JP4656922B2 - How to finish building interior surfaces - Google Patents

How to finish building interior surfaces Download PDF

Info

Publication number
JP4656922B2
JP4656922B2 JP2004348667A JP2004348667A JP4656922B2 JP 4656922 B2 JP4656922 B2 JP 4656922B2 JP 2004348667 A JP2004348667 A JP 2004348667A JP 2004348667 A JP2004348667 A JP 2004348667A JP 4656922 B2 JP4656922 B2 JP 4656922B2
Authority
JP
Japan
Prior art keywords
moisture
coating material
weight
parts
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004348667A
Other languages
Japanese (ja)
Other versions
JP2005186063A (en
Inventor
晃嗣 筧田
響 二階堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP2004348667A priority Critical patent/JP4656922B2/en
Publication of JP2005186063A publication Critical patent/JP2005186063A/en
Application granted granted Critical
Publication of JP4656922B2 publication Critical patent/JP4656922B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建築物内装面の塗装仕上げ方法に関するものである。   The present invention relates to a paint finishing method for building interior surfaces.

近年、快適な居住空間に対する関心が高まっている。これに関し、壁、天井等の内装面の表面仕上げにおいては、結露防止やカビ発生防止、あるいは湿度の調整による不快感抑制、等の効果が発揮可能な調湿性仕上げへの期待が高まっている。
例えば、特公昭62−15108号公報(特許文献1)には、特定粒子径の合成樹脂エマルションと珪藻土とを必須成分とする調湿性塗材を用いて、内装面を塗装することが開示されている。また、特開平11−106681号公報(特許文献2)には、珪藻土質部材の表面に、コロイダルシリカ、シラン系撥水剤、合成樹脂エマルション等からなる通気型撥水塗料を塗装する方法が開示されている。
In recent years, interest in comfortable living spaces has increased. In this regard, in the surface finishing of interior surfaces such as walls and ceilings, there is an increasing expectation for a humidity control finish capable of exhibiting effects such as prevention of condensation, prevention of mold generation, and suppression of discomfort by adjusting humidity.
For example, Japanese Examined Patent Publication No. Sho 62-15108 (Patent Document 1) discloses that an interior surface is coated using a humidity control coating material containing a synthetic resin emulsion having a specific particle size and diatomaceous earth as essential components. Yes. Japanese Patent Application Laid-Open No. 11-106681 (Patent Document 2) discloses a method of applying a breathable water-repellent paint composed of colloidal silica, a silane water repellent, a synthetic resin emulsion, etc. on the surface of a diatomaceous earth member. Has been.

ところで、近年、室内環境においてはシックハウス問題等が社会的にクローズアップされている状況であり、各種有害ガスの拡散防止が求められている。このような有害ガスとしては、例えば、ホルムアルデヒド、アンモニア、硫化水素、メチルメルカプタン、トリメチルアミン等が挙げられる。上述の特許文献では、珪藻土等の吸放湿性材料が使用されている。このような吸放湿性材料は、有害ガスの吸着性能をある程度有することも知られており、室内環境の改善に有効な成分として期待できる。
しかしながら、上述の特許文献による内装仕上げでは、吸放湿性材料の吸着性能が飽和状態に達すると、それ以上有害ガスを吸着することはできず、吸着効果に限界がある。また、一旦吸着された有害ガスが、再度室内空間へ放出されるおそれもある。このような有害ガスの再放出は、室内環境向上の妨げとなる。
By the way, in recent years, in the indoor environment, the sick house problem and the like have been socially raised, and prevention of diffusion of various harmful gases is demanded. Examples of such harmful gases include formaldehyde, ammonia, hydrogen sulfide, methyl mercaptan, trimethylamine and the like. In the above-mentioned patent document, a moisture absorbing / releasing material such as diatomaceous earth is used. Such moisture-absorbing / releasing materials are also known to have a certain level of harmful gas adsorption performance and can be expected as effective components for improving the indoor environment.
However, in the interior finishing according to the above-mentioned patent document, when the adsorption performance of the moisture absorbing / releasing material reaches a saturated state, no more harmful gas can be adsorbed, and the adsorption effect is limited. Moreover, the harmful gas once adsorbed may be released into the indoor space again. Such re-release of the harmful gas hinders improvement of the indoor environment.

特公昭62−15108号公報Japanese Examined Patent Publication No. 62-15108 特開平11−106681号公報JP 11-106681 A

本発明は、上述のような問題点に鑑みなされたものであり、優れた調湿性能と、有害ガスの吸着・分解性能を有し、さらには有害ガスの再放出を抑制することができる内装仕上げ方法を得ることを目的とする。   The present invention has been made in view of the above-described problems, and has an excellent humidity conditioning performance, harmful gas adsorption / decomposition performance, and can further suppress the release of harmful gases. The purpose is to obtain a finishing method.

本発明者は、上記目的を達成するため鋭意検討を行なった結果、建築物内装面の基材に対し、吸放湿量60g/m以上の塗膜を形成する吸放湿性塗材を塗付した後、少なくとも化学物質吸着剤及び光触媒物質を含み、水蒸気透過度100g/m・24h以上の塗膜を形成する透湿性塗材を塗付する方法に想到し、本発明を完成させるに至った。
すなわち、本発明は以下の特徴を有するものである。
As a result of intensive studies to achieve the above object, the present inventor applied a moisture absorbing / releasing coating material that forms a coating film with a moisture absorption / release amount of 60 g / m 2 or more on the base material of the building interior surface. In order to complete the present invention, a method of applying a moisture-permeable coating material that includes at least a chemical substance adsorbent and a photocatalytic substance and forms a coating film having a water vapor permeability of 100 g / m 2 · 24 h or more is provided. It came.
That is, the present invention has the following characteristics.

1.建築物内装面の基材に対し、吸放湿量60g/m以上の塗膜を形成する吸放湿性塗材を塗付した後、結合剤を固形分で100重量部、平均粒子径0.01〜5mmの骨材を100〜4000重量部、化学物質吸着剤を0.1〜100重量部、及び光触媒物質を0.1〜50重量部含み、水蒸気透過度100g/m・24h以上、厚み0.2〜5mmの塗膜を形成する透湿性塗材を塗付することを特徴とする建築物内装面の塗装仕上げ方法。
2.吸放湿性塗材が、結合剤を固形分で100重量部、吸放湿性粉粒体を20〜2000重量部含むものであることを特徴とする1.に記載の建築物内装面の塗装仕上げ方法。
1. After applying a moisture absorbing / releasing coating material that forms a coating film with a moisture absorption / release amount of 60 g / m 2 or more to the base material of the interior surface of the building, the binder is 100 parts by weight in terms of solid content and the average particle size is 0 100 to 4000 parts by weight of aggregate of 0.1 to 5 mm, 0.1 to 100 parts by weight of chemical adsorbent, and 0.1 to 50 parts by weight of photocatalytic substance , water vapor permeability of 100 g / m 2 · 24 h or more A paint finishing method for an interior surface of a building, comprising applying a moisture-permeable coating material that forms a coating film having a thickness of 0.2 to 5 mm .
2. 1. The moisture-absorbing / releasing coating material contains 100 parts by weight of a binder in solid content and 20 to 2000 parts by weight of moisture-absorbing / releasing particles. The paint finishing method of the building interior surface described in 1.

上記1.の方法で得られる内装仕上げ面では、有毒ガスの大半は吸湿時に透湿性塗膜で吸着・分解される。仮に有毒ガスが透湿性塗膜を通過して吸放湿性塗膜に到達した場合であっても、これらは放湿時に透湿性塗膜で吸着・分解される。すなわち、透湿性塗膜は有害ガスのフィルターとして効果的に作用する。したがって、上記1.の発明によれば、優れた調湿性能と、有害ガスの吸着・分解性能を有し、さらには有害ガスの再放出を抑制することができる内装仕上げ面が得られる。
上記2.の発明では、結合剤、特定粒径の骨材、化学物質吸着剤、及び光触媒物質を特定比率で含む透湿性塗材を採用することにより、有害ガスの吸着・分解効果、再放出抑制効果をいっそう高めることができる。
上記3.の発明では、結合剤、及び吸放湿性粉粒体を特定比率で含む吸放湿性塗材を採用することにより、調湿性能を高めることができる。
Above 1. On the interior finish surface obtained by this method, most of the toxic gas is adsorbed and decomposed by the moisture-permeable coating film when absorbing moisture. Even if toxic gas passes through the moisture-permeable coating film and reaches the moisture-absorbing / releasing coating film, these are adsorbed and decomposed by the moisture-permeable coating film during moisture release. That is, the moisture permeable coating effectively acts as a harmful gas filter. Therefore, the above 1. According to the invention, it is possible to obtain an interior finish surface that has excellent humidity control performance, harmful gas adsorption / decomposition performance, and can suppress the re-release of the harmful gas.
2. In the present invention, by adopting a moisture-permeable coating material containing a binder, an aggregate of a specific particle size, a chemical adsorbent, and a photocatalyst substance in a specific ratio, the harmful gas adsorption / decomposition effect and the re-release suppression effect are achieved. It can be further enhanced.
3. above. In this invention, moisture-adjusting performance can be improved by adopting a moisture-absorbing / releasing coating material containing a binder and moisture-releasing / releasing particles in a specific ratio.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明における吸放湿性塗材は、吸放湿量が60g/m以上、好ましくは70g/m以上、より好ましくは100g/m以上の塗膜を形成するものである。このような吸放湿性塗材を使用することによって、室内空間において十分な調湿効果を得ることができる。吸放湿量の上限は特に限定されないが、通常は500g/m以下(好ましくは300g/m以下)である。
なお、本発明における吸放湿量は、JIS A6909:2003「建築用仕上塗材」7.32によって測定される値である。
The moisture absorbing / releasing coating material in the present invention forms a coating film having a moisture absorption / release amount of 60 g / m 2 or more, preferably 70 g / m 2 or more, more preferably 100 g / m 2 or more. By using such a hygroscopic coating material, a sufficient humidity control effect can be obtained in the indoor space. The upper limit of the moisture absorption / release amount is not particularly limited, but is usually 500 g / m 2 or less (preferably 300 g / m 2 or less).
In addition, the moisture absorption / release amount in the present invention is a value measured according to JIS A6909: 2003 “Finishing Finishing Coating Material” 7.32.

吸放湿性塗材は、上記吸放湿性能を有する限り、その組成は特に制限されないが、結合剤100重量部(固形分)に対し、吸放湿性粉粒体を20〜2000重量部含むものが好適である。このような吸放湿性塗材を採用することにより、優れた調湿性能を得ることができる。   The composition of the moisture-absorbing / releasing coating material is not particularly limited as long as it has the above-described moisture-absorbing / releasing performance. Is preferred. By adopting such a hygroscopic coating material, it is possible to obtain excellent humidity control performance.

結合剤としては、有機質樹脂が好適である。有機質樹脂としては、例えば水溶性樹脂、水分散性樹脂、溶剤可溶形樹脂、無溶剤形樹脂、非水分散形樹脂、粉末樹脂等の各種結合剤、あるいはこれらを複合化したもの等を使用することができる。このうち、本発明では水分散性樹脂(樹脂エマルション)が好適である。水分散性樹脂としては、その平均粒子径が50μmを超え(好ましくは80μm超、より好ましくは100μm超)、かつ500μm未満(好ましくは400μm未満、より好ましくは300μm未満)であるものが、調湿性能の点で好適である。なお、水分散性樹脂の平均粒子径は、動的光散乱法により測定される値であり、具体的には、動的光散乱測定装置として、マイクロトラック粒度分析計(例えば、UPA150、日機装株式会社製)を用い、検出された散乱強度をヒストグラム解析法のMarquardt法により解析した値である(測定温度は25℃)。
結合剤として使用可能な有機質樹脂の種類としては、例えば、セルロース、ポリビニルアルコール、エチレン樹脂、酢酸ビニル樹脂、ポリエステル樹脂、アルキッド樹脂、塩化ビニル樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、アクリルシリコン樹脂、フッ素樹脂等、あるいはこれらの複合系等が挙げられ、特にアクリル樹脂、ウレタン樹脂、アクリルシリコン樹脂、フッ素樹脂等が好適である。
As the binder, an organic resin is suitable. Examples of organic resins include water-soluble resins, water-dispersible resins, solvent-soluble resins, solvent-free resins, non-water-dispersed resins, various binders such as powder resins, or composites of these. can do. Among these, a water-dispersible resin (resin emulsion) is preferable in the present invention. As the water dispersible resin, those having an average particle diameter of more than 50 μm (preferably more than 80 μm, more preferably more than 100 μm) and less than 500 μm (preferably less than 400 μm, more preferably less than 300 μm) It is suitable in terms of performance. The average particle size of the water-dispersible resin is a value measured by a dynamic light scattering method. Specifically, as a dynamic light scattering measurement device, a microtrack particle size analyzer (for example, UPA150, Nikkiso Co., Ltd.) This is a value obtained by analyzing the detected scattering intensity by the Marquardt method of the histogram analysis method (measurement temperature is 25 ° C.).
Examples of organic resins that can be used as the binder include cellulose, polyvinyl alcohol, ethylene resin, vinyl acetate resin, polyester resin, alkyd resin, vinyl chloride resin, epoxy resin, acrylic resin, urethane resin, acrylic silicon resin, Examples thereof include a fluororesin and the like, or a composite system thereof, and an acrylic resin, a urethane resin, an acrylic silicon resin, a fluororesin, and the like are particularly preferable.

このような有機質樹脂は、塗膜形成後に架橋反応を生じる性質を有するものであってもよい。吸放湿性塗材における有機質樹脂が架橋反応性を有することにより、吸放湿性、耐水性、耐薬品性等の諸物性を高めることができる。具体的に架橋反応としては、例えばカルボキシル基と金属イオン、カルボキシル基とカルボジイミド基、カルボキシル基とエポキシ基、カルボキシル基とアジリジン基、カルボキシル基とオキサゾリン基、水酸基とイソシアネート基、カルボニル基とヒドラジド基、エポキシ基とヒドラジド基、エポキシ基とアミノ基、等の組み合わせが挙げられる。   Such an organic resin may have a property of causing a crosslinking reaction after the coating film is formed. When the organic resin in the moisture-absorbing / releasing coating material has cross-linking reactivity, various physical properties such as moisture-absorbing / releasing properties, water resistance, and chemical resistance can be enhanced. Specifically, as the crosslinking reaction, for example, carboxyl group and metal ion, carboxyl group and carbodiimide group, carboxyl group and epoxy group, carboxyl group and aziridine group, carboxyl group and oxazoline group, hydroxyl group and isocyanate group, carbonyl group and hydrazide group, A combination of an epoxy group and a hydrazide group, an epoxy group and an amino group, and the like can be given.

結合剤として有機質樹脂を使用する場合、そのガラス転移温度は、通常−50〜80℃、好ましくは−30〜50℃、より好ましくは−20〜30℃である。ガラス転移温度がこのような範囲内であれば、塗膜に可撓性が付与され、基材への追従性を高めることができる。なお、本発明におけるガラス転移温度は、有機質樹脂を構成するモノマーの種類とその構成比率から、Foxの計算式によって求められる値である。   When using organic resin as a binder, the glass transition temperature is -50-80 degreeC normally, Preferably it is -30-50 degreeC, More preferably, it is -20-30 degreeC. If the glass transition temperature is within such a range, flexibility is imparted to the coating film, and the followability to the substrate can be enhanced. In addition, the glass transition temperature in this invention is a value calculated | required by the formula of Fox from the kind of monomer which comprises organic resin, and its structural ratio.

吸放湿性粉粒体としては、例えば、ベーマイト、シリカゲル、ゼオライト、硫酸ナトリウム、アルミナ、アロフェン、珪藻土、珪質頁岩、セピオライト、アタバルジャイト、モンモリロナイト、ゾノライト、イモゴライト、大谷石粉、活性白土、木炭、竹炭、活性炭、木粉、貝殻粉、多孔質合成樹脂粒等が使用できる。吸放湿性粉粒体の平均粒子径は、通常0.001〜1mm、好ましくは0.01〜0.1mm、より好ましくは0.01〜0.09mmである。
このような吸放湿性粉粒体は、温度20℃・相対湿度90%における吸湿率が、通常10%以上、好ましくは20%以上の性能を有するものである。なお、温度20℃・相対湿度90%における吸湿率とは、試料を温度20℃・相対湿度45%の恒温恒湿器にて24時間乾燥した後、温度20℃・相対湿度90%の恒温恒湿器にて24時間吸湿させたときの重量変化より求められる値である。すなわち、
吸湿率(%)={(吸湿後の重量−乾燥後の重量)/乾燥後の重量}×100
Examples of the hygroscopic powder particles include boehmite, silica gel, zeolite, sodium sulfate, alumina, allophane, diatomaceous earth, siliceous shale, sepiolite, attabargite, montmorillonite, zonolite, imogolite, Otani stone powder, activated clay, charcoal, bamboo charcoal, Activated carbon, wood powder, shell powder, porous synthetic resin particles, etc. can be used. The average particle size of the hygroscopic powder is usually 0.001 to 1 mm, preferably 0.01 to 0.1 mm, more preferably 0.01 to 0.09 mm.
Such hygroscopic particles have a performance of a moisture absorption rate of 10% or more, preferably 20% or more at a temperature of 20 ° C. and a relative humidity of 90%. The moisture absorption rate at a temperature of 20 ° C. and a relative humidity of 90% is a constant temperature and constant temperature of 20 ° C. and a relative humidity of 90% after the sample is dried for 24 hours in a constant temperature and humidity chamber of a temperature of 20 ° C. and a relative humidity of 45%. It is a value obtained from a change in weight when moisture is absorbed in a humidifier for 24 hours. That is,
Moisture absorption rate (%) = {(weight after moisture absorption−weight after drying) / weight after drying} × 100

吸放湿性粉粒体の構成比率は、結合剤100重量部(固形分)に対し、通常20〜2000重量部、好ましくは100〜1500重量部、より好ましくは200〜1000重量部とする。吸放湿性粉粒体の構成比率が小さすぎる場合は、十分な調湿性能を得ることが困難となる。また、防火性の点においても不利となる。吸放湿性粉粒体の構成比率が大きすぎる場合は、塗膜の強度や可撓性が不十分となる。   The constituent ratio of the hygroscopic powder is usually 20 to 2000 parts by weight, preferably 100 to 1500 parts by weight, and more preferably 200 to 1000 parts by weight with respect to 100 parts by weight (solid content) of the binder. When the constituent ratio of the hygroscopic powder is too small, it becomes difficult to obtain sufficient humidity control performance. It is also disadvantageous in terms of fire resistance. When the constituent ratio of the hygroscopic powder is too large, the strength and flexibility of the coating film are insufficient.

さらに、吸放湿性塗材においては骨材を含むこともできる。骨材の平均粒子径は、通常0.01〜5mm、好ましくは0.05〜2mm、より好ましくは0.1〜1mmのものが好適である。このような骨材を使用することにより、調湿性能をいっそう高めることができる。なお、骨材の平均粒子径は、JIS Z8801−1:2000に規定される金属製網ふるいを用いてふるい分けを行い、その重量分布の平均値を算出することによって得られる値である。
骨材の種類は特に限定されず、天然品、人工品のいずれも使用することができる。具体的には、例えば、重質炭酸カルシウム、寒水石、カオリン、クレー、陶土、チャイナクレー、タルク、水酸化アルミニウム、水酸化マグネシウム、バライト粉、珪砂、砂利、ガラスビーズ、樹脂ビーズ、金属粒、あるいは岩石、ガラス、陶磁器、焼結体、コンクリート、モルタル、プラスチック、ゴム、貝殻等の破砕品等が挙げられる。これらに着色を施したものも使用することができる。
Further, the hygroscopic coating material may contain an aggregate. The average particle diameter of the aggregate is usually 0.01 to 5 mm, preferably 0.05 to 2 mm, more preferably 0.1 to 1 mm. By using such an aggregate, the humidity control performance can be further enhanced. In addition, the average particle diameter of aggregate is a value obtained by performing sieving using a metal net sieve specified in JIS Z8801-1: 2000 and calculating the average value of the weight distribution.
The type of aggregate is not particularly limited, and any of natural products and artificial products can be used. Specifically, for example, heavy calcium carbonate, cold water stone, kaolin, clay, porcelain clay, china clay, talc, aluminum hydroxide, magnesium hydroxide, barite powder, quartz sand, gravel, glass beads, resin beads, metal particles, Alternatively, crushed products such as rocks, glass, ceramics, sintered bodies, concrete, mortar, plastic, rubber, and shells can be used. Colored ones can also be used.

骨材の構成比率は、結合剤100重量部(固形分)に対し、通常50〜2500重量部、好ましくは100〜2000重量部、より好ましくは300〜1500重量部とする。骨材比率が小さすぎる場合は、調湿性能の向上効果が得られない。骨材比率が大きすぎる場合は、骨材が脱離しやすくなる。また、可撓性を付与することが困難となる。
なお、上述の骨材の温度20℃・相対湿度90%における吸湿率は、通常10%未満、好ましくは3%以下である。
The composition ratio of the aggregate is usually 50 to 2500 parts by weight, preferably 100 to 2000 parts by weight, and more preferably 300 to 1500 parts by weight with respect to 100 parts by weight (solid content) of the binder. When the aggregate ratio is too small, the effect of improving the humidity control performance cannot be obtained. When the aggregate ratio is too large, the aggregate is easily detached. Moreover, it becomes difficult to impart flexibility.
Note that the moisture absorption rate of the above-mentioned aggregate at a temperature of 20 ° C. and a relative humidity of 90% is usually less than 10%, preferably 3% or less.

吸放湿性塗材には、上述の成分以外に、例えば、顔料、繊維、可塑剤、抗菌剤、防黴剤、防虫剤、難燃剤、架橋剤、酸化防止剤、紫外線吸収剤等が含まれていてもよい。   In addition to the above-mentioned components, the hygroscopic coating material includes, for example, pigments, fibers, plasticizers, antibacterial agents, antifungal agents, insecticides, flame retardants, crosslinking agents, antioxidants, ultraviolet absorbers, and the like. It may be.

本発明における透湿性塗材は、水蒸気透過度50g/m・24h以上、好ましくは70g/m・24h以上、より好ましくは100g/m・24h以上の塗膜を形成するものである。さらに、透湿性塗材は、少なくとも化学物質吸着剤及び光触媒物質を必須成分として含むものである。本発明では、上述の吸放湿性塗材を塗付した後に、このような透湿性塗材を塗付積層することによって、優れた調湿性能と、有害ガスの吸着・分解性能が得られ、さらには有害ガスの再放出を十分に抑制することができる。
透湿性塗材における水蒸気透過度の上限は、通常2000g/m・24h以下、好ましくは1500g/m・24h以下、より好ましくは1000g/m・24h以下である。水蒸気透過度がこのような範囲内であれば、有毒ガスの吸着・分解性、再放出防止性等の点において好適である。
なお、本発明における水蒸気透過度は、JIS K5400:1990「塗料一般試験方法」8.17によって測定される値である。
The moisture-permeable coating material in the present invention forms a coating film having a water vapor permeability of 50 g / m 2 · 24 h or more, preferably 70 g / m 2 · 24 h or more, more preferably 100 g / m 2 · 24 h or more. Further, the moisture-permeable coating material contains at least a chemical substance adsorbent and a photocatalytic substance as essential components. In the present invention, after applying the moisture-absorbing / releasing coating material described above, by applying and laminating such a moisture-permeable coating material, excellent humidity control performance and harmful gas adsorption / decomposition performance are obtained, Furthermore, the re-release of harmful gases can be sufficiently suppressed.
The upper limit of water vapor permeability in the moisture-permeable coating material is usually 2000 g / m 2 · 24 h or less, preferably 1500 g / m 2 · 24 h or less, more preferably 1000 g / m 2 · 24 h or less. If the water vapor permeability is within such a range, it is preferable in terms of the adsorption / decomposability of toxic gas, re-release prevention, and the like.
The water vapor permeability in the present invention is a value measured according to JIS K5400: 1990 “Paint General Test Method” 8.17.

透湿性塗材における化学物質吸着剤は、有害ガス(例えば、ホルムアルデヒド、アンモニア、硫化水素、メチルメルカプタン、トリメチルアミン等)の吸着、再放出防止に有効な成分である。この化学物質吸着剤は、透湿層が有害ガスのフィルターとして効果的に作用するための必須成分である。化学物質吸着剤としては、例えばアミン化合物、尿素化合物、アミド化合物、イミド化合物、ヒドラジド化合物、アゾール化合物、アジン化合物、層状リン酸化合物、アルミノ珪酸塩等が挙げられる。この中でも、層状リン酸化合物、アルミノ珪酸塩から選ばれる1種以上が好適である。このような化学物質吸着剤の平均粒子径は、通常0.5〜100μm(好ましくは1〜50μm)程度である。   The chemical substance adsorbent in the moisture-permeable coating material is an effective component for preventing the adsorption and re-release of harmful gases (for example, formaldehyde, ammonia, hydrogen sulfide, methyl mercaptan, trimethylamine, etc.). This chemical substance adsorbent is an essential component for the moisture-permeable layer to effectively act as a harmful gas filter. Examples of the chemical substance adsorbent include amine compounds, urea compounds, amide compounds, imide compounds, hydrazide compounds, azole compounds, azine compounds, layered phosphate compounds, and aluminosilicates. Among these, 1 or more types chosen from a layered phosphate compound and an aluminosilicate are suitable. The average particle size of such a chemical substance adsorbent is usually about 0.5 to 100 μm (preferably 1 to 50 μm).

層状リン酸化合物としては、層状リン酸ジルコニウム、層状リン酸亜鉛、層状リン酸チタン、層状リン酸アルミニウム、層状リン酸マグネシウム、層状リン酸セリウム等が挙げられ、これら層状リン酸化合物にアミン化合物がインターカレートされたもの好適である。アミン化合物としては、例えば、メチルアミン、エチルアミン、アニリン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、プロピレンジアミン、ジプロピレントリアミン、トリプロピレンテトラミン等が挙げられる。
アルミノ珪酸塩としては、亜鉛、銅、銀、コバルト、ニッケル、鉄、チタン、バリウム、スズ及びジルコニウムから選ばれる少なくとも1種の金属とアルミニウムと珪素の複合酸化物が挙げられる。
Examples of the layered phosphate compound include layered zirconium phosphate, layered zinc phosphate, layered titanium phosphate, layered aluminum phosphate, layered magnesium phosphate, layered cerium phosphate, and the like. An amine compound is included in these layered phosphate compounds. Intercalated ones are preferred. Examples of the amine compound include methylamine, ethylamine, aniline, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, propylenediamine, dipropylenetriamine, and tripropylenetetramine.
Examples of the aluminosilicate include a composite oxide of at least one metal selected from zinc, copper, silver, cobalt, nickel, iron, titanium, barium, tin, and zirconium, and aluminum and silicon.

透湿性塗材における光触媒物質は、有害ガスの分解、再放出防止に有効な成分である。さらに、塗膜に付着した汚染物質(タバコのヤニ等)を分解する性能も有する。光触媒物質としては、例えばTiO、ZnO、Bi、BiVO、SrTiO、CdS、InP、InPb、GaP、GaAs、BaTiO、BaTiO、BaTi、KNbO、Nb、Fe、Ta、Ta、KTaSi、WO、SnO、NiO、CuO、SiC、MoS、RuO、CeO等の他、これらと金属、金属酸化物、層状化合物等との複合体等が挙げられる。このような光触媒物質の平均粒子径は、通常0.001〜1μm(好ましくは0.01〜0.5μm)程度である。
なお、光触媒物質として、吸放湿性粉粒体に光触媒物質を担持したものは、吸湿によって光触媒作用が阻害されるおそれがあるため、使用しないほうがよい。
The photocatalytic substance in the moisture-permeable coating material is an effective component for preventing harmful gas decomposition and re-release. Furthermore, it also has the ability to decompose contaminants (such as tobacco dust) adhering to the coating film. Examples of the photocatalytic substance include TiO 2 , ZnO, Bi 2 O 3 , BiVO 4 , SrTiO 3 , CdS, InP, InPb, GaP, GaAs, BaTiO 3 , BaTiO 4 , BaTi 4 O 9 , K 2 NbO 3 , Nb 2. O 5, Fe 2 O 3, Ta 2 O 5, Ta 3 N 5, K 3 Ta 3 Si 2 O 3, WO 3, SnO 2, NiO, Cu 2 O, SiC, MoS 2, RuO 2, CeO 2 or the like In addition, composites of these with metals, metal oxides, layered compounds and the like can be mentioned. The average particle size of such a photocatalytic substance is usually about 0.001 to 1 μm (preferably 0.01 to 0.5 μm).
In addition, it is better not to use a photocatalyst substance that has a photocatalyst substance supported on a hygroscopic particulate material because the photocatalytic action may be inhibited by moisture absorption.

透湿性塗材において、光触媒物質を使用せずに化学物質吸着剤のみを使用した場合は、有害ガスの吸着量に限界が生じ、吸着能を超える効果を期待することができない。
逆に、光触媒物質のみを使用した場合、有害ガスの分解効果を得るには、光触媒物質の構成比率を十分に増やして、有害ガスが光触媒物質に接触する確率を高めなければならない。しかし、光触媒物質を増量すると、結合剤の早期劣化を招いてしまう。また、透湿性塗材の色彩が制限される、あるいはコスト高となる等の問題が生じる。すなわち、光触媒増量には実用上限界がある。
本発明では、化学物質吸着剤と光触媒物質を併用することによって、有害ガスの吸着・分解・再放出防止において実用的な性能を得ることができ、透湿性塗膜の有害ガスフィルター効果を十分に発揮させることができる。
In a moisture-permeable coating material, when only a chemical substance adsorbent is used without using a photocatalytic substance, the amount of harmful gas adsorbed is limited, and an effect exceeding the adsorption capacity cannot be expected.
On the contrary, when only the photocatalytic substance is used, in order to obtain the decomposition effect of the harmful gas, the constituent ratio of the photocatalytic substance must be increased sufficiently to increase the probability that the harmful gas contacts the photocatalytic substance. However, when the amount of the photocatalytic substance is increased, the binder is prematurely deteriorated. Further, there arises a problem that the color of the moisture-permeable coating material is limited or the cost is increased. That is, there is a practical limit to the increase in photocatalyst.
In the present invention, by using a chemical substance adsorbent and a photocatalyst substance in combination, practical performance can be obtained in the adsorption, decomposition and re-release prevention of harmful gas, and the harmful gas filter effect of the moisture-permeable coating film can be sufficiently obtained. It can be demonstrated.

本発明における透湿性塗材としては、結合剤、平均粒子径0.01〜5mmの骨材、化学物質吸着剤、及び光触媒物質を必須成分とするものが好適である。このような透湿性塗材を採用することにより、有害ガスの吸着・分解効果、再放出抑制効果をいっそう高めることができる。また、このような組成によれば、厚膜タイプの塗材が得られるため、形成塗膜表面に種々の凹凸模様を付与することもできる。   As the moisture-permeable coating material in the present invention, a material having a binder, an aggregate having an average particle diameter of 0.01 to 5 mm, a chemical substance adsorbent, and a photocatalytic substance as an essential component is suitable. By adopting such a moisture-permeable coating material, it is possible to further enhance the effect of harmful gas adsorption / decomposition and re-release suppression. Moreover, according to such a composition, since a thick film type coating material is obtained, various uneven | corrugated patterns can also be provided to the formed coating-film surface.

透湿性塗材における結合剤としては、透明被膜が形成可能な有機質樹脂が好適である。有機質樹脂としては、吸放湿性塗材と同様のものが使用できる。透湿性塗材における有機質樹脂が架橋反応性を有する場合は、透湿性、耐水性、耐薬品性等の点で有利であり、光触媒物質に対する抵抗性を高めることもできる。
透湿性塗材における有機質樹脂として水分散性樹脂を使用する場合、その平均粒子径は、通常50μmを超え(好ましくは80μm超、より好ましくは100μm超)、かつ500μm未満(好ましくは400μm未満、より好ましくは300μm未満)であることが望ましい。平均粒子径がこのような範囲内であれば、適度な透湿性能を得ることが可能となる。
透湿性塗材における結合剤のガラス転移温度は、通常−30〜120℃、好ましくは−10〜100℃、より好ましくは0〜80℃である。ガラス転移温度がこのような範囲内であれば、塗膜表面の耐汚染性を高めることができる。
さらに、透湿性塗材における結合剤のガラス転移温度は、吸放湿性塗材における結合剤のガラス転移温度よりも高く(好ましくは5℃以上高く、より好ましくは10℃以上高く)設定することが望ましい。このようなガラス転移温度の設定により、耐汚染性を確保しつつ、基材への追従性を高めることができ、塗膜の割れ発生を防止することができる。具体的には、吸放湿性塗材における結合剤のガラス転移温度が−30〜50℃、透湿性塗材における結合剤のガラス転移温度が−10〜100℃であり、かつ透湿性塗材における結合剤のガラス転移温度が、吸放湿性塗材における結合剤のガラス転移温度よりも5℃以上高くなるように設定することが望ましい。
As the binder in the moisture-permeable coating material, an organic resin capable of forming a transparent film is suitable. As the organic resin, the same hygroscopic coating material can be used. When the organic resin in the moisture-permeable coating material has cross-linking reactivity, it is advantageous in terms of moisture permeability, water resistance, chemical resistance, etc., and the resistance to the photocatalytic substance can be increased.
When a water-dispersible resin is used as the organic resin in the moisture-permeable coating material, the average particle diameter is usually more than 50 μm (preferably more than 80 μm, more preferably more than 100 μm) and less than 500 μm (preferably less than 400 μm, more Preferably, it is less than 300 μm. When the average particle diameter is within such a range, it is possible to obtain an appropriate moisture permeability.
The glass transition temperature of the binder in the moisture-permeable coating material is usually −30 to 120 ° C., preferably −10 to 100 ° C., more preferably 0 to 80 ° C. When the glass transition temperature is within such a range, the stain resistance of the coating film surface can be enhanced.
Furthermore, the glass transition temperature of the binder in the moisture-permeable coating material can be set higher (preferably higher than 5 ° C, more preferably higher than 10 ° C) than the glass transition temperature of the binder in the moisture-absorbing / releasing coating material. desirable. By setting such a glass transition temperature, it is possible to improve the followability to the base material while ensuring contamination resistance, and to prevent the occurrence of cracks in the coating film. Specifically, the glass transition temperature of the binder in the hygroscopic coating material is −30 to 50 ° C., the glass transition temperature of the binder in the moisture permeable coating material is −10 to 100 ° C., and in the moisture permeable coating material. It is desirable to set the glass transition temperature of the binder to be 5 ° C. or more higher than the glass transition temperature of the binder in the hygroscopic coating material.

透湿性塗材における骨材としては、平均粒子径が0.01〜5mm、好ましくは0.05〜2mm、より好ましくは0.1〜1mmのものを使用する。骨材の粒子径が小さすぎる場合は、透湿性能が低下し、下層の吸放湿性能を阻害することとなる。また、仕上り外観が単調な色彩となってしまう。さらに、透湿性塗膜内部の光触媒成分に光が届きにくくなり、有害ガス分解効果の点で不利となる。粒子径が大きすぎる場合は、表面凹凸が大きくなり、均一な厚みの塗膜を得ることが困難となる。骨材の種類については、吸放湿性塗材の骨材と同様のものが使用可能である。
透湿性塗材における骨材の構成比率は、結合剤100重量部(固形分)に対し、通常100〜4000重量部、好ましくは300〜3000重量部、より好ましくは500〜2000重量部とする。骨材比率が小さすぎる場合は、有害ガスの吸着・分解効果が不十分となり、下層の吸放湿性能を阻害するおそれもある。また、透湿性塗膜の厚膜化が困難となり、意匠性付与の点で不利となる。骨材比率が大きすぎる場合は、骨材が脱離しやすくなる。
As the aggregate in the moisture-permeable coating material, one having an average particle diameter of 0.01 to 5 mm, preferably 0.05 to 2 mm, more preferably 0.1 to 1 mm is used. When the particle diameter of the aggregate is too small, the moisture permeability performance is lowered and the moisture absorption / release performance of the lower layer is inhibited. In addition, the finished appearance becomes a monotonous color. Furthermore, it becomes difficult for light to reach the photocatalytic component inside the moisture-permeable coating film, which is disadvantageous in terms of the harmful gas decomposition effect. When the particle diameter is too large, the surface unevenness becomes large, and it becomes difficult to obtain a coating film having a uniform thickness. About the kind of aggregate, the thing similar to the aggregate of a hygroscopic coating material can be used.
The composition ratio of the aggregate in the moisture-permeable coating material is usually 100 to 4000 parts by weight, preferably 300 to 3000 parts by weight, and more preferably 500 to 2000 parts by weight with respect to 100 parts by weight (solid content) of the binder. When the aggregate ratio is too small, the effect of adsorbing and decomposing noxious gas becomes insufficient, and the moisture absorption / release performance of the lower layer may be hindered. Moreover, it becomes difficult to increase the thickness of the moisture-permeable coating film, which is disadvantageous in terms of imparting design properties. When the aggregate ratio is too large, the aggregate is easily detached.

化学物質吸着剤の構成比率は、結合剤100重量部(固形分)に対し、通常0.1〜100重量部、好ましくは1〜80重量部、より好ましくは5〜50重量部とする。化学物質吸着剤の構成比率が小さすぎる場合は、有害ガスの吸着効果、再放出防止効果が不十分となる。化学物質吸着剤の構成比率が大きすぎる場合は、表面意匠性や耐水性等に悪影響を与えるおそれがある。また、コスト面でも不利となる。   The component ratio of the chemical substance adsorbent is usually 0.1 to 100 parts by weight, preferably 1 to 80 parts by weight, and more preferably 5 to 50 parts by weight with respect to 100 parts by weight (solid content) of the binder. When the composition ratio of the chemical substance adsorbent is too small, the harmful gas adsorption effect and the re-release prevention effect are insufficient. If the composition ratio of the chemical substance adsorbent is too large, there is a risk of adversely affecting the surface design and water resistance. Further, it is disadvantageous in terms of cost.

光触媒物質の構成比率は、結合剤100重量部(固形分)に対し、通常0.1〜50重量部、好ましくは0.5〜30重量部、より好ましくは1〜20重量部とする。光触媒物質の構成比率が小さすぎる場合は、有害ガスの分解効果、再放出防止効果が不十分となる。光触媒物質の構成比率が大きすぎる場合は、結合剤の早期劣化を招いてしまう。また、透湿性塗材の色彩が制限されやすくなる。   The composition ratio of the photocatalytic substance is usually 0.1 to 50 parts by weight, preferably 0.5 to 30 parts by weight, and more preferably 1 to 20 parts by weight with respect to 100 parts by weight (solid content) of the binder. When the constituent ratio of the photocatalytic substance is too small, the harmful gas decomposition effect and the re-release prevention effect are insufficient. When the constituent ratio of the photocatalytic substance is too large, the binder is prematurely deteriorated. Moreover, it becomes easy to restrict | limit the color of a moisture-permeable coating material.

透湿性塗材には、上述の成分以外に、例えば、顔料、繊維、可塑剤、抗菌剤、防黴剤、防虫剤、難燃剤、架橋剤、酸化防止剤、紫外線吸収剤、撥水剤等が含まれていてもよい。   In addition to the above-mentioned components, for example, pigments, fibers, plasticizers, antibacterial agents, insecticides, insecticides, flame retardants, crosslinking agents, antioxidants, ultraviolet absorbers, water repellents, etc. May be included.

本発明は、建築物の内装仕上げに適用するものである。具体的には、住宅、マンション、学校、病院、店舗、事務所、工場、倉庫、食堂等における壁、間仕切り、扉、天井等の塗装仕上げに適用できる。
適用可能な基材としては、例えば、石膏ボード、合板、コンクリート、モルタル、磁器タイル、繊維混入セメント板、セメント珪酸カルシウム板、スラグセメントパーライト板、石綿セメント板、ALC板、サイディング板、押出成形板、鋼板、プラスチック板等が挙げられる。これら基材の表面は、何らかの表面処理(例えば、シーラー、サーフェーサー、フィラー等)が施されたものでもよく、既に塗膜が形成されたものや、既に壁紙が貼り付けられたもの等であってもよい。
The present invention is applied to interior finishing of buildings. Specifically, it can be applied to painting finishes on walls, partitions, doors, ceilings, etc. in houses, condominiums, schools, hospitals, stores, offices, factories, warehouses, restaurants, etc.
Applicable base materials include, for example, gypsum board, plywood, concrete, mortar, porcelain tile, fiber mixed cement board, cement calcium silicate board, slag cement perlite board, asbestos cement board, ALC board, siding board, extrusion board , Steel plate, plastic plate and the like. The surface of these base materials may have been subjected to some surface treatment (for example, a sealer, a surfacer, a filler, etc.), and has already been provided with a coating film, or has already been applied with wallpaper. Also good.

本発明では、このような基材に対し、まず吸放湿性塗材を塗付する。吸放湿性塗材の塗付方法としては、公知の方法を採用することができ、例えば、コテ塗り、スプレー塗り、ローラー塗り、刷毛塗り等が可能である。
乾燥塗膜の厚みは、本発明の効果が発揮可能である範囲内で適宜設定することができるが、通常は0.2〜5mm(好ましくは0.5〜4mm、より好ましくは0.8〜4mm)とすればよい。
塗付時には、水等で希釈することによって、塗材の粘性を適宜調製することもできる。希釈割合は、通常0〜20重量%程度である。
In the present invention, a hygroscopic coating material is first applied to such a substrate. As a method for applying the hygroscopic coating material, a known method can be employed, and for example, trowel coating, spray coating, roller coating, brush coating and the like are possible.
The thickness of the dry coating film can be appropriately set within a range in which the effect of the present invention can be exhibited, but is usually 0.2 to 5 mm (preferably 0.5 to 4 mm, more preferably 0.8 to 4 mm).
At the time of application, the viscosity of the coating material can be appropriately adjusted by diluting with water or the like. The dilution ratio is usually about 0 to 20% by weight.

吸放湿性塗材を塗付した後、透湿性塗材を塗付積層する。透湿性塗材の塗装は通常、吸放湿性塗材の塗膜が乾燥した後に行う。透湿性塗材の塗付方法としては、公知の方法を採用することができ、例えば、コテ塗り、スプレー塗り、ローラー塗り、刷毛塗り等が可能である。
透湿性塗材の乾燥塗膜の厚みは、調湿性能、有害ガスの吸着・分解性能等を考慮して適宜設定すればよい。通常は0.2〜5mm(好ましくは0.5〜4mm、より好ましくは0.8〜4mm)程度である。
塗付時には、水等で希釈することによって、塗材の粘性を適宜調製することもできる。希釈割合は、通常0〜20重量%程度である。
透湿性塗材として厚膜タイプの塗材を使用する場合は、塗膜の乾燥前に、刷毛、こて、ローラー等によってパターン付けを行うこともできる。このようなパターン付けによって、塗膜表面に種々の凹凸模様を付与することができる。
After applying the hygroscopic coating material, the moisture-permeable coating material is applied and laminated. The moisture-permeable coating material is usually applied after the hygroscopic coating film is dried. As a method for applying the moisture-permeable coating material, a known method can be employed. For example, trowel coating, spray coating, roller coating, brush coating, and the like are possible.
What is necessary is just to set the thickness of the dry coating film of a moisture-permeable coating material suitably in consideration of humidity control performance, adsorption / decomposition performance of harmful gas, and the like. Usually, it is about 0.2-5 mm (preferably 0.5-4 mm, more preferably 0.8-4 mm).
At the time of application, the viscosity of the coating material can be appropriately adjusted by diluting with water or the like. The dilution ratio is usually about 0 to 20% by weight.
When a thick film type coating material is used as the moisture permeable coating material, patterning can be performed with a brush, a trowel, a roller or the like before the coating film is dried. By such patterning, various uneven patterns can be imparted to the coating film surface.

透湿性塗材を塗装した後、必要に応じクリヤー塗料や撥水剤等を塗付することもできる。このうち、クリヤー塗料としては、シリコーンエマルション、及び該シリコーンエマルション以外の合成樹脂エマルションを、固形分比率95:5〜5:95で含有する塗料が好適である。このようなクリヤー塗料を使用すれば、本発明の効果を阻害せずに、塗膜表面における汚れ防止性を高めることができる。
クリヤー塗料や撥水剤の塗装においては、例えば、スプレー、ローラー、刷毛等の塗装器具を用いることができる。これらの塗付量は、本発明の効果を阻害しない範囲内で適宜設定すればよいが、通常0.01〜0.5kg/m程度である。
After applying the moisture-permeable coating material, a clear paint or water repellent can be applied as necessary. Among these, as the clear paint, a paint containing a silicone emulsion and a synthetic resin emulsion other than the silicone emulsion at a solid content ratio of 95: 5 to 5:95 is preferable. If such a clear paint is used, the antifouling property on the coating film surface can be enhanced without impairing the effects of the present invention.
In the application of the clear paint or the water repellent, for example, a coating instrument such as a spray, a roller, or a brush can be used. These coating amounts may be appropriately set within a range not impairing the effects of the present invention, but are usually about 0.01 to 0.5 kg / m 2 .

本発明では、目地材を使用することによって、種々の目地模様を形成することもできる。この場合、例えば図1に示すような方法によって塗装を行うことができる。図1の方法は、まず基材に目地材を貼り付け(a)、吸放湿性塗材を塗付した後(b)、目地材を除去し(c)、次いで細幅の目地材を貼り付け(d)、透湿性塗材を塗付した後(e)、細幅目地材を除去する(f)ものである。このような方法によれば、目地部側面を透湿性塗膜で覆うことができ、有害ガスの再放出等を確実に防止することができる。   In the present invention, various joint patterns can be formed by using joint materials. In this case, for example, the coating can be performed by a method as shown in FIG. In the method shown in FIG. 1, a joint material is first applied to a base material (a), a moisture absorbing / releasing coating material is applied (b), the joint material is removed (c), and then a narrow joint material is applied. After applying (d) and applying the moisture-permeable coating material (e), the narrow joint material is removed (f). According to such a method, the joint part side surface can be covered with the moisture-permeable coating film, and the re-release of harmful gas and the like can be reliably prevented.

以下に実施例を示し、本発明の特徴をより明確にする。   Examples are given below to clarify the features of the present invention.

(実施例1)
結合剤A200重量部、吸放湿性粉粒体600重量部、骨材A650重量部、造膜助剤3重量部、及び水600重量部を均一に攪拌・混合することにより、吸放湿性塗材1を製造した。この吸放湿性塗材1の塗膜(乾燥厚み1.5mm)の吸放湿量を、JIS A6909:2003「建築用仕上塗材」7.32.2の手順によって測定したところ、230g/mであった。
Example 1
By uniformly stirring and mixing 200 parts by weight of binder A, 600 parts by weight of hygroscopic particles, 650 parts by weight of aggregate A, 3 parts by weight of a film-forming aid, and 600 parts by weight of water, a hygroscopic coating material is obtained. 1 was produced. The moisture absorption / release amount of the coating film (dry thickness 1.5 mm) of the moisture-absorbing / releasing coating material 1 was measured according to the procedure of JIS A6909: 2003 “Finish for architectural coating” 7.32.2, and found to be 230 g / m. 2 .

また、結合剤B200重量部、骨材B1150重量部、化学物質吸着剤40重量部、光触媒物質10重量部、造膜助剤8重量部、及び水800重量部を均一に攪拌・混合することにより、透湿性塗材1を製造した。この透湿性塗材1の塗膜(乾燥厚み2.0mm)水蒸気透過度を、JIS K5400:1990「塗料一般試験方法」8.17によって測定したところ、768g/m・24hであった。 Further, 200 parts by weight of binder B, 1150 parts by weight of aggregate B, 40 parts by weight of chemical adsorbent, 10 parts by weight of photocatalytic substance, 8 parts by weight of film-forming aid, and 800 parts by weight of water are uniformly stirred and mixed. A moisture-permeable coating material 1 was produced. The water vapor permeability of the moisture permeable coating material 1 (dry thickness 2.0 mm) was measured according to JIS K5400: 1990 “Paint General Test Method” 8.17, and was 768 g / m 2 · 24 h.

なお、吸放湿性塗材及び透湿性塗材の製造においては、以下の原料を使用した。
・結合剤A:アクリル樹脂エマルション(ガラス転移温度0℃、固形分50重量%、平均粒子径130μm)
・結合剤B:架橋反応性アクリル樹脂エマルション(ガラス転移温度15℃、固形分50重量%、架橋反応基:カルボキシル基・エポキシ基、平均粒子径120μm)
・吸放湿性粉粒体:ベーマイト(平均粒子径150μm、吸湿率35%)
・骨材A:珪砂(平均粒子径120μm)
・骨材B:着色珪砂(平均粒子径120μm)
・化学物質吸着剤:アミン複合層状リン酸ジルコニウム(平均粒子径45μm)
・光触媒物質:アナターゼ型酸化チタン(平均粒子径0.02μm)
・造膜助剤:2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート
The following raw materials were used in the production of the moisture-absorbing / releasing coating material and the moisture-permeable coating material.
Binder A: acrylic resin emulsion (glass transition temperature 0 ° C., solid content 50% by weight, average particle size 130 μm)
Binder B: Crosslinkable acrylic resin emulsion (glass transition temperature 15 ° C., solid content 50% by weight, crosslinkable reactive group: carboxyl group / epoxy group, average particle size 120 μm)
-Hygroscopic powder: Boehmite (average particle size 150 μm, moisture absorption 35%)
-Aggregate A: Silica sand (average particle size 120μm)
Aggregate B: colored silica sand (average particle size 120 μm)
・ Chemical substance adsorbent: Amine composite layered zirconium phosphate (average particle size 45μm)
Photocatalytic substance: anatase type titanium oxide (average particle size 0.02 μm)
Film-forming aid: 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate

(1)調湿性能
石膏ボード(300×300mm)の表面に、吸放湿性塗材1を乾燥膜厚が1.5mmとなるようにこて塗りし、標準状態(温度23℃・相対湿度50%)で24時間乾燥後、透湿性塗材1を乾燥膜厚が2.0mmとなるようにこて塗りした。次いで、標準状態で12日間養生後、裏面及び側面をエポキシ樹脂でシールし、温度23℃・相対湿度45%の恒温恒湿器に48時間静置した。
以上の方法で得られた試験板について、JIS A6909:2003「建築用仕上塗材」7.32「吸放湿性試験」によって吸放湿量を測定した。
(1) Humidity control performance The hygroscopic coating material 1 is troweled on the surface of a gypsum board (300 × 300 mm) so that the dry film thickness is 1.5 mm, and the standard condition (temperature 23 ° C., relative humidity 50 %) For 24 hours, and then applied with a trowel so that the moisture-permeable coating material 1 has a dry film thickness of 2.0 mm. Next, after curing for 12 days in a standard state, the back and side surfaces were sealed with an epoxy resin, and allowed to stand for 48 hours in a constant temperature and humidity chamber at a temperature of 23 ° C. and a relative humidity of 45%.
With respect to the test plate obtained by the above method, the moisture absorption and desorption amount was measured according to JIS A6909: 2003 “finishing coating material for construction” 7.32 “moisture absorption and desorption property test”.

(2)有害ガスの吸着・分解性能
予めシーラー処理を施したアルミニウム板(150×70mm)の表面に、吸放湿性塗材1を乾燥膜厚が1.5mmとなるようにこて塗りし、標準状態で24時間乾燥後、透湿性塗材1を乾燥膜厚が2.0mmとなるようにこて塗りした。標準状態で14日間養生後、側面をアルミニウム粘着テープでシールした。
以上の方法で得られた試料を3リットルにおい袋に入れ、ホルムアルデヒド(20ppm)を拡散させたwet air(23℃・90%RH)を、このにおい袋中に充填して密閉した。30分後、検知管を用いて、におい袋中のホルムアルデヒド濃度を測定し、分解率を下記式によって求めた。
分解率(%)=[(初期ホルムアルデヒド濃度−試験後ホルムアルデヒド濃度)/初期ホルムアルデヒド濃度]×100
(2) Adsorbing and decomposing performance of harmful gas On the surface of an aluminum plate (150 × 70 mm) that has been subjected to a sealer treatment in advance, the moisture absorbing / releasing coating material 1 is troweled so that the dry film thickness is 1.5 mm, After drying for 24 hours in a standard state, the moisture-permeable coating material 1 was applied with a trowel so that the dry film thickness was 2.0 mm. After curing for 14 days in the standard state, the side surfaces were sealed with aluminum adhesive tape.
The sample obtained by the above method was put in a 3 liter odor bag, and wet air (23 ° C., 90% RH) in which formaldehyde (20 ppm) was diffused was filled in this odor bag and sealed. After 30 minutes, the formaldehyde concentration in the odor bag was measured using a detector tube, and the decomposition rate was determined by the following formula.
Degradation rate (%) = [(initial formaldehyde concentration−formaldehyde concentration after test) / initial formaldehyde concentration] × 100

(3)有害ガスの再放出防止性能
上記(2)で試験後の試料を新たな3リットルにおい袋中に入れ、dry air(23℃・45%RH)を充填して密閉した。このにおい袋を50℃条件下、24時間加熱後、検知管を用いて、におい袋中のホルムアルデヒド濃度を測定し、ホルムアルデヒドの再放出の有無を確認した。評価は、ホルムアルデヒドの再放出が認められなかったものを○、再放出が認められたものを×とした。
(3) Prevention of re-release of harmful gas The sample after the test in (2) above was put in a new 3-liter sachet, filled with dry air (23 ° C., 45% RH) and sealed. After the sachet was heated for 24 hours under the condition of 50 ° C., the formaldehyde concentration in the sachet was measured using a detector tube to confirm the re-release of formaldehyde. In the evaluation, a case where re-release of formaldehyde was not recognized was evaluated as “◯”, and a case where re-release was recognized as “×”.

(4)汚染物質の分解性能
予めシーラー処理を施したアルミニウム板(150×70mm)の表面に、吸放湿性塗材1を乾燥膜厚が1.5mmとなるようにこて塗りし、標準状態で24時間乾燥後、透湿性塗材1を乾燥膜厚が2.0mmとなるようにこて塗りした。標準状態で14日間養生後、側面をアルミニウム粘着テープでシールした。この試料を、通気孔が設けられた20L容器内に入れ、タバコ10本に火をつけて燃焼させた後、通気孔を閉じて24時間放置した。その後、試料を取り出し、試料表面に紫外線ランプを24時間照射し、照射後の状態を確認した。評価は、試験前後の黄変の程度(Δb)を色差計で測定することにより行った。
(4) Degradation performance of pollutants The surface of an aluminum plate (150 × 70 mm) that has been previously treated with a sealer is troweled with a hygroscopic coating material 1 so that the dry film thickness is 1.5 mm, and is in a standard state After drying for 24 hours, the moisture-permeable coating material 1 was applied with a trowel so that the dry film thickness was 2.0 mm. After curing for 14 days in the standard state, the side surfaces were sealed with aluminum adhesive tape. This sample was put in a 20 L container provided with a vent, and 10 cigarettes were ignited and burned, and then the vent was closed and left for 24 hours. Thereafter, the sample was taken out, and the surface of the sample was irradiated with an ultraviolet lamp for 24 hours to confirm the state after irradiation. Evaluation was performed by measuring the degree of yellowing (Δb) before and after the test with a color difference meter.

Figure 0004656922
Figure 0004656922

(比較例1)
結合剤A200重量部、骨材A1200重量部、造膜助剤3重量部、及び水300重量部を均一に攪拌・混合することにより、吸放湿性塗材2を製造した。この吸放湿性塗材2の塗膜(乾燥厚み1.5mm)の吸放湿量を、JIS A6909:2003「建築用仕上塗材」7.32.2の手順によって測定したところ、30g/mであった。
吸放湿性塗材1に代えて吸放湿性塗材2を使用した以外は、実施例1と同様にして試験を行った。
(Comparative Example 1)
The hygroscopic coating material 2 was produced by uniformly stirring and mixing 200 parts by weight of the binder A, 1200 parts by weight of the aggregate A, 3 parts by weight of the film-forming aid, and 300 parts by weight of water. The moisture absorption / release amount of the coating film (dry thickness 1.5 mm) of the moisture-absorbing / releasing coating material 2 was measured according to the procedure of JIS A6909: 2003 “Finish for architectural coating” 7.32.2. 2 .
The test was performed in the same manner as in Example 1 except that the hygroscopic coating material 2 was used instead of the hygroscopic coating material 1.

(比較例2)
結合剤B200重量部、骨材B1200重量部、造膜助剤8重量部、及び水800重量部を均一に攪拌・混合することにより、透湿性塗材2を製造した。この透湿性塗材2の塗膜(乾燥厚み2.0mm)の水蒸気透過度を、JIS K5400:1990「塗料一般試験方法」8.17によって測定したところ、700g/m・24hであった。
透湿性塗材1に代えて透湿性塗材2を使用した以外は、実施例1と同様にして試験を行った。
(Comparative Example 2)
The moisture-permeable coating material 2 was produced by uniformly stirring and mixing 200 parts by weight of the binder B, 1200 parts by weight of the aggregate B, 8 parts by weight of the film-forming aid, and 800 parts by weight of water. The water vapor permeability of the coating film (dry thickness 2.0 mm) of the moisture-permeable coating material 2 was measured according to JIS K5400: 1990 “Paint General Test Method” 8.17, and was 700 g / m 2 · 24 h.
A test was performed in the same manner as in Example 1 except that the moisture-permeable coating material 2 was used instead of the moisture-permeable coating material 1.

目地材を用いた塗装仕上げ方法の一例を示す図である。It is a figure which shows an example of the coating finishing method using a joint material.

符号の説明Explanation of symbols

1:基材
2:目地材
3:吸放湿性塗材
4:透湿性塗材
1: Base material 2: Joint material 3: Hygroscopic coating material 4: Moisture permeable coating material

Claims (2)

建築物内装面の基材に対し、吸放湿量60g/m以上の塗膜を形成する吸放湿性塗材を塗付した後、結合剤を固形分で100重量部、平均粒子径0.01〜5mmの骨材を100〜4000重量部、化学物質吸着剤を0.1〜100重量部、及び光触媒物質を0.1〜50重量部含み、水蒸気透過度100g/m・24h以上、厚み0.2〜5mmの塗膜を形成する透湿性塗材を塗付することを特徴とする建築物内装面の塗装仕上げ方法。 After applying a moisture absorbing / releasing coating material that forms a coating film with a moisture absorption / release amount of 60 g / m 2 or more to the base material of the interior surface of the building, the binder is 100 parts by weight in terms of solid content and the average particle size is 0 100 to 4000 parts by weight of aggregate of 0.1 to 5 mm, 0.1 to 100 parts by weight of chemical adsorbent, and 0.1 to 50 parts by weight of photocatalytic substance , water vapor permeability of 100 g / m 2 · 24 h or more A paint finishing method for an interior surface of a building, comprising applying a moisture-permeable coating material that forms a coating film having a thickness of 0.2 to 5 mm . 吸放湿性塗材が、結合剤を固形分で100重量部、吸放湿性粉粒体を20〜2000重量部含むものであることを特徴とする請求項1に記載の建築物内装面の塗装仕上げ方法。

The moisture-absorbing / releasing coating material contains 100 parts by weight of a binder in solid content and 20-2000 parts by weight of moisture-absorbing / releasing powder particles, The method for finish-painting a building interior surface according to claim 1, .

JP2004348667A 2003-12-04 2004-12-01 How to finish building interior surfaces Expired - Fee Related JP4656922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348667A JP4656922B2 (en) 2003-12-04 2004-12-01 How to finish building interior surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003405647 2003-12-04
JP2004348667A JP4656922B2 (en) 2003-12-04 2004-12-01 How to finish building interior surfaces

Publications (2)

Publication Number Publication Date
JP2005186063A JP2005186063A (en) 2005-07-14
JP4656922B2 true JP4656922B2 (en) 2011-03-23

Family

ID=34797580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348667A Expired - Fee Related JP4656922B2 (en) 2003-12-04 2004-12-01 How to finish building interior surfaces

Country Status (1)

Country Link
JP (1) JP4656922B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382934B2 (en) * 2009-09-08 2014-01-08 ベック株式会社 Decorative material
CN111257155B (en) * 2020-03-23 2022-11-04 浙江理工大学 Method for detecting moisture absorption performance of printing auxiliary agent under steaming condition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001649A (en) * 1998-04-15 2000-01-07 Sk Kaken Co Ltd Coating composition for interior
JP2002113804A (en) * 2000-08-03 2002-04-16 Sk Kaken Co Ltd Cooling layer laminated structure and its forming method
JP2002173645A (en) * 2000-12-04 2002-06-21 Lock Paint Kk Aqueous resin composition
JP2003247316A (en) * 2001-12-20 2003-09-05 Sk Kaken Co Ltd Decorative structure of building surface

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151661A (en) * 1981-03-16 1982-09-18 Kikusui Kagaku Kogyo Kk Coating composition
JP2534888B2 (en) * 1988-05-07 1996-09-18 エスケ−化研株式会社 Method for forming multi-layer coating film having moisture permeability
JPH11106681A (en) * 1997-10-06 1999-04-20 Sunstar Eng Inc Surface protection of diatomaceous earth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001649A (en) * 1998-04-15 2000-01-07 Sk Kaken Co Ltd Coating composition for interior
JP2002113804A (en) * 2000-08-03 2002-04-16 Sk Kaken Co Ltd Cooling layer laminated structure and its forming method
JP2002173645A (en) * 2000-12-04 2002-06-21 Lock Paint Kk Aqueous resin composition
JP2003247316A (en) * 2001-12-20 2003-09-05 Sk Kaken Co Ltd Decorative structure of building surface

Also Published As

Publication number Publication date
JP2005186063A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4637656B2 (en) Paint finishing method
WO2004053254A1 (en) Interior building material, interior building panel and interior building sheet
JP4575759B2 (en) Laminated body
JP4637655B2 (en) Laminated body
JP2015519408A (en) Environmentally-friendly water-based paint composition for interior finishing materials of buildings
JP4562557B2 (en) Moisture-absorbing and building material construction method and moisture-permeable structure
JP2008038365A (en) Interior finishing wall of building, and finishing coating material therefor
KR20110096652A (en) Radon reduction functional inorganic paint composition
JP4656922B2 (en) How to finish building interior surfaces
JP5259251B2 (en) Plate-like ventilation body and laminate
KR100805936B1 (en) built-in material for composition
JP6836252B2 (en) Water-based paint
JP5510911B2 (en) Composite interior coating material for buildings
JP5136872B2 (en) Interior finish with humidity control and paintability, as well as formaldehyde reduction
JP5244258B2 (en) Plate-shaped cured body
JP2009068324A5 (en)
KR100475367B1 (en) Composition for coating the surface of architecture and producing method thereof
JP4597497B2 (en) Architectural paint composition
KR101577527B1 (en) Environmental friendly jade paint and finishing materials using natural binder and manufacturing method thereof
KR100710002B1 (en) Modified natural zeolite, coating composition and building interior material for high adsorption and removal rate for pollutants
KR20110096777A (en) White paint composition for radon reduction
KR101025519B1 (en) Functional ceramic paint compositions
JP2004285716A (en) Functional building material
KR101577526B1 (en) Environmental friendly pine needle paint and finishing materials using natural binder and manufacturing method thereof
KR20060056201A (en) Material for reducing the sick house syndrome

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees