JP4659490B2 - Schottky barrier diode and manufacturing method thereof - Google Patents

Schottky barrier diode and manufacturing method thereof Download PDF

Info

Publication number
JP4659490B2
JP4659490B2 JP2005057992A JP2005057992A JP4659490B2 JP 4659490 B2 JP4659490 B2 JP 4659490B2 JP 2005057992 A JP2005057992 A JP 2005057992A JP 2005057992 A JP2005057992 A JP 2005057992A JP 4659490 B2 JP4659490 B2 JP 4659490B2
Authority
JP
Japan
Prior art keywords
concentration semiconductor
semiconductor region
type high
region
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005057992A
Other languages
Japanese (ja)
Other versions
JP2006245237A (en
Inventor
寛子 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005057992A priority Critical patent/JP4659490B2/en
Publication of JP2006245237A publication Critical patent/JP2006245237A/en
Application granted granted Critical
Publication of JP4659490B2 publication Critical patent/JP4659490B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ショットキバリアダイオード(以下、SBDと称す)とその製造方法に関し、特に順方向電圧の素子特性の改善に関するものである。   The present invention relates to a Schottky barrier diode (hereinafter referred to as SBD) and a manufacturing method thereof, and more particularly to improvement of device characteristics of a forward voltage.

従来のショットキバリアダイオード(以下、SBDという)は、PN接合構造を用いた高速リカバリーダイオードよりも順方向電圧降下が低く、損失が少ないため、整流用回路に広く使用されており、ショットキ金属を変化させずにポリシリコン膜へ不純物をドーピングすることによって、ショットキバリアハイトを操作して順方向電圧を制御するもの(例えば、特許文献1参照)や、さらに、半導体基板にポリシリコン膜を介してショットキ金属を形成して順方向電圧の制御しているもの(例えば、特許文献2参照)があった。   Conventional Schottky barrier diodes (hereinafter referred to as SBDs) are widely used in rectifier circuits because they have a lower forward voltage drop and less loss than fast recovery diodes using PN junction structures. Without doping, the polysilicon film is doped with impurities to control the forward voltage by manipulating the Schottky barrier height (see, for example, Patent Document 1), and to the semiconductor substrate via the polysilicon film. Some have formed a metal to control the forward voltage (for example, see Patent Document 2).

図3は、特許文献1に記載された従来のSBDを示した断面図である。このSBDにおいては、半導体基板11の上に、Si02などの絶縁層12が、開口部を有して半導体基板11の一部表面を露出した状態に形成される。露出した半導体基板11上に、リンやヒ素などの不純物を導入したポリシリコン膜13が形成され、ポリシリコン膜13表面からポリシリコン膜13に隣接した絶縁層12にかけて、金属電極14が形成されている。 FIG. 3 is a cross-sectional view showing a conventional SBD described in Patent Document 1. As shown in FIG. In this SBD, an insulating layer 12 such as SiO 2 is formed on a semiconductor substrate 11 in a state where an opening is provided and a part of the surface of the semiconductor substrate 11 is exposed. A polysilicon film 13 doped with impurities such as phosphorus and arsenic is formed on the exposed semiconductor substrate 11, and a metal electrode 14 is formed from the surface of the polysilicon film 13 to the insulating layer 12 adjacent to the polysilicon film 13. Yes.

図4は、特許文献2に記載された従来のSBDを示した断面図である。図4において、図3と同じ構成要素については同じ符号を用い、説明を省略する。このSBDにおいては、ノンドープのポリシリコン膜15を用い、ポリシリコン膜15の厚みを変更して順方向電圧が制御される。
特開昭59−2376号公報 特開平1-256169号公報
FIG. 4 is a cross-sectional view showing a conventional SBD described in Patent Document 2. As shown in FIG. In FIG. 4, the same components as those in FIG. In this SBD, a non-doped polysilicon film 15 is used, and the forward voltage is controlled by changing the thickness of the polysilicon film 15.
JP 59-2376 JP-A-1-256169

しかしながら、上記従来の構成の場合、半導体基板の表面および裏面で電極を形成する縦型の構造では、順方向電圧を制御しきれず、順方向電圧は半導体基板に大きく依存する。また、エピタキシャル層を成長させた半導体基板を用いた場合では、エピタキシャル層の寄生抵抗および膜厚によって順方向電圧が変化してしまうだけでなく、耐圧もエピタキシャル層に依存して変化する。エピタキシャル層を有しない半導体基板を用いた場合、ガードリング領域を形成しないと、電界がショットキ接合にかかるため耐圧は低くなり、ガードリング領域を形成した場合でも、半導体基板の不純物濃度によって耐圧が変化してしまうため、半導体基板の不純物濃度を高くすることができなくなり、その結果順方向電圧は増加するという問題があった。   However, in the case of the conventional configuration described above, in the vertical structure in which electrodes are formed on the front and back surfaces of the semiconductor substrate, the forward voltage cannot be controlled, and the forward voltage greatly depends on the semiconductor substrate. When a semiconductor substrate on which an epitaxial layer is grown is used, not only the forward voltage changes depending on the parasitic resistance and film thickness of the epitaxial layer, but also the breakdown voltage changes depending on the epitaxial layer. When a semiconductor substrate without an epitaxial layer is used, if the guard ring region is not formed, the withstand voltage decreases because the electric field is applied to the Schottky junction. Even when the guard ring region is formed, the withstand voltage changes depending on the impurity concentration of the semiconductor substrate. Therefore, there is a problem that the impurity concentration of the semiconductor substrate cannot be increased, and as a result, the forward voltage increases.

そこで、本発明は、順方向電圧を低くするためにエピタキシャル層のない安価なN型高濃度半導体基板を用い、順方向電圧を低くしたまま耐圧を維持可能なSBDを提供することを目的とする。   Accordingly, an object of the present invention is to provide an SBD that uses an inexpensive N-type high-concentration semiconductor substrate without an epitaxial layer in order to reduce the forward voltage, and can maintain the breakdown voltage while keeping the forward voltage low. .

この課題を解決するために、本発明のショットキバリアダイオードは、N型高濃度半導体基板と、前記N型高濃度半導体基板の第一主面側の表面領域に形成され、中央部に開口部を有するN型低濃度半導体領域と、前記N型低濃度半導体領域の表面領域に、前記開口部を包囲し前記開口部側に偏倚して環状に形成されたP型高濃度半導体領域と、前記P型高濃度半導体領域の外周縁部および前記N型低濃度半導体領域における前記P型高濃度半導体領域よりも外側の領域を被覆する絶縁層と、前記N型高濃度半導体基板の第一主面の前記開口部から露出した領域、前記P型高濃度半導体領域よりも内側の前記N型低濃度半導体領域および前記P型高濃度半導体領域の内周縁部に亘って被覆し、前記絶縁層の内周縁との間に間隙を有するように形成されたポリシリコン膜と、前記ポリシリコン膜、前記絶縁層と前記ポリシリコン膜の間の間隙に位置する前記P型高濃度半導体領域および前記絶縁層の内周縁部に亘って被覆しショットキ接合を構成する金属層とを備える。   In order to solve this problem, a Schottky barrier diode of the present invention is formed in an N-type high-concentration semiconductor substrate and a surface region on the first main surface side of the N-type high-concentration semiconductor substrate, and has an opening in the center. An N-type low-concentration semiconductor region, a P-type high-concentration semiconductor region formed in an annular shape in a surface region of the N-type low-concentration semiconductor region, surrounding the opening and being biased toward the opening; An insulating layer covering an outer peripheral edge of the type high concentration semiconductor region and an outer region of the N type low concentration semiconductor region than the P type high concentration semiconductor region, and a first main surface of the N type high concentration semiconductor substrate Covering the region exposed from the opening, the N-type low concentration semiconductor region inside the P-type high concentration semiconductor region, and the inner periphery of the P-type high concentration semiconductor region, and the inner periphery of the insulating layer So that there is a gap between Covering the formed polysilicon film, the polysilicon film, the P-type high-concentration semiconductor region located in the gap between the insulating layer and the polysilicon film, and the inner peripheral edge of the insulating layer, and Schottky junction Comprising a metal layer.

本発明のショットキバリアダイオードの製造方法は、N型高濃度半導体基板の第一主面の表面領域に、N型低濃度半導体領域を、中央部に開口部を設けて前記N型高濃度半導体基板の第一主面が露出するように形成する工程と、環状の間隙を有するようにパターニングした絶縁膜をマスクとして、前記N型低濃度半導体領域の表面領域に、前記開口部を包囲し前記開口部側に偏倚させて環状にP型高濃度半導体領域を形成する工程と、前記絶縁膜における間隙の内側部分を除去する工程と、前記N型高濃度半導体基板の第一主面の前記開口部から露出した領域、前記P型高濃度半導体領域よりも内側の前記N型低濃度半導体領域および前記P型高濃度半導体領域の内周縁部に亘って被覆し、前記絶縁層の内周縁との間に間隙を有するようにポリシリコン膜を形成する工程と、前記ポリシリコン膜、前記絶縁層と前記ポリシリコン膜の間の間隙に位置する前記P型高濃度半導体領域および前記絶縁層の内周縁部に亘って被覆しショットキ接合を構成する金属層を形成する工程とを備える。   According to the method for manufacturing a Schottky barrier diode of the present invention, an N-type low-concentration semiconductor region is provided in the surface region of the first main surface of the N-type high-concentration semiconductor substrate, and an opening is provided in the center. The first main surface is exposed and the insulating film patterned so as to have an annular gap is used as a mask to surround the opening in the surface region of the N-type low concentration semiconductor region. Forming a P-type high-concentration semiconductor region in a ring shape by being biased toward the portion side, removing the inner portion of the gap in the insulating film, and opening the first main surface of the N-type high-concentration semiconductor substrate Covering the inner periphery of the N-type low-concentration semiconductor region and the P-type high-concentration semiconductor region inside the P-type high-concentration semiconductor region, and between the inner periphery of the insulating layer. So that there is a gap in A step of forming a silicon film; and a Schottky junction covering the polysilicon film, the P-type high-concentration semiconductor region located in a gap between the insulating layer and the polysilicon film, and an inner peripheral edge of the insulating layer Forming a metal layer constituting the structure.

上記構成によれば、エピタキシャル層のないN型高濃度半導体基板を用いるため非常に低コストである。さらに、エピタキシャル層の成長工程におけるN型高濃度半導体基板からエピタキシャル層への不純物のせり上がりによる耐圧低下や、エピタキシャル層の厚みや不純物濃度のバラツキによる順方向特性への影響を気にする必要がない。   According to the above configuration, since an N-type high concentration semiconductor substrate without an epitaxial layer is used, the cost is very low. In addition, it is necessary to be concerned about the breakdown voltage drop due to the rise of impurities from the N-type high-concentration semiconductor substrate to the epitaxial layer in the epitaxial layer growth process and the influence on the forward characteristics due to variations in the thickness and impurity concentration of the epitaxial layer. Absent.

また、N型高濃度半導体基板を使用した場合には、P型高濃度半導体領域を形成するとトンネル効果で耐圧が小さくなるが、N型低濃度半導体領域によって通常のエピタキシャル層を持つ構造と同じように空乏層がN型低濃度半導体領域に広がるため耐圧を維持することができる。また、N型低濃度半導体領域の形成領域をP型高濃度半導体領域の内側からN型高濃度半導体基板の外側の領域とし、内側よりも前記半導体基板の外側に広がる領域の方を大きくすることによって、ポリシリコン膜とN型高濃度半導体基板との接触面積を減らさずに順方向電圧を低くしながら耐圧維持ができる。   Further, when an N-type high concentration semiconductor substrate is used, the breakdown voltage is reduced by the tunnel effect when the P-type high concentration semiconductor region is formed, but it is the same as the structure having a normal epitaxial layer by the N-type low concentration semiconductor region. In addition, since the depletion layer extends to the N-type low concentration semiconductor region, the breakdown voltage can be maintained. Further, the N-type low-concentration semiconductor region is formed from the inside of the P-type high-concentration semiconductor region to the outside of the N-type high-concentration semiconductor substrate, and the region extending outside the semiconductor substrate is made larger than the inside. Thus, the withstand voltage can be maintained while reducing the forward voltage without reducing the contact area between the polysilicon film and the N-type high concentration semiconductor substrate.

さらに、順方向電圧を低くするためにエピタキシャル層のないN型高濃度半導体基板を用いるが、N型高濃度半導体基板に金属層を形成してもショットキ接合とはならないため、N型高濃度半導体基板と金属層の間にポリシリコン膜を形成することによってショットキ接合を形成し、ポリシリコン膜はN型高濃度半導体基板の表面で且つガードリング領域の端部および内側に形成されている構造にすることによって、過渡電流による電界集中をガードリング領域で緩和することができ、サージ耐量の低下を防ぐことができる。   Further, an N-type high-concentration semiconductor substrate without an epitaxial layer is used to lower the forward voltage, but even if a metal layer is formed on the N-type high-concentration semiconductor substrate, no Schottky junction is formed. A Schottky junction is formed by forming a polysilicon film between the substrate and the metal layer, and the polysilicon film is formed on the surface of the N-type high concentration semiconductor substrate and at the end and inside of the guard ring region. By doing so, the electric field concentration due to the transient current can be mitigated in the guard ring region, and a reduction in surge resistance can be prevented.

本発明のショットキバリアダイオードにおいて、前記N型低濃度半導体領域は、拡散深さが前記P型高濃度半導体領域よりも深く、不純物濃度が前記P型高濃度半導体領域より低く、前記P型高濃度半導体領域の内側の前記N型低濃度半導体領域よりも、前記N型高濃度半導体基板の外側の前記N型低濃度半導体領域の方が広いことが好ましい。   In the Schottky barrier diode of the present invention, the N-type low concentration semiconductor region has a diffusion depth deeper than that of the P-type high concentration semiconductor region, an impurity concentration is lower than that of the P-type high concentration semiconductor region, and the P-type high concentration semiconductor region. It is preferable that the N-type low-concentration semiconductor region outside the N-type high-concentration semiconductor substrate is wider than the N-type low-concentration semiconductor region inside the semiconductor region.

以下本発明の実施の形態について、図面を参照しながら具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1におけるSBDを示した断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing an SBD according to Embodiment 1 of the present invention.

図1において、N型高濃度半導体基板1の第一主面側の表面領域に、N型低濃度半導体領域2が選択的に形成されている。N型低濃度半導体領域2は、中央に開口部2aを有し、N型高濃度半導体基板1を露出させるように形成されている。N型低濃度半導体領域2の表面領域の開口部に偏倚した領域に、P型高濃度半導体領域からなるガードリング3が環状に形成されている。ガードリング3の外周縁部と、ガードリング3の外側のN型低濃度半導体領域2とは、選択的にシリコン酸化膜などからなる絶縁層7で被覆されている。   In FIG. 1, an N-type low concentration semiconductor region 2 is selectively formed in a surface region on the first main surface side of an N-type high concentration semiconductor substrate 1. The N-type low concentration semiconductor region 2 has an opening 2a in the center, and is formed so as to expose the N-type high concentration semiconductor substrate 1. A guard ring 3 made of a P-type high-concentration semiconductor region is formed in an annular shape in a region that is biased toward the opening of the surface region of the N-type low-concentration semiconductor region 2. The outer peripheral edge of the guard ring 3 and the N-type low concentration semiconductor region 2 outside the guard ring 3 are selectively covered with an insulating layer 7 made of a silicon oxide film or the like.

絶縁層7により被覆されていないN型低濃度半導体領域2およびガードリング3の内側領域と、開口部2aに対応するN型高濃度半導体基板1の上面が、ポリシリコン膜4で被覆されている。ポリシリコン膜4と絶縁層7の間には、ガードリング3の上面に位置するように間隙が設けられている。絶縁層7のガードリング3側の一部と、ポリシリコン膜4と、ガードリング3とを被覆して、ショットキ接合を構成する金属層5(アノード電極)が形成されている。N型高濃度半導体基板1の第二主面側には、カソード電極6が形成されている。   The N-type low-concentration semiconductor region 2 and the inner region of the guard ring 3 that are not covered with the insulating layer 7 and the upper surface of the N-type high-concentration semiconductor substrate 1 corresponding to the opening 2 a are covered with the polysilicon film 4. . A gap is provided between the polysilicon film 4 and the insulating layer 7 so as to be positioned on the upper surface of the guard ring 3. A metal layer 5 (anode electrode) that forms a Schottky junction is formed by covering a part of the insulating layer 7 on the guard ring 3 side, the polysilicon film 4, and the guard ring 3. A cathode electrode 6 is formed on the second main surface side of the N-type high concentration semiconductor substrate 1.

N型低濃度半導体領域2は、ガードリング3よりも拡散深さが深く、不純物濃度はガードリング領域3より低くなっている。またN型低濃度半導体領域2は、ガードリング3の領域の内側よりも外側に広がる領域の方が大きく、ポリシリコン膜4の下部に対しては、その周縁部のみと重畳部を有する形状に形成されている。このように、ポリシリコン膜4下部をN型低濃度領域とせずにN型高濃度基板とすることによって、抵抗成分の増加を防ぐことができ、その結果順方向電圧を低く保つことができる。   The N-type low concentration semiconductor region 2 has a deeper diffusion depth than the guard ring 3, and the impurity concentration is lower than that of the guard ring region 3. The N-type low-concentration semiconductor region 2 has a larger area extending outward than the inner side of the guard ring 3, and the lower part of the polysilicon film 4 has a shape having only a peripheral part and an overlapping part. Is formed. Thus, by making the lower part of the polysilicon film 4 not an N-type low concentration region but an N-type high concentration substrate, an increase in resistance component can be prevented, and as a result, the forward voltage can be kept low.

例えば、N型高濃度半導体基板1の不純物濃度は1×1019cm-3、N型低濃度半導体領域2の不純物濃度は1015〜1016cm-3程度とする。N型低濃度半導体領域2の深さは、ガードリング領域3の深さよりも深く5μm程度に形成する。ガードリング領域3は、表面濃度が1×1018cm-3で深さが2μm程度に形成する。N型低濃度半導体領域2は、その内縁をガードリング領域3よりも3μm程度チップの内側に配置し、外縁はガードリング領域3よりもチップの外側に大きく広がるように配置する。絶縁層7で被覆されていないN型低濃度半導体領域2とガードリング3との内側とN型高濃度半導体基板1の上面を被覆するポリシリコン膜4は、厚さ1μm以下で1015〜1016cm-3程度の低濃度とする。 For example, the impurity concentration of the N-type high concentration semiconductor substrate 1 is 1 × 10 19 cm −3 , and the impurity concentration of the N-type low concentration semiconductor region 2 is about 10 15 to 10 16 cm −3 . The depth of the N-type low concentration semiconductor region 2 is formed to be about 5 μm deeper than the depth of the guard ring region 3. The guard ring region 3 is formed with a surface concentration of 1 × 10 18 cm −3 and a depth of about 2 μm. The inner edge of the N-type low concentration semiconductor region 2 is arranged on the inner side of the chip by about 3 μm from the guard ring region 3, and the outer edge is arranged so as to extend larger outside the chip than the guard ring region 3. The polysilicon film 4 that covers the inside of the N-type low concentration semiconductor region 2 and the guard ring 3 and the upper surface of the N-type high concentration semiconductor substrate 1 that are not covered with the insulating layer 7 has a thickness of 10 15 to 10 μm. The concentration should be as low as 16 cm -3 .

(実施の形態2)
本発明の実施の形態2におけるSBDの製造方法について、図2(a)〜(e)に示す工程フローに沿った断面図を参照して説明する。図2(a)〜(e)において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
A method for manufacturing an SBD according to Embodiment 2 of the present invention will be described with reference to cross-sectional views along a process flow shown in FIGS. 2A to 2E, the same components as those in FIG.

まず図2(a)に示すように、N型高濃度半導体基板1の第一主面の表面領域に、絶縁層からなるマスク8を介して、不純物としてP+をイオン注入する。それにより、N型低濃度半導体領域2を、中央部にN型高濃度半導体基板1の第一主面が露出するように、開口部2aを設けて選択的に形成する。N型高濃度半導体基板1の不純物濃度は1×1019cm-3で、通常エピタキシャルウエハーを作製する際に使用される基板である。これは、高濃度基板を用いることによってSBDの寄生抵抗を減らすためであり、寄生抵抗を減らすことで順方向電圧を低くすることが可能である。また、N型低濃度半導体領域2の不純物濃度は1015〜1016cm-3で、その拡散深さは5μm程度とする。 First, as shown in FIG. 2A, P + ions are implanted as impurities into the surface region of the first main surface of the N-type high-concentration semiconductor substrate 1 through a mask 8 made of an insulating layer. Thus, the N-type low concentration semiconductor region 2 is selectively formed by providing the opening 2a so that the first main surface of the N-type high concentration semiconductor substrate 1 is exposed at the center. The impurity concentration of the N-type high-concentration semiconductor substrate 1 is 1 × 10 19 cm −3 , which is a substrate that is usually used when manufacturing an epitaxial wafer. This is because the parasitic resistance of the SBD is reduced by using a high concentration substrate, and the forward voltage can be lowered by reducing the parasitic resistance. The impurity concentration of the N-type low concentration semiconductor region 2 is 10 15 to 10 16 cm −3 and the diffusion depth is about 5 μm.

つぎに図2(b)に示すように、酸化によって形成しパターニングした絶縁層7、7aの開口部を介して蒸着を行い、さらに拡散を行う。それにより、N型低濃度半導体領域2の表面領域の開口部2aに偏倚した領域に、P型高濃度半導体領域からなるガードリング3を環状に形成する。ガードリング3の表面不純物濃度は1×1019cm-3で、その拡散領域の深さは2μm程度とする。この拡散深さおよび不純物濃度は、高耐圧を維持するように設定される。 Next, as shown in FIG. 2B, vapor deposition is performed through the openings of the insulating layers 7 and 7a formed and patterned by oxidation, and further diffusion is performed. Thereby, a guard ring 3 made of a P-type high-concentration semiconductor region is formed in an annular shape in a region biased to the opening 2 a in the surface region of the N-type low-concentration semiconductor region 2. The surface impurity concentration of the guard ring 3 is 1 × 10 19 cm −3 and the depth of the diffusion region is about 2 μm. The diffusion depth and impurity concentration are set so as to maintain a high breakdown voltage.

ガードリング3領域の拡散深さおよび不純物濃度は、耐圧設計において、N型低濃度半導体領域2の深さと不純物濃度との関係によって決定される。すなわち、N型低濃度半導体領域2は、ガードリング領域よりも拡散深さを深く、且つ不純物濃度を低くする。それにより、逆バイアス時に広がる空乏層がN型低濃度半導体領域2に広がることによって、耐圧低下を防ぐことが可能である。   The diffusion depth and impurity concentration of the guard ring 3 region are determined by the relationship between the depth of the N-type low concentration semiconductor region 2 and the impurity concentration in the withstand voltage design. That is, the N-type low concentration semiconductor region 2 has a deeper diffusion depth and a lower impurity concentration than the guard ring region. As a result, the depletion layer that spreads at the time of reverse bias spreads to the N-type low concentration semiconductor region 2, thereby making it possible to prevent the breakdown voltage from decreasing.

つぎに、中央部の絶縁層7aを除去した後、図2(c)に示すように、ポリシリコン膜4を、減圧CVDまたはプラズマCVDにより形成する。ポリシリコン膜4は、N型高濃度半導体基板1の第一主面の開口部2aから露出した領域と、N型低濃度半導体領域2の開口部2a側端部付近と、ガードリング3の開口部2a端部付近とを被覆するようにパターニングする。   Next, after removing the central insulating layer 7a, a polysilicon film 4 is formed by low pressure CVD or plasma CVD, as shown in FIG. The polysilicon film 4 includes a region exposed from the opening 2a of the first main surface of the N-type high-concentration semiconductor substrate 1, a vicinity of the end of the N-type low-concentration semiconductor region 2 on the side of the opening 2a, and an opening of the guard ring 3. Patterning is performed so as to cover the vicinity of the end of the portion 2a.

ポリシリコン膜4は、ノンドープまたは不純物を含んだポリシリコン膜とし、その厚みは数nm〜数百nm程度とする。これは、SBDの寄生抵抗を大きくしないようにするためであり、エピタキシャルウエハーを使用した場合のエピタキシャル層の持つ寄生抵抗よりも小さくするためである。これによれば、順方向電圧を小さくすることや、SBDのショットキーバリアハイトの操作が可能である。   The polysilicon film 4 is a non-doped or impurity-containing polysilicon film and has a thickness of about several nanometers to several hundred nanometers. This is to prevent the parasitic resistance of the SBD from increasing, and to make it smaller than the parasitic resistance of the epitaxial layer when an epitaxial wafer is used. According to this, it is possible to reduce the forward voltage and to operate the SBD Schottky barrier height.

つぎに図2(d)に示すように、少なくともポリシリコン膜4を被覆するようにショットキ接合を構成する金属層5を、蒸着またはスパッタ法により成膜した後、パターニングにより形成する。金属層5の厚みは、数nm〜数百nm程度とする。これは、ポリシリコン膜4を被覆するのに必要な厚さ、つまりポリシリコン膜4の膜厚よりも大きい。   Next, as shown in FIG. 2D, the metal layer 5 constituting the Schottky junction is formed by vapor deposition or sputtering so as to cover at least the polysilicon film 4, and then formed by patterning. The thickness of the metal layer 5 is about several nm to several hundred nm. This is larger than the thickness necessary for covering the polysilicon film 4, that is, the thickness of the polysilicon film 4.

最後に図2(e)に示すように、N型高濃度半導体基板1の第二主面側に、カソード電極6を形成する。   Finally, as shown in FIG. 2E, the cathode electrode 6 is formed on the second main surface side of the N-type high concentration semiconductor substrate 1.

上記構成によれば、耐圧を維持したまま順方向電圧を小さくした、低コストなSBDを作製することが可能である。   According to the above configuration, it is possible to manufacture a low-cost SBD in which the forward voltage is reduced while maintaining the withstand voltage.

本発明によれば、耐圧を維持したまま順方向電圧を小さくした、低コストなSBDを作製することが可能であり、ショットキバリアダイオードとその製造方法として有用である。   According to the present invention, it is possible to manufacture a low-cost SBD in which a forward voltage is reduced while maintaining a withstand voltage, which is useful as a Schottky barrier diode and a manufacturing method thereof.

本発明の実施形態の1におけるSBDを示した断面図Sectional drawing which showed SBD in 1 of embodiment of this invention 本発明の実施形態の2におけるSBDの製造方法の工程フローに沿った断面図Sectional drawing along the process flow of the manufacturing method of SBD in 2 of embodiment of this invention 特許文献1に示された従来のSBDを示した断面図Sectional drawing which showed conventional SBD shown by patent document 1 特許文献2に示された従来のSBDを示した断面図Sectional drawing which showed conventional SBD shown by patent document 2

符号の説明Explanation of symbols

1 N型高濃度半導体基板
2 N型低濃度半導体領域
2a 開口部
3 ガードリング領域
4 ポリシリコン膜
5 金属層(アノード電極)
6 カソード電極
7、7a 絶縁層
8 マスク
11 半導体基板
12 絶縁層
13、15 ポリシリコン膜
14 金属電極
DESCRIPTION OF SYMBOLS 1 N type high concentration semiconductor substrate 2 N type low concentration semiconductor region 2a Opening 3 Guard ring region 4 Polysilicon film 5 Metal layer (anode electrode)
6 Cathode electrode 7, 7a Insulating layer 8 Mask 11 Semiconductor substrate 12 Insulating layer 13, 15 Polysilicon film 14 Metal electrode

Claims (3)

N型高濃度半導体基板と、
前記N型高濃度半導体基板の第一主面側の表面領域に形成され、中央部に開口部を有するN型低濃度半導体領域と、
前記N型低濃度半導体領域の表面領域に、前記開口部を包囲し前記開口部側に偏倚して環状に形成されたP型高濃度半導体領域と、
前記P型高濃度半導体領域の外周縁部および前記N型低濃度半導体領域における前記P型高濃度半導体領域よりも外側の領域を被覆する絶縁層と、
前記N型高濃度半導体基板の第一主面の前記開口部から露出した領域、前記P型高濃度半導体領域よりも内側の前記N型低濃度半導体領域および前記P型高濃度半導体領域の内周縁部に亘って被覆し、前記絶縁層の内周縁との間に間隙を有するように形成されたポリシリコン膜と、
前記ポリシリコン膜、前記絶縁層と前記ポリシリコン膜の間の間隙に位置する前記P型高濃度半導体領域および前記絶縁層の内周縁部に亘って被覆しショットキ接合を構成する金属層とを備えたショットキバリアダイオード。
An N-type high concentration semiconductor substrate;
An N-type low-concentration semiconductor region formed in a surface region on the first main surface side of the N-type high-concentration semiconductor substrate and having an opening in the center;
A P-type high-concentration semiconductor region formed in an annular shape surrounding the opening and biased toward the opening in the surface region of the N-type low-concentration semiconductor region;
An insulating layer covering an outer peripheral edge of the P-type high-concentration semiconductor region and a region outside the P-type high-concentration semiconductor region in the N-type low-concentration semiconductor region;
A region exposed from the opening of the first main surface of the N-type high-concentration semiconductor substrate, the N-type low-concentration semiconductor region inside the P-type high-concentration semiconductor region, and the inner periphery of the P-type high-concentration semiconductor region A polysilicon film formed so as to have a gap between the inner periphery of the insulating layer,
The polysilicon film, the P-type high-concentration semiconductor region located in a gap between the insulating layer and the polysilicon film, and a metal layer that covers the inner peripheral edge of the insulating layer and forms a Schottky junction. Schottky barrier diode.
前記N型低濃度半導体領域は、拡散深さが前記P型高濃度半導体領域よりも深く、不純物濃度が前記P型高濃度半導体領域より低く、前記P型高濃度半導体領域の内側の前記N型低濃度半導体領域よりも、前記N型高濃度半導体基板の外側の前記N型低濃度半導体領域の方が広い請求項1に記載のショットキバリアダイオード。   The N-type low-concentration semiconductor region has a deeper diffusion depth than the P-type high-concentration semiconductor region, an impurity concentration lower than that of the P-type high-concentration semiconductor region, and the N-type inside the P-type high-concentration semiconductor region. 2. The Schottky barrier diode according to claim 1, wherein the N-type low concentration semiconductor region outside the N-type high concentration semiconductor substrate is wider than the low concentration semiconductor region. N型高濃度半導体基板の第一主面の表面領域に、N型低濃度半導体領域を、中央部に開口部を設けて前記N型高濃度半導体基板の第一主面が露出するように形成する工程と、
環状の間隙を有するようにパターニングした絶縁膜をマスクとして、前記N型低濃度半導体領域の表面領域に、前記開口部を包囲し前記開口部側に偏倚させて環状にP型高濃度半導体領域を形成する工程と、
前記絶縁膜における間隙の内側部分を除去する工程と、
前記N型高濃度半導体基板の第一主面の前記開口部から露出した領域、前記P型高濃度半導体領域よりも内側の前記N型低濃度半導体領域および前記P型高濃度半導体領域の内周縁部に亘って被覆し、前記絶縁層の内周縁との間に間隙を有するようにポリシリコン膜を形成する工程と、
前記ポリシリコン膜、前記絶縁層と前記ポリシリコン膜の間の間隙に位置する前記P型高濃度半導体領域および前記絶縁層の内周縁部に亘って被覆しショットキ接合を構成する金属層を形成する工程とを備えたショットキバリアダイオードの製造方法。
An N-type low-concentration semiconductor region is formed in the surface region of the first main surface of the N-type high-concentration semiconductor substrate, and an opening is provided in the center so that the first main surface of the N-type high-concentration semiconductor substrate is exposed. And a process of
Using the insulating film patterned to have an annular gap as a mask, the N-type low-concentration semiconductor region is surrounded by the surface of the N-type low-concentration semiconductor region, and the P-type high-concentration semiconductor region is annularly biased toward the opening Forming, and
Removing an inner portion of the gap in the insulating film;
A region exposed from the opening of the first main surface of the N-type high-concentration semiconductor substrate, the N-type low-concentration semiconductor region inside the P-type high-concentration semiconductor region, and the inner periphery of the P-type high-concentration semiconductor region Forming a polysilicon film so as to have a gap between the insulating layer and the inner periphery of the insulating layer;
A metal layer that forms a Schottky junction is formed covering the polysilicon film, the P-type high-concentration semiconductor region located in the gap between the insulating layer and the polysilicon film, and the inner peripheral edge of the insulating layer. And a Schottky barrier diode manufacturing method.
JP2005057992A 2005-03-02 2005-03-02 Schottky barrier diode and manufacturing method thereof Expired - Fee Related JP4659490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057992A JP4659490B2 (en) 2005-03-02 2005-03-02 Schottky barrier diode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057992A JP4659490B2 (en) 2005-03-02 2005-03-02 Schottky barrier diode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006245237A JP2006245237A (en) 2006-09-14
JP4659490B2 true JP4659490B2 (en) 2011-03-30

Family

ID=37051347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057992A Expired - Fee Related JP4659490B2 (en) 2005-03-02 2005-03-02 Schottky barrier diode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4659490B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981859B2 (en) * 2013-02-15 2016-08-31 株式会社豊田中央研究所 Diode and semiconductor device incorporating diode
CN113555286B (en) * 2021-07-05 2023-12-05 浙江芯科半导体有限公司 Gallium oxide super junction Schottky diode and preparation method thereof
CN113471302B (en) * 2021-07-09 2022-10-14 弘大芯源(深圳)半导体有限公司 Schottky diode with inner and outer potential protection rings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817679A (en) * 1981-07-23 1983-02-01 Toshiba Corp Semiconductor device
JPH01256169A (en) * 1988-04-05 1989-10-12 Fujitsu Ltd Semiconductor device
JPH10117001A (en) * 1996-10-11 1998-05-06 Rohm Co Ltd Schottky barrier semiconductor device and its manufacturing method
JPH11233796A (en) * 1998-02-17 1999-08-27 Matsushita Electron Corp Manufacture of schottky diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817679A (en) * 1981-07-23 1983-02-01 Toshiba Corp Semiconductor device
JPH01256169A (en) * 1988-04-05 1989-10-12 Fujitsu Ltd Semiconductor device
JPH10117001A (en) * 1996-10-11 1998-05-06 Rohm Co Ltd Schottky barrier semiconductor device and its manufacturing method
JPH11233796A (en) * 1998-02-17 1999-08-27 Matsushita Electron Corp Manufacture of schottky diode

Also Published As

Publication number Publication date
JP2006245237A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4610207B2 (en) Semiconductor device and manufacturing method thereof
JP5341373B2 (en) diode
US20080135970A1 (en) High Voltage Shottky Diodes
JP2005191227A (en) Semiconductor device
US20040061195A1 (en) Semiconductor device and manufacturing method thereof
JP2009094203A (en) Silicon carbide semiconductor device
JP2005515614A (en) Trench Schottky diode manufactured in two masking steps
JP2006173297A (en) Igbt
JP2006210569A (en) Semiconductor device and manufacturing method thereof
JP2009164584A (en) Schottky diode of semiconductor device, and method for manufacturing the same
JP2009224661A (en) Silicon carbide schottky diode
JP2005229071A (en) Schottky barrier diode
JP4659490B2 (en) Schottky barrier diode and manufacturing method thereof
JP2008251925A (en) Diode
JP4018650B2 (en) Schottky barrier diode and manufacturing method thereof
JP2008251757A (en) Semiconductor device
JP2007235064A (en) Schottky barrier semiconductor device, and method of manufacturing same
TWI688100B (en) Wide band gap semiconductor device
JP5090043B2 (en) diode
JP3141688U (en) Semiconductor device
US8237239B2 (en) Schottky diode device and method for fabricating the same
JP2000294805A (en) Schottky barrier diode and its manufacture
JP4322183B2 (en) Schottky barrier diode
JP2009059764A (en) Schottky barrier diode, and manufacturing method thereof
JP4907955B2 (en) Schottky barrier diode and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees