JP4660011B2 - Liquid crystal display device and manufacturing method thereof - Google Patents

Liquid crystal display device and manufacturing method thereof Download PDF

Info

Publication number
JP4660011B2
JP4660011B2 JP2001147084A JP2001147084A JP4660011B2 JP 4660011 B2 JP4660011 B2 JP 4660011B2 JP 2001147084 A JP2001147084 A JP 2001147084A JP 2001147084 A JP2001147084 A JP 2001147084A JP 4660011 B2 JP4660011 B2 JP 4660011B2
Authority
JP
Japan
Prior art keywords
liquid crystal
bright spot
alignment film
display device
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001147084A
Other languages
Japanese (ja)
Other versions
JP2002341349A (en
Inventor
宜昭 中川
元幸 北畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Toshiba Mobile Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mobile Display Co Ltd filed Critical Toshiba Mobile Display Co Ltd
Priority to JP2001147084A priority Critical patent/JP4660011B2/en
Publication of JP2002341349A publication Critical patent/JP2002341349A/en
Application granted granted Critical
Publication of JP4660011B2 publication Critical patent/JP4660011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電圧非印加時に各画素が白表示を行うノーマリホワイトモードの液晶表示装置に関する。特には、ノーマリホワイトモードのアクティブマトリクス型液晶表示装置に関する。
【0002】
【従来の技術】
液晶表示装置は、パーソナル・コンピュータ、ワードプロセッサあるいはTV等の表示装置として、更に投射型の表示装置として各種分野で利用されている。中でも、画素電極ごとに薄膜トランジスタ(TFT)等のスイッチング素子が電気的に接続されて成るアクティブマトリクス型表示装置は、隣接画素間でクロストークのない良好な表示画像を実現できることから、広く用いられている。
【0003】
近年、液晶表示装置の利用が拡大するとともに表示品質に対する要求が高まっており、とりわけ、輝点(常に白表示を行う点)の低減ないしは防止に対する要求がますます厳しくなっている。輝点は、ノーマリーホワイトモードの液晶表示装置において、スイッチング素子が動作しない画素により生じるのであるが、液晶表示装置の表示画面上で非常に目立つために表示品質を大きく損なう。
【0004】
そのため、検査段階で輝点が発見された場合には、常に黒表示を行う黒点(滅点)に変換する黒点化(滅点化)という方法が行われている。
【0005】
黒点化を可能にするために、輝点に係る画素電極と、信号線または走査線とを、短絡させるためのリペア回路を画素開口ごとに設けることが、一般に行われていた(例えば、特願平11−190080)。アレイ基板の製造時に、例えば走査線と同時に形成されるリペア用の金属フロートパターンを設けて置く。そして、このフロートパターンの一端部に重なるように信号線の延在部を設けるとともに、フロートパターンの他端部に重なるように、ソース電極の延在部を設けておく。液晶表示装置の点灯検査の際に輝点が発見された場合には、レーザー照射により該金属フロートパターンと、信号線延在部及びソース電極延在部との重なる箇所をそれぞれ溶融させることにより、画素電極と信号線とを互いに導通させる。
【0006】
このようにリペア用の金属フロートパターンを用いるのは、画素電極がITO(Indium-Tin-Oxide)等の透明導電材料からなる透過型液晶表示装置である場合、直接、画素電極と信号線または走査線とをレーザー照射により接続させることが、実際上ほぼ不可能であるからである。
【0007】
しかし、リペア用の金属フロートパターンを設けて置く場合には、アレイ基板の製造工程において画素電極と信号線または走査線との不所望の短絡を生じることがあり、また、信号線または走査線と金属フロートパターンとの間で不所望の電気容量が生じることとなる。さらに、リペア用回路の配置個所の分だけ、画素の開口率が低下することとなっていた。
【0008】
そこで、上記のようなリペア回路による黒点化に代えて、輝点に係る画素の画素開口にレーザー光を照射することにより、輝点の個所の輝度を低下させることが提案されている(特開平9−258155(特願平8−71584)、特開平9−146060)。レーザー光の照射により配向膜に傷を付け、この傷により配向膜の液晶配向作用を低下させると、液晶層の偏光作用が失われることから、ノーマリホワイトモードの液晶表示装置では、輝度を低下させることができる。このような方法であると、リペア用の金属フロートパターンが不要であるので、上記のような問題が生じない。
【0009】
【発明が解決しようとする課題】
しかし、レーザー照射の方法によっては、輝点不良の個所の輝度を充分に低下させることができないことがあった。特に、短時間内に効率的にレーザー照射を行って輝度を低下しようとした場合に、輝度の低下が充分でないことがしばしば見られた。
【0010】
一方、レーザー照射のエネルギー密度を向上させるならば、より確実に輝点不良個所の輝度を低下させることができるが、この場合、配向膜の下地をなす他の膜に損傷を与えたり、このような膜から溶出した不純物が液晶材料の層を汚染させることがあった。
【0011】
また、エキシマレーザー等の比較的高価な装置を用いて、配向膜に、本来の配向と直角の方向に多数の溝を切り直すことも提案されている(特開2001−21890)。しかし、この方法では、装置及び工程コストが大きくなると考えられる。
【0012】
本発明は、上記問題点に鑑みなされたものであり、ノーマリーホワイトモードの液晶表示装置及びその製造方法において、輝点不良個所の黒点化を確実かつ容易に行うことができるものを提供する。
【0013】
【課題を解決するための手段】
請求項1の液晶表示装置は、スペーサ及びシール材を介して貼り合わされた一対の絶縁基板と、前記一対の絶縁基板の間の間隙中に保持され前記シール材により封止された液晶層と、前記各絶縁基板の表面に前記液晶層に接するように設けられた配向膜と、略平行に配列される複数の走査線と、この走査線に略直交して配列される複数の信号線と、これら走査線及び信号線の交点ごとに配置される画素電極と、該画素電極ごとに設けられて前記走査線の印加電圧にしたがって前記信号線から前記画素電極への信号入力を行なうスイッチング素子とを備えた液晶表示装置において、少なくとも一の前記画素電極上の領域で、レーザー光照射により前記配向膜に刻まれた略直線状の刻み目が、該領域の周縁以外の全域にわたって、略平行に配列され、前記略直線状の刻み目と、この刻み目を入れられた前記配向膜のラビング方向とのなす角度が10°以内であることを特徴とする。
【0014】
上記構成により、輝点の黒点化を確実かつ容易に行うことができる。
【0015】
請求項2の液晶表示装置は、同様の構成において、前記略直線状の刻み目と、前記配向膜のラビング方向とのなす角度が10°以内であることに代えて、前記配向膜に複数のドット状の刻印部がレーザー光照射により設けられ、このドット状の刻印部が、隣合う前記略直線状の刻み目により挟まれることを特徴とする。
【0016】
上記構成によっても輝点の黒点化を確実かつ容易に行うことができる。
【0017】
請求項3の液晶表示装置の製造方法は、第1の絶縁基板上に、マトリクス状に配列される画素電極と、画素電極ごとに配置されるスイッチング素子と、スイッチング素子に接続される信号線とを設ける工程と、前記第1の絶縁基板の電極形成面、及び第2の絶縁基板の一主面に配向膜を形成する工程と、前記第1及び第2の絶縁基板を、シール材を介して貼り合わせ、これらの間に液晶材料を注入する工程と、このように組み立てた表示パネルについて画素点灯検査を行う工程と、
前記画素点灯検査によって輝点不良が発見された場合に、輝点領域内の前記配向膜にレーザー光を照射して損傷を与えることにより、該輝点領域内の液晶層の光透過率を低減させるリペア工程とを備える液晶表示装置の製造方法において、前記リペア工程では、前記配向膜に焦点を合わせたレーザー光を当該配向膜のラビング方向に対して10°以内の角度をなす方向に走査することにより、前記輝点領域内の全域にわたって分布する複数の略直線状の刻み目を設けることを特徴とする。
【0018】
請求項4の液晶表示装置の製造方法は、同様の構成において、前記配向膜に焦点を合わせたレーザー光を前記配向膜のラビング方向に対して10°以内の角度をなす方向に走査することに代えて、前記リペア工程が、前記輝点領域内でドット状にレーザ光を照射することにより、前記液晶材料の層の中に、前記輝点領域を覆う真空泡を発生させる工程と、前記真空泡の存在下に、前記ドット状の照射個所を避けつつ、前記輝点領域でレーザー光を走査する工程とからなることを特徴とする。
【0019】
請求項5の液晶表示装置の製造方法は、前記走査の際には、出力3.0mW以下の半導体レーザー光を用い、この照射位置を400〜1000μm/秒の速度で連続的に移動させることを特徴とする。
【0020】
このような構成であると、配向膜の下地をなす他の膜を損傷させることがなく、この結果不純物が液晶材料の層中に溶出することもない。
【0021】
【発明の実施の形態】
本発明の実施例1について図1〜2を用いて説明する。
【0022】
図1の平面図には、実施例1の液晶表示装置における、リペアを施した画素について模式的に示す。また、図2の積層断面図には液晶表示装置の基本構成について模式的に示す。
【0023】
図2に示すように、液晶表示装置の表示パネル10(液晶セル)は、アレイ基板1(TFT基板)と対向基板2とがスペーサーにより所定の間隔に保たれ、この間に液晶層3が保持されてなる。液晶層3の四周にはシール材が配されて、液晶層3を封止するとともに、アレイ基板1と対向基板2とを接合している。
【0024】
液晶層3は、例えばツイストネマティック(TN)型の液晶材料からなり、アレイ基板1及び対向基板2の液晶層3に接する最表層には、ポリイミド系樹脂等からなる配向膜15,25がそれぞれ配置される。
【0025】
アレイ基板1においては、ガラス基板16上に、信号線11と走査線12とがマトリクスをなすように配列され、信号線11と走査線12との交点ごとにTFT13が配置される。これら信号線11、走査線12及びTFT13により囲まれるマス目状の各領域が画素開口5をなしており、各画素開口5を覆うように、ITO等の透明導電材料からなる画素電極14が配置される。アレイ基板1は、詳しくは、例えば特願平11−68034に記載の方法により製造することができる。
【0026】
対向基板2においては、ガラス基板26上に、遮光層21のパターンと、所定画素ごとに赤色(R)、緑色(G)及び青色(B)のカラーフィルタ層を配置してなるカラーフィルター12と、これらの全体を覆う対向電極13とが設けられている。対向電極13は、画素電極14と同様にITO等の透明導電材料からなる。
【0027】
図示の実施例において、画素電極5の周縁部が厚型の樹脂絶縁膜17を介して信号線11及び走査線12に重ねられており、画素開口の縁5aは、信号線11及び走査線12の縁に一致している。また、TFT13の近傍では、図2に示すように、TFT13を覆う遮光層21の縁が、画素開口の縁5aをなしている。
【0028】
対向基板2とアレイ基板1とから表示パネル10(液晶セル)を組み立てる際には、例えば次のように行う。まず、両基板1,2のパターン形成面上にポリイミド系樹脂膜を形成し、ラビング処理により液晶配向膜15,25を形成する。次いで、対向基板2上の縁に沿ってシール材を塗布することにより、液晶注入口を残して表示画素エリアの全体を囲むシール材のパターンを作成する。対向基板2とアレイ基板1とをシール材を介して貼り合わせる際には、両基板1,2上の配向膜15,25のラビング角度が互いに90度にクロスするようにする。この後、液晶材料を真空注入してから注入口を封止材にて封止する。最後に、表示パネル10の表裏の面に対応する箇所、すなわち対向基板2の外面及びアレイ基板1の外面に、それぞれ、偏光板41,42を貼り付ける。この際、偏光板41,42の吸収軸が、表示パネル10の表裏で互いに平行になるようにし、また、各基板1,2において、偏光板の吸収軸と配向膜15,25のラビング方向とが平行になるようにする。
【0029】
表示パネル10の完成後、点灯検査を行い、輝点不良が発見されたならばレーザー光線照射によりリペアを行う。輝点となっている領域51(輝点領域)、すなわち、輝点に係る画素開口5の領域内におけるアレイ基板上の配向膜15に、レーザー光線の焦点を合わせて、照射位置を連続的に変化させる。すなわち、レーザー光線を輝点領域51内にて走査させながら配向膜15への照射を行う。この際、特に、走査の方向とラビング方向とのなす角度が10°以下となるようにする。
【0030】
このようにして、図1に示すように、レーザー光線の軌跡としての、ラビング方向に沿った複数の略直線上の刻み目61を、略等間隔に、輝点に係る画素開口5の全体にわたって設ける。
【0031】
レーザー光線の走査の際、配向膜15の下地をなす樹脂層間絶縁膜等を損なわないように、レーザー光線の出力の設定値を3.0mW/sec以下とし、また、レーザー光線の走査速度を400〜1000μm/secの範囲内に設定した。具体例では、出力設定値を2.0mW/secとし、レーザー光線の走査速度を600μm/secとした。また、一本の直線状の刻み目61の作成が完了するごとに、一旦、レーザー光を停止し、次の刻み目61を作成するための開始位置に焦点をセットしてからレーザー照射を再開した。
【0032】
具体例において、画素開口5の寸法は、例えば20μm×60μmであり、約5μmの間隔で8本の直線状の刻み目61が設けられる。
【0033】
レーザー照射の結果、ほぼ完全な黒点化を行うことができた。また、長期にわたる連続駆動による試験の後も黒点化の効果の低下は観察されなかった。
【0034】
次に、実施例2について図3を用いて説明する。図3は、実施例2に係るリペアの様子を示す模式的な平面図である。
【0035】
実施例2においては、一つの直線状の刻み目61と、次の直線状の刻み目61とが、これらの互いに近接した端部61a,61bを連結するUターン部62によりつながている。このようにして、輝点領域51内の直線状の刻み目61が、全て、一筆書き状につながっている。すなわち、レーザー光の走査の軌跡が一筆書き状をなしている。
【0036】
実施例2では、実施例1に比べて黒点化の程度が少し低い場合が見られたが、実用上問題のない程度であった。実施例2の方法によると、レーザー光を停止することなく、一つの連続照射の操作により輝点の黒点化を行うことができるため、リペア作業効率を高くすることができる。
【0037】
直線状の刻み目61の方向を、配向膜15のラビング方向から大きくずらした場合、例えば、信号線11または走査線12のに沿った方向とした場合、実施例1及び2と全く同様のレーザー光照射を行っても、充分な黒点化を達成できなかった。
【0038】
ラビング方向に沿ってレーザー光を走査した場合に、効率よく黒点化を行うことができるについては明らかでない。しかし、刻み目61がラビング方向に沿うことにより、ポリイミド樹脂からなる配向膜15が、裂けて破断しやすくなるのではないかと推測される。
【0039】
次に、実施例3について、図4の模式図を用いて説明する。
【0040】
実施例3のリペアにおいては、まず、輝点領域51(輝点不良に係る画素開口5)内の数点にレーザー光を非連続的に照射することにより輝点領域51全体にわたる「真空泡」と呼ばれる一時的な気泡を発生させる。真空泡は、レーザー照射により生成して、しばらく後には跡形もなく消滅してしまうものであり、空気の混入等によって生じる気泡とは全く別のものである。
【0041】
続いて、この真空泡の存在下に、輝点領域51の配向膜15に対して実施例1とほぼ同様のレーザー光の走査により、複数の、略平行に配列された刻み目61を設けた。このとき、真空泡を設けるためのドット状のレーザー照射個所が刻み目61の間の中間に位置するようにする。
【0042】
図示の例では、輝点領域51内の4点に、出力レベルを1.5mW/secに設定したレーザー光を、0.1秒間ずつ照射する。これにより、輝点領域51のほぼ全部を覆う真空泡が生成するが、この状態で、出力設定値2.0mW/secレーザー光を、走査速度を600μm/secにて連続照射した。
【0043】
実施例3によると、真空泡が生成した状態で、レーザー光の走査を行うため、真空泡を予め生成せずにレーザー光の走査を行う場合に比べて、配向膜15に充分な熱を加えやすく、より効率的に黒点化によるリペアを行うことができる。
【0044】
図5に示す実施例4においては、実施例3と同様のリペアにおいて、実施例2と同様のUターン部62によりレーザー光の走査の軌跡が一筆書き状をなしている。
【0045】
図6に示す実施例5においては、実施例4と同様のリペアにおいて、ラビング方向に沿った直線状の刻み目61に代えて、走査線12に沿った方向の直線状の刻み目64が形成されている。
【0046】
実施例4の場合でも、真空泡の存在下にレーザー光線の照射を行うことにより、充分な黒点化を行うことができた。
【0047】
以上に説明したように、実施例のリペアの方法によると、最小限の工程でもって確実かつ容易に輝点の黒点化を行うことができる。
【0048】
上記実施例において、アレイ基板1側の配向膜15にレーザー光線を照射してリペアを行うとして説明したが、対向基板2側の配向膜25にレーザー光線を照射しても全く同様である。この場合、直線状の刻み目61は、対向基板2の配向膜25に沿って設ける。
【0049】
また、液晶表示装置が光透過型であるとして説明したが、光反射型であっても全く同様である。この場合、動作不良のTFT13に接続された一つの画素電極14上の領域全体が輝点領域51となる。
【0050】
上記実施例において、レーザー光線の走査による軌跡を刻み目と表現したが、必ずしも連続した溝ないし凹部でなくとも良く、配向膜15,25の配向を乱すのに充分な傷や破壊が加えられていれば良い。
【0051】
なお、上記実施例においては画素電極ごとに配されるスイッチング素子がTFTであるとして説明したが、薄膜ダイオード(TFD)すなわちMIM(metal-insulator-metal)素子であっても良い。
【0052】
【発明の効果】
ノーマリーホワイトモードの液晶表示装置において、リペア回路などを設けることなく輝点の黒点化を容易に行うことができるとともに、黒点化処理の効果は経時的に消滅するのを防止することができる。特には、樹脂平坦化膜を備える液晶表示装置においてもリペア回路などを設けることなく容易に輝点の黒点化を行うことを可能にする。
【図面の簡単な説明】
【図1】実施例1の液晶表示装置におけるリペアを施した画素について模式的に示す平面図である。
【図2】液晶表示装置の基本構成について模式的に示す積層断面図である。
【図3】実施例2のリペアの様子を示す模式的な平面図である。
【図4】実施例3のリペアの様子を示す模式的な平面図である。
【図5】実施例4のリペアの様子を示す模式的な平面図である。
【図6】実施例5のリペアの様子を示す模式的な平面図である。
【符号の説明】
1 アレイ基板
13 TFT
14 画素電極
15 アレイ基板側の配向膜
5 画素開口
51 輝点領域(常に白表示を行う画素開口の領域)
61 配向膜のラビング方向に沿った、レーザー光による刻み目
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a normally white mode liquid crystal display device in which each pixel performs white display when no voltage is applied. In particular, the present invention relates to a normally white mode active matrix liquid crystal display device.
[0002]
[Prior art]
The liquid crystal display device is used in various fields as a display device such as a personal computer, a word processor or a TV, and further as a projection display device. Among them, an active matrix display device in which switching elements such as thin film transistors (TFTs) are electrically connected to each pixel electrode is widely used because it can realize a good display image without crosstalk between adjacent pixels. Yes.
[0003]
In recent years, the use of liquid crystal display devices has expanded, and the demand for display quality has increased. In particular, the demand for reduction or prevention of bright spots (points that always perform white display) has become increasingly severe. A bright spot is caused by a pixel in which a switching element does not operate in a normally white mode liquid crystal display device. However, the bright spot is very conspicuous on the display screen of the liquid crystal display device, and the display quality is greatly impaired.
[0004]
For this reason, when a bright spot is found at the inspection stage, a method of blackening (darkening) is performed in which a black dot (darkening) that is always displayed in black is converted.
[0005]
In order to make a black spot possible, a repair circuit for short-circuiting a pixel electrode related to a bright spot and a signal line or a scanning line is generally provided for each pixel opening (for example, a patent application). Hei 11-190080). At the time of manufacturing the array substrate, for example, a repair metal float pattern formed simultaneously with the scanning line is provided. Then, an extension portion of the signal line is provided so as to overlap with one end portion of the float pattern, and an extension portion of the source electrode is provided so as to overlap with the other end portion of the float pattern. When a bright spot is discovered during the lighting inspection of the liquid crystal display device, by melting each of the metal float pattern and the overlapping portion of the signal line extension portion and the source electrode extension portion by laser irradiation, The pixel electrode and the signal line are electrically connected to each other.
[0006]
In this way, the repair metal float pattern is used when the pixel electrode is a transmissive liquid crystal display device made of a transparent conductive material such as ITO (Indium-Tin-Oxide), directly with the pixel electrode and the signal line or scanning. This is because it is practically impossible to connect the line to each other by laser irradiation.
[0007]
However, when a metal float pattern for repair is provided and disposed, an undesired short circuit between the pixel electrode and the signal line or the scanning line may occur in the manufacturing process of the array substrate. Undesirable electric capacity is generated between the metal float pattern and the metal float pattern. Furthermore, the aperture ratio of the pixel is reduced by the amount of the repair circuit.
[0008]
In view of this, it has been proposed to reduce the brightness of the bright spot by irradiating the pixel aperture of the pixel related to the bright spot with laser light instead of the black spot by the repair circuit as described above (Japanese Patent Laid-Open No. Hei. 9-258155 (Japanese Patent Application No. 8-71584), JP-A-9-146060). If the alignment film is scratched by laser light irradiation, and the liquid crystal alignment action of the alignment film is reduced by this damage, the polarizing action of the liquid crystal layer is lost. Can be made. With such a method, the above-described problem does not occur because a repair metal float pattern is unnecessary.
[0009]
[Problems to be solved by the invention]
However, depending on the laser irradiation method, the luminance at the location where the bright spot is defective cannot be sufficiently reduced. In particular, it has often been found that the luminance is not sufficiently reduced when the luminance is reduced by performing laser irradiation efficiently within a short time.
[0010]
On the other hand, if the energy density of the laser irradiation is improved, the brightness of the bright spot defects can be reduced more reliably. In this case, however, other films that form the alignment film may be damaged or Impurities eluted from various films may contaminate the liquid crystal material layer.
[0011]
In addition, it has also been proposed to re-cut a large number of grooves in the alignment film in a direction perpendicular to the original alignment using a relatively expensive apparatus such as an excimer laser (Japanese Patent Laid-Open No. 2001-21890). However, this method is considered to increase the apparatus and process costs.
[0012]
The present invention has been made in view of the above problems, and provides a normally white mode liquid crystal display device and a method for manufacturing the liquid crystal display device that can reliably and easily blacken a defective spot.
[0013]
[Means for Solving the Problems]
The liquid crystal display device according to claim 1, a pair of insulating substrates bonded via a spacer and a sealing material, a liquid crystal layer held in a gap between the pair of insulating substrates and sealed by the sealing material, An alignment film provided on the surface of each insulating substrate so as to be in contact with the liquid crystal layer, a plurality of scanning lines arranged substantially in parallel, and a plurality of signal lines arranged substantially orthogonal to the scanning lines; A pixel electrode disposed at each intersection of the scanning line and the signal line, and a switching element provided for each pixel electrode for inputting a signal from the signal line to the pixel electrode in accordance with an applied voltage of the scanning line. In the liquid crystal display device provided, in the region on at least one of the pixel electrodes, substantially linear notches carved in the alignment film by laser light irradiation are arranged substantially in parallel over the entire region other than the periphery of the region. The a substantially straight indentations, the angle between the rubbing direction of the alignment film which is placed the notch is equal to or is within 10 °.
[0014]
With the above configuration, the bright spot can be surely and easily blackened.
[0015]
3. The liquid crystal display device according to claim 2, wherein the liquid crystal display device has the same configuration, in which an angle formed by the substantially linear notch and the rubbing direction of the alignment film is within 10 °, and a plurality of dots are formed on the alignment film. A mark-shaped marking portion is provided by laser beam irradiation, and the dot-shaped marking portion is sandwiched between the adjacent substantially straight score marks.
[0016]
Even with the above-described configuration, it is possible to reliably and easily make a bright spot a black spot.
[0017]
According to a third aspect of the present invention, there is provided a method of manufacturing a liquid crystal display device comprising: a pixel electrode arranged in a matrix on a first insulating substrate; a switching element arranged for each pixel electrode; A step of forming an alignment film on an electrode forming surface of the first insulating substrate and one main surface of the second insulating substrate, and the first and second insulating substrates through a sealing material. A step of injecting liquid crystal material between them, a step of performing pixel lighting inspection on the display panel assembled in this way,
When a defective bright spot is found by the pixel lighting inspection, the light transmission of the liquid crystal layer in the bright spot area is reduced by irradiating the alignment film in the bright spot area with laser light and damaging it. In the method of manufacturing a liquid crystal display device including a repairing step, a laser beam focused on the alignment film is scanned in a direction that forms an angle of 10 ° or less with respect to the rubbing direction of the alignment film. Thus, a plurality of substantially linear notches distributed over the entire area of the bright spot region are provided.
[0018]
According to a fourth aspect of the present invention, there is provided a method of manufacturing a liquid crystal display device, wherein the laser beam focused on the alignment film is scanned in a direction that forms an angle of 10 ° or less with respect to the rubbing direction of the alignment film in the same configuration. Instead, the repairing step includes irradiating a laser beam in the form of dots in the bright spot region to generate a vacuum bubble covering the bright spot region in the liquid crystal material layer, and the vacuum And scanning the laser beam in the bright spot region while avoiding the dot-shaped irradiation sites in the presence of bubbles.
[0019]
In the method of manufacturing a liquid crystal display device according to claim 5, a semiconductor laser beam having an output of 3.0 mW or less is used during the scanning, and the irradiation position is continuously moved at a speed of 400 to 1000 μm / second. Features.
[0020]
With such a configuration, the other films forming the base of the alignment film are not damaged, and as a result, impurities are not eluted into the liquid crystal material layer.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS.
[0022]
The plan view of FIG. 1 schematically shows a repaired pixel in the liquid crystal display device of the first embodiment. 2 is a schematic sectional view of the basic structure of the liquid crystal display device.
[0023]
As shown in FIG. 2, in the display panel 10 (liquid crystal cell) of the liquid crystal display device, the array substrate 1 (TFT substrate) and the counter substrate 2 are kept at a predetermined interval by a spacer, and the liquid crystal layer 3 is held therebetween. It becomes. A sealing material is disposed on the four circumferences of the liquid crystal layer 3 to seal the liquid crystal layer 3 and to join the array substrate 1 and the counter substrate 2 together.
[0024]
The liquid crystal layer 3 is made of, for example, a twisted nematic (TN) type liquid crystal material, and alignment films 15 and 25 made of polyimide resin or the like are arranged on the outermost layer in contact with the liquid crystal layer 3 of the array substrate 1 and the counter substrate 2, respectively. Is done.
[0025]
In the array substrate 1, the signal lines 11 and the scanning lines 12 are arranged on the glass substrate 16 so as to form a matrix, and a TFT 13 is disposed at each intersection of the signal lines 11 and the scanning lines 12. Each square-shaped region surrounded by the signal line 11, the scanning line 12, and the TFT 13 forms a pixel opening 5, and a pixel electrode 14 made of a transparent conductive material such as ITO is disposed so as to cover each pixel opening 5. Is done. In detail, the array substrate 1 can be manufactured by the method described in Japanese Patent Application No. 11-68034, for example.
[0026]
In the counter substrate 2, a color filter 12 in which a pattern of the light shielding layer 21 and red (R), green (G), and blue (B) color filter layers are arranged for each predetermined pixel on the glass substrate 26. The counter electrode 13 is provided so as to cover all of them. The counter electrode 13 is made of a transparent conductive material such as ITO similarly to the pixel electrode 14.
[0027]
In the illustrated embodiment, the peripheral edge of the pixel electrode 5 is overlapped with the signal line 11 and the scanning line 12 via the thick resin insulating film 17, and the edge 5 a of the pixel opening is the signal line 11 and the scanning line 12. Match the edges of the. In the vicinity of the TFT 13, as shown in FIG. 2, the edge of the light shielding layer 21 covering the TFT 13 forms the edge 5a of the pixel opening.
[0028]
When assembling the display panel 10 (liquid crystal cell) from the counter substrate 2 and the array substrate 1, for example, the following is performed. First, a polyimide resin film is formed on the pattern forming surfaces of both substrates 1 and 2, and liquid crystal alignment films 15 and 25 are formed by rubbing treatment. Next, a seal material is applied along the edge of the counter substrate 2 to create a seal material pattern that surrounds the entire display pixel area while leaving the liquid crystal injection port. When the counter substrate 2 and the array substrate 1 are bonded together via a sealing material, the rubbing angles of the alignment films 15 and 25 on both the substrates 1 and 2 are made to cross each other by 90 degrees. Thereafter, the liquid crystal material is vacuum-injected and then the injection port is sealed with a sealing material. Finally, polarizing plates 41 and 42 are attached to portions corresponding to the front and back surfaces of the display panel 10, that is, the outer surface of the counter substrate 2 and the outer surface of the array substrate 1, respectively. At this time, the absorption axes of the polarizing plates 41 and 42 are parallel to each other on the front and back of the display panel 10, and in each of the substrates 1 and 2, the absorption axis of the polarizing plate and the rubbing direction of the alignment films 15 and 25. To be parallel.
[0029]
After the display panel 10 is completed, a lighting inspection is performed, and if a bright spot defect is found, repair is performed by laser beam irradiation. The irradiation position is continuously changed by focusing the laser beam on the alignment film 15 on the array substrate in the region 51 (bright spot region) that is the bright spot, that is, in the region of the pixel opening 5 related to the bright spot. Let That is, the alignment film 15 is irradiated while scanning the laser beam within the bright spot region 51. At this time, in particular, the angle formed between the scanning direction and the rubbing direction is set to 10 ° or less.
[0030]
In this way, as shown in FIG. 1, a plurality of substantially straight notches 61 along the rubbing direction as the locus of the laser beam are provided over the entire pixel opening 5 related to the bright spot at substantially equal intervals.
[0031]
The laser beam output set value is set to 3.0 mW / sec or less and the laser beam scanning speed is set to 400 to 1000 μm / sec so as not to damage the resin interlayer insulating film which forms the base of the alignment film 15 during the laser beam scanning. Set within the range of sec. In the specific example, the output set value was 2.0 mW / sec, and the laser beam scanning speed was 600 μm / sec. Further, every time the creation of one linear notch 61 was completed, the laser beam was once stopped, the focus was set at the start position for creating the next notch 61, and laser irradiation was resumed.
[0032]
In a specific example, the size of the pixel opening 5 is, for example, 20 μm × 60 μm, and eight linear notches 61 are provided at an interval of about 5 μm.
[0033]
As a result of laser irradiation, almost complete black spots were achieved. In addition, no reduction in sunspot effect was observed even after a long-term continuous driving test.
[0034]
Next, Example 2 will be described with reference to FIG. FIG. 3 is a schematic plan view illustrating a repair state according to the second embodiment.
[0035]
In the second embodiment, one linear notch 61 and the next linear notch 61 are connected by a U-turn portion 62 that connects the end portions 61a and 61b adjacent to each other. In this way, all the linear notches 61 in the bright spot region 51 are connected in a single stroke. That is, the scanning trajectory of the laser beam forms a one-stroke writing.
[0036]
In Example 2, there was a case where the degree of blackening was slightly lower than that in Example 1, but it was practically unproblematic. According to the method of Example 2, the bright spot can be turned into a black spot by one continuous irradiation operation without stopping the laser beam, so that the repair work efficiency can be increased.
[0037]
When the direction of the linear notch 61 is largely shifted from the rubbing direction of the alignment film 15, for example, when the direction is along the signal line 11 or the scanning line 12, the laser beam exactly the same as in the first and second embodiments. Even with irradiation, sufficient black spots could not be achieved.
[0038]
It is not clear that black spots can be efficiently formed when laser light is scanned along the rubbing direction. However, it is presumed that the alignment film 15 made of polyimide resin is easily broken and broken when the notches 61 are along the rubbing direction.
[0039]
Next, Example 3 will be described with reference to the schematic diagram of FIG.
[0040]
In the repair of the third embodiment, first, “vacuum bubbles” over the entire bright spot region 51 are obtained by irradiating several points in the bright spot region 51 (pixel opening 5 related to defective bright spot) with laser light discontinuously. Generate temporary bubbles called. A vacuum bubble is generated by laser irradiation and disappears without a trace after a while, and is completely different from bubbles generated by air mixing.
[0041]
Subsequently, in the presence of this vacuum bubble, the alignment film 15 in the bright spot region 51 was provided with a plurality of indentations 61 arranged substantially in parallel by scanning with laser light substantially the same as in Example 1. At this time, a dot-shaped laser irradiation portion for providing a vacuum bubble is positioned in the middle between the indents 61.
[0042]
In the illustrated example, four points in the bright spot region 51 are irradiated with laser light whose output level is set to 1.5 mW / sec for 0.1 seconds each. As a result, a vacuum bubble covering almost the whole of the bright spot region 51 is generated. In this state, a laser beam having an output set value of 2.0 mW / sec was continuously irradiated at a scanning speed of 600 μm / sec.
[0043]
According to Example 3, since the laser beam is scanned in a state where the vacuum bubbles are generated, sufficient heat is applied to the alignment film 15 as compared with the case where the laser beams are scanned without generating the vacuum bubbles in advance. It is easy and can repair more efficiently by making black spots.
[0044]
In the fourth embodiment shown in FIG. 5, in the repair similar to the third embodiment, the scanning trajectory of the laser beam is formed in a single stroke by the U-turn portion 62 similar to the second embodiment.
[0045]
In the fifth embodiment shown in FIG. 6, in a repair similar to the fourth embodiment, a linear notch 64 in the direction along the scanning line 12 is formed instead of the linear notch 61 along the rubbing direction. Yes.
[0046]
Even in the case of Example 4, sufficient black spots could be achieved by irradiating with laser light in the presence of vacuum bubbles.
[0047]
As described above, according to the repair method of the embodiment, it is possible to reliably and easily darken a bright spot with a minimum number of steps.
[0048]
In the above embodiment, the alignment film 15 on the array substrate 1 side is described as being repaired by irradiating it with a laser beam. However, the same applies when the alignment film 25 on the counter substrate 2 side is irradiated with a laser beam. In this case, the linear notch 61 is provided along the alignment film 25 of the counter substrate 2.
[0049]
Although the liquid crystal display device has been described as being a light transmission type, the same applies to a light reflection type. In this case, the entire region on one pixel electrode 14 connected to the malfunctioning TFT 13 becomes the bright spot region 51.
[0050]
In the above embodiment, the locus by scanning with the laser beam is expressed as a notch, but it is not necessarily a continuous groove or recess, and if the scratches and breakage sufficient to disturb the alignment of the alignment films 15 and 25 are added. good.
[0051]
In the above embodiment, the switching element provided for each pixel electrode is described as a TFT. However, a thin film diode (TFD), that is, an MIM (metal-insulator-metal) element may be used.
[0052]
【The invention's effect】
In a normally white mode liquid crystal display device, it is possible to easily darken bright spots without providing a repair circuit or the like, and it is possible to prevent the effects of the black spotting process from disappearing with time. In particular, even in a liquid crystal display device including a resin flattening film, it is possible to easily make a bright spot a black spot without providing a repair circuit or the like.
[Brief description of the drawings]
FIG. 1 is a plan view schematically showing a repaired pixel in a liquid crystal display device of Example 1. FIG.
FIG. 2 is a cross-sectional view schematically illustrating a basic configuration of a liquid crystal display device.
FIG. 3 is a schematic plan view illustrating a repair state according to the second embodiment.
FIG. 4 is a schematic plan view illustrating a repair state according to a third embodiment.
FIG. 5 is a schematic plan view showing a state of repair in Example 4.
FIG. 6 is a schematic plan view illustrating a repair state according to the fifth embodiment.
[Explanation of symbols]
1 Array substrate 13 TFT
14 Pixel electrode 15 Alignment film 5 on the array substrate side Pixel opening 51 Bright spot region (region of pixel opening that always displays white)
61 Indentation by laser light along the rubbing direction of the alignment film

Claims (4)

スペーサ及びシール材を介して貼り合わされた一対の絶縁基板と、
前記一対の絶縁基板の間の間隙中に保持され前記シール材により封止された液晶層と、
前記各絶縁基板の表面に前記液晶層に接するように設けられた配向膜と、
略平行に配列される複数の走査線と、この走査線に略直交して配列される複数の信号線と、これら走査線及び信号線の交点ごとに配置される画素電極と、該画素電極ごとに設けられて前記走査線の印加電圧にしたがって前記信号線から前記画素電極への信号入力を行なうスイッチング素子とを備えたノーマリホワイトモードの液晶表示装置において、
少なくとも一の前記画素電極上の領域で、レーザー光照射により前記配向膜に刻まれた略直線状の刻み目が、該領域の周縁以外の全域にわたって、略平行に配列され、
前記略直線状の刻み目と、この刻み目を入れられた前記配向膜のラビング方向とのなす角度が10°以内であることを特徴とする液晶表示装置。
A pair of insulating substrates bonded together via a spacer and a sealing material;
A liquid crystal layer held in the gap between the pair of insulating substrates and sealed with the sealing material;
An alignment film provided on the surface of each insulating substrate so as to be in contact with the liquid crystal layer;
A plurality of scanning lines arranged substantially in parallel, a plurality of signal lines arranged substantially orthogonal to the scanning lines, a pixel electrode arranged at each intersection of the scanning lines and the signal lines, and each pixel electrode In a normally white mode liquid crystal display device comprising a switching element that is provided in a switching element that performs signal input from the signal line to the pixel electrode according to an applied voltage of the scanning line,
In at least one region on the pixel electrode, a substantially linear notch carved into the alignment film by laser light irradiation is arranged substantially in parallel over the entire region other than the periphery of the region,
The liquid crystal display device, wherein an angle formed between the substantially linear notch and the rubbing direction of the alignment film in which the notch is formed is within 10 °.
第1の絶縁基板上に、マトリクス状に配列される画素電極と、画素電極ごとに配置されるスイッチング素子と、スイッチング素子に接続される信号線とを設けるとともに、前記第1の絶縁基板または第2の絶縁基板上に走査線を形成する工程と、
前記第1の絶縁基板の電極形成面、及び第2の絶縁基板の一主面に配向膜を形成する工程と、
前記第1及び第2の絶縁基板を、シール材を介して貼り合わせ、これらの間に液晶材料を注入する工程と、
これらの工程により組み立てられた表示パネルについて画素点灯検査を行う工程と、
前記画素点灯検査によって輝点不良が発見された場合に、輝点領域内の前記配向膜にレーザー光を照射して、該輝点領域内の液晶層の光透過率を低減させるリペア工程とを備える液晶表示装置の製造方法において、
前記リペア工程では、前記配向膜に焦点を合わせたレーザー光の照射位置を当該配向膜のラビング方向に対して10°以内の角度をなす方向に移動させつつ連続的または断続的に照射することにより、前記輝点領域内の全域にわたって分布する複数の略直線状の刻み目を設けることを特徴とする液晶表示装置の製造方法。
A pixel electrode arranged in a matrix, a switching element arranged for each pixel electrode, and a signal line connected to the switching element are provided on the first insulating substrate, and the first insulating substrate or the first Forming a scanning line on the two insulating substrates;
Forming an alignment film on the electrode forming surface of the first insulating substrate and one main surface of the second insulating substrate;
Bonding the first and second insulating substrates through a sealing material, and injecting a liquid crystal material therebetween;
A step of performing pixel lighting inspection on the display panel assembled by these steps;
A repair step of reducing the light transmittance of the liquid crystal layer in the bright spot region by irradiating the alignment film in the bright spot region with laser light when a bright spot failure is found by the pixel lighting inspection; In a method for manufacturing a liquid crystal display device comprising:
In the repair step, the irradiation position of the laser beam focused on the alignment film is irradiated continuously or intermittently while moving in a direction that forms an angle within 10 ° with respect to the rubbing direction of the alignment film. A method of manufacturing a liquid crystal display device, comprising: providing a plurality of substantially linear notches distributed over the entire area of the bright spot region.
第1の絶縁基板上に、マトリクス状に配列される画素電極と、画素電極ごとに配置されるスイッチング素子と、スイッチング素子に接続される信号線とを設けるとともに、前記第1の絶縁基板または第2の絶縁基板上に走査線を形成する工程と、
前記第1の絶縁基板の電極形成面、及び第2の絶縁基板の一主面に配向膜を形成する工程と、
前記第1及び第2の絶縁基板を、シール材を介して貼り合わせ、これらの間に液晶材料を注入する工程と、
これらの工程により組み立てられた表示パネルについて画素点灯検査を行う工程と、
前記画素点灯検査によって輝点不良が発見された場合に、輝点領域内の前記配向膜にレーザー光を照射して、該輝点領域内の液晶層の光透過率を低減させるリペア工程とを備える液晶表示装置の製造方法において、
前記リペア工程は、
前記輝点領域の略全体を覆うような真空泡を前記液晶材料の層の中に発生させるために、前記輝点領域内の複数の点にそれぞれドット状のレーザー光を照射する工程と、
この工程によって前記真空泡を発生させた前記輝点領域内で、レーザー光の照射位置を移動させつつ連続的または断続的に照射することにより、略直線状に連続する刻み目を複数作成する工程とからなり、
前記刻み目を作成する工程において、前記配向膜に焦点を合わせたレーザー光の照射位置を当該配向膜のラビング方向に対して10°以内の角度をなす方向に連続的または断続的に移動させることにより、前記輝点領域内の全域にわたって分布する複数の略直線状の刻み目を設けることを特徴とする液晶表示装置の製造方法。
A pixel electrode arranged in a matrix, a switching element arranged for each pixel electrode, and a signal line connected to the switching element are provided on the first insulating substrate, and the first insulating substrate or the first Forming a scanning line on the two insulating substrates;
Forming an alignment film on the electrode forming surface of the first insulating substrate and one main surface of the second insulating substrate;
Bonding the first and second insulating substrates through a sealing material, and injecting a liquid crystal material therebetween;
A step of performing pixel lighting inspection on the display panel assembled by these steps;
A repair step of reducing the light transmittance of the liquid crystal layer in the bright spot region by irradiating the alignment film in the bright spot region with laser light when a bright spot failure is found by the pixel lighting inspection; In a method for manufacturing a liquid crystal display device comprising:
The repair process includes
Irradiating each of a plurality of points in the bright spot region with dot-like laser light in order to generate a vacuum bubble in the liquid crystal material layer so as to cover substantially the entire bright spot region;
In the bright spot region where the vacuum bubbles are generated by this step, by continuously or intermittently irradiating while moving the irradiation position of the laser beam, creating a plurality of indentations that are substantially linearly continuous; Tona is,
In the step of creating the notches, the irradiation position of the laser beam focused on the alignment film is moved continuously or intermittently in a direction that forms an angle of 10 ° or less with respect to the rubbing direction of the alignment film. A method of manufacturing a liquid crystal display device, comprising: providing a plurality of substantially linear notches distributed over the entire area of the bright spot region .
前記刻み目を複数作成する工程において、出力3.0mW以下の半導体レーザー光を連続的に照射しつつ、この照射位置を400〜1000μm/秒の速度で連続的に移動させることを特徴とする請求項2または3記載の液晶表示装置の製造方法。The step of creating a plurality of the notches, wherein the irradiation position is continuously moved at a speed of 400 to 1000 μm / second while continuously irradiating a semiconductor laser beam having an output of 3.0 mW or less. 4. A method for producing a liquid crystal display device according to 2 or 3 .
JP2001147084A 2001-05-16 2001-05-16 Liquid crystal display device and manufacturing method thereof Expired - Fee Related JP4660011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001147084A JP4660011B2 (en) 2001-05-16 2001-05-16 Liquid crystal display device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001147084A JP4660011B2 (en) 2001-05-16 2001-05-16 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002341349A JP2002341349A (en) 2002-11-27
JP4660011B2 true JP4660011B2 (en) 2011-03-30

Family

ID=18992619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001147084A Expired - Fee Related JP4660011B2 (en) 2001-05-16 2001-05-16 Liquid crystal display device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4660011B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133323A (en) 2014-08-19 2014-11-05 深圳市华星光电技术有限公司 Guiding film orientation method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313167A (en) * 1992-05-13 1993-11-26 Sharp Corp Liquid crystal display device and bright point defect correcting method therefor
JPH063636A (en) * 1992-06-18 1994-01-14 Sony Corp Inspection method for liquid crystal display panel
JPH06337386A (en) * 1993-05-27 1994-12-06 Sharp Corp Production of liquid crystal display device
JPH07225381A (en) * 1993-08-25 1995-08-22 Toshiba Corp Liquid crystal display device and its manufacture
JPH0815660A (en) * 1994-06-28 1996-01-19 Toshiba Corp Method for correcting luminescent point defect of liquid crystal display device and device for correcting luminescent point defect therefor
JPH08146370A (en) * 1994-11-15 1996-06-07 Sharp Corp Method for correcting defect of liquid crystal display device
JPH08201813A (en) * 1995-01-27 1996-08-09 Toshiba Corp Laser repairing method and device for liquid crystal display
JPH0990304A (en) * 1995-09-20 1997-04-04 Hamamatsu Photonics Kk Method and device for correcting pixel defect of liquid crystal panel
JPH09146060A (en) * 1995-11-27 1997-06-06 Sanyo Electric Co Ltd Method for correcting defect of liquid crystal display device
JPH09258155A (en) * 1996-03-27 1997-10-03 Toshiba Corp Production of liquid crystal display device
JP2000089231A (en) * 1998-09-07 2000-03-31 Sharp Corp Manufacture of alignment layer and optical element, and optical element
JP2000180811A (en) * 1998-12-18 2000-06-30 Casio Comput Co Ltd Defective pixel correcting method for liquid crystal display panel
JP2001021916A (en) * 1999-07-05 2001-01-26 Toshiba Corp Matrix array substrate
JP2001021890A (en) * 1994-12-27 2001-01-26 Sharp Corp Liquid crystal display device and its defect correcting method
JP2003149619A (en) * 2002-10-31 2003-05-21 Hamamatsu Photonics Kk Method for correcting pixel defect of liquid crystal panel

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313167A (en) * 1992-05-13 1993-11-26 Sharp Corp Liquid crystal display device and bright point defect correcting method therefor
JPH063636A (en) * 1992-06-18 1994-01-14 Sony Corp Inspection method for liquid crystal display panel
JPH06337386A (en) * 1993-05-27 1994-12-06 Sharp Corp Production of liquid crystal display device
JPH07225381A (en) * 1993-08-25 1995-08-22 Toshiba Corp Liquid crystal display device and its manufacture
JPH0815660A (en) * 1994-06-28 1996-01-19 Toshiba Corp Method for correcting luminescent point defect of liquid crystal display device and device for correcting luminescent point defect therefor
JPH08146370A (en) * 1994-11-15 1996-06-07 Sharp Corp Method for correcting defect of liquid crystal display device
JP2001021890A (en) * 1994-12-27 2001-01-26 Sharp Corp Liquid crystal display device and its defect correcting method
JPH08201813A (en) * 1995-01-27 1996-08-09 Toshiba Corp Laser repairing method and device for liquid crystal display
JPH0990304A (en) * 1995-09-20 1997-04-04 Hamamatsu Photonics Kk Method and device for correcting pixel defect of liquid crystal panel
JPH09146060A (en) * 1995-11-27 1997-06-06 Sanyo Electric Co Ltd Method for correcting defect of liquid crystal display device
JPH09258155A (en) * 1996-03-27 1997-10-03 Toshiba Corp Production of liquid crystal display device
JP2000089231A (en) * 1998-09-07 2000-03-31 Sharp Corp Manufacture of alignment layer and optical element, and optical element
JP2000180811A (en) * 1998-12-18 2000-06-30 Casio Comput Co Ltd Defective pixel correcting method for liquid crystal display panel
JP2001021916A (en) * 1999-07-05 2001-01-26 Toshiba Corp Matrix array substrate
JP2003149619A (en) * 2002-10-31 2003-05-21 Hamamatsu Photonics Kk Method for correcting pixel defect of liquid crystal panel

Also Published As

Publication number Publication date
JP2002341349A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
KR101060472B1 (en) Defective cell repair method of LCD panel
KR20000017201A (en) Liquid crystal display device
JPH11311806A (en) Liquid crystal display panel and its manufacture
KR101117982B1 (en) Liquid Crystal Display Device And Method For Repairing Bright Spot Of The Same
KR101232136B1 (en) Method of repair an Liquid Crystal Cell, method of manufacturing Liquid Crystal Display Device using the same, and Liquid Crystal Display repaired using the same
JP2006171680A (en) Liquid crystal display
JP4354946B2 (en) Liquid crystal display panel and repair method thereof
JP2017181704A (en) Color filter substrate, manufacturing method therefor, display panel, manufacturing method therefor, bright spot repair method, and display device
US20050275770A1 (en) Liquid crystal display device and method of manufacturing the same
JP3335567B2 (en) Active matrix type liquid crystal display device and its defect repair method
JP4660011B2 (en) Liquid crystal display device and manufacturing method thereof
JP2003241155A (en) Liquid crystal display device, and method and device for correcting defect of the liquid crystal display device
JP2001133803A (en) Method of producing liquid crystal display device, liquid crystal display device and laser repair device
JP2004109512A (en) Liquid crystal display device and method for manufacturing same
JP3083714B2 (en) Liquid crystal display device defect repair method
JP2016194624A (en) Liquid crystal panel, liquid crystal display, and method of correcting defect in luminous point of the same
US7692739B2 (en) Liquid crystal panel and method of repairing same
JP2002258290A (en) Liquid crystal display device
JP3505223B2 (en) Liquid crystal display device and method of manufacturing the same
JP2740583B2 (en) Liquid crystal display device and defect repair method for liquid crystal display device
KR20030058220A (en) Process of repair for a Bad Cell of Liquid Crystal Panel
JP2004205754A (en) Method for manufacturing active matrix substrate, active matrix substrate, method for manufacturing electrooptical device, and electrooptical device
JP2542964B2 (en) LCD display panel
JP2002318393A (en) Liquid crystal display device and picture display application device
JP2523054B2 (en) LCD display panel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070420

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4660011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees