JP4663476B2 - Measuring method of thickness of hydraulic iron pipe - Google Patents

Measuring method of thickness of hydraulic iron pipe Download PDF

Info

Publication number
JP4663476B2
JP4663476B2 JP2005299182A JP2005299182A JP4663476B2 JP 4663476 B2 JP4663476 B2 JP 4663476B2 JP 2005299182 A JP2005299182 A JP 2005299182A JP 2005299182 A JP2005299182 A JP 2005299182A JP 4663476 B2 JP4663476 B2 JP 4663476B2
Authority
JP
Japan
Prior art keywords
iron pipe
hydraulic iron
thickness
cable
carriage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005299182A
Other languages
Japanese (ja)
Other versions
JP2007108014A (en
Inventor
徹 舎川
浩 岩室
仁郎 仲山
裕二 西村
淳二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Nondestructive Inspection Co Ltd
Tokyo Densetsu Service Co Ltd
Original Assignee
Shin Nippon Nondestructive Inspection Co Ltd
Tokyo Densetsu Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Nondestructive Inspection Co Ltd, Tokyo Densetsu Service Co Ltd filed Critical Shin Nippon Nondestructive Inspection Co Ltd
Priority to JP2005299182A priority Critical patent/JP4663476B2/en
Publication of JP2007108014A publication Critical patent/JP2007108014A/en
Application granted granted Critical
Publication of JP4663476B2 publication Critical patent/JP4663476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、水力発電所で使用する水圧鉄管の経年劣化に伴って生じる厚みの減少を自動で測定するための水圧鉄管の厚み測定方法に関する。 The present invention relates to a method for measuring the thickness of a hydraulic iron pipe for automatically measuring a reduction in thickness caused by aging deterioration of the hydraulic iron pipe used in a hydroelectric power plant.

従来、水力発電所で使用する水圧鉄管は、経年劣化に伴ってその厚みが減少し強度が落ちてくるが、厚みが減少した水圧鉄管の耐圧強度を計算するため、水圧鉄管の厚み測定を定期的に行っている。この厚み測定においては、測定する水圧鉄管の周囲に測定用の足場を組んだ後、検査員が手動式の超音波板厚計を使用し、例えば、水圧鉄管の上下左右の厚みを測定することで行っている。
しかし、足場の組立期間が必要になると共に、組立コストがかかり、更に、検査員が高い足場上で作業するため、安全確保のために細心の注意が必要であった。
そこで、この問題を解消するため、特許文献1に、水圧鉄管の内面に吸着しながら自走する複数の車輪を備えた台車と、台車の走行距離を測定するための走行距離計と、水圧鉄管の内面に形成された塗膜厚みの測定に使用する渦流センサーと、塗膜厚みを含む水圧鉄管の総厚みの測定に使用する超音波センサーとを有する厚み測定装置を使用した厚み測定方法が開示されている。
この厚み測定装置は、検査員が容易に近づくことができる地上型の水圧鉄管の厚みを測定する装置に適したものであり、検査員が厚み測定装置を測定箇所まで運んで、水圧鉄管の厚み測定を自動的に行うものである。これにより、足場を設置することなく、外面側から水圧鉄管の厚みを連続的に測定できる。なお、水圧鉄管の外面側に障害物があり、外面側からの厚み測定ができない場合は、水圧鉄管に設けられたマンホールから厚み測定装置を装入し、内面側から水圧鉄管の厚みを連続的に測定できる。
Conventionally, hydraulic iron pipes used in hydroelectric power plants decrease in thickness and decrease in strength with age, but in order to calculate the pressure strength of hydraulic iron pipes with reduced thickness, the thickness of the hydraulic iron pipe is regularly measured. Is going. In this thickness measurement, after a measurement scaffold is built around the hydraulic iron pipe to be measured, the inspector uses a manual ultrasonic plate thickness gauge, for example, to measure the thickness of the hydraulic iron pipe in the vertical and horizontal directions. Is going on.
However, the assembly period of the scaffold is required, and the assembly cost is high. Further, since the inspector works on the high scaffold, careful attention is required for ensuring safety.
Therefore, in order to solve this problem, Patent Document 1 discloses a cart equipped with a plurality of wheels that self-travel while adsorbing to the inner surface of the hydraulic iron pipe, an odometer for measuring the traveling distance of the carriage, and a hydraulic iron pipe. Disclosed is a thickness measuring method using a thickness measuring device having an eddy current sensor used for measuring the thickness of a coating film formed on the inner surface of the steel and an ultrasonic sensor used for measuring the total thickness of a hydraulic iron pipe including the coating thickness. Has been.
This thickness measuring device is suitable for a device for measuring the thickness of a ground-type hydraulic iron pipe that can be easily approached by an inspector, and the inspector carries the thickness measuring device to a measurement location to measure the thickness of the hydraulic iron pipe. Measurement is performed automatically. Thereby, the thickness of a hydraulic iron pipe can be continuously measured from the outer surface side, without installing a scaffold. If there is an obstacle on the outer surface side of the hydraulic iron pipe and thickness measurement from the outer surface side is not possible, a thickness measuring device is inserted from the manhole provided in the hydraulic iron pipe, and the thickness of the hydraulic iron pipe is continuously increased from the inner surface side. Can be measured.

特開2004−61213号公報JP 2004-61213 A

しかしながら、水圧鉄管には、検査員が外面側に容易に近づくことができず、また内面側にも容易に入っていけないような急傾斜の地上型鉄管又は埋設型鉄管もある。このような水圧鉄管の厚み測定を任意の位置で行うためには、厚み測定装置を水圧鉄管内に装入し、遠隔操作によって内面側で長距離(例えば、200mm以上)移動させる必要がある。
このため、特許文献1の発明のような厚み測定装置を長距離移動させる場合は、例えば、水圧鉄管の内面(減肉)状況、厚み測定装置の走行位置のずれ、又は各センサーを用いた測定状況を、水圧鉄管の外部から確認することはできないため、測定箇所の位置精度が悪くなる恐れがあった。
また、厚み測定装置の各センサーからの信号は、厚み測定装置本体と水圧鉄管の外部とを接続するケーブルを介して、アナログ信号のまま伝送しているが、ケーブル長さが50mを超える場合、減衰が大きくなって測定精度が低下する。
そして、図8に示すように、水を貯留するサージタンク90から発電を行う水車91までの落差が、例えば200m以上の埋設型の長径間水圧鉄管92内で、厚み測定装置が故障して止まった場合、前記したケーブルを巻取って厚み測定装置を回収しようとすると、例えば、水圧鉄管92のエルボ部93でのケーブルの摩擦抵抗、長さに伴うケーブルの重量増加、及び水圧鉄管92内面への車輪のマグネットの吸着抵抗により、厚み測定装置の回収に多大な牽引力を要することになる。このため、ケーブルの巻取りの際に、ケーブルが切断する恐れがあるため、ケーブルサイズを大きくしたり、また、ケーブルの重量増加に伴って巻取機を大型化する必要があった。
更に、このような水圧鉄管92の厚み測定を行う場合、ケーブルの重量が増加するため、この重量に耐えられず、水圧鉄管に吸着した厚み測定装置が落下する恐れもあった。
However, hydraulic iron pipes include steeply inclined ground type iron pipes or buried type iron pipes in which an inspector cannot easily approach the outer surface side and cannot easily enter the inner surface side. In order to measure the thickness of such a hydraulic iron pipe at an arbitrary position, it is necessary to insert a thickness measuring device into the hydraulic iron pipe and move it by a long distance (for example, 200 mm or more) on the inner surface side by remote operation.
For this reason, when moving the thickness measuring apparatus like the invention of Patent Document 1 for a long distance, for example, the inner surface (thinning) state of the hydraulic iron pipe, the displacement of the traveling position of the thickness measuring apparatus, or measurement using each sensor Since the situation cannot be confirmed from the outside of the hydraulic iron pipe, the position accuracy of the measurement location may be deteriorated.
In addition, the signal from each sensor of the thickness measuring device is transmitted as an analog signal via a cable connecting the thickness measuring device main body and the outside of the hydraulic iron pipe, but when the cable length exceeds 50 m, Attenuation increases and measurement accuracy decreases.
Then, as shown in FIG. 8, the drop from the surge tank 90 that stores water to the water turbine 91 that generates power stops, for example, in the buried long-diameter hydraulic iron pipe 92 having a length of 200 m or more, and the thickness measuring device fails. In this case, when the above-described cable is wound up and the thickness measuring device is collected, for example, the frictional resistance of the cable at the elbow portion 93 of the hydraulic iron pipe 92, the cable weight increase with the length, and the inner surface of the hydraulic iron pipe 92 Due to the adsorption resistance of the magnets on the wheels, a great traction force is required for the collection of the thickness measuring device. For this reason, since there exists a possibility that a cable may cut | disconnect at the time of winding of a cable, it was necessary to enlarge a cable size or to enlarge a winding machine with the increase in the weight of a cable.
Further, when the thickness of the hydraulic iron pipe 92 is measured, the weight of the cable increases, so that the weight cannot be endured and the thickness measuring device adsorbed on the hydraulic iron pipe may fall.

本発明はかかる事情に鑑みてなされたもので、長さが長い水圧鉄管の厚み測定に適しており、その厚み測定を経済的かつ安全に行うことが可能な水圧鉄管の厚み測定方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a method for measuring the thickness of a hydraulic iron pipe that is suitable for measuring the thickness of a hydraulic iron pipe having a long length and capable of measuring the thickness economically and safely. For the purpose.

前記目的に沿う発明に係る水圧鉄管の厚み測定方法は、水力発電所で使用し、上流側から下流側にかけて下方傾斜又は垂直に配置された水圧鉄管の内面に吸着しながら自走する複数の車輪、及び該車輪にクラッチ機構を介して連結される駆動モータを備えた台車と、該台車に搭載され、前記水圧鉄管の内面に形成された塗膜厚みの測定に使用する渦流センサー、及び該塗膜厚みを含む前記水圧鉄管の総厚みの測定に使用する超音波センサーを備える計装部とを有し、
前記計装部は前記台車と分離可能な構成となっており、前記計装部の後側には前記水圧鉄管外から該計装部への送電、及び前記水圧鉄管外の制御装置と前記計装部との間の信号通信を行うためのケーブルが接続され、かつ該ケーブルの外周には該ケーブルを前記水圧鉄管に沿って移動させる場合に摩擦抵抗を低減させる螺旋状の突出部が形成された厚み測定装置を使用して、前記水圧鉄管の厚みを測定する方法であって
1)前記台車と前記計装部とを分離した状態で前記水圧鉄管内の上流側に装入して、該水圧鉄管内で前記台車に前記計装部を載置し、前記渦流センサー、前記超音波センサー、及び前記ケーブルを前記計装部に取付け、
2)前記台車に前記計装部が載置された前記厚み測定装置を下流側に向けて走行させ、前記渦流センサー及び前記超音波センサーを用いて前記水圧鉄管の厚みを求め、
3)前記台車及び前記計装部のいずれか1又は双方が故障した場合には、所定の時間をおいて前記クラッチ機構を作動させ、前記車輪と前記駆動モータの接続を解除し、前記ケーブルを巻取機によって巻取ることで前記厚み測定装置を元の位置に戻す。
発明に係る水圧鉄管の厚み測定方法において、前記水圧鉄管の長さが100m以上であることが好ましい。
The thickness measurement method of a hydraulic iron pipe according to the present invention that meets the above-mentioned object is used in a hydroelectric power station, and is self-propelled while adsorbing to the inner surface of a hydraulic iron pipe that is inclined downward or vertically from an upstream side to a downstream side. A wheel and a carriage provided with a drive motor coupled to the wheel via a clutch mechanism ; an eddy current sensor mounted on the carriage and used for measuring a coating thickness formed on the inner surface of the hydraulic iron pipe ; and Having an ultrasonic sensor used for measuring the total thickness of the hydraulic iron pipe including the coating thickness ,
The instrumentation part is configured to be separable from the carriage, and a power transmission from the outside of the hydraulic iron pipe to the instrumentation part, and a control device outside the hydraulic iron pipe and the instrument are provided on the rear side of the instrumentation part. A cable for performing signal communication with the mounting portion is connected, and a spiral protrusion is formed on the outer periphery of the cable to reduce frictional resistance when the cable is moved along the hydraulic iron pipe. Using a thickness measuring device, the method of measuring the thickness of the hydraulic iron pipe,
1) The carriage and the instrumentation part are separated and inserted upstream of the hydraulic iron pipe, the instrumentation part is placed on the carriage in the hydraulic iron pipe, the eddy current sensor, Attach an ultrasonic sensor and the cable to the instrumentation part,
2) Run the thickness measuring device in which the instrumentation unit is mounted on the carriage toward the downstream side, and determine the thickness of the hydraulic iron pipe using the eddy current sensor and the ultrasonic sensor,
3) When one or both of the cart and the instrumentation unit fails, the clutch mechanism is operated after a predetermined time, the wheel and the drive motor are disconnected, and the cable is disconnected. The thickness measuring device is returned to its original position by winding with a winder.
In the method for measuring a thickness of a hydraulic iron pipe according to the present invention, the length of the hydraulic iron pipe is preferably 100 m or more.

請求項1、2記載の水圧鉄管の厚み測定方法は、厚み測定装置を下降させながら水圧鉄管の厚み測定を行うので、例えば、厚み測定装置の重量が重くなったり、また厚み測定装置に送電を行うケーブルの長さが長くなるに伴ってその重量が重くなった場合においても、厚み測定装置の駆動力を過剰に大きくすることなく、厚み測定装置を自重で下降させながら水圧鉄管の厚み測定を実施できる。このように、長さが長い水圧鉄管の厚み測定を、簡単な方法で経済的かつ安全に行うことが可能である。
そして、厚み測定装置は、クラッチ機構を設けているので、故障の際には、車輪と駆動モータとの接続を解除することで、車輪の回転を妨げる力を小さくできる。これにより、例えば、長さが長い水圧鉄管の内部から、厚み測定装置が自力で元の位置に戻れなくなった場合においても、ケーブルサイズ又はケーブルの巻取機の能力を過剰に大きくすることなく、水圧鉄管の外部からケーブルを巻取ることで、水圧鉄管内からの厚み測定装置の回収を容易に実施できる。
更に、ケーブルの外周には、突出部が設けられているので、長さが長くなるに伴ってケーブルの重量が増加しても、水圧鉄管の内面に対するケーブルの摩擦抵抗を、突出部が無い場合よりも小さくできる。これにより、各種機器を搭載して大型化した厚み測定装置の重量増大に伴う更なる摩擦抵抗の増加を抑制できる。
特に、請求項記載の水圧鉄管の厚み測定方法は、長さが100m以上の水圧鉄管の厚み測定を行うので、前記した効果が更に顕著に現れる。
Since the thickness measuring method of the hydraulic iron pipe according to claim 1 or 2 measures the thickness of the hydraulic iron pipe while lowering the thickness measuring device, for example, the weight of the thickness measuring device becomes heavy or power is transmitted to the thickness measuring device. Even if the weight of the cable increases as the length of the cable is increased, the thickness of the hydraulic iron pipe can be measured while the thickness measuring device is lowered by its own weight without excessively increasing the driving force of the thickness measuring device. Can be implemented. Thus, it is possible to measure the thickness of a long hydraulic iron pipe economically and safely by a simple method.
And since the thickness measuring apparatus is provided with the clutch mechanism, in the event of a failure, the force that hinders the rotation of the wheel can be reduced by releasing the connection between the wheel and the drive motor. Thereby, for example, from the inside of a long hydraulic iron pipe, even when the thickness measuring device cannot return to its original position by itself, without excessively increasing the cable size or the capacity of the cable winder, By winding the cable from the outside of the hydraulic iron pipe, the thickness measuring device can be easily collected from the hydraulic iron pipe.
In addition, since the cable is provided with a protrusion on the outer periphery of the cable, even if the weight of the cable increases as the length increases, the friction resistance of the cable against the inner surface of the hydraulic iron pipe can be reduced. Can be smaller. Thereby, the increase in further frictional resistance accompanying the increase in the weight of the thickness measuring apparatus which carried various equipment and was enlarged can be suppressed.
In particular, since the thickness measuring method of the hydraulic iron pipe according to claim 2 measures the thickness of the hydraulic iron pipe having a length of 100 m or more, the above-described effect appears more remarkably.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る水圧鉄管の厚み測定方法を適用した水圧鉄管の厚み測定装置の側面図、図2は同水圧鉄管の厚み測定装置の正面図、図3は同水圧鉄管の厚み測定装置の背面図、図4は同水圧鉄管の厚み測定装置のクラッチ機構の説明図、図5(A)、(B)はそれぞれ同水圧鉄管の厚み測定装置のケーブルの断面図、側面図、図6は同水圧鉄管の厚み測定装置の使用状態を示す説明図、図7は同水圧鉄管の厚み測定装置の装置構成の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a side view of a thickness measuring apparatus for a hydraulic iron pipe to which the thickness measuring method for a hydraulic iron pipe according to an embodiment of the present invention is applied , FIG. 2 is a front view of the thickness measuring apparatus for the hydraulic iron pipe, FIG. Is a rear view of the thickness measuring device of the hydraulic iron pipe, FIG. 4 is an explanatory diagram of a clutch mechanism of the thickness measuring device of the hydraulic iron pipe, and FIGS. 5A and 5B are cables of the thickness measuring device of the hydraulic iron pipe, respectively. Sectional drawing, side view, FIG. 6 is explanatory drawing which shows the use condition of the thickness measuring apparatus of the hydraulic iron pipe, FIG. 7 is explanatory drawing of the apparatus structure of the thickness measuring apparatus of the hydraulic iron pipe.

図1〜図7に示すように、本発明の一実施の形態に係る水圧鉄管の厚み測定方法を適用した水圧鉄管の厚み測定装置(以下、単に厚み測定装置ともいう)10は、水力発電所で使用する水圧鉄管(例えば、内径が1000mm以上5000mm以下程度)11の厚みを、水圧鉄管11を破壊することなく自動で測定することが可能な装置であり、特に、100m以上(ここでは200m程度)の長さを有する水圧鉄管11の厚み測定に適した装置である。以下、詳しく説明する。 As shown in FIGS. 1 to 7, a hydraulic iron pipe thickness measuring device (hereinafter also simply referred to as a thickness measuring device) 10 to which a hydraulic iron pipe thickness measuring method according to an embodiment of the present invention is applied is a hydroelectric power plant. Is a device that can automatically measure the thickness of a hydraulic iron pipe 11 (for example, an inner diameter of 1000 mm or more and about 5000 mm or less) 11 without breaking the hydraulic iron pipe 11, and in particular, 100 m or more (here, about 200 m). This is a device suitable for measuring the thickness of the hydraulic iron pipe 11 having a length of This will be described in detail below.

図1〜図3に示すように、厚み測定装置10は、水圧鉄管11の内面12に吸着しながら自走する複数の車輪13を備えた台車14を有している。
台車14の左右両側には、それぞれ車輪13が前後方向(走行方向)に4個ずつ回転可能に設けられている。この車輪13は、周囲にウレタンゴムがコーティングされたマグネット車輪(例えば、直径が100mm程度)であり、図4に示すように、台車14の左右各側の前後に配置される2個ずつの車輪13を一組として、1つの減速機付きの直流駆動モータ15で走行可能にしている。このように、4台の駆動モータ15を使用することで、マグネット作用時における台車14の駆動力を向上させることができ、しかも各駆動モータ15の出力を個別に調整(車輪の回転速度を調整)することで、台車14の進行方向を調整できる。
なお、複数の車輪13は、正面視してハ字状に配置され、台車14の上下方向に対して傾斜(例えば、1度以上10度以下程度)させているので、水圧鉄管11の内面12に対する車輪13の接触面積を広くでき、水圧鉄管11の内面12への車輪13の吸着力を向上できる。
As shown in FIGS. 1 to 3, the thickness measuring device 10 includes a carriage 14 having a plurality of wheels 13 that are self-propelled while adsorbing to the inner surface 12 of the hydraulic iron pipe 11.
Four wheels 13 are provided on each of the left and right sides of the carriage 14 so as to be rotatable in the front-rear direction (traveling direction). This wheel 13 is a magnet wheel (for example, a diameter of about 100 mm) coated with urethane rubber around it, and as shown in FIG. 13 is set as a set and can be driven by a DC drive motor 15 with one speed reducer. Thus, by using the four drive motors 15, it is possible to improve the drive force of the carriage 14 when the magnet is operated, and to adjust the output of each drive motor 15 individually (adjusting the rotation speed of the wheels) ), The traveling direction of the carriage 14 can be adjusted.
The plurality of wheels 13 are arranged in a C shape when viewed from the front, and are inclined (for example, about 1 to 10 degrees) with respect to the vertical direction of the carriage 14, so that the inner surface 12 of the hydraulic iron pipe 11. Thus, the contact area of the wheel 13 with respect to the inner surface 12 of the hydraulic iron pipe 11 can be improved.

図4に示すように、一組の車輪13を駆動する駆動軸16と駆動モータ15との間には、クラッチ機構17が設けられている。なお、図4は、台車14の片側について図示している。
このクラッチ機構17としては、駆動軸16に設けられた駆動軸用ギアと、駆動モータ15に設けられた駆動モータ用ギアと、この二つのギアに噛み合うギアとで構成できる。ここで、駆動軸用ギアと駆動モータ用ギアにギアを噛み合わせることで、駆動軸16と駆動モータ15とを接続し、駆動モータ15の動力を駆動軸16へ伝達して車輪13を回転できる。一方、駆動軸用ギアと駆動モータ用ギアからギアを外すことで、駆動軸16と駆動モータ15との接続を解除し、車輪13の回転を自由状態にできる。
台車14の下側中央部には、ロータリエンコーダ(走行距離計の一例)18が設けられている。このロータリエンコーダ18は、ばねを使用して水圧鉄管11の内面12に所定の力で押し付けられる構成となっている。
なお、台車14のクラッチ機構17を除く詳細な構成は、例えば、特開2004−61213号公報に記載されたものと同様にできる。
As shown in FIG. 4, a clutch mechanism 17 is provided between a drive shaft 16 that drives a set of wheels 13 and a drive motor 15. FIG. 4 illustrates one side of the carriage 14.
The clutch mechanism 17 can be composed of a drive shaft gear provided on the drive shaft 16, a drive motor gear provided on the drive motor 15, and a gear meshing with the two gears. Here, by engaging the gears for the drive shaft and the drive motor, the drive shaft 16 and the drive motor 15 are connected, and the power of the drive motor 15 can be transmitted to the drive shaft 16 to rotate the wheel 13. . On the other hand, by removing the gear from the drive shaft gear and the drive motor gear, the connection between the drive shaft 16 and the drive motor 15 is released, and the rotation of the wheel 13 can be made free.
A rotary encoder (an example of an odometer) 18 is provided in the lower central portion of the carriage 14. The rotary encoder 18 is configured to be pressed against the inner surface 12 of the hydraulic iron pipe 11 with a predetermined force using a spring.
The detailed configuration of the carriage 14 excluding the clutch mechanism 17 can be the same as that described in, for example, Japanese Patent Application Laid-Open No. 2004-61213.

図1〜図3に示すように、台車14には、計装部19が取付け取外し(分離)可能に載置されている。
計装部19は、台車14に載置するケーシング20を有し、このケーシング20の前方下側には水圧鉄管11の内面12を洗浄する清掃手段21が設けられ、後方下側には渦流センサー22及び反射型の超音波センサー23が設けられている。
清掃手段21は、厚み測定装置10の幅方向に平行に配置される軸心を中心として、回転可能になった洗浄ブラシ24を有している。なお、洗浄ブラシ24の前後斜め上方には、洗浄ブラシ24の軸心と平行に給水パイプ25が設置されている。
これにより、給水パイプ25の長手方向に渡って等間隔に複数取付けられた噴出口26を介して、水圧鉄管11の内面12に水を吹き付けると共に、洗浄ブラシ24を回転して水圧鉄管11の内面12を洗浄できる。
As shown in FIGS. 1 to 3, an instrumentation unit 19 is mounted on the carriage 14 so as to be attachable / detachable (separable).
The instrumentation unit 19 has a casing 20 placed on the carriage 14, a cleaning means 21 for cleaning the inner surface 12 of the hydraulic iron pipe 11 is provided on the lower front side of the casing 20, and an eddy current sensor on the lower rear side. 22 and a reflection type ultrasonic sensor 23 are provided.
The cleaning means 21 has a cleaning brush 24 that is rotatable about an axis that is arranged in parallel to the width direction of the thickness measuring device 10. In addition, a water supply pipe 25 is installed in front of the cleaning brush 24 obliquely upward and downward in parallel with the axis of the cleaning brush 24.
Thereby, water is sprayed to the inner surface 12 of the hydraulic iron pipe 11 through the plurality of jet outlets 26 that are attached at equal intervals along the longitudinal direction of the water supply pipe 25, and the cleaning brush 24 is rotated to rotate the inner surface of the hydraulic iron pipe 11. 12 can be washed.

渦流センサー22は、水圧鉄管11の内面12に形成された塗膜厚みの測定に使用する従来公知のものであり、この渦流センサー22から得られた信号(電圧)を処理して、塗膜厚みtを求めることができる。また、超音波センサー23は、塗膜厚みtを含む水圧鉄管11の総厚みの測定に使用する従来公知のものであり、この超音波センサー23から得られた信号(波形)を処理して、総厚みSを求めることができる。
この総厚みSから塗膜厚みtを引算することで、水圧鉄管11の厚みTを求めることができる。
上記した計装部19の清掃手段21、渦流センサー22、及び超音波センサー23の詳細な構成は、例えば、特開2004−61213号公報に記載されたものと同様にできる。
The eddy current sensor 22 is a conventionally known one that is used for measuring the thickness of the coating film formed on the inner surface 12 of the hydraulic iron pipe 11. The signal (voltage) obtained from the eddy current sensor 22 is processed to obtain the coating film thickness. t can be obtained. The ultrasonic sensor 23 is a conventionally known one used for measuring the total thickness of the hydraulic iron pipe 11 including the coating film thickness t. The signal (waveform) obtained from the ultrasonic sensor 23 is processed, The total thickness S can be determined.
By subtracting the coating film thickness t from the total thickness S, the thickness T of the hydraulic iron pipe 11 can be obtained.
The detailed configuration of the cleaning means 21, the eddy current sensor 22, and the ultrasonic sensor 23 of the instrumentation unit 19 described above can be the same as that described in, for example, Japanese Patent Application Laid-Open No. 2004-61213.

更に、計装部19のケーシング20の前側上端部及び後ろ側上端部には、厚み測定装置10の前方を撮像する前方観察用カメラ(CCDカメラ)27及び厚み測定装置10の後方を撮像する後方観察用カメラ(CCDカメラ)28が、それぞれ設置されている。
この前方観察用カメラ27は、台車14の上下方向に配置された軸心により、台車14の左右方向に首振り可能で、しかも台車14の水平方向に配置された軸心により、台車14に対して傾斜角度を調整可能な構成となっている。なお、前方観察用カメラ27の両側には、高輝度LEDで構成される前方用照明29が設けられている。
これにより、前方観察用カメラ27に対する前方用照明29の固定位置を調整することで、暗い水圧鉄管11内でも、例えば、水圧鉄管11の内面(減肉)状況、又は厚み測定装置10の走行状況を撮像できる。
Further, a front observation camera (CCD camera) 27 that images the front of the thickness measuring device 10 and a rear that images the rear of the thickness measuring device 10 are provided at the front upper end and the rear upper end of the casing 20 of the instrumentation unit 19. Observation cameras (CCD cameras) 28 are respectively installed.
The front observation camera 27 can swing in the left-right direction of the carriage 14 by an axis arranged in the vertical direction of the carriage 14, and can be moved with respect to the carriage 14 by an axis arranged in the horizontal direction of the carriage 14. The tilt angle can be adjusted. In addition, on both sides of the front observation camera 27, front illumination 29 composed of high-intensity LEDs is provided.
Thus, by adjusting the fixed position of the front illumination 29 with respect to the front observation camera 27, for example, the inner surface (thinning) situation of the hydraulic iron pipe 11 or the running situation of the thickness measuring device 10 even in the dark hydraulic iron pipe 11. Can be imaged.

また、後方観察用カメラ28の両側にも、高輝度LEDで構成される後方用照明30が設けられている。この後方観察用カメラ28及び後方用照明30は、その設置位置が固定されているが、前方観察用カメラ27及び前方用照明29と同様、その位置を調整することも可能である。
これにより、暗い水圧鉄管11内でも、例えば、厚み測定装置10の後退走行時の走行状況、又は厚み測定装置10の計装部19へ外部から送電を行うケーブル31の状況を撮像できる。
また、計装部19のケーシング20の後ろ側面には、渦流センサー22及び超音波センサー23の測定状況を撮像するセンサー観察用カメラ(CCDカメラ)32が設置されている。
このセンサー観察用カメラ32にも、高輝度LEDで構成されるセンサー用照明が設けられており、暗い水圧鉄管11内でも、渦流センサー22及び超音波センサー23による測定状況を撮像できる。
Further, on both sides of the rear observation camera 28, rear illumination 30 composed of high-intensity LEDs is provided. The installation positions of the rear observation camera 28 and the rear illumination 30 are fixed, but the positions of the rear observation camera 28 and the rear illumination 30 can be adjusted in the same manner as the front observation camera 27 and the front illumination 29.
Thereby, even in the dark hydraulic iron pipe 11, for example, it is possible to image a traveling state when the thickness measuring device 10 travels backward or a state of the cable 31 that transmits power to the instrumentation unit 19 of the thickness measuring device 10 from the outside.
A sensor observation camera (CCD camera) 32 that captures the measurement status of the eddy current sensor 22 and the ultrasonic sensor 23 is installed on the rear side surface of the casing 20 of the instrumentation unit 19.
The sensor observation camera 32 is also provided with sensor illumination composed of high-intensity LEDs, and the measurement state by the eddy current sensor 22 and the ultrasonic sensor 23 can be imaged even in the dark hydraulic iron pipe 11.

ケーシング20には、台車14の走行の際に台車14の前後左右の傾きを検知する従来公知の角度センサーが設けられている。これにより、例えば、台車14が水圧鉄管11のどの位置を走行しているのか、また台車14の走行状況を容易に把握できる。
また、ケーシング20の両側には、駆動モータ15及びクラッチ機構17の制御ケーブルを接続するための接続コネクタ33が設けられている。そして、ケーシング20の前側には、清掃手段21の給水パイプ25への給水用配管、洗浄ブラシ24の制御ケーブル、前方観察用カメラ27及び前方用照明29の制御ケーブルを接続するための接続コネクタ(図示しない)が設けられている。更に、ケーシング20の後ろ側には、渦流センサー22及び超音波センサー23との信号通信等を行うケーブル31、後方観察用カメラ28及び後方用照明30の制御ケーブルを接続するための接続コネクタ(図示しない)が設けられている。
The casing 20 is provided with a conventionally known angle sensor that detects the front / rear and left / right inclination of the carriage 14 when the carriage 14 travels. Thereby, for example, it is possible to easily grasp the position on the hydraulic iron pipe 11 where the carriage 14 is traveling and the traveling state of the carriage 14.
Further, on both sides of the casing 20, connection connectors 33 for connecting the drive motor 15 and the control cable of the clutch mechanism 17 are provided. Further, on the front side of the casing 20, a connector for connecting a water supply pipe to the water supply pipe 25 of the cleaning means 21, a control cable for the cleaning brush 24, a control cable for the front observation camera 27 and the front illumination 29. (Not shown) is provided. Further, on the rear side of the casing 20, a connection connector (not shown) for connecting a cable 31 for performing signal communication with the eddy current sensor 22 and the ultrasonic sensor 23, a control cable for the rear observation camera 28 and the rear illumination 30. Not).

図5(A)、(B)に示すように、計装部19に接続されるケーブル31は、ステンレスワイヤー34、水チューブ35、光ファイバー(光ケーブル部の一例)36、電源線37、通信線38、及び制御線39をまとめた複合ケーブルであり、水圧鉄管11外から計装部19への送電、給水、及び水圧鉄管11外と計装部19の信号通信を行うためのものである。このケーブル31は、水圧鉄管11の長さに応じてその長さが決定されており、現状の水圧鉄管11の長さを考慮すれば、例えば、100m以上300m以下程度(ここでは200m)の長さを有し、10mm以上30mm以下程度(ここでは20mm)の直径を有している。
ケーブル31の外周部は、軽量かつ強靱となって水圧鉄管11との摩擦抵抗を小さくできるもの、例えばポリアミドで覆われている。なお、ケーブル31の外周には、ケーブル31の長手方向に渡って螺旋状に芯線40が捲かれており、これをポリアミドで覆うことにより、ケーブル31の外周に突出部41(例えば、突出高さが0.5mm以上2mm以下程度、螺旋の周期が50mm以上200mm以下程度)が設けられている。
これにより、ケーブル31が突出部41を介して水圧鉄管11の内面12に沿って移動するため、突出部41が無い場合と比較して、その摩擦抵抗を例えば1/5以下程度まで低減できる。
As shown in FIGS. 5A and 5B, the cable 31 connected to the instrumentation unit 19 includes a stainless steel wire 34, a water tube 35, an optical fiber (an example of an optical cable unit) 36, a power supply line 37, and a communication line 38. The control cable 39 is a composite cable for transmitting power from the outside of the hydraulic iron pipe 11 to the instrumentation section 19, supplying water, and performing signal communication between the outside of the hydraulic iron pipe 11 and the instrumentation section 19. The length of the cable 31 is determined in accordance with the length of the hydraulic iron pipe 11, and considering the current length of the hydraulic iron pipe 11, for example, a length of about 100 m to 300 m (here, 200 m). And has a diameter of about 10 mm to 30 mm (here, 20 mm).
The outer peripheral portion of the cable 31 is covered with a material that is lightweight and tough and can reduce the frictional resistance with the hydraulic iron pipe 11, for example, polyamide. In addition, a core wire 40 is spirally wound around the outer circumference of the cable 31 in the longitudinal direction of the cable 31, and this is covered with polyamide, so that a protrusion 41 (for example, a protrusion height) is formed on the outer periphery of the cable 31. Is about 0.5 mm to about 2 mm, and the spiral period is about 50 mm to about 200 mm).
Thereby, since the cable 31 moves along the inner surface 12 of the hydraulic iron pipe 11 via the protrusion part 41, compared with the case where there is no protrusion part 41, the frictional resistance can be reduced to about 1/5 or less.

このケーブル31の中心に配置されたステンレスワイヤー34は、ケーブル31の張力を向上させるものであり、例えば、外径が1.5mm以上3.5mm以下(ここでは2.4mm)程度のものである。これにより、ケーブル31を牽引して台車14を回収する際に発生する張力により、ケーブル31が切断されることを防止できる。
また、ケーブル31は、図6、図7に示すように、ケーブル31を巻き取る巻取機(巻取手段の一例)42を介して制御装置(例えば、遠隔操作器)43に接続され、この制御装置43がカメラモニター44と信号処理装置(例えば、ノート型パソコン)45に接続されている。この巻取機42は、ケーブル31の送出し速度又は巻取り速度を、台車14の走行速度(走行位置)と同期運転させることが可能な構成となっている。また、巻取機42には、スリップリングとスイベルジョイントが設けられ、ケーブル31の送出し又は巻取りの際のケーブル31との電気的な接続と、水の供給を可能にしている。なお、巻取機42には、光−LAN変換器及び光−映像変換器が設けられている。
The stainless steel wire 34 arranged at the center of the cable 31 improves the tension of the cable 31, and has an outer diameter of about 1.5 mm to 3.5 mm (here, 2.4 mm). . Thereby, it can prevent that the cable 31 is cut | disconnected by the tension | tensile_strength which generate | occur | produces when pulling the cable 31 and collect | recovering the trolley | bogie 14. FIG.
Further, as shown in FIGS. 6 and 7, the cable 31 is connected to a control device (for example, a remote controller) 43 via a winder (an example of a winding means) 42 that winds the cable 31. A control device 43 is connected to a camera monitor 44 and a signal processing device (for example, a notebook personal computer) 45. The winder 42 is configured such that the sending speed or winding speed of the cable 31 can be operated in synchronization with the traveling speed (traveling position) of the carriage 14. Further, the winder 42 is provided with a slip ring and a swivel joint, and enables electrical connection with the cable 31 and supply of water when the cable 31 is sent out or taken up. The winder 42 is provided with an optical-LAN converter and an optical-video converter.

これにより、ケーブル31内の水チューブ35を介して、ポンプ46により水タンク47から清掃手段21の給水パイプ25へ水を供給できる。
また、光ファイバー36を使用することで、渦流センサー22及び超音波センサー23からのアナログ信号を、台車14に搭載されたAD変換器49でデジタル信号に変換し、信号の減衰を抑制しながら伝送できる。なお、光ファイバー36で伝送した信号は、巻取機42の光−LAN変換器を介して信号処理装置45へ送られる。
なお、ロータリエンコーダ18及び角度センサーからの信号も、信号処理装置45へ送ることができる。
そして、電源線37により、発電機48から計装部19へ送電できる。これにより、例えば、駆動モータ15、清掃手段21の洗浄ブラシ24の作動、前方観察用カメラ27、後方観察用カメラ28、センサー観察用カメラ32、電源及び制御基板、及びAD変換器49の動作が可能になる。
また、通信線(例えば、光ファイバー)38により、前方観察用カメラ27、後方観察用カメラ28、及びセンサー観察用カメラ32で撮像した画像信号を、AD変換器49でデジタル信号に変換し、巻取機42の光−映像変換器を介してカメラモニター44へ送信できる。
更に、制御線39により、制御装置43からの指令を計装部19へ送信できる。
Thereby, water can be supplied from the water tank 47 to the water supply pipe 25 of the cleaning means 21 by the pump 46 via the water tube 35 in the cable 31.
Also, by using the optical fiber 36, analog signals from the eddy current sensor 22 and the ultrasonic sensor 23 can be converted into digital signals by the AD converter 49 mounted on the carriage 14, and transmitted while suppressing signal attenuation. . The signal transmitted through the optical fiber 36 is sent to the signal processing device 45 via the optical-LAN converter of the winder 42.
Signals from the rotary encoder 18 and the angle sensor can also be sent to the signal processing device 45.
Then, power can be transmitted from the generator 48 to the instrumentation unit 19 by the power line 37. Thereby, for example, the operation of the drive motor 15, the cleaning brush 24 of the cleaning means 21, the front observation camera 27, the rear observation camera 28, the sensor observation camera 32, the power supply and control board, and the AD converter 49 are operated. It becomes possible.
Further, the image signal captured by the front observation camera 27, the rear observation camera 28, and the sensor observation camera 32 is converted into a digital signal by the AD converter 49 by the communication line (for example, optical fiber) 38, and wound. It can be transmitted to the camera monitor 44 via the light-video converter of the machine 42.
Further, a command from the control device 43 can be transmitted to the instrumentation unit 19 through the control line 39.

このように、ケーブル31により、水圧鉄管11外から計装部19への送電、及び水圧鉄管11外と計装部19の信号通信が可能になるので、信号処理装置45が渦流センサー22及び超音波センサー23からの信号を取り込み、測定波形をディスプレイ上にグラフィック表示できる。従って、信号処理装置45に予め水圧鉄管11の配置図を入力しておくことにより、例えば、装入基準点からの台車14の位置(距離)、台車14の進行角度、及び走行角度を、ディスプレイ上にグラフィックに表示できる。
以上のことから、厚み測定装置10により、水圧鉄管11の厚みを連続的に測定しながら、作業者は、カメラモニター44により、水圧鉄管11内の状況を確認できるので、厚み測定を経済的かつ安全に行うことができる。
As described above, the cable 31 enables power transmission from the outside of the hydraulic iron pipe 11 to the instrumentation unit 19 and signal communication between the outside of the hydraulic iron pipe 11 and the instrumentation part 19. The signal from the sound wave sensor 23 is taken in, and the measurement waveform can be displayed graphically on the display. Accordingly, by inputting the layout diagram of the hydraulic iron pipe 11 in advance in the signal processing device 45, for example, the position (distance) of the carriage 14 from the charging reference point, the traveling angle of the carriage 14, and the traveling angle can be displayed. Can be displayed graphically on top.
From the above, since the operator can check the situation in the hydraulic iron pipe 11 with the camera monitor 44 while continuously measuring the thickness of the hydraulic iron pipe 11 with the thickness measuring device 10, the thickness measurement is economical and It can be done safely.

続いて、本発明の一実施の形態に係る水圧鉄管の厚み測定方法を、前記した厚み測定装置10及び図6を参照しながら説明する。なお、測定対象となる水圧鉄管11は、上流側から下流側へかけて垂直に配置されたものである(図8参照)。
まず、台車14と計装部19とを分離した状態で水圧鉄管11内へ装入し、内部で台車14に計装部19を載置して取付ける。このとき、計装部19に、前方観察用カメラ27、後方観察用カメラ28、センサー観察用カメラ32、清掃手段21、渦流センサー22、超音波センサー23、及びケーブル31を取付ける。なお、信号処理装置45には、厚み測定装置10が測定しようとする水圧鉄管11の形状を予め入力しておく。
Then, the thickness measuring method of the hydraulic iron pipe which concerns on one embodiment of this invention is demonstrated, referring above-described thickness measuring apparatus 10 and FIG. In addition, the hydraulic iron pipe 11 used as a measuring object is arrange | positioned perpendicularly | vertically from the upstream to the downstream (refer FIG. 8).
First, the carriage 14 and the instrumentation part 19 are separated and inserted into the hydraulic iron pipe 11, and the instrumentation part 19 is placed on and attached to the carriage 14 inside. At this time, the front observation camera 27, the rear observation camera 28, the sensor observation camera 32, the cleaning means 21, the eddy current sensor 22, the ultrasonic sensor 23, and the cable 31 are attached to the instrumentation unit 19. In addition, the shape of the hydraulic iron pipe 11 to be measured by the thickness measuring device 10 is input to the signal processing device 45 in advance.

そして、厚み測定装置10を、測定する水圧鉄管11の上流側の底面(水圧鉄管11の底位置を基準として、例えば±30度の範囲内)に配置した後、ロータリエンコーダ18が水圧鉄管11の内面12に接触していることを確認する。そして、制御装置43により、前方用照明29、後方用照明30、及びセンサー用照明を点灯させ、前方観察用カメラ27、後方観察用カメラ28、及びセンサー観察用カメラ32の撮像状態を、カメラモニター44により確認する。なお、前方観察用カメラ27については、制御装置43によってその撮像位置を調整すると共に、前方用照明29の位置も調整する。 And after arrange | positioning the thickness measuring apparatus 10 in the bottom face of the upstream side of the hydraulic iron pipe 11 to measure (within the range of ± 30 degree | times on the basis of the bottom position of the hydraulic iron pipe 11, for example), the rotary encoder 18 of the hydraulic iron pipe 11 is set. Confirm that the inner surface 12 is in contact. Then, the front illumination 29, the rear illumination 30, and the sensor illumination are turned on by the control device 43, and the imaging state of the front observation camera 27, the rear observation camera 28, and the sensor observation camera 32 is changed to a camera monitor. Confirm by 44. The front observation camera 27 adjusts its imaging position by the control device 43 and also adjusts the position of the front illumination 29.

以上に示す作業を順次行い、厚み測定装置10の測定準備が整った後、制御装置43によって駆動モータ15を駆動し、水圧鉄管11の内面12に車輪13を吸着させながら、水圧鉄管11の下流側へ向けて走行(例えば、10m/分以下程度)させる。このとき、ケーブル31の巻取機42からの送出し速度も、台車14の走行速度と略同程度にする。そして、清掃手段21を作動させて水圧鉄管11の内面12を洗浄しながら、渦流センサー22と超音波センサー23を使用して、信号処理装置45によって連続的に洗浄された水圧鉄管11の厚みを求める。なお、この測定位置は、ロータリエンコーダ18により得られる。また、厚み測定装置10の進行方向は、角度センサーの信号によって信号処理装置45のディスプレイ上で確認できる。
このようにして、水圧鉄管11の厚みを連続的に測定する際に、厚み測定装置10の進行方向が予め設定した位置よりもずれた場合、制御装置43によって各駆動モータ15の出力を個別に調整し、車輪13の回転数を調整して、厚み測定装置10の進行方向を正しい位置に修正する。
After the above-described operations are sequentially performed and the thickness measurement device 10 is ready for measurement, the drive motor 15 is driven by the control device 43 and the wheel 13 is adsorbed to the inner surface 12 of the hydraulic iron tube 11 while downstream of the hydraulic iron tube 11. Travel toward the side (for example, about 10 m / min or less). At this time, the sending speed of the cable 31 from the winder 42 is also made substantially the same as the traveling speed of the carriage 14. Then, the cleaning means 21 is operated to clean the inner surface 12 of the hydraulic iron pipe 11, and the thickness of the hydraulic iron pipe 11 continuously washed by the signal processing device 45 is measured using the eddy current sensor 22 and the ultrasonic sensor 23. Ask. This measurement position is obtained by the rotary encoder 18. Further, the traveling direction of the thickness measuring device 10 can be confirmed on the display of the signal processing device 45 by a signal from the angle sensor.
In this way, when the thickness of the hydraulic iron pipe 11 is continuously measured, if the traveling direction of the thickness measuring device 10 deviates from a preset position, the output of each drive motor 15 is individually controlled by the control device 43. It adjusts and the rotation speed of the wheel 13 is adjusted, and the advancing direction of the thickness measuring apparatus 10 is corrected to a correct position.

この方法としては、例えば、厚み測定装置10が設定方向よりも左側へ移動している場合、右側の車輪13よりも左側の車輪13の回転数を速くする。また、厚み測定装置10が設定方向よりも右側へ移動している場合、左側の車輪13よりも右側の車輪13の回転数を速くする。
これにより、厚み測定装置10の進行方向を、正しい位置に修正できる。
このようにして、水圧鉄管11の厚み測定が終了した後、制御装置43により厚み測定装置11の車輪13を逆回転させると共に、巻取機42でケーブル31を巻取り、後方観察用カメラ28で後退状態及びケーブル31の状況(例えば、弛みの発生)を確認しながら、元の位置まで自走させる。
As this method, for example, when the thickness measuring apparatus 10 moves to the left side of the setting direction, the rotational speed of the left wheel 13 is made faster than the right wheel 13. Further, when the thickness measuring device 10 is moving to the right side of the setting direction, the rotational speed of the right wheel 13 is made faster than the left wheel 13.
Thereby, the advancing direction of the thickness measuring apparatus 10 can be corrected to a correct position.
Thus, after the thickness measurement of the hydraulic iron pipe 11 is completed, the control device 43 reversely rotates the wheel 13 of the thickness measurement device 11, winds up the cable 31 with the winder 42, and uses the rear observation camera 28. While confirming the retracted state and the state of the cable 31 (for example, the occurrence of slack), it is caused to self-run to the original position.

なお、厚み測定装置10の移動中に、台車14及び計装部19のいずれか一方又は双方の故障の際には、クラッチ機構17により、車輪13と駆動モータ15との接続状態を解除する。
例えば、前方観察用カメラ27が故障の際、計装部19への送電が正常に実施できれば、発電機48を用いてクラッチ機構17の動作を行う直流モータを作動させ、車輪13と駆動モータ15との接続状態を解除する。また、この送電ができない場合は、計装部19に積載したバッテリー(内部電池)を用いて直流モータを作動させ、車輪13と駆動モータ15との接続状態を解除する。このとき、直流モータは、所定の時間(例えば、1時間程度)経過した後に作動させることで、車輪13と駆動モータ15との接続状態の解除が、突然発生しないようにする。
このように、車輪13と駆動モータ15との接続状態を解除した後、巻取機42によってケーブル31を巻取り回収することで、台車13を元の位置まで戻す。
Note that when one or both of the carriage 14 and the instrumentation unit 19 fails during the movement of the thickness measuring apparatus 10, the connection state between the wheel 13 and the drive motor 15 is released by the clutch mechanism 17.
For example, when the forward observation camera 27 is out of order, if the power transmission to the instrumentation unit 19 can be performed normally, the DC motor that operates the clutch mechanism 17 using the generator 48 is operated, and the wheel 13 and the drive motor 15 are operated. Release the connection status with. When this power transmission cannot be performed, the DC motor is operated using a battery (internal battery) loaded on the instrumentation unit 19 to release the connection state between the wheel 13 and the drive motor 15. At this time, the DC motor is operated after a predetermined time (for example, about 1 hour), so that the connection state between the wheel 13 and the drive motor 15 is not suddenly released.
As described above, after the connection state between the wheel 13 and the drive motor 15 is released, the cable 31 is wound up and collected by the winder 42 to return the carriage 13 to the original position.

元の位置に戻った厚み測定装置10の計装部19から、前方観察用カメラ27、後方観察用カメラ28、センサー観察用カメラ32、清掃手段21、渦流センサー22、超音波センサー23、及びケーブル31を取外し、台車13から計装部19を分離した後、これらを水圧鉄管11内から取り出す。
このように、本発明の厚み測定装置10は、長さが長い水圧鉄管11の厚み測定に適しており、その厚み測定を経済的かつ安全に行うことできる。
From the instrumentation part 19 of the thickness measuring apparatus 10 returned to the original position, the front observation camera 27, the rear observation camera 28, the sensor observation camera 32, the cleaning means 21, the eddy current sensor 22, the ultrasonic sensor 23, and the cable After removing 31 and separating the instrumentation part 19 from the carriage 13, these are taken out from the hydraulic iron pipe 11.
Thus, the thickness measuring apparatus 10 of the present invention is suitable for measuring the thickness of the hydraulic iron pipe 11 having a long length, and can measure the thickness economically and safely.

以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の水圧鉄管の厚み測定方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態おいては、上流側から下流側へかけて垂直に配置された水圧鉄管の厚みを、厚み測定装置を使用して測定したが、上流側から下流側へかけて下方へ傾斜した水圧鉄管の厚みを測定することも可能である。
そして、前記実施の形態においては、ケーブルの周囲に連続的に螺旋状の突出部を設けた場合について説明したが、例えば、ケーブルの長手方向に渡って断続的に螺旋状の突出部を設けたり、断面円形又は断面楕円形の小さな突出部(例えば、5mm以下程度)をケーブルの周囲に多数設けたりすることも可能である。
As described above, the present invention has been described with reference to one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included. For example, the case where the thickness measuring method for a hydraulic iron pipe of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the thickness of the hydraulic iron pipe arrange | positioned perpendicularly | vertically from the upstream to the downstream was measured using the thickness measuring apparatus, it went downward from the upstream to the downstream. It is also possible to measure the thickness of the inclined hydraulic iron pipe.
And in the said embodiment, although the case where the helical protrusion part was continuously provided around the cable was demonstrated, for example, a helical protrusion part is provided intermittently over the longitudinal direction of the cable. It is also possible to provide a large number of small protrusions (for example, about 5 mm or less) having a circular cross section or an elliptical cross section around the cable.

本発明の一実施の形態に係る水圧鉄管の厚み測定方法を適用した水圧鉄管の厚み測定装置の側面図である。It is a side view of the thickness measuring apparatus of the hydraulic iron pipe which applied the thickness measuring method of the hydraulic iron pipe concerning one embodiment of the present invention. 同水圧鉄管の厚み測定装置の正面図である。It is a front view of the thickness measuring apparatus of the hydraulic iron pipe. 同水圧鉄管の厚み測定装置の背面図である。It is a rear view of the thickness measuring apparatus of the hydraulic iron pipe. 同水圧鉄管の厚み測定装置のクラッチ機構の説明図である。It is explanatory drawing of the clutch mechanism of the thickness measuring apparatus of the hydraulic iron pipe. (A)、(B)はそれぞれ同水圧鉄管の厚み測定装置のケーブルの断面図、側面図である。(A), (B) is sectional drawing and the side view of the cable of the thickness measuring apparatus of the hydraulic iron pipe, respectively. 同水圧鉄管の厚み測定装置の使用状態を示す説明図である。It is explanatory drawing which shows the use condition of the thickness measuring apparatus of the hydraulic iron pipe. 同水圧鉄管の厚み測定装置の装置構成の説明図である。It is explanatory drawing of the apparatus structure of the thickness measuring apparatus of the hydraulic iron pipe. 水力発電設備の説明図である。It is explanatory drawing of a hydroelectric power generation facility.

10:水圧鉄管の厚み測定装置、11:水圧鉄管、12:内面、13:車輪、14:台車、15:駆動モータ、16:駆動軸、17:クラッチ機構、18:ロータリエンコーダ(走行距離計)、19:計装部、20:ケーシング、21:清掃手段、22:渦流センサー、23:超音波センサー、24:洗浄ブラシ、25:給水パイプ、26:噴出口、27:前方観察用カメラ、28:後方観察用カメラ、29:前方用照明、30:後方用照明、31:ケーブル、32:センサー観察用カメラ、33:接続コネクタ、34:ステンレスワイヤー、35:水チューブ、36:光ファイバー(光ケーブル部)、37:電源線、38:通信線、39:制御線、40:芯線、41:突出部、42:巻取機(巻取手段)、43:制御装置、44:カメラモニター、45:信号処理装置、46:ポンプ、47:水タンク、48:発電機、49:AD変換器 10: Hydraulic iron pipe thickness measuring device, 11: Hydraulic iron pipe, 12: Inner surface, 13: Wheel, 14: Carriage, 15: Drive motor, 16: Drive shaft, 17: Clutch mechanism, 18: Rotary encoder (odometer) , 19: instrumentation part, 20: casing, 21: cleaning means, 22: eddy current sensor, 23: ultrasonic sensor, 24: cleaning brush, 25: water supply pipe, 26: spout, 27: camera for front observation, 28 : Rear observation camera, 29: front illumination, 30: rear illumination, 31: cable, 32: sensor observation camera, 33: connection connector, 34: stainless steel wire, 35: water tube, 36: optical fiber (optical cable part) ), 37: power line, 38: communication line, 39: control line, 40: core wire, 41: protrusion, 42: winder (winding means), 43: control device, 44: camera module Ter, 45: signal processing device, 46: Pump, 47: water tank, 48: generator, 49: AD converter

Claims (2)

水力発電所で使用し、上流側から下流側にかけて下方傾斜又は垂直に配置された水圧鉄管の内面に吸着しながら自走する複数の車輪、及び該車輪にクラッチ機構を介して連結される駆動モータを備えた台車と、該台車に搭載され、前記水圧鉄管の内面に形成された塗膜厚みの測定に使用する渦流センサー、及び該塗膜厚みを含む前記水圧鉄管の総厚みの測定に使用する超音波センサーを備える計装部とを有し、
前記計装部は前記台車と分離可能な構成となっており、前記計装部の後側には前記水圧鉄管外から該計装部への送電、及び前記水圧鉄管外の制御装置と前記計装部との間の信号通信を行うためのケーブルが接続され、かつ該ケーブルの外周には該ケーブルを前記水圧鉄管に沿って移動させる場合に摩擦抵抗を低減させる螺旋状の突出部が形成された厚み測定装置を使用して、前記水圧鉄管の厚みを測定する方法であって
1)前記台車と前記計装部とを分離した状態で前記水圧鉄管内の上流側に装入して、該水圧鉄管内で前記台車に前記計装部を載置し、前記渦流センサー、前記超音波センサー、及び前記ケーブルを前記計装部に取付け、
2)前記台車に前記計装部が載置された前記厚み測定装置を下流側に向けて走行させ、前記渦流センサー及び前記超音波センサーを用いて前記水圧鉄管の厚みを求め、
3)前記台車及び前記計装部のいずれか1又は双方が故障した場合には、所定の時間をおいて前記クラッチ機構を作動させ、前記車輪と前記駆動モータの接続を解除し、前記ケーブルを巻取機によって巻取ることで前記厚み測定装置を元の位置に戻すことを特徴とする水圧鉄管の厚み測定方法。
A plurality of wheels that are used in a hydroelectric power station and are self-propelled while adsorbing to the inner surface of a hydraulic iron pipe that is inclined downward or vertically from the upstream side to the downstream side, and a drive motor connected to the wheels via a clutch mechanism A trolley sensor mounted on the carriage and used for measuring the thickness of the coating film formed on the inner surface of the hydraulic iron pipe , and used for measuring the total thickness of the hydraulic iron pipe including the coating thickness. An instrumentation unit equipped with an ultrasonic sensor ,
The instrumentation part is configured to be separable from the carriage, and a power transmission from the outside of the hydraulic iron pipe to the instrumentation part, and a control device outside the hydraulic iron pipe and the instrument are provided on the rear side of the instrumentation part. A cable for performing signal communication with the mounting portion is connected, and a spiral protrusion is formed on the outer periphery of the cable to reduce frictional resistance when the cable is moved along the hydraulic iron pipe. Using a thickness measuring device, the method of measuring the thickness of the hydraulic iron pipe,
1) The carriage and the instrumentation part are separated and inserted upstream of the hydraulic iron pipe, the instrumentation part is placed on the carriage in the hydraulic iron pipe, the eddy current sensor, Attach an ultrasonic sensor and the cable to the instrumentation part,
2) Run the thickness measuring device in which the instrumentation unit is mounted on the carriage toward the downstream side, and determine the thickness of the hydraulic iron pipe using the eddy current sensor and the ultrasonic sensor,
3) When one or both of the cart and the instrumentation unit fails, the clutch mechanism is operated after a predetermined time, the wheel and the drive motor are disconnected, and the cable is disconnected. A method for measuring the thickness of a hydraulic iron pipe , wherein the thickness measuring device is returned to its original position by being wound by a winder .
請求項記載の水圧鉄管の厚み測定方法において、前記水圧鉄管の長さが100m以上であることを特徴とする水圧鉄管の厚み測定方法。 2. The method for measuring the thickness of a hydraulic iron pipe according to claim 1 , wherein the length of the hydraulic iron pipe is 100 m or more.
JP2005299182A 2005-10-13 2005-10-13 Measuring method of thickness of hydraulic iron pipe Active JP4663476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299182A JP4663476B2 (en) 2005-10-13 2005-10-13 Measuring method of thickness of hydraulic iron pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299182A JP4663476B2 (en) 2005-10-13 2005-10-13 Measuring method of thickness of hydraulic iron pipe

Publications (2)

Publication Number Publication Date
JP2007108014A JP2007108014A (en) 2007-04-26
JP4663476B2 true JP4663476B2 (en) 2011-04-06

Family

ID=38033985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299182A Active JP4663476B2 (en) 2005-10-13 2005-10-13 Measuring method of thickness of hydraulic iron pipe

Country Status (1)

Country Link
JP (1) JP4663476B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335623A (en) * 2013-06-13 2013-10-02 国家电网公司 Method for observing thickness of ice coating on power transmission line
CN105352467A (en) * 2015-10-22 2016-02-24 东北石油大学 Punching thickness measurement device capable of automatically opening thermal insulation layer of container

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740718B2 (en) * 2005-11-08 2011-08-03 新日本非破壊検査株式会社 Ultrasonic thickness measuring device
JP5574861B2 (en) * 2010-07-14 2014-08-20 株式会社東京エネシス Pipe thinning measuring device
KR101226222B1 (en) 2010-11-09 2013-01-28 송재성 Amphibious mobile recording device and recording method using the same sewer
JP5848926B2 (en) * 2011-09-13 2016-01-27 東京瓦斯株式会社 Pipe inspection equipment for straight piping
JP6282804B2 (en) * 2013-04-03 2018-02-21 株式会社東京計測 Cover thickness measuring device
KR102071174B1 (en) * 2019-05-08 2020-01-29 한전케이피에스 주식회사 Probe of ultrasonic waves for measuring container liner plate thickness and system using the same
CN114923449B (en) * 2022-05-13 2023-08-22 南京工程学院 Double-wheel self-adaptive travelling mechanism for wall thickness detection of spheroidal graphite cast tube

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185408A (en) * 1988-01-20 1989-07-25 Kansai Electric Power Co Inc:The Robot for pipe interior inspection work
JPH0526653A (en) * 1991-07-19 1993-02-02 Japan Steel & Tube Constr Co Ltd Inspecting device for pipe
JPH0868622A (en) * 1993-08-20 1996-03-12 Touden Kogyo Kk Inspection system of stack cylinder
JPH09145687A (en) * 1995-09-20 1997-06-06 Mitsubishi Heavy Ind Ltd Pipe insertion ultrasonic flaw inspection apparatus
JP2001012934A (en) * 1999-06-29 2001-01-19 Chubu Electric Power Co Inc Piping inspection device
JP2001301517A (en) * 2000-04-21 2001-10-31 Maruei Concrete Industries Co Ltd Installing machine for concrete product
JP2004061213A (en) * 2002-07-26 2004-02-26 Tokyo Densetsu Service Kk Plate thickness measuring method of hydraulic means iron tubing
JP2004132763A (en) * 2002-10-09 2004-04-30 Tokyo Gas Co Ltd Piping inspection device
JP2004144710A (en) * 2002-10-28 2004-05-20 Shin Nippon Hihakai Kensa Kk Wall thickness measuring system of large diameter pipe

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185408A (en) * 1988-01-20 1989-07-25 Kansai Electric Power Co Inc:The Robot for pipe interior inspection work
JPH0526653A (en) * 1991-07-19 1993-02-02 Japan Steel & Tube Constr Co Ltd Inspecting device for pipe
JPH0868622A (en) * 1993-08-20 1996-03-12 Touden Kogyo Kk Inspection system of stack cylinder
JPH09145687A (en) * 1995-09-20 1997-06-06 Mitsubishi Heavy Ind Ltd Pipe insertion ultrasonic flaw inspection apparatus
JP2001012934A (en) * 1999-06-29 2001-01-19 Chubu Electric Power Co Inc Piping inspection device
JP2001301517A (en) * 2000-04-21 2001-10-31 Maruei Concrete Industries Co Ltd Installing machine for concrete product
JP2004061213A (en) * 2002-07-26 2004-02-26 Tokyo Densetsu Service Kk Plate thickness measuring method of hydraulic means iron tubing
JP2004132763A (en) * 2002-10-09 2004-04-30 Tokyo Gas Co Ltd Piping inspection device
JP2004144710A (en) * 2002-10-28 2004-05-20 Shin Nippon Hihakai Kensa Kk Wall thickness measuring system of large diameter pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335623A (en) * 2013-06-13 2013-10-02 国家电网公司 Method for observing thickness of ice coating on power transmission line
CN105352467A (en) * 2015-10-22 2016-02-24 东北石油大学 Punching thickness measurement device capable of automatically opening thermal insulation layer of container
CN105352467B (en) * 2015-10-22 2018-01-12 东北石油大学 A kind of punching measuring thickness device that can open vessel insulation layer automatically

Also Published As

Publication number Publication date
JP2007108014A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP4663476B2 (en) Measuring method of thickness of hydraulic iron pipe
KR101564835B1 (en) Mobile robot to detect and repair damage of hull
JP6216315B2 (en) Internal winch for self-release and winding of small-diameter tethers for underwater remote control vehicles
US10259680B2 (en) Cable system
JPH08501371A (en) Inspection, maintenance and repair methods and equipment for auxiliary conduits branched from the main drain
AU2012267129A1 (en) Robotic apparatus for automated internal pipeline girth weld ultrasonic inspection
CN210795350U (en) Marine tray winding displacement device
JP2000197230A (en) Cable feeding apparatus and cable laying
JP6090739B2 (en) Elevated line traveling device and assist device for elevated line traveling device
CN107473006A (en) A kind of self-cleaning closing quotation wind of cable
CN110695019A (en) Pipeline cleaning system
WO2019148529A1 (en) Tunnel wall-adhering shuttle platform and tunnel monitoring apparatus
JP2019149880A (en) Pilot rope extension and recovery device
US9964250B2 (en) Method of inspecting and preparing a pipeline
JP4628547B2 (en) Method and apparatus for use in handling loads
JP4917849B2 (en) Underwater inspection system
JP2007284174A (en) Cable handling device
JP2002066488A (en) Apparatus for carrying in or out underwater robot
JP6395161B2 (en) Pipeline inspection device and inspection method
KR102234797B1 (en) Self propelled reel type hydraulic puller
JP2009121994A (en) Self-propelled in-tube inspection robot
JP3371122B2 (en) Composite transmission line connection equipment such as a remote probe
JP4088691B2 (en) Winch device for submarine cable
JPH1194982A (en) Underwater cleaning robot
CN110424399B (en) Traffic construction deep basal pit lateral wall skew monitoring devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

R150 Certificate of patent or registration of utility model

Ref document number: 4663476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250