JP4651982B2 - Heat-shrinkable laminated film and packaging lightweight PET bottle - Google Patents

Heat-shrinkable laminated film and packaging lightweight PET bottle Download PDF

Info

Publication number
JP4651982B2
JP4651982B2 JP2004208645A JP2004208645A JP4651982B2 JP 4651982 B2 JP4651982 B2 JP 4651982B2 JP 2004208645 A JP2004208645 A JP 2004208645A JP 2004208645 A JP2004208645 A JP 2004208645A JP 4651982 B2 JP4651982 B2 JP 4651982B2
Authority
JP
Japan
Prior art keywords
resin
film
heat
perforation
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004208645A
Other languages
Japanese (ja)
Other versions
JP2006027052A (en
Inventor
正晴 円尾
直之 丸市
陽 森川
智久 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2004208645A priority Critical patent/JP4651982B2/en
Publication of JP2006027052A publication Critical patent/JP2006027052A/en
Application granted granted Critical
Publication of JP4651982B2 publication Critical patent/JP4651982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は、ポリオレフィン系樹脂、中でも特定のポリエチレン系樹脂を主体として構成される熱収縮性積層フイルム及び該フイルムによるラベル包装された軽量ペットボトルに関する。   The present invention relates to a heat-shrinkable laminated film mainly composed of a polyolefin-based resin, particularly a specific polyethylene-based resin, and a lightweight PET bottle packaged with a label using the film.

ペットボトル等を包装(個装)するフイルムには、例えば熱収縮性ポリエチレンテレフタレ−ト系フイルム(以下PETフイルムと呼ぶ。)、熱収縮性ポリスチレン系フイルム(以下PSフイルムと呼ぶ。)、熱収縮性ポリオレフィン系フイルム(以下POフイルムと呼ぶ。)が知られている。
これ等のフイルムを使って、ペットボトル等を包装するまでの工程は、一般には次ぎの通りである。
まず横方向を主体に所定量延伸された熱収縮性フイルム(一般に積層フラット状フイルム)が製造される。そして該フイルムの内面に印刷を行い、ミシン目を穿設し、両端面を重ね合わせ(重合)接着してチュ−ブ状(長尺)に成形される。そしてペットボトル1本分のチュ−ブ状ラベルにカットされて、これがペットボトルに挿入され熱収縮して締着・包装されると言うものである。
Examples of films for packaging (individually) PET bottles include heat-shrinkable polyethylene terephthalate film (hereinafter referred to as PET film), heat-shrinkable polystyrene film (hereinafter referred to as PS film), and heat. A shrinkable polyolefin film (hereinafter referred to as PO film) is known.
The process up to packaging PET bottles and the like using these films is generally as follows.
First, a heat-shrinkable film (generally a laminated flat film) stretched by a predetermined amount mainly in the transverse direction is produced. Then, printing is performed on the inner surface of the film, perforations are formed, and both end surfaces are overlapped (polymerized) and bonded to form a tube shape (long). Then, it is cut into a tube-shaped label for one plastic bottle, which is inserted into the plastic bottle, heat-shrinked, and fastened / packaged.

ところで、ペットボトル業界(特に製造者側)での最近の取り組みとしてペットボトルの軽量化がある。これは国策の1つとして進められている石油の省資源化の一貫からのものでもある。このペットボトルの軽量化と並んで、この周辺部材の軽量化も行われようとしている。その1つが熱収縮性チュ−ブラベルでもある。
これ等の軽量化は、いずれもより肉厚を薄く(使用原料の減量)することにあるが、例えば500mlのペットボトルでは約20%、1.5Lのペットボトルでは約7%の減量が目標とされている。
By the way, a recent effort in the plastic bottle industry (particularly the manufacturer side) is to reduce the weight of the plastic bottle. This is also a result of the conservation of oil resources, which is being promoted as one of the national policies. Along with the weight reduction of this plastic bottle, the weight of the peripheral members is also being reduced. One of them is also a heat-shrinkable tube label.
These weight reductions are all about reducing the thickness (reducing the amount of raw materials used). For example, the target is about 20% for 500ml PET bottles and about 7% for 1.5L PET bottles. It is said that.

しかしながら、ペットボトルの軽量化に関しては、特に該ボトルに使用する既存のラベル(チュ−ブ状)側に問題が発生してきている。この問題点を挙げると、主として次ぎの3点に集約される。
その1点目が、飲料充填のペットボトルを誤って落下した場合、ミシン目が破断し易く、装着ラベルの脱落に繋がると言うものである。この原因は、該ボトルの肉厚が薄くなったことで、例えば落下した場合、その衝撃で内圧が該ボトルの胴部分に集中し、その結果、一瞬該胴部分が膨らみ、その膨らみにミシン目が耐えきれずに破断に繋がる(以下この点を落下によるミシン目破断と呼び、その耐性を耐落下ミシン目破断性と呼ぶ。)。この破断は、既存ラベル中、ポリスチレン系ラベルに最も多く、ポリオレフィン系ラベルにも散見される現象である。
その2点目が、特に水系又はスポ−ツ飲料を充填したペットボトルを冷却(例えば−5℃)して凍結(販売)する場合である。つまり、この凍結でも内容物が膨張するので、該ボトルの胴部分が膨らむ。その結果上記1点目と同じように、ミシン目が耐えきれずに破断に繋がる(以下この点を凍結によるミシン目破断と呼び、その耐性を耐凍結ミシン目破断性と呼ぶ。)。この破断は、既存ラベル中、ポリスチレン系ラベルに最も多く、ポリオレフィン系ラベルにも散見される現象である。
その3点目が、(使用後にまず行われる)ミシン目を破っての装着ラベルとペットボトルとの分離である。このミシン目破りは手動で行われるが、手動であるが故に、より容易に破れるものであることが求められる。(以下、この容易に破れるラベルの特性をミシン目の破り性と呼ぶ。)。しかしながら、一方では、このミシン目の破り易さは、前記のような場合にとっては良くないことである。つまり二律背反的関係にある。破れ易いが、破れ難いと言う両者がバランスするラベルがあれば、この問題はないが、前記既存のラベルにはないのが実情である
However, with regard to weight reduction of PET bottles, problems have arisen particularly on the side of existing labels (tubes) used for the bottles. This problem is mainly summarized in the following three points.
The first point is that if a beverage-filled PET bottle is accidentally dropped, the perforation is easy to break, leading to a drop in the attached label. The cause of this is that the thickness of the bottle has been reduced. For example, when the bottle is dropped, the internal pressure is concentrated on the barrel portion of the bottle due to the impact, and as a result, the barrel portion swells for a moment, and the bulge is perforated. However, this point is referred to as perforation breakage due to dropping, and the resistance is referred to as drop perforation breakage resistance. This rupture is the phenomenon that is most common in polystyrene labels among the existing labels and is often found in polyolefin labels.
The second point is the case of cooling (for example, −5 ° C.) and freezing (selling) a plastic bottle filled with an aqueous or sports beverage. In other words, since the contents are expanded even by this freezing, the body portion of the bottle is expanded. As a result, as in the first point, the perforation cannot endure, leading to breakage (hereinafter, this point is called perforation breakage due to freezing, and the resistance is called freezing perforation breakability). This rupture is the phenomenon that is most common in polystyrene labels among the existing labels and is often found in polyolefin labels.
The third point is the separation of the mounting label and the plastic bottle after the perforation (first performed after use). Although this perforation is performed manually, it is required to be more easily broken because it is manual. (Hereinafter, this characteristic of easily broken labels is called perforation breakability.) However, on the other hand, the ease of perforation is not good for such cases. In other words, there is a contradictory relationship. This is not a problem if there is a label that balances both easily and easily, but it does not exist in the existing label.

本発明は、前記1、2点目の問題点と共に、3点目の問題点がバランスをもって解決できるように鋭意検討した結果、遂に見出されたものである。   The present invention has been finally found as a result of earnest studies so that the third problem can be solved in a balanced manner together with the first and second problems.

尚、前記3点を主たる課題として解決を計ろうとした関連先行技術は見出せないが、ラベルの筒状加工が溶剤シ−ルによってできること、PETボトルと筒状ラベルとの分離が水によってできることを課題とした特許出願は見られる。
例えば該出願は、使用樹脂成分として中間層にポリエチレン系共重合樹脂(例えばLLDPE樹脂単独又はこれにTg50〜70℃の環状オレフィン系共重合樹脂30重量%以下)(更には30重量%以下の石油樹脂、更には20重量%以下のLDPE樹脂がブレンドされても良い。)を、そして両表面層にTg50〜75℃の環状オレフィン系共重合樹脂(該樹脂単独であるが、5重量%以下であればLLDPE樹脂をブレンドしても良い。)を各々選び、これを少なくとも3層に積層した熱収縮性ポリオレフィン系フイルムとするものである(例えば、特許文献1参照。)。
In addition, although the related prior art which tried to solve the above three points as a main problem cannot be found, the problem is that the cylindrical processing of the label can be performed with a solvent seal, and the separation between the PET bottle and the cylindrical label can be performed with water. The patent application that is said is seen.
For example, in this application, a polyethylene copolymer resin (for example, an LLDPE resin alone or a cyclic olefin copolymer resin having a Tg of 50 to 70 ° C. of 30% by weight or less) (further 30% by weight or less of petroleum oil) is used as the resin component used in the intermediate layer. Resin and further 20 wt% or less LDPE resin may be blended), and both surface layers have a cyclic olefin copolymer resin having a Tg of 50 to 75 ° C. (the resin alone, but 5 wt% or less). If there is, LLDPE resin may be blended), and a heat-shrinkable polyolefin film in which at least three layers are laminated (see, for example, Patent Document 1).

特開平2001―315260号公報Japanese Patent Laid-Open No. 2001-315260

つまり本発明は、下記樹脂組成物Aによるフイルムを中間層(A)とし、樹脂組成物Bによるフイルムを両外面層(B)とする熱収縮性積層フイルムを特徴とする。
<樹脂組成物A>、
メタロセン触媒による直鎖状低密度ポリエチレン樹脂45〜65質量%、低密度ポリエチレン樹脂5〜25質量%、環状オレフィン系樹脂10〜15質量%及び石油樹脂5〜25質量%。
<樹脂組成物B>、
環状オレフィン系樹脂70〜90質量%及び直鎖状低密度ポリエチレン樹脂10〜30質量%。

That is, the present invention is characterized by a heat-shrinkable laminated film in which a film made of the following resin composition A is an intermediate layer (A) and a film made of the resin composition B is both outer surface layers (B).
<Resin composition A>,
Linear metallocene-catalyzed low-density polyethylene resin 45-65 wt%, low-density polyethylene resin 5-25 wt%, 10-15 wt% cyclic olefin-based resins and petroleum resins 5-25 wt%.
<Resin composition B>,
Cyclic olefin resin 70-90 mass% and linear low density polyethylene resin 10-30 mass%.

又、前記熱収縮性積層フイルムのミシン目入りチュ−ブ状ラベルが軽量ペットボトルに熱収縮締着されてなる包装軽量ペットボトルであることも特徴とする。   The heat-shrinkable laminated film has a perforated tube-shaped label that is a packaged lightweight PET bottle that is heat-shrink-fastened to a lightweight PET bottle.

本発明は、前記の通り構成されているので、次ぎのような効果を奏する。   Since this invention is comprised as mentioned above, there exist the following effects.

特にペットボトルの軽量化に対して、優れた耐落下ミシン目破断性、耐凍結ミシン目破断性と共に、ミシン目の破り性をバランス良く有している熱収縮性フイルムである。   In particular, it is a heat-shrinkable film having a good balance of perforation breakability in addition to excellent fall perforation breakability and freeze perforation breakage resistance for reducing the weight of PET bottles.

勿論他に必要な特性、例えば適正なフイルム硬さ(適正な腰の強さ)、透明性、チュ−ブ状ラベルの加工性(例えば該チュ−ブ状成形が有機溶剤によってもできるとか、印刷が容易であるとか)、耐自然収縮性等にも優れた熱収縮性フイルムである。   Of course, other necessary properties such as proper film hardness (appropriate stiffness), transparency, tube label processability (eg, tube-shaped molding can be done with organic solvents, printing, etc. It is a heat-shrinkable film excellent in natural shrinkage resistance and the like.

前記特性が付与されたことで、より薄肉のペットボトルのミシン目入りチュ−ブ状ラベルとしての使用ができるようになった。   By giving the above-mentioned characteristics, it became possible to use as a perforated tube-like label for a thinner plastic bottle.

まず中間層(A)から説明する。
該層を形成する樹脂組成物Aは、特に選ばれたメタロセン触媒による直鎖状低密度ポリエチレン樹脂(以下m−LLDPE樹脂と呼ぶ。)と低密度ポリエチレン樹脂(以下LDPE樹脂と呼ぶ。)と環状オレフィン系樹脂(以下CO樹脂と呼ぶ。)及び石油樹脂の4成分の組合せを必須としてなり、且つm−LLDPE樹脂45〜65質量%、好ましくは50〜60質量%、LDPE樹脂5〜25質量%、好ましくは10〜20質量%、CO樹脂5〜15質量%、好ましくは7〜12質量%、石油樹脂5〜25質量%、好ましくは7〜15質量%の配合比をもって、均一ブレンドされたブレンド樹脂でなければならない。ここでこの配合比は、4成分混合を100質量%とした場合の各成分の占める割合である。
この4成分とその配合比とによって新たに創出されるブレンド樹脂が中間層(A)として存在することで、特に前記耐落下ミシン目破断性、耐凍結ミシン目破断性及びミシン目の破れ性(以下この等を総称して3特性と呼ぶ。)の発現に対して中枢的作用をするものとなる。
従って、この4成分の一種が欠けるとか、他の成分に置換えられることは勿論、配合比がこれ等の特定範囲外であれば、この3特性は勿論、他に必要な特性をバランス良く発現することができなくなる。
尚、この新たに創出されたブレンド樹脂は、フイルム成形性、フイルム透明性、表裏層(B)との密着性、耐自然収縮性、適正な腰の強さ等に対しても、それを損なうことなくバランス良く発現できる特性も合わせ有している。
First, the intermediate layer (A) will be described.
The resin composition A forming the layer is a linear low-density polyethylene resin (hereinafter referred to as m-LLDPE resin), a low-density polyethylene resin (hereinafter referred to as LDPE resin), and a cyclic structure selected from metallocene catalysts. A combination of four components of an olefin resin (hereinafter referred to as CO resin) and a petroleum resin is essential, and m-LLDPE resin is 45 to 65% by mass, preferably 50 to 60% by mass, and LDPE resin is 5 to 25% by mass. , Preferably 10-20% by mass, CO resin 5-15% by mass, preferably 7-12% by mass, petroleum resin 5-25% by mass, preferably 7-15% by mass, and blended uniformly Must be resin. Here, this blending ratio is the ratio of each component when the four component mixture is 100 mass%.
The blend resin newly created by the four components and the blending ratio thereof is present as the intermediate layer (A), and in particular, the fall perforation resistance, the freeze perforation resistance, and the perforation resistance ( Hereinafter, these and the like are collectively referred to as “three characteristics”).
Therefore, if one of these four components is missing or replaced with another component, and if the blending ratio is outside these specific ranges, these three properties as well as other necessary properties are expressed in a balanced manner. I can't do that.
In addition, this newly created blend resin impairs the film formability, film transparency, adhesion to the front and back layers (B), natural shrinkage resistance, proper waist strength, etc. It also has characteristics that can be expressed in a well-balanced manner.

中間層(A)は、前記の通り前記3特性発現の中枢的作用をする層であるが、これを使用成分から見ると、特にm−LLDPE樹脂がその中心的役目となって作用をする。他の3成分は、該樹脂による作用をより円滑に助勢しながら、他に必要な特性の付与に作用する。この他に必要な特性は、例えばより高い透明性、、両外面層(B)との熱収縮速度(特に初期での)のバランス発現(このバランスがとれないと、該両外面層に微細な皺が入り、透明性の低下にも繋がる)、層間密着力のアップ、自然収縮の抑制、フイルムの腰の適正硬さ(硬くもなく、柔らかくもない取り扱い易い硬さ)の発現、より高い熱収縮率の発現等である。   As described above, the intermediate layer (A) is a layer that performs the central action of the above-described three characteristics. From the viewpoint of the components used, the m-LLDPE resin plays a central role. The other three components act to impart other necessary characteristics while more smoothly supporting the action of the resin. Other necessary properties include, for example, higher transparency, and balance development of heat shrinkage rate (especially at the initial stage) with both outer surface layers (B). Wrinkles and reduced transparency), increased interlayer adhesion, suppression of natural shrinkage, expression of proper hardness of the film waist (hard, not soft and easy to handle), higher heat For example, expression of shrinkage rate.

m−LLDPE樹脂は、具体的には、次ぎのようなものである。
つまり従来から知られる、チ−グラ−ナッタ触媒により重合して得られる直鎖状低密度ポリエチレンとは異なり、メタロセン触媒により重合された直鎖状低密度ポリエチレンである。シャ−プな分子量分布と少量共重合されるα−オレフィン(例えばプロピレン、ブテン1、ヘキセン1、オクテン1等)の分布も均一であり、優れた耐衝撃強度、耐引裂強度、透明度等を有している。これ等の優れた特性が前記3特性発現のベ−スとして作用をしているものと考えられる。
Specifically, the m-LLDPE resin is as follows.
That is, unlike the conventionally known linear low density polyethylene obtained by polymerization with a Ziegler-Natta catalyst, it is a linear low density polyethylene polymerized with a metallocene catalyst. The distribution of sharp molecular weight and α-olefin (eg, propylene, butene 1, hexene 1, octene 1, etc.) that is copolymerized in a small amount are uniform and have excellent impact strength, tear resistance, transparency, etc. is doing. These excellent characteristics are considered to act as a base for the expression of the three characteristics.

又、m−LLDPE樹脂は、分子量、少量共重合するα−オレフィン(例えばプロピレン、ブテン1、ヘキセン1、オクテン1)の種類とその量とによって、その密度、メルトフロ−レ−ト(MFR)(JISK K7210)(g/10分)が異なる。この中で適宜選択されるが、好ましいものを例示すると、次ぎの通りである。
密度(g/cm)は、約0.900〜0.935、好ましくは0.915〜0.930、MFRは1.0〜3.0、好ましくは1.5〜2.5である。
ここで該密度であるが、これは0.900未満になると、特にフイルム強度と腰の強さの点でより弱くする方向に作用をし、逆に0.935を越えると、特に透明性を悪くする方向に作用することによる。一方MFRであるが、これは1.0未満では、より円滑な成形がし難くなり、逆に3.0を越えると、前記3特性中、特に耐落下ミシン目破断性及び耐凍結ミシン目破断性の発現に好ましく作用しなくなる。
The m-LLDPE resin has a density, a melt flow rate (MFR) (MFR) (depending on the molecular weight and the type and amount of α-olefin (eg, propylene, butene 1, hexene 1, octene 1) to be copolymerized in a small amount. JISK K7210) (g / 10 min) is different. Although it selects suitably in this, when a preferable thing is illustrated, it is as follows.
The density (g / cm 3 ) is about 0.900 to 0.935, preferably 0.915 to 0.930, and the MFR is 1.0 to 3.0, preferably 1.5 to 2.5.
The density here is less than 0.900, particularly in the direction of making it weaker in terms of film strength and waist strength. Conversely, if it exceeds 0.935, transparency is particularly improved. By acting in the direction of worsening. On the other hand, if it is MFR, if it is less than 1.0, it becomes difficult to form more smoothly. Conversely, if it exceeds 3.0, among the above three characteristics, in particular, drop perforation resistance and freeze perforation resistance It does not act favorably on the expression of sex.

そしてm−LLDPE樹脂であっても、その配合比を45〜65質量%にしない限り、前記3特性を最も効果的に発現しうる新たなブレンド樹脂は創出されない。つまり45質量%未満では、特に耐ミシン目落下破断性を悪くする方向になり、逆に65質量%を越えると、特にミシン目の破れ性を悪くする方向になる。   And even if it is m-LLDPE resin, unless the compounding ratio shall be 45-65 mass%, the new blend resin which can express the said 3 characteristic most effectively will not be created. That is, when it is less than 45% by mass, the perforation drop breakability is particularly deteriorated, and when it exceeds 65% by mass, the perforation is particularly deteriorated.

次ぎに、他成分であるLDPE樹脂、CO樹脂及び石油樹脂について説明する。
まずLDPE樹脂であるが、これは前記他に必要な特性中、主としてより高い透明性と両外面層(B)との熱収縮速度のバランスの発現を助勢する。
その該樹脂は、具体的には、一般に知られている高圧法LDPEであり、その密度(g/cm)は約0.900〜0.925の範囲にある。
該樹脂自身は、中低圧法高密度ポリエチレンと異なり軟質で、衝撃強度、引裂強度にも優れている。この3つの特性がバランス良く得られるのはMFR(JIS K6750)(g/10分)が0.3〜2.5の範囲でもある。
Next, LDPE resin, CO resin, and petroleum resin, which are other components, will be described.
First of all, LDPE resin, among other necessary properties, mainly helps to develop a balance between higher transparency and heat shrinkage rate between both outer surface layers (B).
Specifically, the resin is a generally known high-pressure LDPE, and its density (g / cm 3 ) is in the range of about 0.900 to 0.925.
Unlike the medium- and low-pressure high-density polyethylene, the resin itself is soft and excellent in impact strength and tear strength. These three characteristics can be obtained in a well-balanced manner when the MFR (JIS K6750) (g / 10 min) is in the range of 0.3 to 2.5.

そして、前記LDPE樹脂であっても、その配合比を5〜25質量%にする必要がある。これは5質量%未満では、特に透明性を悪くする方向と両外面層(B)に対する低温域での初期熱収縮速度(例えば60〜70℃で5秒以内)のアンバランス(両外面層と中間層の収縮速度差が広がり、中間層が速くなる)を引き起こす方向になり、25質量を越えると、これも透明性を悪くする方向と共に、特に中間層(A)全体のフイルム強度を下げる方向になるからである。   And even if it is the said LDPE resin, it is necessary to make the compounding ratio into 5-25 mass%. If it is less than 5% by mass, the initial heat shrinkage rate (for example, within 5 seconds at 60 to 70 ° C.) in a low temperature range with respect to both the outer surface layer (B) and the direction of worsening the transparency is particularly imbalanced. The difference in shrinkage speed of the intermediate layer is widened, and the intermediate layer becomes faster. When the amount exceeds 25 masses, this also deteriorates the transparency, and in particular, decreases the film strength of the entire intermediate layer (A). Because it becomes.

そしてCO樹脂であるが、これは前記他に必要な特性中、主として層間密着力のアップ、自然収縮の抑制及びフイルムの腰の適正硬さ発現を助勢する。
その該樹脂は、具体的には、次ぎのものである。
環状オレフィン(例えばノルボルネン)の開環ポリマを水添飽和した樹脂、エチレン又はプロピレン等のα−オレフィンと環状オレフィン(例えばノルボルネン及びその誘導体やテトラシクロドデセン及びその誘導体など)とのランダム共重合樹脂、該環状オレフィンの開環重合体とα−オレフィンとの共重合体を水素添加した樹脂、これ等樹脂に不飽和カルボン酸及びその誘導体の少量をグラフトして変性した樹脂が挙げられる。
In addition to the above-mentioned necessary properties, the CO resin mainly helps to increase the interlayer adhesion, suppress the spontaneous shrinkage, and develop the appropriate hardness of the film waist.
The resin is specifically as follows.
Resins obtained by hydrogenating saturated ring-opening polymers of cyclic olefins (for example, norbornene), random copolymer resins of α-olefins such as ethylene or propylene and cyclic olefins (for example, norbornene and its derivatives, tetracyclododecene and its derivatives) And resins obtained by hydrogenating a ring-opening polymer of a cyclic olefin and an α-olefin, and resins obtained by grafting a small amount of an unsaturated carboxylic acid and a derivative thereof onto these resins.

前記CO樹脂がα−オレフィンとの共重合ポリマにあっては、該α−オレフィンの共重合比によってTg(2次点移転温度)と共にフイルム成形性を始め各種物性が変わる。ここではTgでもって好ましいものを選択するのが良く、それは約60〜90℃、好ましくは65〜80℃である。このTg範囲のものは、特に自然収縮の抑制に対しても有効である。   When the CO resin is a copolymer polymer with an α-olefin, various physical properties such as film moldability change with Tg (secondary point transfer temperature) depending on the copolymerization ratio of the α-olefin. Here, the preferred one with Tg should be selected, which is about 60-90 ° C, preferably 65-80 ° C. Those having this Tg range are particularly effective for suppressing spontaneous shrinkage.

そして、前記CO樹脂であっても、その配合比を5〜15質量%にする必要がある。これは5質量%未満では、特に自然熱収縮率が大きくなる方向になり、15質量を越えると、特に前記m−LLDPEの中枢的作用の抑制と透明性を悪くする方向になる。   And even if it is the said CO resin, the compounding ratio needs to be 5-15 mass%. If the amount is less than 5% by mass, the natural heat shrinkage rate is particularly increased. If the amount exceeds 15% by mass, the central action of the m-LLDPE is particularly suppressed and the transparency is deteriorated.

そして石油樹脂であるが、これは前記他に必要な特性中、より高い熱収縮率の発現とフイルムの腰の適正硬さの発現を助勢する。更に前記中枢的作用中の特に、ミシン目の破り性において、より高いレベルに改良するのに有効に作用もする。ここで該腰の適正硬さに関し、前記CO樹脂では、最も有効な硬さの調整はできないので、これをこの石油樹脂が有効に助勢もする。
該樹脂としては、具体的には、一般に知られている脂肪族系、芳香族系、脂環族系及びテルペン系の石油樹脂等で不飽和基を有していないものでもある(水添による飽和)。いずれでも良いが、軟化点で115〜145℃有するものの選択が好ましい。
And it is a petroleum resin, which assists in the expression of higher heat shrinkage and the appropriate hardness of the waist of the film among the other necessary properties. Furthermore, it effectively acts to improve to a higher level, particularly in the perforation breakability during the central action. Here, regarding the appropriate hardness of the waist, since the most effective hardness cannot be adjusted with the CO resin, the petroleum resin also effectively assists the adjustment.
Specific examples of the resin include generally known aliphatic, aromatic, alicyclic and terpene petroleum resins which do not have an unsaturated group (by hydrogenation). Saturation). Either may be used, but selection of those having a softening point of 115 to 145 ° C. is preferred.

そして、前記石油樹脂であっても、その配合比を5〜25質量%にする必要がある。これは5質量%未満では、特にm−LLDPEの有する必要以上の伸性を抑制して適正な伸性にすることが困難になり、逆に25質量を越えると、特に前記3特性の中の耐落下と耐凍結の各ミシン目破断性に悪影響を及ぼすようになる。   And even if it is the said petroleum resin, it is necessary to make the compounding ratio into 5-25 mass%. If this is less than 5% by mass, it becomes difficult to suppress the ductility that is necessary for m-LLDPE, and it becomes difficult to achieve proper ductility. It will have an adverse effect on the breakability of each perforation of falling and freezing.

次ぎに両外面層(B)を説明する。
該層を形成する樹脂組成物Bは、特に選ばれた環状オレフィン系樹脂と直鎖状低密度ポリエチレン樹脂との2成分を必須とし、且つ該環状オレフィン系樹脂を70〜90質量%、好ましくは75〜85質量%とし、該直鎖状低密度ポリエチレン樹脂を10〜30質量%、好ましくは15〜25質量%の配合比としなければならない。
ここで環状オレフィン系樹脂は、前記に例示するCO系樹脂と同じであり、直鎖状低密度ポリエチレン樹脂は、前記に例示するm−LLDPE樹脂又はチ−グラ−ナッタ触媒によるLLDPE樹脂(以下t−LLDPE樹脂と呼ぶ。)である。この中から前記中間層(A)とのバランスを考え適宜選択される。好ましいのは該CO系樹脂は、中間層(A)として使用するものと同じ樹脂であるのが良いが、この両外面層にあっては、いずれのLLDPE樹脂でも良い。
尚、該成分の質量%は、両者混合を100質量%とした場合の割合いである。
Next, both outer surface layers (B) will be described.
The resin composition B forming the layer essentially comprises two components of a selected cyclic olefin resin and a linear low density polyethylene resin, and the cyclic olefin resin is preferably 70 to 90% by mass, preferably It should be 75 to 85% by mass, and the linear low density polyethylene resin should be blended in an amount of 10 to 30% by mass, preferably 15 to 25% by mass.
Here, the cyclic olefin-based resin is the same as the CO-based resin exemplified above, and the linear low-density polyethylene resin is an m-LLDPE resin exemplified above or an LLDPE resin by a Ziegler-Natta catalyst (hereinafter t). -Referred to as LLDPE resin). Of these, an appropriate selection is made in consideration of the balance with the intermediate layer (A). The CO-based resin is preferably the same resin as that used for the intermediate layer (A), but any LLDPE resin may be used for both outer surface layers.
In addition, the mass% of this component is a ratio when both mixing is 100 mass%.

前記2種の成分と配合比をもってなる両外面層(B)が、前記中間層(A)の両面に積層されてのみ前記本発明は達成されることになるが、この該層(B)の作用効果は、主として該層(A)では得難い有機溶剤によるセンタ−シ−ル性の発現である。このセンタシ−ル性とは、フラット状の熱収縮フイルムの両端面をセンタ−で重合し、その重合部分に有機溶剤を連続塗布し、単に圧着するだけで強固に接着できる特性のことである。センタ−シ−ルは、他の例えば接着剤、熱融着等による方法もあるが、これ等はまず高速化に限度があること、接着ムラがで易いこと、設備的に複雑にもなり易い。   The present invention can be achieved only when both the outer surface layers (B) having the two components and the blending ratio are laminated on both surfaces of the intermediate layer (A). The effect is mainly the expression of the center seal property by the organic solvent which is difficult to obtain in the layer (A). The center seal property is a property that allows both ends of a flat heat-shrinkable film to be polymerized at the center, an organic solvent is continuously applied to the polymerized portion, and the adhesive can be firmly bonded simply by pressure bonding. For the center seal, there are other methods such as adhesives and heat-sealing. However, these methods are limited in speeding up, uneven adhesion easily, and complicated in equipment. .

前記有機溶剤としては、重合フイルム面が適正な速度で溶解又は膨潤し、蒸発もし易いものが求められる。この適正な速度とは、例えば、100〜200m/分の速度で重合接着する場合、該速度に追従して該フイルムの表層部分が溶解又は膨潤する速度である。従って、この速度より速い速度で溶解又は膨潤する該溶剤は、該フイルム内部まで侵蝕することになり、白化に至る。逆に遅いと接着できなくなる。この溶解又は膨潤速度のコントロ−ルは、この重合接着の速度自身でも可能でもあるが、好ましい溶解又は膨潤能力の異なる該溶媒の2〜3種の混合でもって行うのが好ましい。その1例を挙げると、シクロヘキサン等の環状飽和炭化水素とn−ヘキサン等の飽和炭化水素とアセトン等の脂肪ケトン又はテトラヒドロフラン等の環状ケトンとの混合溶媒である。   The organic solvent is required to have a polymer film surface that dissolves or swells at an appropriate rate and is easy to evaporate. The proper speed is, for example, a speed at which the surface layer portion of the film dissolves or swells following the speed when polymerizing and bonding at a speed of 100 to 200 m / min. Therefore, the solvent that dissolves or swells at a rate faster than this rate will erode into the film, leading to whitening. Conversely, if it is slow, it will not be possible to bond. The control of the dissolution or swelling rate can be performed by the polymerization adhesion rate itself, but is preferably carried out by mixing two or three kinds of the solvents having different preferable dissolution or swelling ability. One example is a mixed solvent of a cyclic saturated hydrocarbon such as cyclohexane, a saturated hydrocarbon such as n-hexane and a fatty ketone such as acetone or a cyclic ketone such as tetrahydrofuran.

前記有機溶剤による(接着)シ−ル作用は、2成分中のCO系樹脂成分によって発現する。しかしこの成分のみでは、例えば取り扱い中に、フイルム面に指等が接触した場合に、その部分に指紋が着き易い。付着した指紋部分は白っぽくなり(手油の侵蝕によると考えられる)、外観不良は勿論、光沢の低下を招く。またこの成分のみでは、中間層(A)により発現した適正なフイルム腰の硬さが、硬い方にシフトされ易い。
これ等の問題を解消するために見出された手段が、特にLLDPE樹脂のCO系樹脂へのブレンドである。適正なフイルム腰の硬さを維持し、該指紋等による白化も解消され、優れたセンタ−シ−ル性を有する両外面層が得られる。
勿論、この2成分ブレンド樹脂は、層成形性にも、中間層(A)との密着性にも極めて優れ、接着剤層の介在等の必要もない。
The (adhesion) seal action by the organic solvent is manifested by the CO-based resin component in the two components. However, with only this component, for example, when a finger or the like comes into contact with the film surface during handling, a fingerprint is likely to be attached to that portion. The attached fingerprint portion becomes whitish (it is considered to be due to the erosion of hand oil), and the appearance is of course deteriorated as well as the gloss. Further, with this component alone, the appropriate film waist hardness expressed by the intermediate layer (A) is easily shifted to a harder one.
A means found to solve these problems is, in particular, a blend of LLDPE resin to CO-based resin. An appropriate film waist hardness is maintained, whitening due to the fingerprint is eliminated, and both outer surface layers having excellent center seal properties can be obtained.
Of course, this two-component blend resin is extremely excellent in layer moldability and adhesion to the intermediate layer (A), and there is no need for an adhesive layer to intervene.

そして、前記2成分のブレンドによる新たな樹脂ではあるが、その配合比をCO系樹脂は70〜90質量%にし、LLDPE樹脂を10〜30質量%に抑える必要もある。これはCO系樹脂70質量%未満では、前記センタ−シ−ル性が最も有効に得られず、これが逆に90質量%を越えると指紋等による白化の完全解消にならないと共に、最も適正なフイルム腰の硬さの維持ができなくなる(硬く使いずらい方向にシフトする)。
尚、ブロキング防止剤として、例えばシリカの微量添加はあっても良い。
And although it is new resin by the blend of the said 2 component, it is necessary to keep the compounding ratio to 70-90 mass% for CO-type resin, and to suppress LLDPE resin to 10-30 mass%. If the CO-based resin is less than 70% by mass, the above-mentioned center seal property cannot be obtained most effectively. On the contrary, if it exceeds 90% by mass, whitening due to fingerprints cannot be completely eliminated and the most appropriate film can be obtained. It becomes impossible to maintain the stiffness of the waist (shifts in a direction that is hard and difficult to use).
As a blocking inhibitor, for example, a small amount of silica may be added.

前記3層によるフイルムの熱収縮性は、中間層(A)と両外面層(B)との間に、熱収縮速度の差はなく、どの方向(縦、横方向)に熱収縮するか、熱収縮率はいくらかのことを言うが、どの方向に、幾らの熱収縮率が必要かは、該フイルムの使用目的によって決められる。これを本発明が好ましい1つの用途として挙げる、ペットボトルの管状ラベルについて例示すると次ぎの通りである。
該ラベルは、まず縦方向の収縮は極力抑え、主として横方向へ収縮できるものであることが必要であり、そしてその収縮率は、横方向へ20〜40%、好ましくは28〜38%、縦方向へは5.0%以下、好ましくは1.0〜3.0%とする。ここで横方向の最大を40%としているのは、これを越えるとあまりにも強い収縮力で収縮するので、特に軽量ペットボトル(肉厚をより薄くした該ボトル)に装着された場合、該ボトルが変形に至る危険性があるからである。下限の20%は、これより小さいと該ボトルへのラベルの締着が弱く、また収縮(残存余力)が少ないので、装着されたラベルに隙間が発生し易くなることからである。
縦方向は、極力抑えるのが良いとは言っても、1%未満では良くない。これは該ラベルの締着をより完全に行うために好ましくないからである。上限の5.0%は、これより大きくなると、皺の発生と印刷画像の乱れを起こし易くなるからである。これ等の熱収縮性は、後述する延伸手段にを採ることで得られる。
尚、上記収縮率は、得られた3層延伸フイルムを80℃の熱水に10秒間浸漬した場合の横と縦の方向の収縮度合いを%で示した場合である。従って、熱媒、温度、時間が変わればそれに相応して収縮率は変わる。
In the heat shrinkability of the film by the three layers, there is no difference in heat shrinkage speed between the intermediate layer (A) and both outer surface layers (B), and in which direction (longitudinal and transverse directions) The heat shrinkage rate is something, but the direction in which the heat shrinkage rate is required is determined by the intended use of the film. The following is an example of a plastic bottle tubular label, which is cited as one preferred application of the present invention.
The label must first be able to suppress shrinkage in the vertical direction as much as possible, and can mainly shrink in the horizontal direction, and the shrinkage rate is 20 to 40%, preferably 28 to 38% in the horizontal direction. The direction is 5.0% or less, preferably 1.0 to 3.0%. Here, the maximum in the horizontal direction is 40% because when it exceeds this, it shrinks with an excessively strong contraction force, so when it is attached to a lightweight PET bottle (the bottle with a thinner wall thickness), the bottle This is because there is a risk of causing deformation. If the lower limit of 20% is smaller than this, the label is not fastened to the bottle, and the shrinkage (residual remaining force) is small, so that a gap is easily generated in the attached label.
Although it is better to suppress the vertical direction as much as possible, it is not good if it is less than 1%. This is because it is not preferable for more complete fastening of the label. This is because if the upper limit of 5.0% is larger than this, wrinkles and printed images are liable to occur. Such heat shrinkability can be obtained by adopting a stretching means described later.
In addition, the said shrinkage rate is a case where the shrinkage | contraction degree of the horizontal and vertical direction at the time of immersing the obtained three-layer extending | stretching film in 80 degreeC hot water for 10 second is shown by%. Therefore, if the heating medium, temperature, and time change, the shrinkage rate changes accordingly.

前記3層による熱収縮性フイルムの厚さ構成は、これも該フイルムの使用目的によって異なるが、少なくとも中間層(A)は、前記中枢的機能発現をより大きくするために、両外面層(B)よりも厚く設定するようにするのが良い。
これを本発明が好ましい1つの用途として挙げる、ペットボトルの管状ラベルの場合を例示すると次ぎの通りである。
まず全厚としては、40〜70μmとし、この中での中間層(A)は30〜50μm、残る10〜20μmを両外面層(B)(ト−タル)とするが、各外面層は同じ厚さにするのがカ−ル変形等の危険性がないので良い。
Although the thickness structure of the heat-shrinkable film by the three layers also varies depending on the purpose of use of the film, at least the intermediate layer (A) has both outer surface layers (B) in order to increase the central function expression. It is better to set it thicker than
The following is an example of a tubular label for a plastic bottle, which is cited as one preferred application of the present invention.
First, the total thickness is 40 to 70 μm, the intermediate layer (A) is 30 to 50 μm, and the remaining 10 to 20 μm is both outer surface layers (B) (total), but each outer surface layer is the same. Thickness is good because there is no danger of curl deformation.

次ぎに前記3層熱収縮性フイルム(フラット状)の製造手段について説明する。
該フイルムの製造手段には、丸ダイとTダイによる3層共押出成形があるが、Tダイによるのが好ましいので、以下Tダイによる方法を説明する。
まず前記各成分と配合比とが決まれば、それ等は単にドライブレンド又は溶融混練により十分分散混合して、新たな樹脂としての樹脂組成物A及び樹脂組成物Bを得る。
そして該樹脂組成物Aは、1台の溶融押出機へ、樹脂組成物Bは、他の2台の溶融押出機に供給する。各組成物は、所定の温度に調整されたこれ等押出機から所定温度に調整された3層Tダイに向かって、該樹脂組成物Aは中間に、樹脂組成物Bは両面に配置されるように同時に押出される。該ダイ内で一体となって3層に積層され、冷却ロ−ルにて冷却固化される。該ロ−ルでの冷却までは実質的に延伸は行わない。
Next, means for producing the three-layer heat-shrinkable film (flat shape) will be described.
The film production means includes three-layer coextrusion molding with a round die and a T die, but since a T die is preferred, a method using a T die will be described below.
First, when the components and the mixing ratio are determined, they are sufficiently dispersed and mixed simply by dry blending or melt kneading to obtain a resin composition A and a resin composition B as new resins.
The resin composition A is supplied to one melt extruder, and the resin composition B is supplied to the other two melt extruders. Each composition is arranged from the extruder adjusted to a predetermined temperature toward a three-layer T die adjusted to the predetermined temperature, and the resin composition A is arranged in the middle and the resin composition B is arranged on both sides. Are extruded at the same time. The die is integrated into three layers and cooled and solidified by a cooling roll. The film is not substantially stretched until the roll is cooled.

次ぎに前記得られた実質的無延伸の3層フイルムは、延伸装置に送り込んで延伸される。この延伸装置は、縦方向ヘの延伸のための少なくとも2本のロ−ルと横方向ヘの延伸のためのテンタ−とが加熱手段の併設をもって流れ方向に配列されなっている。使用目的により縦方向及び/又は横方向への延伸が行われる。
例えば、前記好ましく挙げる、ペットボトルの管状ラベル用である場合は、前記収縮率取得に対応して、まず縦方向へ1.8倍以下、好ましくは1.1〜1.5倍に、温度75〜90℃程度でロ−ル延伸し、引き続き横方向へ3.0〜7.5倍、好ましくは4.5〜7.0倍に、温度85〜100℃程度でテンタ−延伸する。次いでテンター内にて弛緩熱処理を行う。該熱弛緩は弛緩率約5〜8%で、温度は約70〜80℃で処理する。
Next, the substantially unstretched three-layer film obtained is sent to a stretching apparatus and stretched. In this stretching apparatus, at least two rolls for stretching in the longitudinal direction and tenters for stretching in the lateral direction are arranged in the flow direction with heating means. Depending on the purpose of use, stretching in the machine direction and / or the transverse direction is carried out.
For example, in the case of the above-mentioned preferable example for a tubular label of a PET bottle, first, in correspondence with the acquisition of the shrinkage rate, the temperature is 75 times or less, preferably 1.1 to 1.5 times in the vertical direction, and the temperature 75 Roll stretching is performed at about ˜90 ° C., followed by tenter stretching at a temperature of about 85 to 100 ° C. in the transverse direction to 3.0 to 7.5 times, preferably 4.5 to 7.0 times. Next, relaxation heat treatment is performed in the tenter. The thermal relaxation is performed at a relaxation rate of about 5 to 8% and a temperature of about 70 to 80 ° C.

前記得られた延伸3層フイルムは、更に次ぎの処理を行う。それはコロナ放電処理とエ−ジング処理である。
ここでコロナ放電処理は、印刷インキの乗り及びインキ密着をより強くし、エ−ジング処理は、内部歪の除去である。
該コロナ放電処理は、空気中で、出力10W/m/分以上で行い、エ−ジング処理は約30〜40℃で10〜29時間エージング室内に放置することで行う。
The obtained stretched three-layer film is further subjected to the following treatment. These are corona discharge treatment and aging treatment.
Here, the corona discharge treatment strengthens printing ink loading and ink adhesion, and the aging treatment is removal of internal distortion.
The corona discharge treatment is performed in air at an output of 10 W / m 2 / min or more, and the aging treatment is performed by leaving it in an aging chamber at about 30 to 40 ° C. for 10 to 29 hours.

次ぎに前記3層熱収縮性フイルムがペットボトルのチュ−ブ状ラベルとして使用される場合の一連の工程を説明する。
まず前記コロナ放電処理された面に、グラビヤによるカラ−印刷が行われる。印刷インキは、一般にオレフィン系フイルムに使用される水性又は油性のグラビヤ用インキである。この印刷は、多丁付けで行われる。この印刷が終了したら、1丁分に相当する横幅で縦にスリットされてロ−ルに巻き取られる。この1丁分を図1を参照して説明する。該図で1(斜線)が実印刷部分(ペットボトルの胴回り全周)、2が縦方向に設けられた非印刷部分、3が1枚のラベルにした場合の上下端に設けられた非印刷部分、つまり1丁分は、1の実印刷部分と2の縦方向非印刷部分と3の上下端非印刷部分からなっている。この1丁分を1単位レイアウトとして、これが横方向に多丁付けされて、グラビヤ印刷が行われる。この多丁付け印刷が終了したら、左右4a〜4で示す横幅で、各4aと4の位置を縦方向にスリットされ、多丁付けした数だけのロ−ル巻き印刷フイルムが得られる。
Next, a series of steps when the three-layer heat-shrinkable film is used as a tube-like label for a PET bottle will be described.
First, color printing by gravure is performed on the surface subjected to the corona discharge treatment. The printing ink is a water-based or oil-based gravure ink generally used for an olefin-based film. This printing is performed by multiple sticking. When this printing is completed, the sheet is vertically slit with a width corresponding to one and wound up on a roll. This one portion will be described with reference to FIG. In the figure, 1 (diagonal line) is the actual printing part (the entire circumference of the PET bottle circumference), 2 is the non-printing part provided in the vertical direction, and 3 is the non-printing provided at the upper and lower ends when one label is used. The portion, that is, one portion, is composed of one actual printing portion, two longitudinal non-printing portions, and three upper and lower non-printing portions. Gradually printing is performed by making one unit layout as one unit layout, and adding this in the horizontal direction. When this multi-letter printing is completed, the positions 4a and 4 are slit in the vertical direction with the width shown by the left and right 4a-4, and the roll-wrapped printing film of the number of the multi-sticker is obtained.

前記得られたロ−ル巻き印刷フイルムは、次ぎのようにして管状に成形される。
まず該フイルムはセンターシール機のフォーマー部分に向かって巻き出されていく。この時にミシン目6が穿設される。ミシン目6は、縦1列の場合もあれば2列の場合もある。ミシン目が穿設された該フィルムの両端はセンタ−位置で、つまり図1で言えば、右側の2で示す非印刷部分が上面に、左側の4aでカットした実印刷部分の端部が下面になるように重合される。この重合されたフイルムは、その重合部分の間にノズルを差し込んで、ここから前記する有機溶剤の適正量を吐出する。直ちにその上下接合の層面は溶解又は膨潤するので、これをニップロ−ルで連続圧着する。重合面は強固に接着シ−ルされて、チュ−ブ状に成形されるので、(フラット状で)巻き取る。
The obtained roll winding printing film is formed into a tubular shape as follows.
First, the film is unwound toward the former part of the center sealing machine. At this time, a perforation 6 is formed. The perforation 6 may be a single vertical column or a double column. Both ends of the perforated film are in the center position, that is, in FIG. 1, the non-printing portion indicated by 2 on the right side is the top surface, and the end portion of the actual printing portion cut by the left side 4a is the bottom surface. It is polymerized to become. This polymerized film inserts a nozzle between the polymerized portions, and discharges an appropriate amount of the organic solvent described above. Immediately, the layer surfaces of the upper and lower joints are dissolved or swollen, and this is continuously pressed by a nip roll. The polymerized surface is tightly bonded and molded into a tube shape, so it is wound up (in a flat shape).

そして前記巻き取られたチュ−ブ状フイルムは、1枚(ペットボトル1本分)のラベルにカットされるが、このカット位置は、図1の3で示す非印刷部分の中間位置5である。横方向にカットされた1枚のラベルは、その上下端に非印刷部分を有している。以上における非印刷部分の2及び3の幅は、適宜であるが、一般には非印刷部分2は3〜5mm、非印刷部分3は2〜4mmである。   The wound tube-shaped film is cut into one label (for one PET bottle), and this cut position is an intermediate position 5 of the non-printing portion indicated by 3 in FIG. . One label cut in the horizontal direction has non-printing portions at the upper and lower ends. The widths of the non-printing portions 2 and 3 in the above are appropriate, but generally the non-printing portion 2 is 3 to 5 mm and the non-printing portion 3 is 2 to 4 mm.

そして前記得られたラベルは開口され、ペットボトルが嵌入される。
この嵌入も自動的に連続して行われるので、まず該ボトルはその胴部分を中心に容易に挿入できることが必要である。この為には所定の隙間(この隙間は、該ボトルの外径よりも該ラベルの内径を大きくすることで得られる。)が必要であるが、そのフイルムの有する収縮率との関係から、あまり隙間が大きいと締着が十分でなくなる。この締着もある程度の残留収縮力をもって行われることが望ましい。この嵌入隙間と締着とが良くバランスする隙間を例示すると、約5〜8mmである。
挿入された該ボトルは、約75〜95℃の蒸気トンネル内を5〜15秒間要して通過する。残留収縮力を維持してしっかりと締着される。
The obtained label is opened, and a plastic bottle is inserted.
Since this insertion is also performed automatically and continuously, it is first necessary that the bottle can be easily inserted around its body portion. For this purpose, a predetermined gap (this gap can be obtained by making the inner diameter of the label larger than the outer diameter of the bottle) is necessary. If the gap is large, the fastening will not be sufficient. It is desirable that this fastening is also performed with a certain amount of residual shrinkage. An example of the gap in which the fitting gap and the fastening are well balanced is about 5 to 8 mm.
The inserted bottle passes through a steam tunnel at about 75-95 ° C. for 5-15 seconds. The residual shrinkage force is maintained and tightened firmly.

以下に比較例と共に実施例を挙げて更に詳述する。
尚、本例で言う腰(硬さ)の強さ、熱収縮率、指紋による白化(指紋白化と呼ぶ。)、低温初期熱収縮による白化(以下初期収縮白化と呼ぶ。)、シ−ル強度、耐落下ミシン目破断性、耐凍結ミシン目破断性及びミシン目の破れ性は、次ぎの条件で測定して得たものである。
Hereinafter, the present invention will be described in further detail with reference to examples and comparative examples.
In this example, the strength of the waist (hardness), heat shrinkage rate, whitening by fingerprint (referred to as fingerprint whitening), whitening by low-temperature initial heat shrinkage (hereinafter referred to as initial shrinkage whitening), and seal strength. The drop perforation break resistance, the freeze perforation break resistance, and the perforation breakability were measured under the following conditions.

●フィルム腰硬さ、
得られた熱収縮フイルムを株式会社東洋精機製作所製 LOOP STIFFNESS TESTERを用いて縦方向を測定し(10点平均値)、その値をmNで示した。22〜30mNが適正である。
尚、この腰硬さに関し、特に縦方向が測定されるのは、チュ−ブラベルとしての使用では、開口状態がしっかりと維持される必要があるからである。
● film waist hardness,
The longitudinal direction of the obtained heat shrinkable film was measured using LOOP STIFFNESS TESTER manufactured by Toyo Seiki Seisakusho Co., Ltd. (10-point average value), and the value was expressed in mN. 22-30 mN is appropriate.
In addition, regarding the waist hardness, the longitudinal direction is particularly measured because it is necessary to maintain the open state firmly in use as a tube label.

●熱収縮率、
得られた熱収縮フイルムから100mm(縦方向)×100mm(横方向)のサンプル10枚を切り取る。そしてこのサンプルの1枚を80℃温水に10秒間浸漬させたら、直ちに取り出して冷水に漬ける。これの横方向の長さL(mm)と縦方向の長さLaを測定する。そして各々100−L、100−Laを算出し、熱収縮率%とする。
● Heat shrinkage,
Ten samples of 100 mm (longitudinal direction) × 100 mm (lateral direction) are cut out from the obtained heat-shrinkable film. When one of the samples is immersed in hot water at 80 ° C. for 10 seconds, it is immediately taken out and immersed in cold water. The horizontal length L (mm) and the vertical length La are measured. And 100-L and 100-La are calculated, respectively, and set as heat shrinkage percentage%.

●指紋白化、
人差し指の指紋面にオレイン酸を薄く塗り、得られた熱収縮フイルムの面に接触した後、緊張状態で80℃の熱風に10秒曝す。白い指紋となってはっきりと付く場合を×、実質的に指紋が目視できない場合を〇とする。
● Fingerprint whitening,
A thin layer of oleic acid is applied to the fingerprint surface of the index finger, and after contact with the surface of the resulting heat-shrinkable film, it is exposed to hot air at 80 ° C. for 10 seconds under tension. “X” indicates a white fingerprint that is clearly attached, and “Yes” indicates that the fingerprint cannot be visually observed.

●初期収縮白化(擦りガラス状に見られる白さ)、
得られた熱収縮フイルムを70℃の湯中に3秒間浸漬する。10ポイントの明朝文字で印刷した白紙の上に乾燥した該フイルムを載せて上から透視する。該文字が明白に目視でき判読できる場合を〇、目視はできるが、ぼやけてしまう場合を×とする。
● Initial shrinkage whitening (whiteness seen in frosted glass),
The obtained heat-shrinkable film is immersed in 70 ° C. hot water for 3 seconds. The dried film is placed on a white paper printed with 10-point Mincho characters and seen through. The case where the character is clearly visible and legible is marked with ◯, and when the character is visible but blurred, it is marked with x.

シ−ル強度、
有機溶剤によりセンタ−シ−ルされたチュ−ブフイルムをシール部分以外から開き、該シ−ル部分を新東科学株式会社製PEELING TESTER HEIDON−17型測定機を使って、180度剥離を行う。得られる強度をN/cmで示す。3N/cm以上が有効。
Seal strength,
The tube film center-sealed with an organic solvent is opened from a portion other than the seal portion, and the seal portion is peeled 180 degrees using a PEELING TESTER HEIDON-17 type measuring machine manufactured by Shinto Kagaku Co., Ltd. The strength obtained is shown in N / cm. 3N / cm or more is effective.

●耐落下ミシン目破断性、
得られたラベル締着包装のペットボトルに水を充填し、これを垂直(底面が下)に1mの高さからコンクリ−ト面に落下させる。該ボトルのミシン目の破断の有無を目視確認する。ミシン目のいずれの位置でも少なくとも一ヶ所の破断があれば×、無しは〇とする。
● Fall perforation resistance,
The obtained plastic bottle of the label fastening packaging is filled with water, and dropped vertically from the height of 1 m onto the concrete surface (bottom side down). The bottle is visually checked for perforations. If there is at least one break at any position of the perforation, ×, and none for none.

●耐凍結ミシン目破断性、
得られたラベル締着包装のペットボトルに水を充填し、−5℃で24時間冷凍保存する。氷結されたことを確認し、ミシン目部分を目視し破断の有無を確認する。破断があれば×、無しは〇とする。
● Freezing perforation resistance,
The obtained label fastening packaging PET bottle is filled with water and stored frozen at −5 ° C. for 24 hours. After confirming that it is frozen, visually check the perforation and check for breakage. X if there is a break, ○ if there is none.

●ミシン目の破れ性、
前記耐凍結ミシン目破断性テストを合格したペットボトルのミシン目の破れ性を女性(家庭の主婦/無作為)に依頼しテストする。破り動作は、ミシン目の上一端に手の爪先を入れて、該女性がミシン目に沿って破る。この動作において、手の爪先を入れてラベルを引き起して破る動作に入った時、その部分が伸びて、ミシン目の破れ動作に繋がらない場合は勿論、(その部分の伸びなく)ミシン目に沿って破れだすが、途中でミシン目ラインからそれて、ミシン目でない部分が破れてしまう場合も×とし、いずれの場合もなく円滑に破れる場合を〇とする。
尚、上記3点のミシン目に関する測定におけるミシン目は、0.5mm:2.0mm(孔の長さ0.5mm、孔と孔の間隔2.0mm)のピッチで行った。
● Perforation breaking,
A female (housewives in the home / random) is tested for the perforation of the plastic bottle that has passed the freeze perforation resistance test. In the tearing operation, a toe of a hand is put on the upper end of the perforation, and the woman breaks along the perforation. In this operation, when the toe of the hand is inserted and the label is raised to break, if that part stretches and does not lead to the perforation of the perforation, the perforation (without the extension of that part) Is broken along the perforation line, but when the part which is not perforated is broken in the middle, it is marked as x, and when it breaks smoothly without any case, it is marked as ◯.
The perforations in the measurement on the three perforations were performed at a pitch of 0.5 mm: 2.0 mm (hole length 0.5 mm, hole-to-hole spacing 2.0 mm).

(実施例1〜4)
尚、以下各例で言うMFRは、200℃、荷重49.03Nでの10分間の吐出量gを示している(JIS K7210)。
<樹脂組成物A>、
実施例1〜4で使用した樹脂は、次ぎの4成分であり、各成分の配合比は表1に示した。
尚、この4成分の混合は、チップ状の各成分をドライブレンドによった。
◎m−LLDPE樹脂・・ヘキセン1共重合のMFR2.0、密度0.926の樹脂。
◎LDPE樹脂・・MFR0.5、密度0.922の樹脂。
◎CO樹脂・・(実施例1〜3)Tg70℃のエチレンとテトラシクロドデセンとのランダム共重合樹脂。
・・(実施例4)Tg70℃のエチレンユニットとシクロペンタンユニットとからなるランダム共重合樹脂。
◎石油樹脂・・軟化点137℃の脂環族系樹脂(シクロペンタジエン)の水添化物。
<樹脂組成物B>、
尚、この3成分の混合は、チップ状の各成分をドライブレンドによった。
◎CO樹脂・・(実施例1〜3)Tg70℃のエチレンとテトラシクロドデセンとのランダム共重合樹脂。
・・(実施例4)Tg70℃のエチレンユニットとシクロペンタンユニットとからなるランダム共重合樹脂。
◎LLDPE樹脂・・(実施例1)ヘキセン1共重合のMFR2.3、密度0.914のt−LLDPE樹脂。
・・(実施例2〜4))ヘキセン1共重合のMFR2.0、密度0.926のm−LLDPE樹脂。
◎ブロッキング防止剤・・合成シリカ(三井化学株式会社製 EAZ−10)。
(Examples 1-4)
In the following examples, MFR indicates a discharge amount g for 10 minutes at 200 ° C. and a load of 49.03 N (JIS K7210).
<Resin composition A>,
The resins used in Examples 1 to 4 are the following four components, and the blending ratio of each component is shown in Table 1.
The mixing of these four components was performed by dry blending each of the chip-like components.
◎ m-LLDPE resin ·· MFR 2.0 of hexene 1 copolymer and resin of density 0.926.
◎ LDPE resin ·· MFR 0.5, density 0.992 resin.
CO resin (Examples 1 to 3) A random copolymer resin of ethylene and tetracyclododecene having a Tg of 70 ° C.
(Example 4) A random copolymer resin composed of an ethylene unit and a cyclopentane unit having a Tg of 70 ° C.
◎ Petroleum resin: Hydrogenated product of alicyclic resin (cyclopentadiene) with a softening point of 137 ° C.
<Resin composition B>,
The mixing of these three components was performed by dry blending each of the chip-like components.
CO resin (Examples 1 to 3) A random copolymer resin of ethylene and tetracyclododecene having a Tg of 70 ° C.
(Example 4) A random copolymer resin composed of an ethylene unit and a cyclopentane unit having a Tg of 70 ° C.
LLDPE resin (Example 1) A hexene 1 copolymerized MFR 2.3 and a density of 0.914 t-LLDPE resin.
(Examples 2 to 4) MFR 2.0 of hexene 1 copolymer, m-LLDPE resin having a density of 0.926.
◎ Anti-blocking agent ·· Synthetic silica (EAZ-10 manufactured by Mitsui Chemicals, Inc.).

そして、前記各例における樹脂組成物A、Bを使って、各例共同じの次ぎの条件にて、3層Tダイにより共押出しを行った。
まず該組成物Aは1台の溶融押出機に、該組成物Bは2台の溶融押出機に分けて供給し、該組成物Aは中間に、該組成物Bは両面になるようにし、200℃の3層Tダイから同時に溶融共押出しを行い、これを25℃の冷却ロール上に引き取りながら冷却固化し3層フイルムを得た。
そして該フイルムをロ−ル延伸機に通して縦方向に85℃で1.2倍の延伸し、次いでテンタ−延伸機に通して横方向に90℃で6.7倍に延伸を行った。次ぎに該テンタ−延伸機を使って75℃に加熱して、主として横方向に7%弛緩しながら熱固定し、常温に冷却したら、今度は弛緩該フィルムの片面を12.5W/m/分の処理強度でコロナ放電処理(空気中)してロ−ル状に巻取った。最後にこの巻取ったフイルムを35℃で16時間放置してエ−ジングした。
得られた熱収縮性フィルムの全厚は、各例共に50.0μm、就中、中間層(A)33.4μm、両外面層(B)は8.3μmであり、そして各フィルム腰硬さ、熱収縮率、指紋白化、初期収縮白化を測定し、結果を表2に示した。
Then, using the resin compositions A and B in each of the above examples, each of the examples was coextruded with a three-layer T die under the same conditions as described below.
First, the composition A is supplied to one melt extruder, the composition B is supplied separately to two melt extruders, the composition A is in the middle, and the composition B is on both sides. Melt coextrusion was simultaneously performed from a 200 ° C. three-layer T-die, and this was cooled and solidified while being drawn on a 25 ° C. cooling roll to obtain a three-layer film.
The film was passed through a roll stretching machine and stretched 1.2 times at 85 ° C. in the machine direction, and then passed through a tenter stretching machine and stretched 6.7 times at 90 ° C. in the transverse direction. Next, it was heated to 75 ° C. using the tenter-stretching machine, heat-fixed while relaxing mainly by 7% in the transverse direction, and once cooled to room temperature, one side of the relaxed film was 12.5 W / m 2 / Corona discharge treatment (in air) with a treatment strength of minutes was wound in a roll shape. Finally, the wound film was aged at 35 ° C. for 16 hours.
The total thickness of the obtained heat-shrinkable film was 50.0 μm in each example, and in particular, the intermediate layer (A) was 33.4 μm, both outer surface layers (B) were 8.3 μm, and each film stiffness The thermal shrinkage rate, fingerprint whitening, and initial shrinkage whitening were measured, and the results are shown in Table 2.

次ぎに、前記各例で得た各熱収縮性フイルムに、次ぎの1丁分を1単位デザインとして、そのコロナ放電処理面に、多丁付けで3色グラビヤ印刷を行った。
図1において、実印刷部分1は(縦)146mm×(横)235mm、2(縦方向)の非印刷部分の幅5mm、3(ラベル上下端に相当)の非印刷部分の幅3mmからなる。印刷は油性ウレタン系グラビヤインキ使用。該4例のいずれも問題なく美麗に印刷でき、ロ−ルで巻き取った。
Next, each heat-shrinkable film obtained in each of the above examples was subjected to three-color gravure printing on the corona discharge treated surface with a single unit design of the next one.
In FIG. 1, the actual printing portion 1 is composed of (vertical) 146 mm × (horizontal) 235 mm, 2 (vertical direction) non-printing portion width 5 mm, 3 (corresponding to the upper and lower ends of the label) non-printing portion width 3 mm. Printing uses oil-based urethane gravure ink. All of the four examples could be printed beautifully without problems and wound up with a roll.

そして、前記各例で印刷された熱収縮性フイルムを(図1で示す)4aと4の位置で縦方向にスリットし、横幅240mmの長尺ロ−ル巻きを得た。次ぎにこの長尺ロ−ル巻きフイルムを速度150m/分で送りながら、次ぎの条件でまずミシン目の穿設、次ぎにセンタ−で両端重合(重合は前記2の非印刷部分を上面に幅5mm幅で行う。)、引き続き、その重合部分の有機溶剤による接着を行って、チュ−ブ状熱収縮性フイルムに成形しフラット状で巻き取った。
●ミシン目の穿設・・実印刷部分の両端10mmの位置に孔長0.5mm.ピッチ2mm間隔で、回転ミシン目刃にて孔を開ける。
●有機溶剤による接着・・シクロヘキサンとn−ヘキサンとアセトンからなる混合溶媒(ほぼ同量混合)を用い、その重合部分にノズルを挿入して、ここから吐出しニップロ−ラで圧着(常温)する。
尚、該混合溶媒のノズルからの吐出は、該速度に追従し、且つその吐出も主としてその重合部分の中央位置で行い、その量も濡れる程度に調整し行う(必要以上に多いと、重合部分以外に洩れて行くので良くない)。
得られた各例での該フイルムの1部を切り出して、その重合接着部分のシ−ル強度を測定し、結果を表2に示した。
The heat-shrinkable film printed in each of the above examples was slit in the vertical direction at the positions 4a and 4 (shown in FIG. 1) to obtain a long roll wound with a width of 240 mm. Next, while feeding this long roll film at a speed of 150 m / min, perforation is first perforated under the following conditions, and then both ends are polymerized at the center (polymerization is the width of the non-printed portion of 2 above the top surface). Subsequently, the polymerized portion was bonded with an organic solvent, formed into a tube-like heat-shrinkable film, and wound up in a flat shape.
● Perforation perforation ・ ・ The hole length is 0.5mm at the position of 10mm on both ends of the actual printing part. Holes are opened with a rotary perforation at intervals of 2 mm.
● Adhesion with organic solvents ・ ・ Use a mixed solvent consisting of cyclohexane, n-hexane and acetone (mixed in almost the same amount), insert a nozzle into the polymerization area, discharge from this, and press-bond with a nip roller (room temperature) .
In addition, the discharge of the mixed solvent from the nozzle follows the speed, and the discharge is also performed mainly at the central position of the polymerization portion, and the amount thereof is adjusted so as to get wet (if more than necessary, the polymerization portion It ’s not good because it ’s leaking to others).
A part of the film in each of the obtained examples was cut out, and the seal strength of the polymerization adhesion part was measured. The results are shown in Table 2.

次ぎに、前記各例で得られた(フラット状)チュ−ブ状熱収縮性フイルムが1枚のラベルとして切り出されるように、非印刷部分3mmの位置(図1で示すと5の位置)で水平にカットした。得られたラベルの大きさは、折り径114mm、縦152mm(実印刷部分の縦長146mmと上下端各3mmの非印刷部分の合計)であった。そしてこのラベルを次ぎの条件で軽量ペットボトルに挿入し、スチ−ムトンネル中を通して熱収縮させて、締着包装した。
●軽量ペットボトル・・500mlで重量25g(従来は30g)、胴径65mm(ラベルの直径70mm)、
●スチ−ム温度と加熱時間・・80℃で7秒間。
各例共に、問題なく美麗にラベル包装された軽量ペットボトルを得ることができた。
Next, the tube-shaped heat-shrinkable film obtained in each of the above examples is cut out as a single label at a position of 3 mm in the non-printing portion (position 5 in FIG. 1). Cut horizontally. The size of the obtained label was a folding diameter of 114 mm and a vertical length of 152 mm (the total length of the actual printed portion was 146 mm long and the non-printed portion was 3 mm at each of the upper and lower ends). Then, this label was inserted into a lightweight PET bottle under the following conditions, and heat-shrinked through a steam tunnel for fastening packaging.
● Lightweight PET bottle ・ 500g with 25g weight (previously 30g), body diameter 65mm (label diameter 70mm),
● Steam temperature and heating time-7 seconds at 80 ° C.
In each case, a lightweight PET bottle beautifully labeled and packaged could be obtained without problems.

最後に前記得られたラベル包装の軽量ペットボトルに水を充填・キャップして各々耐落下ミシン目破断性、耐凍結ミシン目破断性及びミシン目の破れ性を測定した。結果は表2に示した。   Finally, the light weight PET bottle of the obtained label packaging was filled with water and capped to measure the fall perforation resistance, the freeze perforation resistance, and the perforation resistance. The results are shown in Table 2.

(比較例1〜5)(配合比の違いによるもの)
<樹脂組成物A>、
比較例1〜5で使用した樹脂は、次ぎの4成分で各成分の配合比は表1に示した。
尚、各成分の混合は、実施例と同じドライブレンドによった。
◎m−LLDPE樹脂・・前記実施例に同じ。
◎LDPE樹脂・・前記実施例に同じ。
◎CO樹脂・・Tg70℃のエチレンとテトラシクロドデセンとのランダム共重合樹脂、
◎石油樹脂・・前記実施例に同じ。
<樹脂組成物B>、
尚、この3成分の混合は、チップ状の各成分をドライブレンドによった。
◎CO樹脂・・前記実施例に同じ。
◎LLDPE樹脂・・ヘキセン1共重合のMFR2.0、密度0.926のm−LLDPE樹脂。
◎ブロッキング防止剤・・前記実施例に同じ。
(Comparative Examples 1-5) (Due to the difference in blending ratio)
<Resin composition A>,
The resins used in Comparative Examples 1 to 5 are the following four components, and the blending ratio of each component is shown in Table 1.
In addition, mixing of each component was based on the same dry blend as an Example.
◎ m-LLDPE resin. Same as the previous example.
◎ LDPE resin ... Same as the previous example.
◎ CO resin ・ Random copolymer resin of ethylene and tetracyclododecene with Tg of 70 ° C.
◎ Petroleum resin ... Same as the previous example.
<Resin composition B>,
The mixing of these three components was performed by dry blending each of the chip-like components.
◎ CO resin ... Same as the previous example.
◎ LLDPE resin ·· MFR2.0 of hexene 1 copolymerization, m-LLDPE resin with a density of 0.926.
◎ Anti-blocking agent. Same as in the previous example.

そして前記樹脂組成物A、Bを使って、実施例1と同じ条件で3層Tダイにより共押出し、延伸、弛緩熱固定、コロナ放電処理及びエ−ジングを行った。
得られた熱収縮性フィルムの全厚は、各例共に同じで、50.0μm、就中、中間層(A)33.4μm、両外面層(B)は8.3μmであり、そして各フィルム腰硬さ、熱収縮率、指紋白化、初期収縮白化を測定し表2に示した。
And using the said resin composition A and B, it coextruded with the 3 layer T die on the same conditions as Example 1, and performed extending | stretching, relaxation | loosening heat fixation, a corona discharge process, and aging.
The total thickness of the obtained heat-shrinkable film was the same in each example, 50.0 μm, in particular, the intermediate layer (A) 33.4 μm, both outer surface layers (B) were 8.3 μm, and each film Table 2 shows waist hardness, heat shrinkage, fingerprint whitening, and initial shrinkage whitening.

そして前記得た各例の熱収縮性フィルムを用いて、前記実施例と同じ条件で、印刷から1枚のラベルに至る工程を得、最後にこの各例でのラベルを軽量ペットボトルに熱収縮して締着包装した。そして該ボトルも実施例1と同様に水を充填・キャップし、同様にミシン目に対するテストした。
同様に重合接着部分のシ−ル強度、耐落下ミシン目破断性、耐凍結ミシン目破断性及びミシン目の破れ性を測定し、結果を表2に示した。
Then, using the heat-shrinkable film of each example obtained above, the process from printing to one label was obtained under the same conditions as in the example, and finally the label in each example was heat-shrinked into a lightweight PET bottle. And fastened and packed. The bottle was also filled and capped with water in the same manner as in Example 1 and similarly tested for perforations.
Similarly, the seal strength, drop perforation break resistance, freeze perforation break resistance, and perforation breakability of the polymerized bonded portion were measured, and the results are shown in Table 2.

(比較例6)(中間層Aにt−LLDPE樹脂使用の場合)
実施例1において、樹脂組成物Aに使用したm−LLDPE樹脂に変えて、ヘキセン1共重合のMFR2.3、密度0.914のt−LLDPE樹脂を使用する以外は、全て同一条件で熱収縮フイルムを得た。該フイルムの厚さ構成は、実施例と同じであり、フィルム腰硬さ、熱収縮率、指紋白化、初期収縮白化を測定し表2に示した。
(Comparative Example 6) (When t-LLDPE resin is used for the intermediate layer A)
In Example 1, in place of the m-LLDPE resin used in the resin composition A, heat shrinkage was performed under the same conditions except that a hexene 1 copolymerized MFR 2.3 and a density of 0.914 t-LLDPE resin were used. I got a film. The thickness structure of the film was the same as in the example, and the film stiffness, heat shrinkage rate, fingerprint whitening, and initial shrinkage whitening were measured and shown in Table 2.

そして、前記熱収縮フイルムについても、実施例と同じ条件で、印刷から1枚のラベルに至る工程を得、最後にこのラベルを軽量ペットボトルに熱収縮して締着包装した。そして該ボトルも実施例1と同様に水を充填・キャップし、同様にミシン目に対するテストを行った。
同様に重合接着部分のシ−ル強度、耐落下ミシン目破断性、耐凍結ミシン目破断性及びミシン目の破れ性を測定し、結果を表2に示した。
And also about the said heat shrinkable film, on the same conditions as an Example, the process from printing to one label was obtained, and this label was heat-shrinked to the lightweight PET bottle, and was fastened and packaged finally. The bottle was filled and capped with water in the same manner as in Example 1, and a test for perforations was performed in the same manner.
Similarly, the seal strength, drop perforation break resistance, freeze perforation break resistance, and perforation breakability of the polymerized bonded portion were measured, and the results are shown in Table 2.

Figure 0004651982
Figure 0004651982
Figure 0004651982
Figure 0004651982

は、(印刷)1丁分のレイアウト図(平面)である。These are layout drawings (planes) for one (print).

符号の説明Explanation of symbols

1・・実印刷部分
2、3・・非印刷部分
4a、4、5・・カット位置
6・・ミシン目
1 ・ ・ Actual printing part 2、3 ・ ・ Non-printing part 4a, 4, 5 ・ ・ Cut position 6 ・

Claims (2)

下記樹脂組成物Aによるフイルムを中間層(A)とし、樹脂組成物Bによるフイルムを両外面層(B)とすることを特徴とする熱収縮性積層フイルム。
<樹脂組成物A>
密度(g/cm3)が、0.915〜0.930のメタロセン触媒による直鎖状低密度ポリエチレン樹脂45〜65質量%、低密度ポリエチレン樹脂5〜25質量%、環状オレフィン系樹脂10〜15質量%及び石油樹脂5〜25質量%。
<樹脂組成物B>
環状オレフィン系樹脂70〜90質量%及び直鎖状低密度ポリエチレン樹脂10〜30質量%。
A heat-shrinkable laminated film, wherein a film made of the following resin composition A is used as an intermediate layer (A) and a film made of the resin composition B is used as both outer surface layers (B).
<Resin composition A>
Linear low density polyethylene resin 45 to 65 mass%, low density polyethylene resin 5 to 25 mass%, cyclic olefin resin 10 to 15 mass% by metallocene catalyst having a density (g / cm3) of 0.915 to 0.930. % And petroleum resin 5-25% by mass.
<Resin composition B>
Cyclic olefin resin 70-90 mass% and linear low density polyethylene resin 10-30 mass%.
前記熱収縮性積層フイルムによるミシン目入りチューブ状フイルムがラベルとして軽量ペットボトルに熱収縮締着された包装軽量ペットボトル。 A packaged lightweight PET bottle in which a perforated tubular film made of the heat-shrinkable laminated film is heat-shrink fastened to a lightweight PET bottle as a label.
JP2004208645A 2004-07-15 2004-07-15 Heat-shrinkable laminated film and packaging lightweight PET bottle Expired - Lifetime JP4651982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208645A JP4651982B2 (en) 2004-07-15 2004-07-15 Heat-shrinkable laminated film and packaging lightweight PET bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208645A JP4651982B2 (en) 2004-07-15 2004-07-15 Heat-shrinkable laminated film and packaging lightweight PET bottle

Publications (2)

Publication Number Publication Date
JP2006027052A JP2006027052A (en) 2006-02-02
JP4651982B2 true JP4651982B2 (en) 2011-03-16

Family

ID=35893961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208645A Expired - Lifetime JP4651982B2 (en) 2004-07-15 2004-07-15 Heat-shrinkable laminated film and packaging lightweight PET bottle

Country Status (1)

Country Link
JP (1) JP4651982B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5779866B2 (en) * 2010-11-22 2015-09-16 Dic株式会社 Multilayer film and packaging material using the film
CN103270091B (en) * 2010-12-22 2015-02-18 宝理塑料株式会社 Structure and cyclic olefin resin molded body
CN102529274B (en) 2011-12-30 2014-05-28 广东德冠薄膜新材料股份有限公司 Polyolefin shrink film and preparation method thereof
JP5617059B1 (en) * 2012-11-22 2014-10-29 グンゼ株式会社 Heat shrinkable film
JP5632564B1 (en) * 2012-12-27 2014-11-26 ポリプラスチックス株式会社 Film production method
EP3168259B1 (en) * 2014-07-07 2020-11-04 Toray Industries, Inc. Molding film and molding transfer foil using same
CN114408392A (en) * 2022-02-25 2022-04-29 贵州至当科技有限公司 Wine bottle or cosmetic bottle made of polymer-based composite material reinforced plastic and preparation method thereof
WO2024029522A1 (en) * 2022-08-03 2024-02-08 グンゼ株式会社 Heat-shrinkable film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128841A (en) * 1988-11-09 1990-05-17 Asahi Chem Ind Co Ltd Three-layered crosslinked film and manufacture thereof
JPH08112885A (en) * 1994-10-17 1996-05-07 Okura Ind Co Ltd Heat-shrinkable film
JP2000351183A (en) * 1999-04-08 2000-12-19 Sekisui Chem Co Ltd Heat-shrinkable film
JP2001315260A (en) * 2000-03-02 2001-11-13 C I Kasei Co Ltd Heat shrinkable polyolefin film
JP2002234115A (en) * 2001-02-13 2002-08-20 Gunze Ltd Multilayered heat-shrinkable film, and shrinkable label and container using the same
JP2002370327A (en) * 2001-06-19 2002-12-24 Okura Ind Co Ltd Polyethylene multilayered heat-shrinkable film
JP2003280526A (en) * 2002-03-20 2003-10-02 Dainippon Printing Co Ltd Label and labeled package
JP2004083818A (en) * 2002-08-29 2004-03-18 Nippon Zeon Co Ltd Heat-shrinkable film
JP2005201987A (en) * 2004-01-13 2005-07-28 Fuji Seal International Inc Stretch-shrink label

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128841A (en) * 1988-11-09 1990-05-17 Asahi Chem Ind Co Ltd Three-layered crosslinked film and manufacture thereof
JPH08112885A (en) * 1994-10-17 1996-05-07 Okura Ind Co Ltd Heat-shrinkable film
JP2000351183A (en) * 1999-04-08 2000-12-19 Sekisui Chem Co Ltd Heat-shrinkable film
JP2001315260A (en) * 2000-03-02 2001-11-13 C I Kasei Co Ltd Heat shrinkable polyolefin film
JP2002234115A (en) * 2001-02-13 2002-08-20 Gunze Ltd Multilayered heat-shrinkable film, and shrinkable label and container using the same
JP2002370327A (en) * 2001-06-19 2002-12-24 Okura Ind Co Ltd Polyethylene multilayered heat-shrinkable film
JP2003280526A (en) * 2002-03-20 2003-10-02 Dainippon Printing Co Ltd Label and labeled package
JP2004083818A (en) * 2002-08-29 2004-03-18 Nippon Zeon Co Ltd Heat-shrinkable film
JP2005201987A (en) * 2004-01-13 2005-07-28 Fuji Seal International Inc Stretch-shrink label

Also Published As

Publication number Publication date
JP2006027052A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
EP1632343B1 (en) Multilayer heat-shrinkable film and containers fitted with labels made from the film through heat shrinkage
EP2355979B1 (en) Multilayer shrink films, labels made therefrom and use thereof
JPH03218812A (en) Cold stretched material containing propylene resin composition and its manufacture
WO2006075634A1 (en) Heat-shrinkable layered film, molded article comprising the film, and heat-shrinkable label and container
JP4651982B2 (en) Heat-shrinkable laminated film and packaging lightweight PET bottle
JP5064523B2 (en) Heat-shrinkable polyolefin film
JP2005254458A (en) Heat-shrinkable olefinic laminated film
JP2006044179A (en) Heat-shrinkable laminated film and container fitted with label consisting of the same
JP7004048B1 (en) Heat shrinkable films, packaging materials, articles or containers
JP6870405B2 (en) Heat-shrinkable laminated porous film and coated article
JP2002234115A (en) Multilayered heat-shrinkable film, and shrinkable label and container using the same
JP7003875B2 (en) Heat shrinkable laminated films, packaging materials, molded products and containers
JP3751965B2 (en) Polyolefin multilayer shrink film
JP4938722B2 (en) Shrinkable film
JPH11348205A (en) Multi-layered shrink film
JP4079657B2 (en) Method for producing polyolefin heat-shrinkable label and method for producing container with polyolefin heat-shrinkable label
JP2004017545A (en) Low temperature shrinkable multilayered polyolefinic film and manufacturing method therefor
JP5545627B2 (en) Polyolefin thin film multilayer shrink film
JP3366879B2 (en) Polyolefin resin film
JP4846613B2 (en) Multilayer film
JP2006082383A (en) Heat-shrinkabie olefin film
JP4468743B2 (en) Heat-shrinkable polyolefin film
JP4020654B2 (en) Easy peelable cylindrical label and container with easy peelable cylindrical label
JPS6227981B2 (en)
JPH03240533A (en) Laminate film for wrapping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Ref document number: 4651982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term