JP4660270B2 - 熱交換器とその製造方法、ならびに原子炉格納容器システム - Google Patents

熱交換器とその製造方法、ならびに原子炉格納容器システム Download PDF

Info

Publication number
JP4660270B2
JP4660270B2 JP2005143883A JP2005143883A JP4660270B2 JP 4660270 B2 JP4660270 B2 JP 4660270B2 JP 2005143883 A JP2005143883 A JP 2005143883A JP 2005143883 A JP2005143883 A JP 2005143883A JP 4660270 B2 JP4660270 B2 JP 4660270B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
water
heat exchanger
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005143883A
Other languages
English (en)
Other versions
JP2006322627A (ja
Inventor
美幸 秋葉
智香子 岩城
秀雄 小見田
達實 池田
一義 青木
慎一 師岡
敏美 飛松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005143883A priority Critical patent/JP4660270B2/ja
Publication of JP2006322627A publication Critical patent/JP2006322627A/ja
Application granted granted Critical
Publication of JP4660270B2 publication Critical patent/JP4660270B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

この発明は、原子炉格納容器冷却装置に好適な熱交換器とその製造方法、ならびに原子炉格納容器冷却装置を有する原子炉格納容器システムに関する。
原子炉格納容器冷却装置には、苛酷事故対策用の静的格納容器冷却システム(PCCS)(特許文献1および特許文献2参照)と、通常運転時および苛酷事故対策用のドライウェル冷却システム(DWC)(特許文献3参照)と格納容器外側に水を流す冷却システム(特許文献4参照)がある。以下、PCCS、DWC、格納容器外側水冷却システムの順に説明する。
まず、PCCSについて説明する。特許文献1および特許文献2などに示されるように、苛酷事故対策として静的な格納容器冷却系を採用した原子力プラントが提案されている。このプラントでは、原子炉圧力容器を取り囲むようにして格納容器が設けられている。格納容器は、炉心溶融事故を含む事故時に放射性物質の大気への放出を十分に低い量に抑えるためのものである。格納容器は、原子炉圧力容器を含むドライウェルと、サプレッションチェンバ(圧力抑制室)からなる。サプレッションチェンバは環状の空間であって、その内部にはサプレッションプール(圧力抑制プール)があり、ドライウェルから下方に延びる環状の圧力抑制ベント管がサプレッションプール内に導かれている。
圧力抑制ベント管の側壁のサプレッションプールに浸かった部分には複数のベント管開口があって、鉛直方向に間隔をおいて配置されている。原子炉の冷却材喪失事故時に、ドライウェル内に放出された蒸気と水の混合物が圧力抑制ベント管とベント管開口を介してサプレッションプール内に導かれ、ここで冷却凝縮することによって、格納容器の内圧の過度の上昇が抑制される。
原子炉の事故時にポンプなどの動的機器を使わずに崩壊熱除去を行なうシステムとして、静的格納容器冷却系が設けられている。静的格納容器冷却系は、格納容器外の冷却水貯水槽内に収められた伝熱管束からなる熱交換器と、ドライウェルから蒸気を熱交換器の入口(上方)に供給する蒸気供給管と、凝縮水のドレンおよび熱交換器に流入した不凝縮ガスを排気するため熱交換器の出口(下方)とサプレッションプールを接続する凝縮水ドレンおよびガス排気管とを有する。冷却水貯水槽は、格納容器に接して、その上方に設置される。また、冷却水貯水槽の冷却水の初期温度は常温である。
原子炉で配管破断事故が発生した場合、事故時に崩壊熱により原子炉圧力容器内で発生した蒸気は、破断した配管を経由してドライウェル内に放出される。また、原子炉で苛酷事故が発生し、炉心が溶融して原子炉圧力容器が破損したような場合、溶融炉心はドライウェル内下部に落下し、同時に原子炉圧力容器から流出する冷却材および溶融炉心を冷却するためにドライウェルに注水される冷却水が炉心の溶融物から熱を受けてドライウェル内で蒸気が発生する。
ドライウェルに放出された蒸気およびドライウェルで発生した蒸気は、蒸気供給管を経由して格納容器外の冷却水貯水槽内に収められた熱交換器に導かれ、蒸気が熱交換器内を通過する間に伝熱管壁を通して貯水槽内の冷却水との間で伝熱を行ない、この蒸気が凝縮され、これによって生じた凝縮水は重力により凝縮水ドレンおよびガスベント配管を通って重力によってサプレッションプールに流入する。
したがって、熱交換器(伝熱管)の効率を向上させることにより、より速く崩壊熱除去をすることが望まれている。
次にドライウェル冷却システム(DWC)について説明する。特許文献3などに示されるように、原子炉格納容器は、炉心を内包する原子炉圧力容器と、この原子炉圧力容器を支持するペデスタルによって囲まれた下部ドライウェルと、この原子炉圧力容器を包囲する上部ドライウェルと、上部ドライウェル下方に設けられ内部に圧力抑制プールを保有する圧力抑制室とから構成される。上部ドライウェルと下部ドライウェルは連通口によって連通され、両ドライウェルと圧力抑制室とは、圧力抑制プール水中まで延びたベント管によって連絡されている。原子炉格納容器内には、通常運転時にドライウェル雰囲気を規定の状態に冷却するDWCが複数台設置されている。このDWCは、冷却水が管内に通水される冷却コイルをケーシングによって内包するドライウェル冷却ユニットに、送風機によってドライウェル雰囲気を吸引させ、冷却コイル管外を通過させて冷却し、ダクトを介してドライウェル内各所に冷却空気を送風している。
また、原子炉格納容器には、圧力抑制プールの冷却水を残留熱除去ポンプにより導き、残留熱除去熱交換器で除熱後、スプレイヘッダから散布しスプレイ冷却する系統が事故時の格納容器冷却系として設置されている。このように構成された原子炉格納容器において、万一何らかの原因により原子炉圧力容器から冷却材が流出するような事象(冷却材喪失事故、LOCA)が発生すると、ドライウェル内に大量の高温の蒸気と水との混合物が放出されるが、この混合物はベント管を通して圧力抑制室内の圧力抑制プールの冷却水中に導かれ、原子炉格納容器の内圧上昇を抑制することができる。また、多重に設けられた非常用炉心冷却系によって、原子炉圧力容器内部の炉心は十分に冷却されるとともに、格納容器冷却系によって、炉心で発生する崩壊熱は長期にわたって格納容器外部に除去されるように設計されている。さらに、万一炉心燃料から核分裂生成物(FP)が放出された場合でも、原子炉格納容器の健全性を高く維持し、環境へのFP漏洩を十分微量に抑制することにより、原子炉の高い安全性を確保するように設計されている。
さらに、確率的には極めて希な事象ではあるが、上記多重に設けられた安全設備の複数が故障することにより炉心の損傷や溶融が発生する事態に対しても、深層防護の観点から、常用系の設備を用いて原子炉圧力容器や上部ドライウェルおよび下部ドライウェルへの代替注水やスプレイを行なうことにより損傷炉心を冷却し、その際発生する水蒸気を凝縮することにより格納容器の温度・圧力上昇の抑制を行なう。こうして安全設備に加えて現有する設備を最大限活用することによって、安全性をさらに高く維持するように設計されている。
このような炉心の損傷などの重大な事態において、原子炉圧力容器外に損傷炉心が放出され、本来の安全設備が早期に回復しない場合には、常用系の設備を用いて原子炉格納容器外部の水源から原子炉格納容器内へ注水・スプレイし、損傷炉心の冷却やドライウェルの冷却をすることになる。しかし、長期に渡って外部水源からの注水・スプレイを継続すると、原子炉格納容器内の蓄水によって不凝縮性ガスが存在する気相部が圧縮され、逆に原子炉格納容器の内圧の上昇を招く可能性もある。
そこで、前記ドライウェル冷却装置を複数台具備した原子炉格納容器において、ドライウェル冷却装置を有効活用し、ドライウェル雰囲気を効率良く冷却し、除去された熱を原子炉格納容器外部へ放出できる手段がシビアアクシデントマネージメントとして検討されている。その冷却手段はドライウェル冷却装置の冷却コイルに通水することで、冷却コイルユニット内の蒸気が凝縮され、原子炉格納容器内の不凝縮性ガスを含む蒸気を冷却コイルユニット内に吸い込み、原子炉格納容器内の蒸気圧を低減させる方法であるが、より効率良く蒸気を凝縮すること、また常用時およびシビアアクシデント時のポンプ動力を削減するため冷却コイル内の圧力損失を低減させることが望まれている。
次に、特許文献4に示されているように、格納容器冷却方法として、水で冷却される原子炉で用いられる能動式の(すなわち、動力を用いる)冷却装置が故障した場合でも、原子力発電所の鋼製格納容器を冷却するのに用いられる受動式の格納容器外側水冷却システムについて説明する。この格納容器外側水冷却システムで重力供給される冷却水は、コンクリート製遮蔽建屋の屋根に組み込まれた大容量のタンクから引き出され、水は重力により鋼製格納容器外面全体上を流れるようになる。水は自然法則における重力により排水されるので、ポンプや人力による作用は、必要な冷却効果を得るのに不要である。冷却水貯蔵タンクは、数日間にわたって冷却水の要求を満たすよう設計されており、その後、水がタンクに追加され、或いは空気による冷却によって残留熱を鋼製格納容器から除去するのに十分である。
鋼製格納容器の外面からの最も効率的な熱の除去を行なうために、冷却水が均一な薄膜の状態で表面全体上を流れ、それによりホットスポットが表面上に発生しないようにすることが重要である。しかしながら、格納容器の外壁は、湾曲面をもつ楕円体ドームであり、表面は、鋼を可能なかぎり滑らかにする二次加工が行なわれているが、多くの表面の凸凹及び粗い領域を有することから、冷却水が、「チャンネリング」(冷却材が筋状に流れること)を起こし、ある特定の方向へ導かれて、均一な液膜が形成されない事象が発生してしまう。これにより、水が流れない場所にホットスポットが発生し、格納容器の健全性が損なわれる可能性がある。
なお、水平方向に延びる伝熱管の外周面を撥水層で覆うことにより伝熱特性を向上させる技術が特許文献5により知られている。また、伝熱管の外表面に親水性処理を施して外表面の濡れ性を向上させる技術が特許文献6により知られている。
特開平11−84056号公報 特開平7−128482号公報 特開2001−215291号公報 特開平2−296196号公報 特開平10−176897号公報 特開2003−254682号公報
上述した格納容器冷却装置のうち、PCCSでは伝熱管の冷却能力の向上および凝縮液の圧力損失の低減、DWCでは伝熱管の冷却能力の向上および冷却材の圧力損失の低減が課題となっていた。また、格納容器外面からの水冷却では冷却能力の向上が課題となっていた。
本発明は上述した課題を解決するためになされたものであり、冷却能力の向上および圧力損失の低減を実現できる熱交換器とその製造方法、ならびに原子炉格納容器システムを提供することを目的とする。
上記目的を達成するために、本発明に係る熱交換器は、冷却水を溜めた貯水槽と、この冷却水中に浸漬された伝熱管とを有してこの伝熱管内で蒸気を凝縮させる熱交換器において、前記伝熱管はほぼ水平に延びており、その伝熱管の内面を覆うように撥水性物質が設けられ、その伝熱管の外面を覆うように親水性物質が設けられていること、を特徴とする。
さらに他の態様における本発明に係る熱交換器は、冷却水を溜めた貯水槽と、この冷却水中に浸漬された伝熱管とを有してこの伝熱管内で蒸気を凝縮させる熱交換器において、前記伝熱管はほぼ水平に延びており、その伝熱管の外面の上部のみを覆うように親水性物質が設けられていること、を特徴とする。
さらに他の態様における本発明に係る熱交換器は、冷却水を溜めた貯水槽と、この冷却水中に浸漬された伝熱管とを有してこの伝熱管内で蒸気を凝縮させる熱交換器において、前記伝熱管は、ほぼ水平に延びる上部伝熱管部と、前記上部伝熱管部よりも下方に配置されて水平に延びる下部伝熱管部と、前記上部伝熱管部と下部伝熱管部とを接続する曲がり部とを有し、蒸気が前記上部伝熱管部に流入して凝縮しながら前記曲がり部および下部伝熱管部を通り、凝縮した水が下部伝熱管部から流出するように構成され、撥水性物質が少なくとも前記下部伝熱管部の内面を覆うように設けられていて、親水性物質が、前記伝熱管の外面の少なくとも上部を覆うように設けられていること、を特徴とする。
また、本発明に係る熱交換器の製造方法は、冷却水を溜める貯水部と、前記貯水部に隣接して配置されて蒸気が導入される上流側ヘッダーと、前記貯水部に隣接して前記上流側ヘッダーの下方に配置されて凝縮水が導出される下流側ヘッダーと、前記上流側ヘッダーに接続された入口部と、前記下流側ヘッダーに接続された出口部とを有し、前記貯水部内に配置されて前記冷却水中に浸漬され、前記上流側ヘッダーから流入した蒸気を凝縮させ、凝縮によってできた凝縮水を前記下流側ヘッダーへ流出させる伝熱管と、を有する熱交換器の製造方法であって、少なくとも前記下流側ヘッダーと伝熱管とを接続した後に、前記下流側ヘッダーから撥水性物質溶液を注入して前記伝熱管の内面のうちの前記下流側ヘッダーに近い部分に撥水性物質を付着させること、を特徴とする。
また、さらに他の態様における本発明に係る熱交換器は、原子炉を内部に収容する原子炉格納容器と、この原子炉格納容器の頂部に配置されて原子炉格納容器の外面に水を供給する冷却水ノズルと、を有し、前記冷却水ノズルから水を供給される原子炉格納容器の外面に親水性の被膜を施してあること、を特徴とする。
本発明によれば、壁面に撥水性被膜あるいは親水性被膜を施すことで、冷却能力の向上および圧力損失の低減を実現できる熱交換器とその製造方法、ならびに原子炉格納容器を提供することができる。
以下、本発明に係る格納容器冷却のための熱交換器の実施形態について、図面を参照して説明する。
[実施形態1]
本発明の実施形態1を、図1および図2を用いて説明する。実施形態1は、静的格納容器冷却システム(PCCS)のための熱交換器である。原子炉格納容器(図示せず)の上方に貯水槽1が設けられ、貯水槽1内に冷却水2が、常時溜められている。貯水槽1内の冷却水中に複数本の伝熱管3が水平方向に平行に延びて配置されている。貯水槽1に隣接する側部に、上流側ヘッダー4および下流側ヘッダー5が貯水槽1をはさんで配置されている。各伝熱管3は、上流側ヘッダー4および下流側ヘッダー5に連絡している。上流側ヘッダー4には蒸気導入管6が接続され、下流側ヘッダー5には凝縮水排出管7が接続され、それぞれが格納容器内部と連絡している。
各伝熱管3の内表面には撥水性物質8がコーティングされ、また外表面には親水性物質9がコーティングされている。
この実施形態で、原子炉の配管破断などの想定される事故の場合に、格納容器内の蒸気が蒸気導入管6および上流側ヘッダー4を通って伝熱管3内に入り、ここで冷却されて凝縮し凝縮水が生成される。この凝縮水は、下流側ヘッダー5および凝縮水排出管7を通して格納容器内に排出される。
このとき、伝熱管3内表面に撥水性物質8がコーティングされていることから、凝縮水が伝熱管3内面に付着しにくく、内面に液膜が形成されにくい。そのため、蒸気が伝熱管3内面に接触しやすくなり、冷却効率が高くなる。また、凝縮した液層が下流側ヘッダー5に向かって流れる際の伝熱管3内表面との流動抵抗が小さくなり、圧力損失が低くなる。
さらに、伝熱管3外表面に親水性物質9がコーティングされていることから、伝熱管3外表面で生じる沸騰気泡の直径が小さくなり、スラグ流のような変動の大きな流動様式に遷移しにくくなり、伝熱管3の振動原因が低減される。また、場合によっては、PCCS上部の伝熱管周囲のボイド率はかなり大きくなることも予想されるが、伝熱管3外表面に親水性物質9がコーティングされていることにより限界熱流束(CHF)が増大するので、膜沸騰状態への遷移に対する余裕度が改善する。
[実施形態2]
次に、本発明の実施形態2を、図1および図3を用いて説明する。この実施形態2は実施形態1の変形例であって、図1に示す内容は実施形態1と共通である。ここで、実施形態1の部分と同一または類似の部分には共通の符号を付して、重複説明は省略する。この実施形態2では、図3に示すように、伝熱管3の内表面の下半部のみが撥水性物質8でコーティングされている。伝熱管3の外表面は親水性物質9でコーティングされていることが好ましいが、伝熱管3の外表面の親水性物質9によるコーティングは省略してもよい。
この実施形態で、原子炉の配管破断などの想定される事故の場合に、格納容器内の蒸気が蒸気導入管6および上流側ヘッダー4を通って伝熱管3内に入り、ここで冷却されて凝縮し凝縮水が生成される。
このとき、伝熱管3内表面の下半部に撥水性物質8がコーティングされていることから、凝縮水が伝熱管3内面に付着しにくく、内面に液膜が形成されにくい。そのため、蒸気が伝熱管3内面に接触しやすくなり、冷却効率が高くなる。また、凝縮した液層が下流側ヘッダー5に向かって流れる際の伝熱管3内表面との流動抵抗が小さくなり、圧力損失が低くなる。
さらに、撥水性物質9が伝熱管3内表面の下半部のみにコーティングされていることから、伝熱管3内表面全体がコーティングされている場合に比べて、コーティングにかかるコストを低減できる。しかも、伝熱管3内の凝縮水は伝熱管3内の下半部へ集まりやすいので、下半部のみにコーティングを施すのが効率的である。
なお、ここで「下半部」は必ずしも半分であることに限定されず、下部の一部であればよい。
[実施形態3]
次に、本発明の実施形態3を、図1および図4を用いて説明する。この実施形態3は実施形態1の変形例であって、図1に示す内容は実施形態1と共通である。ここで、実施形態1の部分と同一または類似の部分には共通の符号を付して、重複説明は省略する。この実施形態3では、図4に示すように、伝熱管3の外表面の上半部のみが親水性物質9でコーティングされている。伝熱管3の内表面は撥水性物質8でコーティングされていることが好ましいが、伝熱管3の内表面の撥水性物質8によるコーティングは省略してもよい。
この実施形態で、原子炉の配管破断などの想定される事故の場合に、格納容器内の蒸気が蒸気導入管6および上流側ヘッダー4を通って伝熱管3内に入り、ここで冷却されて凝縮し凝縮水が生成される。
このとき、伝熱管3外表面の上半部に親水性物質9がコーティングされていることから、伝熱管3外表面で生じる沸騰気泡の直径が小さくなり、スラグ流のような変動の大きな流動様式に遷移しにくくなり、伝熱管3の振動原因が低減される。また、限界熱流束が増大するので、膜沸騰状態への遷移に対する余裕度が改善する。
さらに、伝熱管3外表面の上半部のみに親水性物質9がコーティングされていることから、全体がコーティングされている場合に比べて、コーティングにかかるコストを低減できる。しかも、伝熱管3外表面近傍では、上半部の方が下半部よりも蒸気が多いので、上半部のみにコーティングを施すのが効率的である。
なお、ここで「上半部」は必ずしも半分であることに限定されず、上部の一部であればよい。
[実施形態4]
本発明の実施形態4を図5および図6を用いて説明する。実施形態4も実施形態1〜3と同様に、PCCSのための熱交換器である。ここで、実施形態1の部分と同一または類似の部分には共通の符号を付して、重複説明は省略する。
この実施形態4では、上流側ヘッダー4が上側になり、下流側ヘッダー5が下側になるように、上下に並んで配置されている。そして、各伝熱管3が鉛直面内でU字状に曲がっていて、水平方向に延びる上部伝熱管部3aおよび下部伝熱管部3bと、これらをつなぐ曲がり部3cとからなっている。上部伝熱管部3aおよび下部伝熱管部3bはそれぞれ、上流側ヘッダー4および下流側ヘッダー5に接続されている。
図6に示すように、下部伝熱管部3bの内面は撥水性物質8でコーティングされているが、上部伝熱管部3aおよび曲がり管3bの内面はコーティングされていない。
この実施形態で、原子炉の配管破断などの想定される事故の場合に、格納容器内の蒸気が蒸気導入管6および上流側ヘッダー4を通って伝熱管3内に入り、ここで冷却されて凝縮し凝縮水が生成される。この凝縮水は、下流側ヘッダー5および凝縮水排出管7を通して排出される。
このとき、下部伝熱管部3bの内表面に撥水性物質8がコーティングされていることから、撥水効果によって壁面との流動抵抗が少なくなり圧力損失の低減効果がある。また、伝熱管3内表面全体に撥水性物質8がコーティングされる場合に比べてコーティングにかかるコストを低く抑えることができる。しかも、凝縮水は上部伝熱管部3a内よりも下部伝熱管部3b内に多く存在するので、下部伝熱管部3b内面に撥水性物質8をコーティングすることが効率的である。
次に、本実施形態4の熱交換器の製造方法の例を説明する。
初めに、撥水性物質8がコーティングされていない伝熱管3を用いて、これらを上流側ヘッダー4および下流側ヘッダー5に接続し、貯水槽1などを含めて、図5の完成時の状態と同様に組み立てる。次に、下流側ヘッダー5内に撥水性物質溶液11を入れる。そしてさらに、液量を監視しつつ下流側ヘッダー5に撥水性物質溶液11を追加充填し、図7に示すように、下流側ヘッダー5と下流側伝熱管部3b内に撥水性物質溶液11が満たされるようにする。これにより、下流側伝熱管部3bの内面に撥水性物質溶液11が付着する。この後、加熱して撥水性物質を定着させる。加熱方法としては、例えば加熱されたガスを伝熱管内に流す方法がある。
このような製造方法によれば、熱交換器組み立て完成後に撥水性物質をコーティングすることができるので、伝熱管の溶接作業等による製作工程途中での撥水性物質被膜の剥がれの恐れが少ない。また、現地据付後のメンテナンス時でも撥水性物質被膜の追加形成が可能となるので、撥水効果の持続が可能である。
なおこの実施形態4で、撥水性物質8でコーティングする伝熱管3の部分は、下部伝熱管部3bの内面に限らず、曲がり部3cの内面全体、または曲がり部3cの下部の内面を含んでもよい。
また、この実施形態4で、実施形態1〜3と同様に、伝熱管3の外表面の上部または全体を親水性物質でコーティングしてもよい。
[実施形態5]
次に、本発明の実施形態5を、図8ないし図10を用いて説明する。この実施形態5は、ドライウェル冷却システム(DWC)の熱交換器である。原子炉格納容器のドライウェル(図示せず)内に、ケーシング20が配置され、ケーシング20内に、水平に延びる複数の伝熱管21が格子状に配列されている。図9に示すように、伝熱管21の両端はそれぞれ、入口ヘッダー22および出口ヘッダー23に接続されている。入口ヘッダー22および出口ヘッダー23はそれぞれ、給水管24および排水管25に接続されている。
ケーシング20には、排気管26を通してブロワ27が接続されている。また、ケーシング20の、排気管26接続部の反対側には、図示しないガス取り入れ開口が設けられていて、ドライウェル内のガスがケーシング20内に取り入れられるようになっている。伝熱管21の内表面および外表面には撥水性物質28がコーティングされている。
この実施形態5で、冷却水は、給水管24および入口ヘッダー22を経て伝熱管21内に供給され、伝熱管21でドライウェル内のガスを冷却する。このとき冷却水は温度が上昇し、出口ヘッダー23および排水管25を経てドライウェル外へ搬送される。
冷却材喪失事故時には、ドライウェル内に蒸気が排出され、伝熱管21の外表面で、蒸気が冷却されて凝縮する。このとき、通常はブロワ27の停止が想定されるが、自然循環によって継続的に伝熱管21の外表面に蒸気が供給され、ドライウェル内部の除熱が行なわれる。このときに、伝熱管21は上下に複数重なった多段の管群で構成されるため、上部の伝熱管21の外表面で凝縮して発生する液が流下して、下段の伝熱管21の外表面に液膜を形成することにより、下段の伝熱管21の凝縮熱伝達が劣化する。本実施形態では、伝熱管21の外表面に撥水性物質28をコーティングしたことにより、凝縮水が液膜となって伝熱管21外表面を覆うことが抑制され、凝縮熱伝達が促進される。
さらに、伝熱管21内には冷却水が循環しているが、伝熱管21内表面に撥水性物質28をコーティングしたことにより、冷却水の流れによる圧力損失を低減することができ、冷却水を自然循環で循環させることも可能となる。さらに、給水管24および排水管25の内表面にも撥水性物質28をコーティングすれば、この部分での冷却水の流動に伴う圧力損失を低減することが可能である。
[実施形態6]
本発明の実施形態6を、図8、図9および図11を用いて説明する。実施形態6は実施形態5の変形例であって、実施形態5と同様にDWCの熱交換器であって、図8、図9に示す内容は実施形態5と共通である。ここで、実施形態5の部分と同一または類似の部分には共通の符号を付して、重複説明は省略する。この実施形態6では、伝熱管21の内表面のみに撥水性物質28がコーティングされている。これにより、冷却水の流れによる圧力損失を低減することができ、冷却水を自然循環で循環させることも可能となる。さらに、給水管24および排水管25の内表面にも撥水性物質28をコーティングしてもよいことは実施形態5で説明したのと同様である。
この実施形態6では実施形態5と違って伝熱管21の外表面に撥水性物質28がコーティングされていない。このため伝熱管21の外表面での凝縮熱伝達向上効果はないが、製造コスト低減を図ることができる。
[実施形態7]
本発明の実施形態7を、図12を用いて説明する。実施形態7は実施形態5の変形例であって、実施形態5と同様にDWC熱交換器である。ここで、実施形態5の部分と同一または類似の部分には共通の符号を付して、重複説明は省略する。
この実施形態7は、伝熱管21の外側に複数のフィン30を取り付けた点が実施形態5と異なる。伝熱管21は水平方向に延び、各フィン30は伝熱管21の延びる方向と垂直に、鉛直方向に延びている。そして、伝熱管21およびフィン30の表面は撥水性物質28でコーティングされている。
この実施形態7で、伝熱管21内には冷却水が流れ、伝熱管21およびフィン30の外側にある蒸気が伝熱管21およびフィン30によって冷却されて凝縮する。このとき伝熱管21およびフィン30の外表面に撥水性物質28の被膜があるため、凝縮水が撥水性物質28の表面全体を覆う液膜となるよりも液滴となる傾向にあり、重力によって落下する。このため、凝縮熱伝達が促進される。この実施形態のようにフィン30を設けた場合は、一般に、伝熱管21の外表面の面積よりもフィン30の面積の方が大きく、しかもフィン30が鉛直方向に延びていてフィン30の表面に付着した液が落下しやすいので、このフィン30表面に撥水性物質28のコーティングを施すことが効果的である。
[実施形態8]
次に、本発明の実施形態8を、図13を用いて説明する。この実施形態8は、原子炉格納容器の外壁面に沿って冷却水を流すことによって格納容器全体を冷却する構造の原子炉格納容器システムである。
図13に示すように、原子炉格納容器40は原子炉41を格納して外部と遮断するものであって、その頂部上方に冷却水ノズル42を有する。原子炉格納容器40の外表面には親水性物質(被膜)45がコーティング(塗布)されている。
原子炉格納容器40を冷却するために、冷却水ノズル42を通じて冷却水を原子炉格納容器40の外面に沿って流す。原子炉格納容器40の外表面に親水性物質45がコーティングされていることから、冷却水ノズル42からの冷却水が原子炉格納容器40の外表面全体を濡らし、全体を冷却して、格納容器の健全性を確保できる。コーティングがない場合は、冷却水が原子炉格納容器40の外表面全体に広がらず、冷却水が筋状に流れる「チャネリング」が生じるが、このコーティングにより、チャネリングを防止・抑制することができる。
[その他の実施形態]
以上、種々の実施形態を説明したが、これらは単なる例示であって、この発明はこれらに限定されるものではない。たとえば、実施形態1〜実施形態3(図1〜図4)では、伝熱管は直管としたが、これをU字管や螺旋管などの曲管としてもよい。また、実施形態4(図5)の伝熱管は鉛直面内でU字状に曲がっているとしたが、必ずしも鉛直面内でなくともよく、傾斜面内で曲がっていてもよい。また、伝熱管に傾斜する部分があれば、U字状に戻っていなくともよい。
また、実施形態1〜実施形態4は静的格納容器冷却システム(PCCS)用の熱交換器として説明し、実施形態5〜実施形態5〜7はドライウェル冷却システム(DWC)用の熱交換器として説明したが、類似構造の熱交換器を他の用途にも使用できることは言うまでもない。
以上説明した親水性材料として、酸化物半導体をコーティングした表面を用いると、原子炉内の放射線により酸化物半導体表面が励起され、超親水性になるので効果的である。
金属酸化物としては、TiO、PbO、BaTiO、Bi、ZnO、WO、SrTiO、Fe、FeTiO、KTaO、MnTiO、SnOが知られている。
本発明の第1〜第3の実施形態である静的格納容器冷却システム(PCCS)のための熱交換器の模式的縦断面図。 第1の実施形態における図1のA−A線矢視横断面図。 第2の実施形態における図1のA−A線矢視横断面図。 第3の実施形態における図1のA−A線矢視横断面図。 本発明の第4の実施形態である静的格納容器冷却システムのための熱交換器の模式的縦断面図。 図5のB−B線矢視横断面図。 図4の熱交換器の下流側伝熱管内面に撥水性物質をコーティングする工程を示す模式的縦断面図。 本発明の第5ないし第7の実施形態であるドライウェル冷却システム(DWC)のための熱交換器の模式的縦断面図。 図8の熱交換器の模式的側断面図。 本発明の第5の実施形態における図8の伝熱管の拡大断面図。 本発明の第6の実施形態における図8の伝熱管の拡大断面図。 本発明の第7の実施形態における伝熱管およびフィンの斜視図。 本発明の第8の実施形態である原子炉各容器システムの模式的縦断面図。
符号の説明
1:貯水槽、2:冷却水、3:伝熱管、3a:上流側伝熱管部、3b:下流側伝熱管部、3c:曲がり部、4:上流側ヘッダー、5:下流側ヘッダー、6:蒸気導入管、7:凝縮水排出管、8:撥水性物質、9:親水性物質、11:撥水性物質溶液、20:ケーシング、21:伝熱管、22:入口ヘッダー、23:出口ヘッダー、24:給水管、25:排水管、26:排気管、27:ブロワ、28:撥水性物質、30:フィン、40:原子炉格納容器、41:原子炉、42:冷却水ノズル、45:親水性物質

Claims (7)

  1. 冷却水を溜めた貯水槽と、この冷却水中に浸漬された伝熱管とを有してこの伝熱管内で蒸気を凝縮させる熱交換器において、
    前記伝熱管はほぼ水平に延びており、その伝熱管の内面を覆うように撥水性物質が設けられ、その伝熱管の外面を覆うように親水性物質が設けられていること、
    を特徴とする熱交換器。
  2. 冷却水を溜めた貯水槽と、この冷却水中に浸漬された伝熱管とを有してこの伝熱管内で蒸気を凝縮させる熱交換器において、
    前記伝熱管はほぼ水平に延びており、その伝熱管の外面の上部のみを覆うように親水性物質が設けられていること、
    を特徴とする熱交換器。
  3. 冷却水を溜めた貯水槽と、この冷却水中に浸漬された伝熱管とを有してこの伝熱管内で蒸気を凝縮させる熱交換器において、
    前記伝熱管は、ほぼ水平に延びる上部伝熱管部と、前記上部伝熱管部よりも下方に配置されて水平に延びる下部伝熱管部と、前記上部伝熱管部と下部伝熱管部とを接続する曲がり部とを有し、
    蒸気が前記上部伝熱管部に流入して凝縮しながら前記曲がり部および下部伝熱管部を通り、凝縮した水が下部伝熱管部から流出するように構成され、
    撥水性物質が少なくとも前記下部伝熱管部の内面を覆うように設けられていて、
    親水性物質が、前記伝熱管の外面の少なくとも上部を覆うように設けられていること、
    を特徴とする熱交換器。
  4. 撥水性物質が、前記下部伝熱管部の内面全体と、前記上部伝熱管部の内面の下部とを覆うように設けられていること、を特徴とする請求項3に記載の熱交換器。
  5. 非常時に原子炉格納容器内部を冷却する静的格納容器冷却システムで使用されるものであること、を特徴とする請求項1ないし4のいずれかに記載の熱交換器。
  6. 冷却水を溜める貯水部と、
    前記貯水部に隣接して配置されて蒸気が導入される上流側ヘッダーと、
    前記貯水部に隣接して前記上流側ヘッダーの下方に配置されて凝縮水が導出される下流側ヘッダーと、
    前記上流側ヘッダーに接続された入口部と、前記下流側ヘッダーに接続された出口部とを有し、前記貯水部内に配置されて前記冷却水中に浸漬され、前記上流側ヘッダーから流入した蒸気を凝縮させ、凝縮によってできた凝縮水を前記下流側ヘッダーへ流出させる伝熱管と、
    を有する熱交換器の製造方法であって、
    少なくとも前記下流側ヘッダーと伝熱管とを接続した後に、
    前記下流側ヘッダーから撥水性物質溶液を注入して前記伝熱管の内面のうちの前記下流側ヘッダーに近い部分に撥水性物質を付着させること、
    を特徴とする熱交換器の製造方法。
  7. 原子炉を内部に収容する原子炉格納容器と、
    この原子炉格納容器の頂部に配置されて原子炉格納容器の外面に水を供給する冷却水ノズルと、
    を有し、
    前記冷却水ノズルから水を供給される原子炉格納容器の外面に親水性の被膜を施してあること、を特徴とする原子炉格納容器システム。
JP2005143883A 2005-05-17 2005-05-17 熱交換器とその製造方法、ならびに原子炉格納容器システム Expired - Fee Related JP4660270B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143883A JP4660270B2 (ja) 2005-05-17 2005-05-17 熱交換器とその製造方法、ならびに原子炉格納容器システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143883A JP4660270B2 (ja) 2005-05-17 2005-05-17 熱交換器とその製造方法、ならびに原子炉格納容器システム

Publications (2)

Publication Number Publication Date
JP2006322627A JP2006322627A (ja) 2006-11-30
JP4660270B2 true JP4660270B2 (ja) 2011-03-30

Family

ID=37542450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143883A Expired - Fee Related JP4660270B2 (ja) 2005-05-17 2005-05-17 熱交換器とその製造方法、ならびに原子炉格納容器システム

Country Status (1)

Country Link
JP (1) JP4660270B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267423A (zh) * 2013-05-10 2013-08-28 中国核电工程有限公司 核电站安全壳内的热交换器
CN112524970A (zh) * 2019-09-18 2021-03-19 扬州伟毅通用设备有限公司 一种智能冷凝器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008061917B4 (de) * 2008-12-15 2010-11-04 Astrium Gmbh Heißgaskammer
JP2011085327A (ja) * 2009-10-16 2011-04-28 Tlv Co Ltd 加熱冷却装置
JP5484862B2 (ja) * 2009-11-05 2014-05-07 株式会社フジクラ マイクロチャンネル型熱交換器
US8958521B2 (en) * 2011-12-19 2015-02-17 Ge-Hitachi Nuclear Energy Americas, Llc Method and apparatus for an alternative remote spent fuel pool cooling system for light water reactors
JP5848490B1 (ja) * 2014-02-28 2016-01-27 中国電力株式会社 発電設備の熱交換構造
CN107101512A (zh) * 2017-04-14 2017-08-29 舞阳钢铁有限责任公司 一种加热效果好的软水加热器
JP6506865B1 (ja) 2018-03-14 2019-04-24 栗田工業株式会社 蒸気の凝縮方法
KR102160193B1 (ko) * 2018-07-16 2020-09-25 한국원자력연구원 연구로 수조의 핵종 부상 억제장치
CN113035400B (zh) * 2021-03-05 2023-01-03 哈尔滨工程大学 一种疏膜式安全壳非能动高效换热器
CN114777473B (zh) * 2022-05-16 2023-11-14 江西云泰铜业有限公司 一种清渣彻底的黄铜生产用步进炉的除渣装置
WO2023228525A1 (ja) * 2022-05-24 2023-11-30 栗田工業株式会社 熱交換器の伝熱効率改善方法
CN116246804B (zh) * 2023-05-11 2023-07-07 中国电力工程顾问集团有限公司 一种抑压水池及水上浮动核电站的安全系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147784A (ja) * 1992-11-06 1994-05-27 Matsushita Refrig Co Ltd 伝熱管
JPH10176896A (ja) * 1996-12-16 1998-06-30 Osaka Gas Co Ltd 垂直型凝縮器
JPH1184056A (ja) * 1997-09-10 1999-03-26 Toshiba Corp 原子炉格納容器の冷却設備
JP2001215291A (ja) * 1999-11-24 2001-08-10 Toshiba Corp 原子炉格納容器内の圧力抑制装置
JP2002071295A (ja) * 2000-08-30 2002-03-08 Hitachi Ltd 蒸発器
JP2003254683A (ja) * 2002-02-28 2003-09-10 Ebara Corp 熱交換器とそれを用いた吸収冷凍機
JP2005076911A (ja) * 2003-08-28 2005-03-24 Hitachi Ltd 冷凍サイクル装置及び冷媒配管内面の膜形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147784A (ja) * 1992-11-06 1994-05-27 Matsushita Refrig Co Ltd 伝熱管
JPH10176896A (ja) * 1996-12-16 1998-06-30 Osaka Gas Co Ltd 垂直型凝縮器
JPH1184056A (ja) * 1997-09-10 1999-03-26 Toshiba Corp 原子炉格納容器の冷却設備
JP2001215291A (ja) * 1999-11-24 2001-08-10 Toshiba Corp 原子炉格納容器内の圧力抑制装置
JP2002071295A (ja) * 2000-08-30 2002-03-08 Hitachi Ltd 蒸発器
JP2003254683A (ja) * 2002-02-28 2003-09-10 Ebara Corp 熱交換器とそれを用いた吸収冷凍機
JP2005076911A (ja) * 2003-08-28 2005-03-24 Hitachi Ltd 冷凍サイクル装置及び冷媒配管内面の膜形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267423A (zh) * 2013-05-10 2013-08-28 中国核电工程有限公司 核电站安全壳内的热交换器
CN112524970A (zh) * 2019-09-18 2021-03-19 扬州伟毅通用设备有限公司 一种智能冷凝器

Also Published As

Publication number Publication date
JP2006322627A (ja) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4660270B2 (ja) 熱交換器とその製造方法、ならびに原子炉格納容器システム
US10115488B2 (en) Passive safety equipment for a nuclear power plant
TWI559328B (zh) 靜態存放容器冷卻過濾器排氣系統及核能發電廠
KR950009881B1 (ko) 원자로 설비
JP2507694B2 (ja) 原子炉設備
KR101366218B1 (ko) 원자로 및 원자로의 반응로 코어 냉각 방법
EP0745259B1 (en) A system for passively dissipating heat from the interior of a nuclear reactor containment structure
WO2010101112A1 (ja) 原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法
JP6716479B2 (ja) 非常用炉心冷却系およびそれを用いた沸騰水型原子力プラント
TW201324534A (zh) 具有小型被動安全系統之壓水式反應器
JP2010236885A (ja) 原子炉格納容器の冷却構造
JP2001166081A (ja) ヒートパイプによる炉心キャッチャの冷却
KR101538932B1 (ko) 방사성 물질 저감 설비 및 이를 구비하는 원전
JPH06242279A (ja) 原子炉格納設備
JP4620449B2 (ja) 炉心キャッチャ冷却のアセンブリおよび該アセンブリを有する原子炉
KR101505475B1 (ko) 피동격납부냉각계통 및 이를 구비하는 원전
JPS58146891A (ja) 原子炉装置
KR101502395B1 (ko) 피동 격납부 살수 및 냉각계통, 및 이를 구비하는 원전
KR101528223B1 (ko) 피동안전설비 및 이를 구비하는 원전
JP5687440B2 (ja) 原子炉格納容器除熱装置及び除熱方法
JPH05180974A (ja) 原子炉及び原子炉冷却設備並びに原子力発電プラント及びその運転方法
KR101540671B1 (ko) 피동격납부냉각계통 및 이를 구비하는 원전
KR102458247B1 (ko) 원자로의 피동냉각 설비 및 그의 피동냉각 방법
KR102267104B1 (ko) 원자로용기 외벽냉각 시스템 및 이를 이용한 원자로용기 외벽냉각 방법
KR102071979B1 (ko) 원자력 발전소 내 냉각수 저장수조의 수소 폭발 방지 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4660270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees