光素子2からの光はそのまま透過させ、発光素子2側へ返って来た光は反射させることができる。 The wavelength filter 58 is formed by alternately laminating SiO 2 and TiO 2 , for example, and the light-emitting element 2 such as the light-emitting diode has a wavelength band of a certain width as indicated by reference numeral α1 in FIG. When the light wavelength-converted by the wavelength conversion member 7 is separated from the wavelength band as indicated by reference numeral α2, the wavelength thereof is indicated by reference numeral α3. By setting the transmission characteristics of the wavelength filter 58 between the bands, the light from the light emitting element 2 can be transmitted as it is and the light returned to the light emitting element 2 side can be reflected as described above. .

このように構成することで、前記光取出し効率を一層高くすることができる。また、波長フィルタ58によって、蛍光体で効率良く変換される波長帯の光のみを選択的に透過させることができ、変換後の光の色の均一性を高めることができる。さらにまた、一般に発光素子2から放射される光は短波長帯であり、前記波長フィルタ58がその成分を透過させる場合、温度上昇の要因となる長波長帯の光が白色光源51の外部から侵入し、発光素子2へ到達するのを阻止することができ、発光素子2の劣化を防ぐこともできる。   By comprising in this way, the said light extraction efficiency can be made still higher. In addition, the wavelength filter 58 can selectively transmit only light in the wavelength band that is efficiently converted by the phosphor, and can improve the uniformity of the color of the light after conversion. Furthermore, light emitted from the light emitting element 2 is generally in a short wavelength band, and when the wavelength filter 58 transmits the component, light in a long wavelength band that causes a temperature rise enters from the outside of the white light source 51. In addition, it is possible to prevent the light emitting element 2 from reaching the light emitting element 2 and to prevent the light emitting element 2 from deteriorating.

[実施の形態7]
図14は、本発明の実施の第7の形態に係る発光装置である白色光源61の断面図である。この白色光源61は、前述の白色光源51,31に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この白色光源61では、前記波長変換部材7と透明部材15との少なくとも一方(図14の例では波長変換部材7)の光入出射面(図14では光出射面)に、反射防止構造68が設けられていることである。
[Embodiment 7]
FIG. 14 is a cross-sectional view of a white light source 61 that is a light emitting device according to a seventh embodiment of the present invention. The white light source 61 is similar to the white light sources 51 and 31 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in this white light source 61, at least one of the wavelength conversion member 7 and the transparent member 15 (the wavelength conversion member 7 in the example of FIG. 14) has a light incident / exit surface (light emission surface in FIG. 14). The antireflection structure 68 is provided.

前記反射防止構造68としては、たとえばSiOとTiOとを交互に積層して成る図14で示す反射防止膜や、波長変換部材7での変換波長よりも短い間隔の凹凸構造などである。前記反射防止構造68が設けられていない場合、波長変換部材7から空気の界面で、4%程度の反射ロスが生じる。これに対して、たとえば反射防止膜の場合で、適切に膜設計を行うことによって、可視域で1%以下の内部反射率に抑えることが可能となる。また、そのような反射防止膜を透明部材15の外表面および波長変換部材7の内表面も含めて3ヶ所の界面に形成することで、合わせて10%程度の光取り出し効率のアップが見込めることになる。 Examples of the antireflection structure 68 include an antireflection film shown in FIG. 14 formed by alternately laminating SiO 2 and TiO 2, and an uneven structure with an interval shorter than the conversion wavelength in the wavelength conversion member 7. When the antireflection structure 68 is not provided, a reflection loss of about 4% occurs at the interface between the wavelength conversion member 7 and the air. On the other hand, for example, in the case of an antireflection film, it is possible to suppress the internal reflectance to 1% or less in the visible region by appropriately designing the film. Further, by forming such an antireflection film at three interfaces including the outer surface of the transparent member 15 and the inner surface of the wavelength conversion member 7, it is possible to increase the light extraction efficiency by about 10% in total. become.

一方、前記反射防止構造68として、透過する光の波長よりも短い間隔の凹凸構造を用いた場合には、透過する光の表面におけるフレネル反射を低減することで、透過率(光取り出し効率)を向上させることが可能となる。たとえば、所望の取出し光として、青色、緑色、赤色の可視光とした場合、これらの波長は400〜700nmの可視光成分を含むので、凹凸の間隔としては、100nm〜400nm程度となる。このときの凹凸深さはできる限り深い方が望ましいが、最低、100nm以上が望ましい。   On the other hand, when an uneven structure having an interval shorter than the wavelength of the transmitted light is used as the antireflection structure 68, the transmittance (light extraction efficiency) is reduced by reducing Fresnel reflection on the surface of the transmitted light. It becomes possible to improve. For example, when blue, green, and red visible light is used as the desired extraction light, these wavelengths include a visible light component of 400 to 700 nm, so that the unevenness interval is about 100 nm to 400 nm. At this time, the depth of the unevenness is preferably as deep as possible, but at least 100 nm or more is desirable.

これによって、表面に向かう光子にとって、その表面側で徐々に屈折率が低下してゆくことと等価となり、前記表面で反射し難くなり、光の取出し効率を向上することができるようになる。たとえば、前記凹凸を、その周期構造間隔が波長に比べて充分小さくなるように、図15で示すような三角テーパ溝で形成した場合、屈折率nの部材から屈折率nの部材に透過するとすれば、その有効屈折率は、TE波に対して、 This is equivalent to a gradual decrease in the refractive index on the surface side for the photons heading to the surface, making it difficult to reflect on the surface and improving the light extraction efficiency. For example, when the irregularities are formed by triangular tapered grooves as shown in FIG. 15 so that the periodic structure interval is sufficiently smaller than the wavelength, the irregularities are transmitted from the member having the refractive index n 2 to the member having the refractive index n 1. Then, the effective refractive index is the TE wave,

となり、TM波に対して、 And for TM waves,

となる。ただし、a,bは、図15で示すように、前記凹凸の山から谷までの範囲W1での任意の切断面における屈折率nの部材と屈折率nの部材との幅である。 It becomes. However, a, b, as shown in Figure 15, the width of the member of the refractive index n 1 and member of refractive index n 2 at an arbitrary cutting plane in the range W1 to peak-to-valley of the uneven.

このようにして徐々に有効屈折率を変化させることで、表面におのおのの屈折率の中間の屈折率の薄膜層が存在することと等価となり、反射を低減させることが可能となる。   By gradually changing the effective refractive index in this way, it becomes equivalent to the presence of a thin film layer having a refractive index intermediate between the respective refractive indexes on the surface, and reflection can be reduced.

[実施の形態8]
図16は、本発明の実施の第8の形態に係る照明装置71の断面図である。この照明装置71には、前述の各白色光源1,11,21,31,41a,41b,41c,51,61を採用することができる(図16では白色光源1で例示している)。注目すべきは、この照明装置71では、各白色光源1,11,21,31,41a,41b,41c,51,61の光出射面側に、該光出射面から出射された光を配光制御するための光学部材72が配置されていることである。各白色光源1,11,21,31,41a,41b,41c,51,61は、この図16で示すような光学部材72が被せられ、1または複数個が組合わせて使用されることで、照明装置71として使用される。
[Embodiment 8]
FIG. 16 is a cross-sectional view of a lighting device 71 according to an eighth embodiment of the present invention. The illuminating device 71 can employ the white light sources 1, 11, 21, 31, 41a, 41b, 41c, 51, 61 described above (illustrated as the white light source 1 in FIG. 16). It should be noted that in this illumination device 71, the light emitted from the light emitting surface is distributed to the light emitting surface side of each of the white light sources 1, 11, 21, 31, 41a, 41b, 41c, 51, 61. The optical member 72 for controlling is arranged. Each white light source 1, 11, 21, 31, 41 a, 41 b, 41 c, 51, 61 is covered with an optical member 72 as shown in FIG. 16, and one or more are used in combination. Used as the lighting device 71.

前記光学部材72は、たとえばアクリルやポリカーボネードなどの透光性を有する材料を用いたレンズやプリズムなどから成り、またこの光学部材72に代えて、図17で示すような反射板73などでも同様の配光制御を行うことができる。前記各白色光源1,11,21,31,41a,41b,41c,51,61から放射される光は拡散光であり、そのままでは利用範囲が限られてくるので、多くの場合、前記各白色光源1,11,21,31,41a,41b,41c,51,61はこれらの光学部材71や反射板73と組合わせられて、狭角の配光に制御されて利用される。   The optical member 72 is composed of a lens or a prism using a light-transmitting material such as acrylic or polycarbonate, for example, and instead of the optical member 72, a reflection plate 73 as shown in FIG. Light distribution control can be performed. The light emitted from each of the white light sources 1, 11, 21, 31, 41a, 41b, 41c, 51, 61 is diffused light, and its use range is limited as it is. The light sources 1, 11, 21, 31, 41 a, 41 b, 41 c, 51, 61 are combined with these optical members 71 and the reflecting plate 73, and are used by being controlled by a narrow-angle light distribution.

ここで、基本的に光源が小さい程、また光源の輝度の集中度が高い程、より小さな光学部材で狭角の配光を実現することができる。一方、広角の配光は、光学部材の形状を適切に設定することで比較的容易に実現可能な場合が多い。したがって、上述のように光源が小さい程、また光源の輝度の集中度が高い程、配光制御の観点からは良い光源ということができる。ところで、上述の各実施の形態の場合、たとえば特開2005−57266号公報の従来技術などと比較して、各白色光源1,11,21,31,41a,41b,41c,51,61が扁平に形成されるので、頂点部P11の光出射面と発光素子2との距離が小さく、前記のような光源の輝度の集中度が高くなっており、同程度の大きさのレンズより狭角に配光を制御することができ、照明装置71の用途を広げることができる。   Here, basically, the smaller the light source and the higher the concentration of light source brightness, the narrower light distribution can be achieved with a smaller optical member. On the other hand, wide-angle light distribution can often be realized relatively easily by appropriately setting the shape of the optical member. Therefore, as described above, the smaller the light source and the higher the concentration of the luminance of the light source, the better the light source from the viewpoint of light distribution control. By the way, in the case of each above-mentioned embodiment, each white light source 1,11,21,31,41a, 41b, 41c, 51,61 is flattened compared with the prior art etc. of Unexamined-Japanese-Patent No. 2005-57266, for example. Therefore, the distance between the light emitting surface of the apex portion P11 and the light emitting element 2 is small, and the luminance concentration of the light source is high, and the angle is narrower than that of a lens of the same size. Light distribution can be controlled, and the application of the lighting device 71 can be expanded.

また、狭角の配光を実現するためには、設計基準点を最大輝度の位置(たとえば前記頂点部P11)に設けて設計する必要がある。各実施の形態では、白色光源1,11,21,31,41a,41b,41c,51,61の高さH1が前記特開2005−57266号公報などでの高さH2と比較して低いので、光学系全体の高さH3を低くすることができ、光学系、したがって照明装置71の薄型化を実現することができる。   Further, in order to realize narrow-angle light distribution, it is necessary to design by providing a design reference point at a position with the maximum luminance (for example, the vertex portion P11). In each of the embodiments, the height H1 of the white light source 1, 11, 21, 31, 41a, 41b, 41c, 51, 61 is lower than the height H2 in the Japanese Patent Application Laid-Open No. 2005-57266. The overall height H3 of the optical system can be reduced, and the optical system, and hence the illumination device 71 can be reduced in thickness.

本発明の実施の第1の形態に係る発光装置である白色光源の断面図である。It is sectional drawing of the white light source which is the light-emitting device which concerns on the 1st Embodiment of this invention. 図1の透視斜視図である。FIG. 2 is a perspective view of FIG. 1. 発光素子の形状を説明するための図である。It is a figure for demonstrating the shape of a light emitting element. 本発明における光出射面の設計方法を説明するための図である。It is a figure for demonstrating the design method of the light-projection surface in this invention. 本発明の実施の第2の形態に係る発光装置である白色光源の断面図である。It is sectional drawing of the white light source which is the light-emitting device which concerns on the 2nd Embodiment of this invention. 本発明の実施の第3の形態に係る発光装置である白色光源の断面図である。It is sectional drawing of the white light source which is a light-emitting device which concerns on the 3rd Embodiment of this invention. 本発明の実施の第4の形態に係る発光装置である白色光源の断面図である。It is sectional drawing of the white light source which is a light-emitting device which concerns on the 4th Embodiment of this invention. 図7で示す白色光源において、発光素子を内包する透明部材の成型方法を説明するための断面図である。FIG. 8 is a cross-sectional view for explaining a method of molding a transparent member that includes a light emitting element in the white light source shown in FIG. 7. 本発明の実施の第5の形態に係る発光装置である白色光源の断面図である。It is sectional drawing of the white light source which is a light-emitting device concerning the 5th Embodiment of this invention. 図9で示す白色光源において、波長変換部材の構造例を説明するための断面図である。In the white light source shown in FIG. 9, it is sectional drawing for demonstrating the structural example of a wavelength conversion member. 本発明の実施の第6の形態に係る発光装置である白色光源の断面図である。It is sectional drawing of the white light source which is a light-emitting device concerning the 6th Embodiment of this invention. 図9で示す白色光源において、波長フィルタの機能を説明するための図である。It is a figure for demonstrating the function of a wavelength filter in the white light source shown in FIG. 図9で示す白色光源において、波長フィルタの特性を説明するためのグラフである。10 is a graph for explaining the characteristics of a wavelength filter in the white light source shown in FIG. 9. 本発明の実施の第7の形態に係る発光装置である白色光源の断面図である。It is sectional drawing of the white light source which is a light-emitting device based on the 7th Embodiment of this invention. 図14で示す白色光源において、反射防止構造である微細凹凸の機能を説明するための図である。It is a figure for demonstrating the function of the fine unevenness | corrugation which is an antireflection structure in the white light source shown in FIG. 本発明の実施の第8の形態に係る照明装置の断面図である。It is sectional drawing of the illuminating device which concerns on the 8th Embodiment of this invention. 本発明の実施の第8の形態に係る照明装置の断面図である。It is sectional drawing of the illuminating device which concerns on the 8th Embodiment of this invention.

符号の説明Explanation of symbols

1,11,21,31,41a,41b,41c,51,61 白色光源
2 発光素子
3 基板
4 サブ基板
5,15,25,35 透明部材
6 空隙
7,47a,47b,47c 波長変換部材
15a,25a,35a 外殻
15b,25b,35b 内部材
35c 斜面
38 反射増加膜
39a,39b 金型
48a,48b,48c 凸部
58 フィルタ
68 反射防止構造
71 照明装置
72 光学部材
73 反射板
1, 11, 21, 31, 41a, 41b, 41c, 51, 61 White light source 2 Light emitting element 3 Substrate 4 Sub-substrate 5, 15, 25, 35 Transparent member 6 Gap 7, 47a, 47b, 47c Wavelength converting member 15a, 25a, 35a Outer shells 15b, 25b, 35b Inner member 35c Slope 38 Reflection increasing films 39a, 39b Molds 48a, 48b, 48c Convex portion 58 Filter 68 Antireflection structure 71 Illumination device 72 Optical member 73 Reflector

Claims (11)

発光素子を基板とドーム状の波長変換部材との間に内包し、前記発光素子から放射された光を所望の波長に変換して出射するようにした発光装置において、
前記ドーム状となる空気への光出射面を、前記基板に垂直で、かつ前記発光素子から放射された光を配光制御すべき面で切断した場合における断面形状が、前記の切断面と発光素子に外接する円との2交点を焦点とする半楕円であって、該半楕円上の各点における法線と前記各焦点との成す角が、前記光出射面を形成する部材の全反射角未満の角度となる半楕円から半円までの範囲であることを特徴とする発光装置。
In a light-emitting device that includes a light-emitting element between a substrate and a dome-shaped wavelength conversion member , converts light emitted from the light-emitting element into a desired wavelength, and emits the light.
The light emission surface to the dome-shaped air is cut in a plane perpendicular to the substrate and the light emitted from the light-emitting element is to be light-distributed, and the cross-sectional shape is light emission from the cut surface. A semi-ellipse having a focal point at two intersections with a circle circumscribing the element, and the angle formed between the normal line at each point on the semi-ellipse and each focal point is the total reflection of the member forming the light emitting surface A light emitting device having a range from a semi-ellipse to a semi-circle having an angle less than an angle.
前記発光素子は光を透過する性質を有する空気よりも屈折率の透明部材に内包され、さらに所定間隔の空隙を隔てて前記ドーム状の波長変換部材に内包されていることを特徴とする請求項1記載の発光装置。 The light emitting element is enclosed in a transparent member of the high have refractive index than air having a property of transmitting light, characterized in that it is further included in the wavelength converting member of the dome-shaped at a gap of predetermined distance The light emitting device according to claim 1. 前記発光素子は基板に搭載され、その基板と前記透明部材とによって封止されており、前記透明部材は、周縁部が前記基板から離反するように形成される斜面を有することを特徴とする請求項2記載の発光装置。   The light-emitting element is mounted on a substrate and is sealed by the substrate and the transparent member, and the transparent member has an inclined surface formed so that a peripheral portion is separated from the substrate. Item 3. A light emitting device according to Item 2. 前記透明部材は、ドーム状の外殻と、その外殻と発光素子との間に充填される内部材とによって構成され、前記内部材は外殻に比べて、相対的に屈折率の低い材料から成ることを特徴とする請求項2または3記載の発光装置。   The transparent member includes a dome-shaped outer shell and an inner member filled between the outer shell and the light emitting element, and the inner member is a material having a relatively low refractive index compared to the outer shell. The light-emitting device according to claim 2 or 3, characterized by comprising: 前記外殻の厚みが均一であることを特徴とする請求項4記載の発光装置。   The light emitting device according to claim 4, wherein the outer shell has a uniform thickness. 前記波長変換部材は、少なくとも発光素子と重なる領域が光の出射する方向に突出した凸部を有することを特徴とする請求項1〜5のいずれか1項に記載の発光装置。   The light emitting device according to any one of claims 1 to 5, wherein the wavelength conversion member has a convex portion protruding at least in a region overlapping with the light emitting element in a light emitting direction. 前記波長変換部材において入射光の波長を変換する蛍光体は、その濃度が、相対的に、発光素子側で濃く、該波長変換部材の出射面側で薄くなるように、連続的または段階的に分散されていることを特徴とする請求項6記載の発光装置。   The phosphor that converts the wavelength of incident light in the wavelength conversion member is continuously or stepwise so that the concentration thereof is relatively high on the light emitting element side and thin on the emission surface side of the wavelength conversion member. The light emitting device according to claim 6, wherein the light emitting device is dispersed. 前記波長変換部材は、前記透明部材と対向する内面に、発光素子からの光を透過し、該波長変換部材で波長変換されて発生した光を反射する波長フィルタを備えることを特徴とする請求項2〜7のいずれか1項に記載の発光装置。   The wavelength conversion member includes a wavelength filter that transmits light from a light emitting element and reflects light generated by wavelength conversion by the wavelength conversion member on an inner surface facing the transparent member. The light-emitting device of any one of 2-7. 前記波長変換部材と透明部材との少なくとも一方の光入出射面に反射防止構造を備えることを特徴とする請求項1〜8のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, further comprising an antireflection structure on at least one light incident / exit surface of the wavelength conversion member and the transparent member. 前記請求項1〜9のいずれか1項に記載の発光装置を用いることを特徴とする白色光源。   A white light source using the light-emitting device according to claim 1. 前記請求項10記載の白色光源に、前記波長変換部材の光出射面側に、該光出射面から出射された光を配光制御するための光学部材が配置されて成ることを特徴とする照明装置。   The white light source according to claim 10, wherein an optical member for controlling light distribution of the light emitted from the light emitting surface is disposed on the light emitting surface side of the wavelength conversion member. apparatus.
JP2006147091A 2006-05-26 2006-05-26 Light emitting device and white light source and lighting device using the same Active JP4665832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147091A JP4665832B2 (en) 2006-05-26 2006-05-26 Light emitting device and white light source and lighting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147091A JP4665832B2 (en) 2006-05-26 2006-05-26 Light emitting device and white light source and lighting device using the same

Publications (2)

Publication Number Publication Date
JP2007317952A JP2007317952A (en) 2007-12-06
JP4665832B2 true JP4665832B2 (en) 2011-04-06

Family

ID=38851539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147091A Active JP4665832B2 (en) 2006-05-26 2006-05-26 Light emitting device and white light source and lighting device using the same

Country Status (1)

Country Link
JP (1) JP4665832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374266A (en) * 2018-12-18 2019-02-22 北京师范大学 A kind of detection system and method based on optical device response

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI360238B (en) 2007-10-29 2012-03-11 Epistar Corp Photoelectric device
JP2009141219A (en) * 2007-12-07 2009-06-25 Panasonic Electric Works Co Ltd Light emitting device
JP2010074117A (en) 2007-12-07 2010-04-02 Panasonic Electric Works Co Ltd Light emitting device
JP2009176923A (en) * 2008-01-24 2009-08-06 Shogen Koden Kofun Yugenkoshi Photoelectron device
JP2010108965A (en) * 2008-10-28 2010-05-13 Nippon Electric Glass Co Ltd Wavelength conversion member
JP5254744B2 (en) * 2008-10-31 2013-08-07 株式会社エンプラス LIGHTING LENS AND LIGHTING DEVICE HAVING THE SAME
CN102823002A (en) * 2010-03-30 2012-12-12 三菱化学株式会社 Light-emitting device
JP2012015466A (en) * 2010-07-05 2012-01-19 Panasonic Electric Works Co Ltd Light emitting device
JP2013041952A (en) * 2011-08-12 2013-02-28 Sharp Corp Light emitting device
JP5915063B2 (en) * 2011-09-29 2016-05-11 カシオ計算機株式会社 Phosphor device, lighting apparatus and projector apparatus
TWI489058B (en) * 2013-05-03 2015-06-21 Coretronic Corp Illumination apparatus used in vehicle
CN103672664B (en) 2012-09-26 2017-03-01 中强光电股份有限公司 Lighting device for vehicle
JP6549043B2 (en) * 2013-03-13 2019-07-24 ルミレッズ ホールディング ベーフェー LED lens for encapsulation with bottom reflector
JP6318495B2 (en) 2013-08-07 2018-05-09 日亜化学工業株式会社 Light emitting device
JP2015204363A (en) * 2014-04-14 2015-11-16 株式会社昭和真空 Light-emitting element, and method for manufacturing the same
US9752925B2 (en) * 2015-02-13 2017-09-05 Taiwan Biophotonic Corporation Optical sensor
JP6906914B2 (en) * 2016-08-31 2021-07-21 エルジー ディスプレイ カンパニー リミテッド Wavelength selection element, light source device and display device

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139367A (en) * 1985-12-13 1987-06-23 Oki Electric Ind Co Ltd Light emitting diode
JP2000022216A (en) * 1998-06-26 2000-01-21 Sanken Electric Co Ltd Resin sealed type semiconductor light emitting device having fluorescent cover
JP2000058925A (en) * 1998-08-12 2000-02-25 Stanley Electric Co Ltd Led lamp
JP2000208818A (en) * 1999-01-13 2000-07-28 Asahi Rubber:Kk Light emitting device
JP2002229120A (en) * 2001-01-31 2002-08-14 Rabo Sufia Kk Display device
JP2003197973A (en) * 2001-12-28 2003-07-11 Toshiba Lighting & Technology Corp Light emitting diode and led display device
JP2003281909A (en) * 2002-01-18 2003-10-03 Seiwa Electric Mfg Co Ltd Reflector and lens for led lamp, and spot projector
JP2004193581A (en) * 2002-11-25 2004-07-08 Matsushita Electric Ind Co Ltd Led illumination light source
JP2004235668A (en) * 2004-04-30 2004-08-19 Sanken Electric Co Ltd Semiconductor light emitting device
JP2004273798A (en) * 2003-03-10 2004-09-30 Toyoda Gosei Co Ltd Light emitting device
JP2004281605A (en) * 2003-03-14 2004-10-07 Toyoda Gosei Co Ltd Led package
JP2005057266A (en) * 2003-07-31 2005-03-03 Lumileds Lighting Us Llc Light emitting device with improved light extraction efficiency
JP2005166733A (en) * 2003-11-28 2005-06-23 Matsushita Electric Works Ltd Light emitting device
JP2005175048A (en) * 2003-12-09 2005-06-30 Sanken Electric Co Ltd Semiconductor light emitting device
JP2005223112A (en) * 2004-02-05 2005-08-18 Citizen Electronics Co Ltd Surface mounting light emitting diode
JP2006093372A (en) * 2004-09-24 2006-04-06 Nichia Chem Ind Ltd Semiconductor device
JP2007165840A (en) * 2005-09-09 2007-06-28 Matsushita Electric Works Ltd Light-emitting device
JP2007208301A (en) * 2005-09-09 2007-08-16 Matsushita Electric Works Ltd Led lighting equipment
JP2007243054A (en) * 2006-03-10 2007-09-20 Matsushita Electric Works Ltd Light-emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200614548A (en) * 2004-07-09 2006-05-01 Matsushita Electric Ind Co Ltd Light-emitting device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139367A (en) * 1985-12-13 1987-06-23 Oki Electric Ind Co Ltd Light emitting diode
JP2000022216A (en) * 1998-06-26 2000-01-21 Sanken Electric Co Ltd Resin sealed type semiconductor light emitting device having fluorescent cover
JP2000058925A (en) * 1998-08-12 2000-02-25 Stanley Electric Co Ltd Led lamp
JP2000208818A (en) * 1999-01-13 2000-07-28 Asahi Rubber:Kk Light emitting device
JP2002229120A (en) * 2001-01-31 2002-08-14 Rabo Sufia Kk Display device
JP2003197973A (en) * 2001-12-28 2003-07-11 Toshiba Lighting & Technology Corp Light emitting diode and led display device
JP2003281909A (en) * 2002-01-18 2003-10-03 Seiwa Electric Mfg Co Ltd Reflector and lens for led lamp, and spot projector
JP2004193581A (en) * 2002-11-25 2004-07-08 Matsushita Electric Ind Co Ltd Led illumination light source
JP2004273798A (en) * 2003-03-10 2004-09-30 Toyoda Gosei Co Ltd Light emitting device
JP2004281605A (en) * 2003-03-14 2004-10-07 Toyoda Gosei Co Ltd Led package
JP2005057266A (en) * 2003-07-31 2005-03-03 Lumileds Lighting Us Llc Light emitting device with improved light extraction efficiency
JP2005166733A (en) * 2003-11-28 2005-06-23 Matsushita Electric Works Ltd Light emitting device
JP2005175048A (en) * 2003-12-09 2005-06-30 Sanken Electric Co Ltd Semiconductor light emitting device
JP2005223112A (en) * 2004-02-05 2005-08-18 Citizen Electronics Co Ltd Surface mounting light emitting diode
JP2004235668A (en) * 2004-04-30 2004-08-19 Sanken Electric Co Ltd Semiconductor light emitting device
JP2006093372A (en) * 2004-09-24 2006-04-06 Nichia Chem Ind Ltd Semiconductor device
JP2007165840A (en) * 2005-09-09 2007-06-28 Matsushita Electric Works Ltd Light-emitting device
JP2007208301A (en) * 2005-09-09 2007-08-16 Matsushita Electric Works Ltd Led lighting equipment
JP2007243054A (en) * 2006-03-10 2007-09-20 Matsushita Electric Works Ltd Light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374266A (en) * 2018-12-18 2019-02-22 北京师范大学 A kind of detection system and method based on optical device response
CN109374266B (en) * 2018-12-18 2019-07-02 北京师范大学 A kind of detection system and method based on optical device response

Also Published As

Publication number Publication date
JP2007317952A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4665832B2 (en) Light emitting device and white light source and lighting device using the same
US11231547B2 (en) Slim waveguide coupling apparatus and method
JP4976218B2 (en) Light emitting unit
JP4182076B2 (en) Light guide plate and flat illumination device
JP5025612B2 (en) LED light source and light emitter using the same
JP2008532297A (en) Optical waveguide
KR101817828B1 (en) Optical Wheel
JP2004528714A (en) UV reflector and UV based light source incorporating UV reflector to reduce UV radiation leakage
JP2016524309A (en) Illumination unit having light diffusing optical fiber
US20130258634A1 (en) Optical beam shaping and polarization selection on led with wavelength conversion
TW200918829A (en) Light output device
JP5538479B2 (en) LED light source and light emitter using the same
JP6334142B2 (en) Light emitting device
JP2019523990A (en) Device comprising patterned color conversion medium and method for producing the same
JP2005079244A (en) Light emitting diode
US20100271828A1 (en) light-emitting device and method for its design
CN216450673U (en) Semiconductor light source
JP2022548669A (en) Lighting device with LED strip
TWI548122B (en) Light-emitting device
KR20150108215A (en) Lighting member using side reflection and lighting device using the same
KR20150138711A (en) Lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4665832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150