JP4648876B2 - Magnetic circuit for radial magnetic field generation - Google Patents

Magnetic circuit for radial magnetic field generation Download PDF

Info

Publication number
JP4648876B2
JP4648876B2 JP2006177812A JP2006177812A JP4648876B2 JP 4648876 B2 JP4648876 B2 JP 4648876B2 JP 2006177812 A JP2006177812 A JP 2006177812A JP 2006177812 A JP2006177812 A JP 2006177812A JP 4648876 B2 JP4648876 B2 JP 4648876B2
Authority
JP
Japan
Prior art keywords
ring
magnetic circuit
magnetic
magnetic field
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006177812A
Other languages
Japanese (ja)
Other versions
JP2008010540A (en
Inventor
秀樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006177812A priority Critical patent/JP4648876B2/en
Publication of JP2008010540A publication Critical patent/JP2008010540A/en
Application granted granted Critical
Publication of JP4648876B2 publication Critical patent/JP4648876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁気ディスク装置の製造に関して、基板の成膜工程や熱処理工程などにおいて必要な径方向磁場を発生させる磁気回路を提供するものである。   The present invention provides a magnetic circuit for generating a radial magnetic field necessary for a film formation process, a heat treatment process, etc. of a substrate for manufacturing a magnetic disk device.

磁気ディスク装置における情報記録として、記録媒体のトラックに対して水平方向に磁化する水平磁気記録方式が広く用いられている。この方式では記録膜に対して水平方向に磁化された微小磁石が隣接する微小磁石との間で互いに反磁界を及ぼす関係にあるため、記録密度が上がり微小磁石が小さくなるにつれて磁化が減磁したり消磁する現象が起きて、記録信号が読み出せなくなる。このような水平記録方式の高密度記録の限界を解決する方法として、垂直記録方式が提案されている。垂直記録方式の記録媒体は、例えば高透磁率の軟磁性膜上に垂直方向に磁化した記録用の硬磁性膜を積層した2層構造のものである。この高透磁率の軟磁性膜は、信号記録時に磁気ヘッドからの記録磁界を水平方向に通して磁気ヘッド側に還流させる磁気回路としての機能を担い、記録磁界の強度を強めて記録・再生の効率を向上させる役割を果たしているため、より高透磁率であることが望まれる。また、記録媒体や磁気ヘッドの周囲に浮遊磁界が存在すると、その浮遊磁界が磁気ヘッドの磁極部に集中されて、その集中磁界によって軟磁性膜の磁壁が移動して再生出力や記録磁化が変化することがあった。   As information recording in magnetic disk devices, a horizontal magnetic recording system in which magnetization is performed in a horizontal direction with respect to a track of a recording medium is widely used. In this method, since the micro magnets magnetized in the horizontal direction with respect to the recording film have a demagnetizing field relationship with the adjacent micro magnets, the magnetization decreases as the recording density increases and the micro magnets become smaller. Or degaussing occurs, making it impossible to read the recorded signal. A vertical recording method has been proposed as a method for solving such a limitation of the high density recording of the horizontal recording method. The recording medium of the perpendicular recording system has, for example, a two-layer structure in which a recording hard magnetic film magnetized in the vertical direction is laminated on a high magnetic permeability soft magnetic film. This high permeability soft magnetic film functions as a magnetic circuit that recirculates the recording magnetic field from the magnetic head to the magnetic head side during signal recording, and increases the strength of the recording magnetic field for recording and reproduction. Since it plays a role of improving efficiency, it is desired to have a higher magnetic permeability. In addition, if a stray magnetic field exists around the recording medium or the magnetic head, the stray magnetic field is concentrated on the magnetic pole of the magnetic head, and the magnetic wall of the soft magnetic film is moved by the concentrated magnetic field, thereby changing the reproduction output and recording magnetization. There was something to do.

この問題を解決する方法の一つとして、軟磁性膜の形成された基板に対して周方向または径方向の磁気異方性を与えることが提案されている。磁気異方性をもつ軟磁性膜は透磁率が向上して記録書き込み時の磁気効率が良くなる。さらに、この磁気異方性を与えるための磁場発生源として図15のように基板111と軟磁性膜(下地膜)113の間に硬磁性膜(下地膜)112を成膜した3層膜構造等の上に硬磁性膜(記録膜)114を設けた記録媒体110が提案されている。この下地膜としての硬磁性膜112は径方向に磁化されており、軟磁性膜113には常に径方向の磁界が印加される事になるため、前記の浮遊磁界による磁壁の移動が抑制され、再生出力の変化や記録磁化の消磁などの問題を解決することができる。   As one method for solving this problem, it has been proposed to give a circumferential or radial magnetic anisotropy to a substrate on which a soft magnetic film is formed. A soft magnetic film having magnetic anisotropy has improved magnetic permeability and improved magnetic efficiency during recording and writing. Further, as a magnetic field generation source for giving this magnetic anisotropy, a three-layer film structure in which a hard magnetic film (undercoat film) 112 is formed between a substrate 111 and a soft magnetic film (undercoat film) 113 as shown in FIG. For example, a recording medium 110 having a hard magnetic film (recording film) 114 provided thereon is proposed. Since the hard magnetic film 112 as the base film is magnetized in the radial direction and a magnetic field in the radial direction is always applied to the soft magnetic film 113, the movement of the domain wall due to the stray magnetic field is suppressed, Problems such as changes in reproduction output and demagnetization of recorded magnetization can be solved.

この他にも種々の問題を解決するためにさらなる多層構造の媒体構成を持つ方法が採用されたり、また水平記録方式においても高密度化における前記問題を解決するための多層構造が提案されているが、これら多層膜では基板に対して周方向や径方向に一様に磁化させる工程が必要な場合が増えている。   In addition to this, in order to solve various problems, a method having a medium structure having a further multilayer structure is adopted, and a multilayer structure for solving the above-mentioned problem in high density is also proposed in the horizontal recording system. However, these multilayer films are increasingly required to have a step of uniformly magnetizing the substrate in the circumferential direction and the radial direction.

以上のように、磁気ディスクの媒体基板の製造工程において、軟磁性膜や硬磁性膜に周方向または径方向の磁場を印加して成膜することの有効性や、成膜後の熱処理工程中に前記方向の磁場を基板に与えることの有効性が提案されている。基板への成膜は主にスパッタリング法やめっき法で行われるが、それぞれに適した磁場発生用磁気回路が必要である。   As described above, in the manufacturing process of a magnetic disk medium substrate, the effectiveness of applying a circumferential or radial magnetic field to a soft magnetic film or a hard magnetic film, and the heat treatment process after the film formation In addition, the effectiveness of applying a magnetic field in the above direction to the substrate has been proposed. Film formation on a substrate is mainly performed by sputtering or plating, but a magnetic circuit for generating a magnetic field suitable for each is required.

基板に対して径方向や周方向に磁場を与える場合、これらの磁場方向が基板面と平行にならなければならない。基板面に対して印加磁場の方向が傾いていると、硬磁性膜の磁化方向が同様に傾き、また軟磁性膜の磁気異方性の方向も一様でなくなるため、高密度な記録・再生を実現する上で不利となる。   When a magnetic field is applied to the substrate in the radial direction or circumferential direction, these magnetic field directions must be parallel to the substrate surface. If the direction of the applied magnetic field is tilted with respect to the substrate surface, the magnetization direction of the hard magnetic film is similarly tilted, and the direction of magnetic anisotropy of the soft magnetic film is not uniform. It is disadvantageous in realizing.

この課題を解決し基板に径方向磁場を印加する方法は、特許文献1に提案されている。図16に示すように、リング状基板111を含む平面を配置面(X−Xを通り、基板の中心軸123に垂直な面)とし、この配置面に対して対称な位置に対称な形状である一対のリング状永久磁石121を設置する。各リング状永久磁石121の中心は、リング状基板の中心軸123上にくるように配置されている。各リング状永久磁石の磁化方向124は配置面に対して垂直で、配置面に対して対称となっている。このように永久磁石を配置にすると、永久磁石は、全体として磁力線125で模式的に示す磁場を形成し、磁力線125は配置面上では放射状、すなわち径方向に向く。さらに磁石が基板に対して対称な位置にあるため、基板上での磁力線の向きが完全に基板に対して平行となる。
しかしながら、この方法では基板1枚での処理には対応できるが、複数枚の基板を処理するには問題が生じる。例えば2枚の基板を同時に処理する場合、特許文献1で示した磁気回路の2つを各リング状基板の配置面が同一平面となるように並べて使用すると一方の磁気回路による磁場が他方の基板にまで及ぶために図17のように基板上の磁場が正しく径方向に向かなくなってしまう。図17から分かるように隣接する磁気回路に近い領域において磁場の向きが径方向から大きく外れている。
A method of solving this problem and applying a radial magnetic field to the substrate is proposed in Patent Document 1. As shown in FIG. 16, a plane including the ring-shaped substrate 111 is defined as an arrangement plane (a plane passing through XX and perpendicular to the central axis 123 of the substrate), and has a symmetrical shape with respect to the arrangement plane. A pair of ring-shaped permanent magnets 121 is installed. The center of each ring-shaped permanent magnet 121 is disposed on the center axis 123 of the ring-shaped substrate. The magnetization direction 124 of each ring-shaped permanent magnet is perpendicular to the arrangement surface and is symmetric with respect to the arrangement surface. When the permanent magnets are arranged in this way, the permanent magnets form a magnetic field schematically shown by the magnetic lines of force 125 as a whole, and the magnetic lines of force 125 are radial, that is, radially directed on the arrangement surface. Furthermore, since the magnet is in a symmetrical position with respect to the substrate, the direction of the lines of magnetic force on the substrate is completely parallel to the substrate.
However, although this method can cope with processing with one substrate, a problem arises when processing a plurality of substrates. For example, when processing two substrates at the same time, if two of the magnetic circuits shown in Patent Document 1 are used side by side so that the arrangement surfaces of the ring-shaped substrates are on the same plane, the magnetic field generated by one magnetic circuit is changed to the other substrate. Therefore, the magnetic field on the substrate is not correctly directed in the radial direction as shown in FIG. As can be seen from FIG. 17, the direction of the magnetic field is greatly deviated from the radial direction in a region close to the adjacent magnetic circuit.

最近では、1インチもしくはそれ以下の直径の小口径基板が用いられるようになり、その数はますます増えると予想される。一方でこれらの小口径基板にはコストダウンと量産性アップが切望されており、そのためにも一度に複数枚の基板を処理できることが必要となってきている。
特開2005−209326号公報
Recently, small-diameter substrates having a diameter of 1 inch or less have been used, and the number is expected to increase. On the other hand, these small-diameter substrates are eagerly desired to reduce costs and increase productivity, and for that purpose, it is necessary to process a plurality of substrates at a time.
JP 2005-209326 A

磁気ディスクの媒体基板の製造工程において、複数の基板を同時に処理する場合に、円形基板上に形成される軟磁性膜および硬磁性膜に印加する磁場の向きが、基板の径方向かつ基板面に対して平行となる磁場発生源としての磁気回路を提供するものである。 When processing a plurality of substrates simultaneously in the manufacturing process of a magnetic disk medium substrate, the direction of the magnetic field applied to the soft magnetic film and the hard magnetic film formed on the circular substrate is in the radial direction of the substrate and on the substrate surface. there is provided a magnetic circuits as magnetic source to be parallel for.

本発明は、処理対象となるリング状基板の配置面の両側に設けられた一対のリング状永久磁石を備えてなる磁気回路ユニットで、該リング状基板が配置された際に該配置面において該リング状基板の径方向に磁場を発生させる磁気回路ユニットを少なくとも二つ、全ての磁気回路ユニットのリング状基板の配置面が同一平面となるように組み合わせてなり、上記一対のリング状永久磁石が、隣り合う磁気回路ユニットに近い部分と遠い部分で異なる体積を持つ形状である径方向磁場発生用磁気回路を提供する。
リング状永久磁石は、一体化されている磁石を用いてもよいが、好ましくは、二以上のセグメント磁石を組み合わせたものであり、隣り合う磁気回路ユニットに近いセグメント磁石は、他のセグメント磁石よりも小さい体積を持つ。また、リング状永久磁石は、好ましくは、隣り合う磁気回路ユニットに近い部分で小さく、遠い部分で大きくなる形状である。リング状永久磁石は、好ましくは、隣り合う磁気回路ユニットに最も近い部分に空隙を有する形状でもよい。一対のリング状永久磁石は、好ましくは、リング状基板の配置面に対して互いに対称な位置に設けられ、配置面に対して対称な形状と磁化方向を有しているとよい。リング状永久磁石は、リング状基板の配置面に対して垂直な磁化方向を有するか、または配置面に対して垂直な方向から傾きを持つ磁化方向を有してよい。
また、本発明は、処理対象となるリング状基板の配置面の外側に設けられた一対のリング状永久磁石を備えてなる磁気回路ユニットで、該リング状基板が配置された際に該配置面において該リング状基板の径方向に磁場を発生させる磁気回路ユニットを少なくとも二つ、全ての磁気回路ユニットのリング状基板の配置面が同一平面となるように組み合わせてなり、隣り合う磁気回路ユニットの隣り合うリング状永久磁石の中心同士を結ぶ線から±θ(式中、θは0<θ<90度)の角度の範囲の各リング状磁石の体積が、同一リング状永久磁石の180度±θの角度の範囲の同一永久磁石の体積よりも小さくなる径方向磁場発生用磁気回路を提供する
The present invention is a magnetic circuit unit comprising a pair of ring-shaped permanent magnets provided on both sides of the arrangement surface of a ring-shaped substrate to be processed, and when the ring-shaped substrate is arranged, At least two magnetic circuit units that generate a magnetic field in the radial direction of the ring-shaped substrate are combined so that the arrangement surfaces of the ring-shaped substrates of all the magnetic circuit units are on the same plane, and the pair of ring-shaped permanent magnets Provided is a magnetic circuit for generating a radial magnetic field having a shape having different volumes in a portion close to and a portion far from adjacent magnetic circuit units.
An integrated magnet may be used as the ring-shaped permanent magnet, but it is preferably a combination of two or more segment magnets, and segment magnets close to adjacent magnetic circuit units are more than other segment magnets. Also has a small volume. In addition, the ring-shaped permanent magnet preferably has a shape that is small at a portion close to an adjacent magnetic circuit unit and large at a distant portion. The ring-shaped permanent magnet may preferably have a shape having a gap in the portion closest to the adjacent magnetic circuit unit. The pair of ring-shaped permanent magnets are preferably provided at positions symmetrical to each other with respect to the arrangement surface of the ring-shaped substrate, and have a symmetrical shape and a magnetization direction with respect to the arrangement surface. The ring-shaped permanent magnet may have a magnetization direction perpendicular to the arrangement surface of the ring-shaped substrate or a magnetization direction inclined from the direction perpendicular to the arrangement surface.
Further, the present invention is a magnetic circuit unit comprising a pair of ring-shaped permanent magnets provided outside the arrangement surface of the ring-shaped substrate to be processed, and the arrangement surface when the ring-shaped substrate is arranged. In which at least two magnetic circuit units that generate a magnetic field in the radial direction of the ring-shaped substrate are combined so that the arrangement surfaces of the ring-shaped substrates of all the magnetic circuit units are on the same plane, The volume of each ring-shaped magnet within an angle range of ± θ (where θ is 0 <θ <90 degrees) from the line connecting the centers of adjacent ring-shaped permanent magnets is 180 degrees ± of the same ring-shaped permanent magnet. A magnetic circuit for generating a radial magnetic field that is smaller than the volume of the same permanent magnet in the range of the angle θ is provided .

本発明は、磁気ディスク装置の製造に関して、複数の基板の同時成膜工程や同時熱処理工程などにおいて必要な径方向磁場を発生させる磁気回路を提供するものであり、基板全体に径方向に向いた放射状磁場を発生することができる。   The present invention provides a magnetic circuit for generating a radial magnetic field required in the simultaneous film formation process and the simultaneous heat treatment process of a plurality of substrates in the manufacture of a magnetic disk device, and is suitable for the entire substrate in the radial direction. A radial magnetic field can be generated.

図18は、各リング状基板の配置面が同一平面となるように並べて、図16の磁気回路ユニット2つを使用するときに、隣接する磁気回路からの磁場がどのように影響しているかを示したものである。図17で見たように右側に位置する隣接磁気回路ユニットに近い領域で磁場の向きが右方向に傾いている。これは本来の径方向磁場に右向きの磁場が重ね合わさった結果である。つまり隣接磁気回路ユニットからは右向きの磁場が作用していることになる。図18で説明すると、隣接磁気回路ユニットからは図のような磁力線125が発生しており、その結果、基板上には右向きの磁場ベクトル126が印加される。印加された磁場の大きさは隣接磁気回路ユニットに近いほど大きく、その結果、合計の磁場は隣接磁気回路ユニットに近いほど傾きが大きくなる傾向にある。   FIG. 18 shows how the magnetic fields from adjacent magnetic circuits influence when the two magnetic circuit units of FIG. 16 are used by arranging the arrangement surfaces of the ring-shaped substrates so as to be the same plane. It is shown. As seen in FIG. 17, the direction of the magnetic field is tilted to the right in the region near the adjacent magnetic circuit unit located on the right side. This is a result of the right radial magnetic field superimposed on the original radial magnetic field. That is, a rightward magnetic field acts from the adjacent magnetic circuit unit. Referring to FIG. 18, magnetic field lines 125 as shown in the figure are generated from adjacent magnetic circuit units, and as a result, a magnetic field vector 126 facing right is applied on the substrate. The magnitude of the applied magnetic field is larger as it is closer to the adjacent magnetic circuit unit. As a result, the total magnetic field tends to increase in inclination as it is closer to the adjacent magnetic circuit unit.

上記のように隣接磁気回路ユニットの影響は基板上に右向きの磁場を与えることが分かるが、同時に図18の領域Pに示した部分も同じように右向きの磁場を発生していることが、図16の磁力線の様子から分かる。この領域Pによる磁場もまた領域Pに近いほど強く隣接磁気回路ユニットが及ぼす磁場と同様な磁場分布である。当然のことながら左右の基板には全く同じ磁場を与えないと、性能の異なる基板になってしまうので、2つの磁気回路は鏡面対称形になることを基本としている。これらを総合して考えた結果、領域Pと、領域Pと鏡面対称関係にある領域Qの磁力を同じ量だけ弱くすれば、左側の基板において右側に傾いていた磁場を補正して正しい径方向に向かせることができると同時に右側の基板でも鏡面対称の磁場となるため同じように正しく径方向に向かせることができる。正確な径方向磁場を形成するには、磁石をいくつかの領域に分けてそれぞれに異なる磁力を与えることにより、径方向磁場分布が得られると考えた。   As described above, it can be seen that the influence of the adjacent magnetic circuit unit gives a rightward magnetic field on the substrate, but at the same time, the portion shown in the region P of FIG. It can be seen from the 16 lines of magnetic force. The magnetic field distribution by the region P is also closer to the region P and has a magnetic field distribution similar to the magnetic field exerted by the adjacent magnetic circuit unit. As a matter of course, if the same magnetic field is not applied to the left and right substrates, the substrates have different performances. Therefore, the two magnetic circuits are basically mirror-symmetrical. As a result of considering these together, if the magnetic force of the region P and the region Q that is mirror-symmetrical with the region P is weakened by the same amount, the correct radial direction is corrected by correcting the magnetic field inclined to the right side on the left substrate. At the same time, the right-side substrate also has a mirror-symmetric magnetic field, so that it can be directed correctly in the radial direction. In order to form an accurate radial magnetic field, it was thought that a radial magnetic field distribution could be obtained by dividing the magnet into several regions and applying different magnetic forces to each.

磁力を下げる方法はいくつか考えられるが、ひとつは磁石体積を減らす方法であり、他には磁力の弱い磁石つまり残留磁化Brの低い磁石を使用することが考えられる。ここでは磁石体積を減らして径方向磁場を得る方法を詳細に示すこととする。   There are several ways to reduce the magnetic force, but one is to reduce the volume of the magnet, and the other is to use a magnet with weak magnetic force, that is, a magnet with low residual magnetization Br. Here, a method of obtaining a radial magnetic field by reducing the magnet volume will be described in detail.

本発明の径方向磁場発生用磁気回路の一例を図1に示す。図1では磁気回路を平面的に見たとき、2つの磁気回路ユニットを、各リング状基板の配置面(X−Xを通り、基板の中心軸23と33に垂直な面)が同一平面上となるように組み合わせた磁気回路を示す。基板11と12に径方向磁場を発生させるための一対のリング状永久磁石21(21Aと21B)と一対のリング状永久磁石31(31Aと31B)が各基板を挟むように配置されている。図1では、基板の上方の永久磁石にAを付し、同下方にBを付した。2枚の基板に全く同じ磁場分布を与えるために、リング状永久磁石21と31は、配置面に垂直で各磁気回路ユニットを画定する対称面σ1に対して鏡面対称の形状を有している。また、当然のことながら、基板上で正しく径方向の磁場を発生させるためには、配置面に垂直で対称面σ1に垂直な対称面σ2に対しても磁場は対称になり、リング状永久磁石は対称面σ2に対して鏡面対称の形状となる。また、配置面に対してリング状永久磁石(磁気回路)を対称にすることで配置面と同じ平面に置かれた基板上の磁場は必ず基板面に平行となすことができる。その場合、磁石の磁化方向は、配置面に対して対称となるようにする。 An example of a magnetic circuit for generating a radial magnetic field of the present invention is shown in FIG. In FIG. 1, when the magnetic circuit is viewed in plan, the two magnetic circuit units are arranged on the same plane with each ring-shaped substrate arrangement surface (the plane passing through XX and perpendicular to the central axes 23 and 33 of the substrate). The magnetic circuit combined as follows is shown. A pair of ring-shaped permanent magnets 21 (21A and 21B) and a pair of ring-shaped permanent magnets 31 (31A and 31B) for generating radial magnetic fields on the substrates 11 and 12 are arranged so as to sandwich each substrate. In FIG. 1, A is attached to the permanent magnet above the substrate, and B is attached below the same. In order to give exactly the same magnetic field distribution to the two substrates, the ring-shaped permanent magnets 21 and 31 have a mirror-symmetric shape with respect to the symmetry plane σ 1 perpendicular to the arrangement plane and defining each magnetic circuit unit. Yes. Of course, in order to generate a magnetic field in the radial direction correctly on the substrate, the magnetic field is also symmetric with respect to a symmetry plane σ 2 perpendicular to the arrangement plane and perpendicular to the symmetry plane σ 1 , and is ring-shaped. The permanent magnet has a mirror-symmetric shape with respect to the symmetry plane σ 2 . In addition, by making the ring-shaped permanent magnet (magnetic circuit) symmetrical with respect to the arrangement surface, the magnetic field on the substrate placed on the same plane as the arrangement surface can always be parallel to the substrate surface. In that case, the magnetization direction of the magnet is made symmetrical with respect to the arrangement plane.

2つの磁気回路ユニットを組み合わせる場合、隣り合うリング状永久磁石中心同士の距離は、処理対象となるリング状基板の大きさ、磁石特性により変化するが、1つの磁気回路の外径の3倍以下、外径の長さより大きいことが好ましい。体積変化させる対象物は、隣り合う磁石ユニットの中心同士の距離が外径の3倍以下になるユニットの少なくとも1つを有する領域を調整するものである。
リング状永久磁石21と31の固定具41は、スパッタの場合、リング状永久磁石間から基板へのスパッタ粒子の通りを妨げない態様の非磁性体であれば特に限定されないが、図2に示すように、壁等に固定されたプレート(非磁性)が挙げられる。このプレートは、リング状永久磁石の基板への必要な露出を妨げないように穴部を有し、このプレートの上に磁気回路を設置することができる。図2は二つのリング状永久磁石を示すが、三つ以上のリング状永久磁石については、磁石の個数と対応するように穴部の数を増やせばよい。
リング状基板11と12の固定具51は、基板を磁気回路から遮蔽しない態様の非磁性体であれば特に限定しないが、例えば、図2に示すように、壁等に固定された、基板を挟み込む支持部を有する非磁性の固定具が好ましい。図2は二つのリング状基板を示すが、三つ以上のリング基板については、基板の個数と対応するように支持部数を増やせばよい。基板の取り出しと移動が可能なように、移動支持機能を持たせることが好ましい。
磁気回路ユニットは、独立して、リング状永久磁石固定具と基板固定具を設置できる支持棒をそれぞれ備え、所望の数の磁気回路ユニットの支持棒を用いて繋げることにより、簡易に複数の基板を処理できる磁場回路とすることもできる。
When combining two magnetic circuit units, the distance between adjacent ring-shaped permanent magnet centers varies depending on the size of the ring-shaped substrate to be processed and the magnetic characteristics, but not more than three times the outer diameter of one magnetic circuit. The outer diameter is preferably larger than the length. The object whose volume is changed adjusts a region having at least one of the units in which the distance between the centers of adjacent magnet units is three times or less of the outer diameter.
The fixture 41 of the ring-shaped permanent magnets 21 and 31 is not particularly limited as long as it is a non-magnetic material that does not obstruct the passage of sputtered particles from between the ring-shaped permanent magnets to the substrate in the case of sputtering, but is shown in FIG. As described above, a plate (nonmagnetic) fixed to a wall or the like can be used. This plate has a hole so as not to prevent the necessary exposure of the ring-shaped permanent magnet to the substrate, and a magnetic circuit can be placed on this plate. Although FIG. 2 shows two ring-shaped permanent magnets, for three or more ring-shaped permanent magnets, the number of holes may be increased so as to correspond to the number of magnets.
The fixture 51 of the ring-shaped substrates 11 and 12 is not particularly limited as long as it is a non-magnetic material that does not shield the substrate from the magnetic circuit. For example, as shown in FIG. 2, a substrate fixed to a wall or the like is used. A nonmagnetic fixture having a support portion to be sandwiched is preferred. FIG. 2 shows two ring-shaped substrates. For three or more ring substrates, the number of supporting portions may be increased so as to correspond to the number of substrates. It is preferable to provide a movement support function so that the substrate can be taken out and moved.
Each of the magnetic circuit units includes a support bar on which a ring-shaped permanent magnet fixture and a substrate fixture can be installed independently, and a plurality of substrates can be easily connected by connecting the support rods of a desired number of magnetic circuit units. A magnetic field circuit capable of processing

また、図1ではリング状永久磁石には領域Aが存在し、領域A以外もセグメント磁石で形成されている。図1は、同じ磁気回路ユニットにおいて領域Aと対向(180o反対)する磁石体積が異なっていることを示す。体積を変化させる領域は1つ以上であればいくつでも構わないが少なくとも、リング状永久磁石のうち、隣り合う磁気回路ユニットに近い部分の磁石の体積を、残りの磁石よりも変化させることが基本である。さらに、図1の領域では磁石高さを減らすことで体積を減らしているが、外径または内径を変えて体積を変えても構わない。 In FIG. 1, the ring-shaped permanent magnet has a region A, and other regions than the region A are formed of segment magnets. FIG. 1 shows that in the same magnetic circuit unit, the magnet volumes facing the region A (opposite 180 ° ) are different. The number of regions in which the volume is changed is not limited as long as it is one or more, but at least the volume of the magnet near the adjacent magnetic circuit unit among the ring-shaped permanent magnets is basically changed more than the remaining magnets. It is. Furthermore, although the volume is reduced by reducing the magnet height in the region of FIG. 1, the volume may be changed by changing the outer diameter or the inner diameter.

また、図3に示すように、隣り合うリング状永久磁石の中心を結ぶ線から±θ(式中、θは0<θ<90度)の角度の範囲の各リング状磁石の体積が、同一リング状永久磁石の180度±θの角度の範囲の同一永久磁石の体積よりも小さくなることが好ましい。リング状永久磁石が二以上のセグメント磁石を組み合わせたものであるとき、例えば、一つのセグメント磁石とリング状磁石の中心を結ぶ扇形の中心角2θとすると、このセグメント磁石の体積が、リング状磁石の中心を回転軸として180度回転した中心角2θの扇形に含まれるセグメント磁石部分の体積よりも小さくなることが好ましい。
なお、各磁気回路ユニットは、各リング状基板の配置面が同一平面となるように組み合わせる。隣り合うとは、前記したように、外径の3倍以下の距離に位置する磁石ユニットで隣り合うことを意味するものであり、好ましくは、回転対称軸を有し、その回転方向で隣り合うことを意味し、その回転軸上にリング基板の配置面を有するときは、これに隣り合う配置はその配置面の中心から放射状に位置する配置面を意味する。
In addition, as shown in FIG. 3, the volume of each ring-shaped magnet in the range of an angle of ± θ (where θ is 0 <θ <90 degrees) from the line connecting the centers of adjacent ring-shaped permanent magnets is the same. It is preferable that the volume of the ring-shaped permanent magnet is smaller than the volume of the same permanent magnet in the range of 180 ° ± θ. When the ring-shaped permanent magnet is a combination of two or more segment magnets, for example, if the sector-shaped central angle 2θ connecting one segment magnet and the center of the ring-shaped magnet is set, the volume of the segment magnet is the ring-shaped magnet. It is preferable that the volume is smaller than the volume of the segment magnet portion included in the sector having a central angle 2θ rotated 180 degrees around the center of the axis.
In addition, each magnetic circuit unit is combined so that the arrangement surface of each ring-shaped board | substrate may become the same plane. The term “adjacent” means that the magnet units are located adjacent to each other at a distance equal to or less than three times the outer diameter, and preferably have a rotationally symmetric axis and are adjacent in the rotational direction. This means that when the ring substrate has an arrangement surface on the rotation axis, the arrangement adjacent to the ring substrate means an arrangement surface located radially from the center of the arrangement surface.

図4に示すように、隣り合う磁石の体積変化は、体積のない領域を有する形状、つまりリング状磁石の一部が途切れている形状であっても構わない。また、磁石は、穴を開けたり、スリットを入れた形状にしても構わない。
この磁石のない空隙は、そのままでもよいが、Al、SUS、樹脂等の非磁性または磁性体を挿入しても構わない。さらに、体積変化のある磁石部(凹凸部)に対して、磁気回路としての安定性のためにも、Al、SUS、樹脂などの非磁性体または磁性体を配置させてもよい。
As shown in FIG. 4, the volume change between adjacent magnets may be a shape having a region without a volume, that is, a shape in which a part of a ring-shaped magnet is interrupted. The magnet may have a shape with a hole or a slit.
The gap without the magnet may be left as it is, but a non-magnetic or magnetic material such as Al, SUS, or resin may be inserted. Furthermore, a non-magnetic material such as Al, SUS, or resin or a magnetic material may be disposed on the magnet portion (uneven portion) having a volume change for the sake of stability as a magnetic circuit.

本発明のリング状永久磁石の構成は、一体化された磁石またはセグメント磁石(分割された永久磁石片)で構成させればよいが、体積を変化させた一体化磁石は製造上非常に困難なのでそれぞれの体積・特性を変化させたものを用いることが好ましい。セグメント磁石は、各領域の体積をどれだけ減らせば基板上で径方向磁場が得られるかは、磁石の内径・外径・高さや残留磁化の値、また対称に置かれた磁石間の距離等によって異なるので、基板の大きさやリング状永久磁石が配置できる空間などによってリング状永久磁石の内径・外径等を選択する。
体積量の増減については、隣接する磁気回路ユニットの影響を受けない磁石(隣接する磁気回路ユニットから遠く離れた磁石)を基準として、20%以上100%未満でコントロールする。
The ring-shaped permanent magnet of the present invention may be composed of an integrated magnet or a segment magnet (divided permanent magnet piece), but an integrated magnet with a changed volume is very difficult to manufacture. It is preferable to use a material whose volume and characteristics are changed. For segmented magnets, how much the volume of each region can be reduced to obtain a radial magnetic field on the substrate, the inner and outer diameters and height of the magnet, the value of residual magnetization, the distance between symmetrically placed magnets, etc. Therefore, the inner diameter and outer diameter of the ring-shaped permanent magnet are selected according to the size of the substrate and the space in which the ring-shaped permanent magnet can be arranged.
The increase / decrease of the volume is controlled at 20% or more and less than 100% based on a magnet that is not affected by the adjacent magnetic circuit unit (a magnet far from the adjacent magnetic circuit unit).

図5と図11は、図1左の基板上に0deg.〜180deg.で示した7つのラインに対応した位置での磁場の傾きを、各ライン上に傾きが一致した場合をゼロ度として示している。横軸のrは、基板上のリングの中心からの径方向の距離を示す。従来の隣り合う磁気回路ユニットに近い部分と遠い部分で磁石体積を変化させない磁石形状の場合は、図5のように7つの評価ライン上の磁場が大きく傾いている。唯一0deg.上の磁場は傾きがゼロであるが、これは磁石が0deg.ラインに対して対称形なためである。一方、磁石体積を変化させた場合は図11のように各ライン上の磁場傾きは、ほぼゼロとなっており正しく径方向を向いていることが分かる。   5 and 11 show the magnetic field gradients at the positions corresponding to the seven lines indicated by 0 deg. To 180 deg. On the left substrate of FIG. 1 when the inclinations coincide with each other as zero degrees. ing. The horizontal axis r represents the radial distance from the center of the ring on the substrate. In the case of a magnet shape in which the magnet volume is not changed between a portion close to and far from a conventional adjacent magnetic circuit unit, the magnetic fields on the seven evaluation lines are greatly inclined as shown in FIG. The only magnetic field above 0deg. Has a zero slope because the magnet is symmetrical with respect to the 0deg. Line. On the other hand, when the magnet volume is changed, the magnetic field gradient on each line is almost zero as shown in FIG.

また、特許文献1で示したような基板中心穴への磁石挿入、分割磁石を並べることによるリング形状磁石の構成などは本発明と併用することができる。   Moreover, the structure of the ring-shaped magnet by arranging the magnet in the substrate center hole as shown in Patent Document 1 and arranging the divided magnets can be used in combination with the present invention.

永久磁石ユニットの磁化方向は、基板に対して垂直に限らず、基板に対して垂直からある程度の傾きを持たせても良い。
磁化方向に傾きがあっても、配置面に対して対称形であれば、配置面では半径方向の磁場のみ発生させることができるためである。磁化方向に傾きを与えることにより径方向磁場の強さを上げることができる場合がある。これは、配置面に形成される磁力線の傾きが、配置面に対してより平行になることに基づく。
図6は、配置面に対して垂直で該配置面とは逆方向の垂直磁化方向を零として、この垂直磁化方向から各磁気回路ユニットの外向きへの磁化方向の傾きをtで示す。傾きtは、特に限定されるものではないが、0≦t<90°または180≦t<270°とすることが好ましく、0≦t≦60°または180≦t<240°とすることがさらに好ましい。
The magnetization direction of the permanent magnet unit is not limited to being perpendicular to the substrate, but may be inclined to some extent from the perpendicular to the substrate.
This is because even if the magnetization direction is inclined, only a radial magnetic field can be generated on the arrangement surface as long as it is symmetrical with respect to the arrangement surface. In some cases, it is possible to increase the strength of the radial magnetic field by giving an inclination to the magnetization direction. This is based on the fact that the inclination of the magnetic field lines formed on the arrangement surface becomes more parallel to the arrangement surface.
FIG. 6 shows the inclination of the magnetization direction from the perpendicular magnetization direction to the outward direction of each magnetic circuit unit by t, where the perpendicular magnetization direction perpendicular to the arrangement surface and opposite to the arrangement surface is zero. The inclination t is not particularly limited, but is preferably 0 ≦ t <90 ° or 180 ≦ t <270 °, more preferably 0 ≦ t ≦ 60 ° or 180 ≦ t <240 °. preferable.

本発明では複数の磁気回路ユニットで構成することが望ましく、2個以上の磁気回路ユニットを並列または、磁気回路ユニットが3個以上の場合も同じ考え方(隣接する磁石セグメントの体積を小さくする)で径方向磁場を作ることができる。
図7は、リング状基板の配置面が同一平面となり、平面に垂直な回転対称軸を有するように組み合わせられた4個の磁気回路ユニットを有する磁気回路を示す。上述の磁気回路ユニット2個の場合と同様な考え方から、2個の磁気回路ユニットは、対称面σ1とσ2に対して対称形であり、その磁石を、両対称面が交差する、各基板の中心軸に平行な軸を中心として90度回転して4つの磁石を形成することにより、各基板には同じ磁場分布を形成することができる。
隣り合うリング状永久磁石間の距離は、3個以上の磁気回路ユニットを組み合わせた場合も、2個の磁気回路ユニットを組み合わせた場合と同様である。
図8は、リング状基板の配置面が同一平面となり、平面に垂直な回転対称軸を有するように組み合わせられた3個の磁気回路ユニットを有する磁気回路を示す。図8は、回転対称軸と1個のリング基板の配置面の中心を重ねるように配置させ、残りの2個のリング基板の配置面を回転対称軸のまわりに互い180度回転させた位置に配置させたものを示す。また、図示しないが、3個のリング基板を正三角形の頂点に配置する態様、すなわち、3個のリング基板を回転対称軸のまわりに120度回転させた位置に配置させた態様としてもよい。
図9は、リング状基板の配置面が同一平面となり、4個の磁気回路ユニットを有する磁気回路を示す。図9は、図7と異なり、4個のリング基板を回転対称軸のまわりに90度回転させた位置に配置させたものではなく、楕円を描くように4個を90度ごと配置したものである。リング基板の配置面は、磁石を減らす量を調節できれば規則的に配置する必要はないが、規則的に配置するほうが径方向磁場発生用磁気回路全体をコンパクトにすることができる。また、磁気回路ユニット間の各空隙も同一となるように規則的に配置すれば、磁石量の調整も容易となり好ましい。
図10は、リング状基板の配置面が同一平面となり、平面に垂直な回転対称軸を有するように組み合わせられた7個の磁気回路ユニットを有する磁気回路を示す。図10は、回転対称軸と1個のリング基板の配置面の中心を重ねるように配置させ、残りの6個のリング基板の配置面を回転対称軸のまわりに60度回転させた位置に配置させたものを示す。
In the present invention, it is desirable to configure a plurality of magnetic circuit units, and when two or more magnetic circuit units are arranged in parallel or when there are three or more magnetic circuit units, the same concept (reducing the volume of adjacent magnet segments) is used. A radial magnetic field can be created.
FIG. 7 shows a magnetic circuit having four magnetic circuit units combined so that the arrangement surface of the ring-shaped substrate is the same plane and has a rotational symmetry axis perpendicular to the plane. From the same concept as in the case of the two magnetic circuit units described above, the two magnetic circuit units are symmetrical with respect to the symmetry planes σ 1 and σ 2 , and the magnets are arranged so that both symmetry planes intersect each other. By rotating 90 degrees about an axis parallel to the central axis of the substrate to form four magnets, the same magnetic field distribution can be formed on each substrate.
The distance between adjacent ring-shaped permanent magnets is the same as when two or more magnetic circuit units are combined, even when three or more magnetic circuit units are combined.
FIG. 8 shows a magnetic circuit having three magnetic circuit units combined so that the planes of arrangement of the ring-shaped substrates are on the same plane and have a rotational symmetry axis perpendicular to the plane. In FIG. 8, the rotational symmetry axis and the center of the arrangement surface of one ring substrate are arranged so as to overlap each other, and the arrangement surfaces of the remaining two ring substrates are rotated 180 degrees around the rotational symmetry axis. Shows what was placed. Although not shown, it is also possible to adopt a mode in which three ring substrates are arranged at the vertices of an equilateral triangle, that is, a mode in which the three ring substrates are arranged at a position rotated 120 degrees around the rotational symmetry axis.
FIG. 9 shows a magnetic circuit in which the ring-shaped substrate is disposed on the same plane and has four magnetic circuit units. FIG. 9 is different from FIG. 7 in that four ring substrates are not arranged at positions rotated by 90 degrees around the rotational symmetry axis, but four are arranged every 90 degrees so as to draw an ellipse. is there. The arrangement surface of the ring substrate does not need to be regularly arranged as long as the amount of magnet reduction can be adjusted. However, the arrangement of the ring substrate can make the entire radial magnetic field generating magnetic circuit more compact. Further, it is preferable that the gaps between the magnetic circuit units are regularly arranged so as to be the same, because the amount of magnets can be easily adjusted.
FIG. 10 shows a magnetic circuit having seven magnetic circuit units combined such that the arrangement surface of the ring-shaped substrate is the same plane and has a rotational symmetry axis perpendicular to the plane. In FIG. 10, the rotational symmetry axis and the center of the arrangement surface of one ring substrate are arranged so as to overlap each other, and the arrangement surfaces of the remaining six ring substrates are arranged at positions rotated by 60 degrees around the rotational symmetry axis. It shows what was done.

本発明の磁気回路に用いるリング状永久磁石については、特に限定するものではなく、永久磁石例えば、Nd系、Sm系の希土類磁石、アルニコ系磁石、フェライト系磁石のいずれの磁石であっても好ましい。
リング状永久磁石の外径は、処理対象となるリング状基板の外径よりも大きいものを用い、それぞれのリングの中心軸が同一となるように設置される。
The ring-shaped permanent magnet used in the magnetic circuit of the present invention is not particularly limited, and any permanent magnet such as an Nd-based, Sm-based rare earth magnet, alnico-based magnet, or ferrite-based magnet is preferable. .
The outer diameter of the ring-shaped permanent magnet is larger than the outer diameter of the ring-shaped substrate to be processed, and the ring-shaped permanent magnets are installed so that the central axes of the respective rings are the same.

磁気回路で磁場を形成させるリング状基板は、ガラス系、Al系、Si系等のいずれの基板でもよい。本発明にいうリング状基板は、図面で特定されている場合以外は、基板自体、または基板上に軟磁性もしくは硬磁性の薄膜を形成させる表面処理を施したものを意味する。
基板自体を磁気回路内に配置して、スパッタ装置等と併用して周方向には実質的に磁場を発生させず、径方向に磁場を発生させることで、基板上に磁性材料の薄膜の形成処理または加工処理を好適に行うことができる。また、軟磁性もしくは硬磁石の薄膜を形成させた基板を磁気回路内に配置して磁場を発生させることができる。さらに、該磁気回路内で熱処理する場合にも同様で磁気回路内で基板に好ましくは100〜500℃の熱をかけることができる。
このようにして得られた薄膜を有する基板は磁気記録媒体に応用することができるものである。
The ring-shaped substrate on which the magnetic field is formed by the magnetic circuit may be any substrate such as glass, Al, or Si. The ring-shaped substrate referred to in the present invention means a substrate itself or a substrate subjected to surface treatment for forming a soft magnetic or hard magnetic thin film on the substrate, unless otherwise specified in the drawings.
Forming a thin film of magnetic material on the substrate by arranging the substrate itself in the magnetic circuit and generating a magnetic field in the radial direction without generating a magnetic field substantially in the circumferential direction in combination with a sputtering device etc. Processing or processing can be suitably performed. A magnetic field can be generated by arranging a substrate on which a thin film of soft magnetism or hard magnet is formed in a magnetic circuit. Further, when heat treatment is performed in the magnetic circuit, the substrate can be heated preferably at 100 to 500 ° C. in the magnetic circuit.
The substrate having the thin film thus obtained can be applied to a magnetic recording medium.

以下、本発明を実施例に基づき説明するが、本発明はこれらに限定されるものではない。
実施例1
図1に示したような基板2枚に径方向磁場を発生する磁気回路を用いた。永久磁石は、Nd−Fe−B系焼結磁石(信越化学社製N32Z、Br=1.12T、Hcj=2480kA/m)を使用した。各磁石の寸法は、内径38mm、外径46mm、高さ8mmであった。2つ磁気回路の中心間距離は48mmであり、磁石の磁化方向は基板面に対して垂直とした。また、隣接磁気回路に近い領域(2θ:内角60°)の磁石高さを3mm、4mm、5mmとした。なお、隣接領域の磁石は、隣接領域に対向する磁石(2θ:内角60°、高さ8mm)とは対称位置に配置されていた。
このときの、図1で示した基板の7つのライン上の磁場の傾き(ガウスメータ測定)を図11(磁石高さ4mm)、図12(磁石高さ3mm)、図13(磁石高さ5mm)に示した。図11〜13は、外径21.6mm、内径6mmのSiリング状基板を用い、横軸を基板中心からの距離、縦軸を径方向からの周方向への傾き角としている。図11から分かるように、磁石高さ4mmのとき、基板上では径方向からの周方向への傾き角が2度以下に抑えられており、本発明の効果が示されている。なお、径方向からの傾き角は、リング状基板平面における径方向からの周方向への傾き角と、リング状基板平面から上下方向における径方向からの軸方向への傾き角に分離することができる。本発明によれば、基板全体に径方向に向いた放射状磁場を発生させることができ、径方向からの周方向への傾き角と、径方向からの軸方向への傾き角のいずれの角度も、好ましくは20度以下、より好ましくは10度以下、更に好ましくは5度以下、特に好ましくは2度以下であり、できるだけ零度に近づけることがよい。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these.
Example 1
A magnetic circuit for generating a radial magnetic field was used on two substrates as shown in FIG. As the permanent magnet, an Nd—Fe—B sintered magnet (N32Z manufactured by Shin-Etsu Chemical Co., Ltd., Br = 1.12T, Hcj = 2480 kA / m) was used. The dimensions of each magnet were an inner diameter of 38 mm, an outer diameter of 46 mm, and a height of 8 mm. The distance between the centers of the two magnetic circuits was 48 mm, and the magnetization direction of the magnet was perpendicular to the substrate surface. Further, the magnet height in the region close to the adjacent magnetic circuit (2θ: inner angle 60 °) was set to 3 mm, 4 mm, and 5 mm. In addition, the magnet of the adjacent area | region was arrange | positioned in the symmetrical position with the magnet (2 (theta): internal angle 60 degrees, height 8mm) facing an adjacent area | region.
At this time, the magnetic field gradients (Gauss meter measurement) on the seven lines of the substrate shown in FIG. 1 are shown in FIG. 11 (magnet height 4 mm), FIG. 12 (magnet height 3 mm), and FIG. 13 (magnet height 5 mm). It was shown to. 11 to 13 use an Si ring-shaped substrate having an outer diameter of 21.6 mm and an inner diameter of 6 mm, the horizontal axis is the distance from the substrate center, and the vertical axis is the inclination angle from the radial direction to the circumferential direction. As can be seen from FIG. 11, when the magnet height is 4 mm, the inclination angle from the radial direction to the circumferential direction is suppressed to 2 degrees or less on the substrate, which shows the effect of the present invention. The tilt angle from the radial direction can be separated into the tilt angle from the radial direction in the ring-shaped substrate plane to the circumferential direction and the tilt angle from the ring-shaped substrate plane in the axial direction from the radial direction in the vertical direction. it can. According to the present invention, a radial magnetic field oriented in the radial direction can be generated on the entire substrate, and both the inclination angle from the radial direction to the circumferential direction and the inclination angle from the radial direction to the axial direction are both The angle is preferably 20 degrees or less, more preferably 10 degrees or less, still more preferably 5 degrees or less, particularly preferably 2 degrees or less, and may be as close to zero as possible.

実施例2
基板4枚配置のケースを示す。内径38mm、外径44mm、高さ8mmのNd−Fe−B系焼結磁石(前出)を用いて図7のように磁気回路を配置し、磁気回路中心間距離を48mm、磁石の磁化方向は基板面に対して垂直とした。そして隣接磁気回路に近い部分の磁石高さを4mmとした。このとき基板面上に発生する磁場は、図14のようになり、径方向から周方向への傾き角をかなり小さく抑えられることが分かった。
Example 2
A case with four substrates is shown. A magnetic circuit is arranged as shown in FIG. 7 using a Nd—Fe—B sintered magnet (above) having an inner diameter of 38 mm, an outer diameter of 44 mm, and a height of 8 mm, the distance between the magnetic circuit centers is 48 mm, and the magnetization direction of the magnet Was perpendicular to the substrate surface. The height of the magnet near the adjacent magnetic circuit was 4 mm. At this time, the magnetic field generated on the substrate surface is as shown in FIG. 14 , and it was found that the tilt angle from the radial direction to the circumferential direction can be suppressed to a considerably small value.

このように、本発明の磁気回路では、複数の基板全域においても径方向に向いた磁場を発生することができる。   Thus, in the magnetic circuit of the present invention, a magnetic field oriented in the radial direction can be generated over a plurality of substrates.

本発明の磁気回路の一例を示す断面図であり、後段は前段のX−X方向の断面図を示す。It is sectional drawing which shows an example of the magnetic circuit of this invention, and a back | latter stage shows sectional drawing of XX direction of a front | former stage. 本発明の磁気回路の一例を示す断面図であり、後段は前段のX−X方向の断面図を示す。It is sectional drawing which shows an example of the magnetic circuit of this invention, and a back | latter stage shows sectional drawing of XX direction of a front | former stage. 隣り合うリング状永久磁石の中心を結ぶ線から±θの角度の範囲の永久磁石と、同一リング状永久磁石の180度±θの角度の範囲の永久磁石を示す。A permanent magnet having an angle range of ± θ from a line connecting the centers of adjacent ring-shaped permanent magnets and a permanent magnet having an angle range of 180 ° ± θ of the same ring-shaped permanent magnet are shown. 切り欠き部を有するリング状永久磁石ユニットを用いた磁気回路を示す。The magnetic circuit using the ring-shaped permanent magnet unit which has a notch part is shown. 従来の磁石体積を変化させない磁石形状の場合の7つの評価ライン上の磁場の傾き角を示す。The inclination angle of the magnetic field on seven evaluation lines in the case of the magnet shape which does not change the conventional magnet volume is shown. 傾き角tを示した磁気回路を示す。The magnetic circuit which showed inclination-angle t is shown. 4個の磁気回路ユニットを有する磁気回路を示す。2 shows a magnetic circuit having four magnetic circuit units. 3個の磁気回路ユニットを有する磁気回路を示す。2 shows a magnetic circuit having three magnetic circuit units. 4個の磁気回路ユニットを有する磁気回路を示す。2 shows a magnetic circuit having four magnetic circuit units. 7個の磁気回路ユニットを有する磁気回路を示す。2 shows a magnetic circuit having seven magnetic circuit units. 実施例1で得られた磁気回路を用いて、磁石の高さ4mmのときの基板中心からの距離と径方向からの傾き角との関係を示す。Using the magnetic circuit obtained in Example 1, the relationship between the distance from the substrate center and the tilt angle from the radial direction when the height of the magnet is 4 mm is shown. 実施例1で得られた磁気回路を用いて、磁石の高さ3mmのときの基板中心からの距離と径方向からの傾き角との関係を示す。Using the magnetic circuit obtained in Example 1, the relationship between the distance from the center of the substrate and the tilt angle from the radial direction when the height of the magnet is 3 mm is shown. 実施例1で得られた磁気回路を用いて、磁石の高さ5mmのときの基板中心からの距離と径方向からの傾き角との関係を示す。Using the magnetic circuit obtained in Example 1, the relationship between the distance from the center of the substrate and the tilt angle from the radial direction when the height of the magnet is 5 mm is shown. 実施例2で得られた磁気回路を用いて基板中心からの距離と径方向からの傾き角との関係を示す。The relationship between the distance from the substrate center and the tilt angle from the radial direction using the magnetic circuit obtained in Example 2 is shown. 記録媒体の断面図である。It is sectional drawing of a recording medium. 基板に径方向磁場を印加する公知の方法を示す。A known method for applying a radial magnetic field to a substrate is shown. 公知の磁気回路を2つ並べて使用したときに、基板上の磁場が正しく径方向に向かなくなることを示す図である。It is a figure which shows that when two well-known magnetic circuits are used side by side, the magnetic field on a board | substrate will not turn to a radial direction correctly. 隣接する磁気回路からの磁場の影響を示す図である。It is a figure which shows the influence of the magnetic field from an adjacent magnetic circuit.

符号の説明Explanation of symbols

11,12,111 リング状基板
21A,21B,31A,31B,121 リング状永久磁石
23,33 中心軸
24 磁化方向
41 固定具
51 固定具
125 磁力線
126 磁場ベクトル
110 磁気媒体
112 硬磁性膜(下地膜)
113 軟磁性膜(下地膜)
114 硬磁性膜(記録膜)
11, 12, 111 Ring-shaped substrates 21A, 21B, 31A, 31B, 121 Ring-shaped permanent magnets 23, 33 Central axis 24 Magnetization direction 41 Fixing tool 51 Fixing tool 125 Magnetic field line 126 Magnetic field vector 110 Magnetic medium 112 Hard magnetic film (underlayer film) )
113 Soft magnetic film (underlayer)
114 Hard magnetic film (recording film)

Claims (7)

処理対象となるリング状基板の配置面を含む平面を挟んで該配置面の両側に設けられた一対のリング状永久磁石を備え、該リング状基板が配置された際に該配置面において該リング状基板の径方向に磁場を発生させる磁気回路ユニットを少なくとも二つ、全ての磁気回路ユニットのリング状基板の配置面が同一平面となるように組み合わせてなり、隣り合う磁気回路ユニットの隣り合うリング状永久磁石の中心同士を結ぶ線から±θ (式中、θ は0<θ <90度)の角度の範囲の各リング状永久磁石の隣り合う磁気回路ユニットに近い部分の体積が、同じ角度の範囲の同一リング状永久磁石の遠い部分体積よりも小さくなる径方向磁場発生用磁気回路。 A pair of ring-shaped permanent magnets provided on both sides of the arrangement surface across a plane including the arrangement surface of the ring-shaped substrate to be processed, and the ring on the arrangement surface when the ring-shaped substrate is arranged Combining at least two magnetic circuit units that generate a magnetic field in the radial direction of the cylindrical substrates so that the arrangement surfaces of the ring-shaped substrates of all the magnetic circuit units are on the same plane, adjacent rings of adjacent magnetic circuit units The volume of the portion close to the adjacent magnetic circuit unit of each ring-shaped permanent magnet in an angle range of ± θ 1 (where θ 1 is 0 <θ 1 <90 degrees) from the line connecting the centers of the shaped permanent magnets A magnetic circuit for generating a radial magnetic field that is smaller than the volume of a distant part of the same ring-shaped permanent magnet in the same angle range . 上記リング状永久磁石が、二以上のセグメント磁石を組み合わせたものであり、上記隣り合う磁気回路ユニットに近いセグメント磁石は、他のセグメント磁石よりも小さい体積を持つ請求項1に記載の径方向磁場発生用磁気回路。   The radial magnetic field according to claim 1, wherein the ring-shaped permanent magnet is a combination of two or more segment magnets, and the segment magnet close to the adjacent magnetic circuit unit has a smaller volume than other segment magnets. Magnetic circuit for generation. 上記リング状永久磁石が、上記隣り合う磁気回路ユニットに近い部分で小さく、遠い部分で大きい体積となるように、高さ、外径又は内径を変化させた形状である請求項1又は請求項2に記載の径方向磁場発生用磁気回路。 The ring-shaped permanent magnet is smaller in a portion near the magnetic circuit unit adjacent said, so a not large volume distant portion, the height, according to claim 1 or claim outside diameter or a shape of varying internal diameter 3. A magnetic circuit for generating a radial magnetic field according to 2. 上記リング状永久磁石が、上記隣り合う磁気回路ユニットに近い部分で小さい体積となるように、一部途切れている形状、又は穴もしくはスリットを入れた空隙を有する形状である請求項1〜3のいずれかに記載の径方向磁場発生用磁気回路。 The ring-shaped permanent magnet, so that a small volume in the near have partial magnetic circuit unit adjacent the shapes are broken part, or claims 1 to 3 which is a shape having a void containing the holes or slits A magnetic circuit for generating a radial magnetic field according to any one of the above. 上記一対のリング状永久磁石が、上記リング状基板の配置面に対して互いに対称な位置に設けられ、該配置面に対して対称な形状と磁化方向を有する請求項1〜4のいずれかに記載の径方向磁場発生用磁気回路。   The pair of ring-shaped permanent magnets are provided at positions symmetrical to each other with respect to the arrangement surface of the ring-shaped substrate, and have a symmetrical shape and a magnetization direction with respect to the arrangement surface. A magnetic circuit for generating a radial magnetic field as described. 上記リング状永久磁石が、上記リング状基板の配置面に対して垂直な磁化方向を有するか、または該配置面に対して垂直な方向から傾きを持つ磁化方向を有する請求項5に記載の径方向磁場発生用磁気回路。   The diameter according to claim 5, wherein the ring-shaped permanent magnet has a magnetization direction perpendicular to the arrangement surface of the ring-shaped substrate, or has a magnetization direction inclined from a direction perpendicular to the arrangement surface. Magnetic circuit for directional magnetic field generation. 処理対象となるリング状基板の配置面を含む平面を挟んで該配置面の両側に設けられた一対のリング状永久磁石を備え、該リング状基板が配置された際に該配置面において該リング状基板の径方向に磁場を発生させる磁気回路ユニットを少なくとも二つ、全ての磁気回路ユニットのリング状基板の配置面が同一平面となるように組み合わせてなり、隣り合う磁気回路ユニットの隣り合うリング状永久磁石の中心同士を結ぶ線から±θ(式中、θは0<θ<90度)の角度の範囲の各リング状磁石の体積が、同一リング状永久磁石の180度±θの角度の範囲の同一永久磁石の体積よりも小さくなる径方向磁場発生用磁気回路。 A pair of ring-shaped permanent magnets provided on both sides of the arrangement surface across a plane including the arrangement surface of the ring-shaped substrate to be processed, and the ring on the arrangement surface when the ring-shaped substrate is arranged Combining at least two magnetic circuit units that generate a magnetic field in the radial direction of the cylindrical substrates so that the arrangement surfaces of the ring-shaped substrates of all the magnetic circuit units are on the same plane, adjacent rings of adjacent magnetic circuit units The volume of each ring magnet in the range of ± θ (where θ is 0 <θ <90 degrees) from the line connecting the centers of the ring-shaped permanent magnets is an angle of 180 degrees ± θ of the same ring-shaped permanent magnet Magnetic circuit for generating a radial magnetic field that is smaller than the volume of the same permanent magnet in the range.
JP2006177812A 2006-06-28 2006-06-28 Magnetic circuit for radial magnetic field generation Active JP4648876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177812A JP4648876B2 (en) 2006-06-28 2006-06-28 Magnetic circuit for radial magnetic field generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177812A JP4648876B2 (en) 2006-06-28 2006-06-28 Magnetic circuit for radial magnetic field generation

Publications (2)

Publication Number Publication Date
JP2008010540A JP2008010540A (en) 2008-01-17
JP4648876B2 true JP4648876B2 (en) 2011-03-09

Family

ID=39068504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177812A Active JP4648876B2 (en) 2006-06-28 2006-06-28 Magnetic circuit for radial magnetic field generation

Country Status (1)

Country Link
JP (1) JP4648876B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222445A (en) * 1982-06-17 1983-12-24 Fujitsu Ltd Orienting method
JPS62232911A (en) * 1986-04-03 1987-10-13 Hitachi Ltd Magnetic film forming device
JPH03201219A (en) * 1989-12-27 1991-09-03 Nippon Digital Equip Kk Production of perpendicular magnetic recording disk medium
JPH07197253A (en) * 1993-12-28 1995-08-01 Shin Etsu Chem Co Ltd Magnetic field generator for magnetron plasma
JP2005209326A (en) * 2003-12-25 2005-08-04 Shin Etsu Chem Co Ltd Magnetic circuit for generating diameter-direction magnetic field

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222445A (en) * 1982-06-17 1983-12-24 Fujitsu Ltd Orienting method
JPS62232911A (en) * 1986-04-03 1987-10-13 Hitachi Ltd Magnetic film forming device
JPH03201219A (en) * 1989-12-27 1991-09-03 Nippon Digital Equip Kk Production of perpendicular magnetic recording disk medium
JPH07197253A (en) * 1993-12-28 1995-08-01 Shin Etsu Chem Co Ltd Magnetic field generator for magnetron plasma
JP2005209326A (en) * 2003-12-25 2005-08-04 Shin Etsu Chem Co Ltd Magnetic circuit for generating diameter-direction magnetic field

Also Published As

Publication number Publication date
JP2008010540A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP6092162B2 (en) Magnetic recording head and magnetic recording apparatus
CN100362570C (en) Magnetic recording head and fabrication process
JP2003036503A (en) Perpendicular magnetic recording head and magnetic disk drive incorporating it
JP4648876B2 (en) Magnetic circuit for radial magnetic field generation
JP6158531B2 (en) Magnetic element, apparatus, and method of manufacturing magnetic element
JP4617279B2 (en) Magnetic circuit and magnetic field application method
US6646820B1 (en) Method for recording magnetic recording medium
JP4444797B2 (en) Magnetic circuit for generating radial magnetic field used for film formation by sputtering process
JP2006313587A (en) Demagnetization method of magnetic recording medium and demagnetizer
JP6745773B2 (en) Magnetic recording medium and magnetic recording/reproducing apparatus
JP2007272998A (en) Permanent magnet magnetic circuit, axisymmetric magnetic field forming method, and method of manufacturing perpendicular magnetic recording medium
JP2005166107A (en) Perpendicular magnetic recording disk drive
JPH06180834A (en) Perpendicular magnetic recording medium
JP2004528666A (en) Disk-shaped magnetic storage device and method of manufacturing the same
JP4399023B2 (en) Magnetic circuit for radial magnetic field generation used in heat treatment process
JP2008010052A (en) Magnetic head
JP2008071383A (en) Manufacturing method of perpendicular magnetic recording medium, perpendicular magnetic recording medium and magnetic recording device
US6190517B1 (en) Magnet array
JP2007242140A (en) Magnetoresistance effect type reproducing head and magnetic disk device
JP5738791B2 (en) 3D magnetic recording media
JP5910656B2 (en) Sputtering deposition system
JP2008078214A (en) Magnetoresistance effect element
JP2007242136A (en) High density magnetic disk medium and method for manufacturing the same
JPH1125424A (en) Magnetic field applying device
JPS62212918A (en) Vertical magnetism recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4648876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150