JP2008078214A - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element Download PDF

Info

Publication number
JP2008078214A
JP2008078214A JP2006253069A JP2006253069A JP2008078214A JP 2008078214 A JP2008078214 A JP 2008078214A JP 2006253069 A JP2006253069 A JP 2006253069A JP 2006253069 A JP2006253069 A JP 2006253069A JP 2008078214 A JP2008078214 A JP 2008078214A
Authority
JP
Japan
Prior art keywords
magnetic layer
layer
free
free magnetic
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006253069A
Other languages
Japanese (ja)
Inventor
Naoki Mukoyama
直樹 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006253069A priority Critical patent/JP2008078214A/en
Publication of JP2008078214A publication Critical patent/JP2008078214A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetoresistance effect element assuring higher reproducing output by effectively providing distribution of magnetization rotating angle of a free-magnetic layer responding to a magnetic field of a medium and thereby enlarging an average magnetization rotating angle of the free-magnetic layer. <P>SOLUTION: The magnetoresistance effect element is constituted with a free-magnetic layer 11, a fixed magnetic layer 12, an antiferromagnetic layer 13 for fixing magnetization of the fixed magnetic layer 12, a non-magnetic layer 14 between the free-magnetic layer 11 and a fixed magnetic layer 12, ferro-magnetic layer 15 which impresses a vertical bias magnetic field to the free-magnetic layer 11. The average magnetization rotating angle of the free-magnetic layer is enlarged by narrowing the width in the vertical bias direction of at least free-magnetic layer 11 at the surface side opposing to the surface in opposition to the medium than the surface side opposing to the medium, or widening an interval between the free-magnetic layer 11 and the ferro-magnetic layer 15 in the surface side opposing to the surface in opposition to the medium than the surface side opposing to the medium, or by thinning the film thickness of the ferro-magnetic layer 15 at the surface side in opposition to the surface opposing to the medium than the surface side opposing to the medium. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は磁気抵抗効果素子に関する。さらに詳しくは、磁気抵抗効果素子の媒体磁界に対する平均感度を向上させることで、高い再生出力が得られる磁気抵抗効果素子に関する。   The present invention relates to a magnetoresistive element. More specifically, the present invention relates to a magnetoresistive effect element that can obtain a high reproduction output by improving the average sensitivity of the magnetoresistive effect element to a medium magnetic field.

磁気ディスク装置に用いられる磁気ヘッドの構造を図1に示す。この磁気ヘッドは、リードヘッド4とライトヘッド9から構成される。リードヘッド4は下部シールド層1と上部シールド層3とで再生用の磁気抵抗効果素子2(MR素子、GMR素子、TMR素子)を挟む構造である。ライトヘッド9はライトギャップ6を挟んで配置される下部磁極5及び上部磁極7と、記録用のコイル8からなる構造である。   The structure of a magnetic head used in the magnetic disk apparatus is shown in FIG. This magnetic head includes a read head 4 and a write head 9. The read head 4 has a structure in which a reproducing magnetoresistive element 2 (MR element, GMR element, TMR element) is sandwiched between a lower shield layer 1 and an upper shield layer 3. The write head 9 has a structure comprising a lower magnetic pole 5 and an upper magnetic pole 7 disposed with a write gap 6 in between, and a recording coil 8.

磁気ヘッドに用いられる従来の磁気抵抗効果素子の構造を図2に示す。図2は媒体対向面を媒体側から見た磁気抵抗効果素子の斜面図である。磁界を検知する素子部10は、自由磁性層11と、固定磁性層12と、固定磁性層12を固定する反強磁性層13と、自由磁性層11と固定磁性層12の間の非磁性層14から構成される。固定磁性層12の磁化は反強磁性層13により一定方向に固定されている。自由磁性層11は媒体磁界に応答して磁化角度が変化する。非磁性層14はCu等の導体材料又はAl2O3等の絶縁材料からなる。また、素子部10の両側には縦バイアス磁界を印加するための強磁性層15がCr等の下地層16を介して配置されている。 FIG. 2 shows the structure of a conventional magnetoresistive element used for a magnetic head. FIG. 2 is a perspective view of the magnetoresistive element when the medium facing surface is viewed from the medium side. The element unit 10 that detects a magnetic field includes a free magnetic layer 11, a pinned magnetic layer 12, an antiferromagnetic layer 13 that fixes the pinned magnetic layer 12, and a nonmagnetic layer between the free magnetic layer 11 and the pinned magnetic layer 12. 14. The magnetization of the pinned magnetic layer 12 is pinned in a certain direction by the antiferromagnetic layer 13. The free magnetic layer 11 changes its magnetization angle in response to the medium magnetic field. The nonmagnetic layer 14 is made of a conductive material such as Cu or an insulating material such as Al 2 O 3 . In addition, ferromagnetic layers 15 for applying a longitudinal bias magnetic field are disposed on both sides of the element portion 10 via an underlayer 16 such as Cr.

ここで、従来の技術では、磁気抵抗効果素子の媒体対向面側の縦バイアス方向の幅17は、媒体対向面に対向する面側の縦バイアス方向の幅18と概ね等しい。また、媒体対向面側の自由磁性層11と強磁性層15との間隔19は、媒体対向面に対向する面側の自由磁性層11と強磁性層15との間隔20と概ね等しい。さらに、媒体対向面側の強磁性層15の膜厚21は、媒体対向面に対向する面側の強磁性層15の膜厚22と概ね等しい。   Here, in the conventional technique, the width 17 in the longitudinal bias direction on the medium facing surface side of the magnetoresistive element is substantially equal to the width 18 in the longitudinal bias direction on the surface side facing the medium facing surface. The distance 19 between the free magnetic layer 11 on the medium facing surface side and the ferromagnetic layer 15 is substantially equal to the distance 20 between the free magnetic layer 11 on the surface facing the medium facing surface and the ferromagnetic layer 15. Further, the film thickness 21 of the ferromagnetic layer 15 on the medium facing surface side is approximately equal to the film thickness 22 of the ferromagnetic layer 15 on the surface side facing the medium facing surface.

従来技術での媒体磁界に応答する自由磁性層の磁化回転角度のX-Y面内の分布の模式図を図3に示す。ここで、縦バイアス磁界の方向をX方向、媒体対向面に垂直な方向をY方向、これらのX方向及びY方向に直交する方向をZ方向とする。自由磁性層の磁化回転角度は、縦バイアス方向(X方向)では中央部で大きく、素子両端部で小さい。これはバルクハウゼンノイズを抑制するため、磁気抵抗効果素子の縦バイアス方向の両端部の磁化を、強磁性層からの縦バイアス磁界で抑えているからである。また、素子高さ方向(Y方向)では、媒体対向面部で大きく、媒体対向面に対向する面部で小さくなっている。これは、媒体対向面部から媒体対向面に対向する面部に近づくに従い媒体からの磁界が弱くなっているからである。   FIG. 3 shows a schematic diagram of the distribution in the XY plane of the magnetization rotation angle of the free magnetic layer responsive to the medium magnetic field in the prior art. Here, the direction of the longitudinal bias magnetic field is the X direction, the direction perpendicular to the medium facing surface is the Y direction, and the direction perpendicular to the X direction and the Y direction is the Z direction. The magnetization rotation angle of the free magnetic layer is large at the center in the longitudinal bias direction (X direction) and small at both ends of the element. This is because in order to suppress Barkhausen noise, the magnetization at both ends in the longitudinal bias direction of the magnetoresistive effect element is suppressed by the longitudinal bias magnetic field from the ferromagnetic layer. Further, in the element height direction (Y direction), it is large at the medium facing surface and small at the surface facing the medium facing surface. This is because the magnetic field from the medium becomes weaker from the medium facing surface portion toward the surface portion facing the medium facing surface.

すなわち、縦バイアス方向(X方向)の素子両端部で、かつ素子高さ方向(Y方向)の媒体対向面に対向する面部に該当する低感度部分23では自由磁性層の磁化回転が小さく、当該部分の出力への関与は少ない。この場合、自由磁性層全体の平均磁化回転角度は小さくなり、高い再生出力を得ることができない。   That is, the magnetization rotation of the free magnetic layer is small in the low-sensitivity portion 23 corresponding to the surface facing the medium facing surface in the element height direction (Y direction) at both ends of the element in the longitudinal bias direction (X direction). There is little contribution to the output of the part. In this case, the average magnetization rotation angle of the entire free magnetic layer becomes small, and a high reproduction output cannot be obtained.

特に近年では磁気記録装置の大容量化が進み、ハードディスクの高密度化が必要とされており、磁気ディスクに記録された微小の磁気情報を読取るため、磁気抵抗効果素子においてもますます小型化の要求が大きくなっている。したがって、要求される再生ヘッドのコア幅もますます狭くなっており、強磁性層からのバイアス磁界により自由磁性層の媒体磁界に対する平均回転角度は急激に低下している。
特開平2005-78666号公報
Especially in recent years, the capacity of magnetic recording devices has been increasing, and it has been necessary to increase the density of hard disks. In order to read minute magnetic information recorded on magnetic disks, the magnetoresistive effect elements have become increasingly smaller. The demand is growing. Therefore, the required core width of the read head is becoming narrower, and the average rotation angle of the free magnetic layer with respect to the medium magnetic field is drastically reduced due to the bias magnetic field from the ferromagnetic layer.
Japanese Unexamined Patent Publication No. 2005-78666

ここで、自由磁性層の磁化回転角度を大きくすれば、高い再生出力を得ることができるが、一方で、縦バイアス方向(X方向)の素子端部での自由磁性層の磁化回転が大きくなるとバルクハウゼンノイズを生じる問題がある。したがって、縦バイアス磁界の強度調整などにより自由磁性層の磁化回転角度を一様に全面的に大きくするのではなく、自由磁性層の磁化回転角度の小さい低感度部分23についてのみ、その回転角度を大きくできれば高い再生出力を得ることができる。本願発明は、媒体磁界に応答する自由磁性層の磁化回転角度の分布を効率的にし、自由磁性層の平均磁化回転角度を大きくすることで、高い再生出力の磁気抵抗効果素子を提供することを目的とする。   Here, if the magnetization rotation angle of the free magnetic layer is increased, a high reproduction output can be obtained.On the other hand, if the magnetization rotation of the free magnetic layer at the element end in the longitudinal bias direction (X direction) increases. There is a problem that causes Barkhausen noise. Accordingly, the magnetization rotation angle of the free magnetic layer is not uniformly increased over the entire surface by adjusting the strength of the longitudinal bias magnetic field, but only the low-sensitivity portion 23 having a small magnetization rotation angle of the free magnetic layer. If it can be increased, a high reproduction output can be obtained. The present invention provides a magnetoresistive effect element having a high reproduction output by making the distribution of the magnetization rotation angle of the free magnetic layer responsive to the medium magnetic field efficient and increasing the average magnetization rotation angle of the free magnetic layer. Objective.

そこで、自由磁性層の平均磁化回転角度を大きくするため以下の手段を説明する。   Therefore, the following means will be described in order to increase the average magnetization rotation angle of the free magnetic layer.

自由磁性層と、固定磁性層と、固定磁性層の磁化を固定する反強磁性層と、自由磁性層と固定磁性層の間の非磁性層と、自由磁性層に縦バイアス磁界を印加する強磁性層とを有し、少なくとも自由磁性層の縦バイアス方向の幅が媒体対向面側よりも媒体対向面に対向する面側で狭くなっていることを特徴とする磁気抵抗効果素子である。   A free magnetic layer, a pinned magnetic layer, an antiferromagnetic layer that pinns the magnetization of the pinned magnetic layer, a nonmagnetic layer between the free magnetic layer and the pinned magnetic layer, and a strong magnetic field that applies a longitudinal bias magnetic field to the free magnetic layer A magnetoresistive element having a magnetic layer, wherein at least the width of the free magnetic layer in the longitudinal bias direction is narrower on a surface facing the medium facing surface than on the medium facing surface.

自由磁性層の形状を膜面に垂直方向から見て台形にすることで、自由磁性層の磁化回転角度が小さい部分を除外し、自由磁性層全体の平均磁化回転角度を大きくするものである。   By making the shape of the free magnetic layer trapezoidal when viewed from the direction perpendicular to the film surface, the portion with a small magnetization rotation angle of the free magnetic layer is excluded, and the average magnetization rotation angle of the entire free magnetic layer is increased.

また、自由磁性層と、固定磁性層と、固定磁性層の磁化を固定する反強磁性層と、自由磁性層と固定磁性層の間の非磁性層と、自由磁性層に縦バイアス磁界を印加する強磁性層とを有し、自由磁性層と強磁性層との間隔が、媒体対向面側よりも媒体対向面に対向する面側で広くなっていることを特徴とする磁気抵抗効果素子でもよい。   Also, a longitudinal bias magnetic field is applied to the free magnetic layer, the pinned magnetic layer, the antiferromagnetic layer for pinning the magnetization of the pinned magnetic layer, the nonmagnetic layer between the free magnetic layer and the pinned magnetic layer, and the free magnetic layer. A magnetoresistive effect element characterized in that the space between the free magnetic layer and the ferromagnetic layer is wider on the side facing the medium facing surface than on the medium facing surface side. Good.

これは、自由磁性層の磁化回転角度が小さい部分の縦バイアス磁界を弱めることで、当該部分の自由磁性層の磁化回転角度を大きくして、自由磁性層全体の平均磁化回転角度を大きくするものである。   This is to weaken the longitudinal bias magnetic field in the part where the magnetization rotation angle of the free magnetic layer is small, thereby increasing the magnetization rotation angle of the free magnetic layer of the part and increasing the average magnetization rotation angle of the entire free magnetic layer. It is.

同様に、自由磁性層と、固定磁性層と、固定磁性層の磁化を固定する反強磁性層と、自由磁性層と固定磁性層の間の非磁性層と、自由磁性層に縦バイアス磁界を印加する強磁性層とを有し、強磁性層の膜厚が、媒体対向面側よりも媒体対向面に対向する面側で薄くなっていることを特徴とする磁気抵抗効果素子であってもよい。
かかる場合も、自由磁性層の磁化回転角度が小さい部分の縦バイアス磁界を弱めることで、当該部分の自由磁性層の磁化回転角度を大きくして、自由磁性層全体の平均磁化回転角度を大きくするものである。
Similarly, a free magnetic layer, a pinned magnetic layer, an antiferromagnetic layer for pinning the magnetization of the pinned magnetic layer, a nonmagnetic layer between the free magnetic layer and the pinned magnetic layer, and a longitudinal bias magnetic field applied to the free magnetic layer. A magnetoresistive element having a ferromagnetic layer to be applied, wherein the thickness of the ferromagnetic layer is thinner on the side facing the medium facing surface than on the medium facing surface side. Good.
Even in such a case, by weakening the longitudinal bias magnetic field in the portion where the magnetization rotation angle of the free magnetic layer is small, the magnetization rotation angle of the free magnetic layer in the portion is increased, and the average magnetization rotation angle of the entire free magnetic layer is increased. Is.

本願発明に係る磁気抵抗効果素子によれば、自由磁性層の平均磁化回転角度を大きくすることで、高い再生出力を得ることができ、高密度化に対応した高感度の磁気抵抗効果素子を提供することができる。   According to the magnetoresistive effect element according to the present invention, a high reproduction output can be obtained by increasing the average magnetization rotation angle of the free magnetic layer, and a highly sensitive magnetoresistive effect element corresponding to high density is provided. can do.

以下、添付した図面に基づき本願発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(第1の実施形態)
図4は、本願発明に係る磁気抵抗効果素子の第1の実施形態の構成を示す。本実施形態の磁気抵抗効果素子は、自由磁性層11と、固定磁性層12と、固定磁性層12の磁化を固定する反強磁性層13と、自由磁性層11と固定磁性層12の間の非磁性層14と、自由磁性層11に縦バイアス磁界を印加する強磁性層15とを有し、素子部10が媒体対向面側の幅17よりも媒体対向面に対向する面側の幅18で狭くなっている。
(First embodiment)
FIG. 4 shows the configuration of the first embodiment of the magnetoresistive effect element according to the present invention. The magnetoresistive effect element according to this embodiment includes a free magnetic layer 11, a fixed magnetic layer 12, an antiferromagnetic layer 13 that fixes the magnetization of the fixed magnetic layer 12, and a free magnetic layer 11 and a pinned magnetic layer 12. It has a nonmagnetic layer 14 and a ferromagnetic layer 15 that applies a longitudinal bias magnetic field to the free magnetic layer 11, and the element portion 10 has a width 18 on the side facing the medium facing surface rather than a width 17 on the medium facing surface side. It is narrowed by.

ここで、固定磁性層12はRu等の中間材料を介した二層構造をとる場合もある。また、反強磁性層13にはTa等の下地層を設ける場合もある。また、自由磁性層11にはTa等のキャップ層を設ける場合もある。また、これらの磁気抵抗効果素子は逆順に積層される場合もある。なお、第2の実施形態及び第3の実施形態においてもこれらは同様である。   Here, the pinned magnetic layer 12 may have a two-layer structure through an intermediate material such as Ru. Further, the antiferromagnetic layer 13 may be provided with an underlayer such as Ta. The free magnetic layer 11 may be provided with a cap layer such as Ta. These magnetoresistive elements may be stacked in reverse order. The same applies to the second embodiment and the third embodiment.

図5に本実施形態における磁気抵抗効果素子の製造方法を示す。図5は本実施形態における磁気抵抗効果素子の製造工程を(a)〜(e)に分けて説明した図であり、左側に媒体対向面に垂直な方向から見た平面図を、右側に膜面に垂直な方向から見た平面図が示されている。   FIG. 5 shows a method for manufacturing the magnetoresistive effect element according to this embodiment. FIG. 5 is a diagram illustrating the manufacturing process of the magnetoresistive effect element according to this embodiment divided into (a) to (e). A plan view viewed from a direction perpendicular to the medium facing surface is shown on the left side, and a film is shown on the right side. A plan view viewed from a direction perpendicular to the surface is shown.

まず、図5(a)で示すように、磁気抵抗効果膜を積層する。次に、図5(b)に示すように、レジストを積層体上に塗布した後、露光と現像により台形状にパターニングしてマスクを形成する。このマスクに基づきイオンミリング処理を行い、磁気抵抗効果膜を所定寸法に加工する。本実施形態では、ステッパを使用して、レジストの厚さ1.0umのパターンを形成した。その後、アルゴン(Ar)イオンが基板の面に対して垂直に入射する角度を設定してイオンミリング処理を行い、レジスト24によりマスクされていない磁気抵抗効果膜の切削加工を行った。   First, as shown in FIG. 5A, a magnetoresistive film is laminated. Next, as shown in FIG. 5B, a resist is applied on the laminate, and then patterned into a trapezoid by exposure and development to form a mask. An ion milling process is performed based on this mask to process the magnetoresistive film into a predetermined dimension. In this embodiment, a resist pattern having a thickness of 1.0 μm was formed using a stepper. Thereafter, an ion milling process was performed by setting an angle at which argon (Ar) ions were incident perpendicularly to the surface of the substrate, and a magnetoresistive film not masked by the resist 24 was cut.

次に、図5(c)に示すように、前記レジスト24をマスクとして用いて中間層28を成膜し、レジスト24を除去する。本実施形態では、中間層28としてCrをスパッタリング法で成膜し、O2プラズマ処理或いはレジスト剥離液を用いてレジスト24を除去する。なお、図5(c)は、レジスト24を除去した状態を示している。   Next, as shown in FIG. 5C, the intermediate layer 28 is formed using the resist 24 as a mask, and the resist 24 is removed. In this embodiment, Cr is formed as the intermediate layer 28 by a sputtering method, and the resist 24 is removed using O2 plasma treatment or a resist stripping solution. FIG. 5C shows a state where the resist 24 is removed.

次に、図5(d)に示すように、レジスト25を積層体上に塗布した後、露光と現像によりパターニングして前記工程とは異なる長方形状のマスクを形成し、このマスクに基づきイオンミリング処理を行い、中間層28を所定寸法に加工する。   Next, as shown in FIG. 5D, after applying a resist 25 on the laminate, patterning is performed by exposure and development to form a rectangular mask different from the above process, and ion milling is performed based on this mask. Processing is performed to process the intermediate layer 28 to a predetermined size.

次に、図5(e)に示すように、前記レジスト25をマスクとして用いて下地層16及び強磁性層15を連続成膜し、レジスト25を除去する工程を示す。本実施形態では、下地層16としてCr、強磁性層15としてCoPtをスパッタリング法で成膜し、O2プラズマ処理或いはレジスト剥離液を用いてレジスト25を除去する。なお、図5(e)はレジスト25を除去した状態を示している。これで、本実施形態の磁気抵抗効果素子が製造される。   Next, as shown in FIG. 5E, a step of continuously forming the underlayer 16 and the ferromagnetic layer 15 using the resist 25 as a mask and removing the resist 25 is shown. In this embodiment, Cr is used for the underlayer 16 and CoPt is used for the ferromagnetic layer 15 by sputtering, and the resist 25 is removed using O2 plasma treatment or resist stripping solution. FIG. 5E shows a state where the resist 25 is removed. Thus, the magnetoresistive effect element of this embodiment is manufactured.

第1の実施形態の磁気抵抗効果素子の自由磁性層が媒体磁界に応答して磁化が回転する場合、その磁化回転角度は図6の模式図に示すような分布となる。縦バイアス方向の素子両端部で、かつ素子高さ方向の媒体対向面に対向する面部では、自由磁性層の磁化回転角度が小さいため、当該部分を除外した素子形状とすることで平均の磁化回転角度を大きくしている。なお、前記台形形状とすることで、媒体磁界に対するコア幅方向(X方向)の読取り幅が狭くなると考えられるが、素子全体のコア幅方向の寸法を大きくすることで調整することができる。   When the magnetization of the free magnetic layer of the magnetoresistive element of the first embodiment rotates in response to the medium magnetic field, the magnetization rotation angle has a distribution as shown in the schematic diagram of FIG. Since the magnetization rotation angle of the free magnetic layer is small at both ends of the element in the longitudinal bias direction and the surface facing the medium facing surface in the element height direction, the average magnetization rotation can be achieved by making the element shape excluding that part. The angle is increased. Although it is thought that the trapezoidal shape reduces the reading width in the core width direction (X direction) with respect to the medium magnetic field, it can be adjusted by increasing the size of the entire element in the core width direction.

(第2の実施形態)
図7は、本願発明に係る磁気抵抗効果素子の第2の実施形態の構成を示す。本実施形態の磁気抵抗効果素子は、自由磁性層11と、固定磁性層12と、固定磁性層12の磁化を固定する反強磁性層13と、自由磁性層11と固定磁性層12の間の非磁性層14と、自由磁性層11に縦バイアス磁界を印加する強磁性層15とを有し、自由磁性層11と強磁性層15との間隔において、媒体対向面側の間隔19よりも媒体対向面に対向する面側の間隔20が広くなっている。
(Second Embodiment)
FIG. 7 shows a configuration of a second embodiment of the magnetoresistive effect element according to the present invention. The magnetoresistive effect element according to this embodiment includes a free magnetic layer 11, a fixed magnetic layer 12, an antiferromagnetic layer 13 that fixes the magnetization of the fixed magnetic layer 12, and a free magnetic layer 11 and a pinned magnetic layer 12. It has a nonmagnetic layer 14 and a ferromagnetic layer 15 that applies a longitudinal bias magnetic field to the free magnetic layer 11. The distance between the free magnetic layer 11 and the ferromagnetic layer 15 is larger than the distance 19 on the medium facing surface side. The distance 20 on the surface side facing the facing surface is increased.

第1の実施形態における磁気抵抗効果素子の製造工程において、レジストをパターニングする形状を変えることで、同様の工程により第2の実施形態における磁気抵抗効果素子を製造することができる。   In the manufacturing process of the magnetoresistive effect element in the first embodiment, the magnetoresistive effect element in the second embodiment can be manufactured by a similar process by changing the shape of patterning the resist.

第2の実施形態の磁気抵抗効果素子の自由磁性層11が媒体磁界に応答して磁化が回転する場合、その磁化回転角度は図8の模式図に示すような分布となる。従来技術に比べて縦バイアス方向の素子両端部で、かつ素子高さ方向の媒体対向面に対向する面部で、自由磁性層の磁化回転が大きくなっているため、平均の磁化回転角度も大きくなっている。これは、磁気抵抗効果素子とその磁気抵抗効果素子の縦バイアス方向の両側に配置された強磁性層との間隔が、媒体対向面側よりも媒体対向面に対向する面側で広くなっているため、素子高さ方向の媒体対向面に対向する面側での縦バイアス磁界が媒体対向面側に比べて小さいからである。このように自由磁性層の磁化回転が小さい低感度部分23を少なくすることで、自由磁性層の平均磁化回転を大きくして再生出力を向上させることができる。   When the magnetization of the free magnetic layer 11 of the magnetoresistive effect element according to the second embodiment rotates in response to the medium magnetic field, the magnetization rotation angle has a distribution as shown in the schematic diagram of FIG. Compared with the prior art, the magnetization rotation of the free magnetic layer is larger at both ends of the device in the longitudinal bias direction and at the surface facing the medium facing surface in the device height direction, so the average magnetization rotation angle is also larger. ing. This is because the distance between the magnetoresistive effect element and the ferromagnetic layer disposed on both sides of the magnetoresistive effect element in the longitudinal bias direction is wider on the surface side facing the medium facing surface than on the medium facing surface side. Therefore, the longitudinal bias magnetic field on the surface side facing the medium facing surface in the element height direction is smaller than that on the medium facing surface side. In this way, by reducing the low-sensitivity portion 23 in which the magnetization rotation of the free magnetic layer is small, the average magnetization rotation of the free magnetic layer can be increased and the reproduction output can be improved.

(第3の実施形態)
図9は、本願発明に係る磁気抵抗効果素子の第3の実施形態の構成を示す。本実施形態の磁気抵抗効果素子は、自由磁性層11と、固定磁性層12と、固定磁性層12の磁化を固定する反強磁性層13と、自由磁性層11と固定磁性層12の間の非磁性層14と、自由磁性層11に縦バイアス磁界を印加する強磁性層15とを有し、強磁性層15の膜厚において、媒体対向面側の膜厚21よりも媒体対向面に対向する面側の膜厚22が薄くなっている。
(Third embodiment)
FIG. 9 shows the configuration of the third embodiment of the magnetoresistive effect element according to the present invention. The magnetoresistive effect element according to this embodiment includes a free magnetic layer 11, a fixed magnetic layer 12, an antiferromagnetic layer 13 that fixes the magnetization of the fixed magnetic layer 12, and a free magnetic layer 11 and a pinned magnetic layer 12. A nonmagnetic layer 14 and a ferromagnetic layer 15 that applies a longitudinal bias magnetic field to the free magnetic layer 11 are provided, and the thickness of the ferromagnetic layer 15 is opposed to the medium facing surface rather than the film thickness 21 on the medium facing surface side. The film thickness 22 on the surface side is reduced.

図10に本実施形態における磁気抵抗効果素子の製造方法を示す。図10は本実施形態における磁気抵抗効果素子の製造工程を(a)〜(e)に分けて説明した図であり、左側に媒体対向面に垂直な方向から見た平面図を、右側に膜面に垂直な方向から見た平面図が示されている。また、図10(f)は図10(e)のI-I方向の断面図を示している。   FIG. 10 shows a method for manufacturing the magnetoresistive effect element according to this embodiment. FIG. 10 is a diagram illustrating the manufacturing process of the magnetoresistive effect element according to this embodiment divided into (a) to (e). A plan view viewed from the direction perpendicular to the medium facing surface is shown on the left side, and a film is shown on the right side. A plan view viewed from a direction perpendicular to the surface is shown. FIG. 10 (f) shows a cross-sectional view in the II direction of FIG. 10 (e).

まず、図10(a)で示すように、磁気抵抗効果膜を積層する。次に、図10(b)に示すように、レジスト26を積層体上に塗布した後、露光と現像によりパターニングしてマスクを形成する。このマスクに基づきイオンミリング処理を行い、磁気抵抗効果膜を所定寸法に加工する。本実施形態では、ステッパを使用して、レジストの厚さ1.0umのパターンを形成した。その後、アルゴン(Ar)イオンが基板の面に対して垂直に入射する角度を設定してイオンミリング処理を行い、レジスト26によりマスクされていない磁気抵抗効果膜の切削加工を行った。   First, as shown in FIG. 10A, a magnetoresistive film is laminated. Next, as shown in FIG. 10B, a resist 26 is applied on the laminate, and then patterned by exposure and development to form a mask. An ion milling process is performed based on this mask to process the magnetoresistive film into a predetermined dimension. In this embodiment, a resist pattern having a thickness of 1.0 μm was formed using a stepper. Thereafter, an ion milling process was performed by setting an angle at which argon (Ar) ions were incident perpendicularly to the surface of the substrate, and a magnetoresistive film not masked by the resist 26 was cut.

次に、図10(c)に示すように、前記レジスト26をマスクとして用いて下地層16を成膜し、レジスト26を除去する。本実施形態では、下地層としてCrをスパッタリング法で成膜し、O2プラズマ処理或いはレジスト剥離液を用いてレジスト26を除去する。なお、図10(c)は、レジスト26を除去した状態を示している。   Next, as shown in FIG. 10C, the base layer 16 is formed using the resist 26 as a mask, and the resist 26 is removed. In this embodiment, Cr is formed as a base layer by a sputtering method, and the resist 26 is removed using O2 plasma treatment or a resist stripping solution. FIG. 10C shows a state where the resist 26 is removed.

次に、図10(d)に示すように、レジスト27を塗布した後、露光と現像によりパターニングしてマスクを形成する。   Next, as shown in FIG. 10D, a resist 27 is applied and then patterned by exposure and development to form a mask.

次に、図10(e)(f)に示すように、前記レジスト27をマスクとして用いて強磁性層15を素子高さ方向の斜めから成膜し、レジスト27を除去する。本実施形態では、強磁性層15としてCoPtをスパッタリング法で成膜し、O2プラズマ処理或いはレジスト剥離液を用いてレジスト27を除去する。なお、図10(e)はレジストを除去する前の状態を示している。   Next, as shown in FIGS. 10E and 10F, the ferromagnetic layer 15 is formed obliquely in the element height direction using the resist 27 as a mask, and the resist 27 is removed. In this embodiment, CoPt is formed as the ferromagnetic layer 15 by sputtering, and the resist 27 is removed using O2 plasma treatment or a resist stripping solution. FIG. 10E shows a state before the resist is removed.

第3の実施形態の磁気抵抗効果素子の自由磁性層が媒体磁界に応答して磁化が回転する場合、その磁化回転角度は図11の模式図に示すような分布となる。従来技術に比べて縦バイアス方向の素子両端部で、かつ素子高さ方向の媒体対向面に対向する面部で、自由磁性層の磁化回転が大きくなっているため、平均の磁化回転角度も大きくなっている。これは、磁気抵抗効果素子のコア幅方向の両側に配置された強磁性層の膜厚が、媒体対向面側よりも媒体対向面に対向する面側で薄くなっているため、素子高さ方向の媒体対向面に対向する面側での縦バイアス磁界が媒体対向面側に比べて小さいからである。このように自由磁性層の磁化回転が小さい低感度部分23を少なくすることで、自由磁性層の平均磁化回転を大きくして再生出力を向上させることができる。   When the magnetization of the free magnetic layer of the magnetoresistive effect element according to the third embodiment rotates in response to the medium magnetic field, the magnetization rotation angle has a distribution as shown in the schematic diagram of FIG. Compared with the prior art, the magnetization rotation of the free magnetic layer is larger at both ends of the device in the longitudinal bias direction and at the surface facing the medium facing surface in the device height direction, so the average magnetization rotation angle is also larger. ing. This is because the thickness of the ferromagnetic layers arranged on both sides of the magnetoresistive element in the core width direction is thinner on the surface side facing the medium facing surface than on the medium facing surface side, so that the element height direction This is because the longitudinal bias magnetic field on the side facing the medium facing surface is smaller than that on the medium facing surface side. In this way, by reducing the low-sensitivity portion 23 in which the magnetization rotation of the free magnetic layer is small, the average magnetization rotation of the free magnetic layer can be increased and the reproduction output can be improved.

なお、本願発明に係る磁気抵抗効果素子は、MR型素子、スピンバルブ型素子、トンネル抵抗効果型素子等の媒体磁界に反応して自由に磁化方向が変化する層(自由磁性層)を備える磁気抵抗効果素子、磁気ヘッド及び磁気記録装置について、共通に適用することができる。   The magnetoresistive element according to the present invention includes a magnetic layer including a layer (free magnetic layer) whose magnetization direction changes freely in response to a medium magnetic field, such as an MR element, a spin valve element, or a tunnel resistance element. The resistance effect element, the magnetic head, and the magnetic recording apparatus can be applied in common.

磁気ヘッドの構成を示す断面図である。It is sectional drawing which shows the structure of a magnetic head. 磁気抵抗効果素子の従来の構成を示す斜面図である。It is a perspective view which shows the conventional structure of a magnetoresistive effect element. 従来の構成における、自由磁性層の磁化回転角度分布の模式図である。It is a schematic diagram of the magnetization rotation angle distribution of the free magnetic layer in the conventional configuration. 本願発明の磁気抵抗効果素子の第1の実施形態の構成を示す斜面図である。It is a perspective view which shows the structure of 1st Embodiment of the magnetoresistive effect element of this invention. 第1の実施形態における磁気抵抗効果素子の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the magnetoresistive effect element in 1st Embodiment. 本願発明の磁気抵抗効果素子の第1の実施形態における、自由磁性層の磁化回転角度分布の模式図である。It is a schematic diagram of the magnetization rotation angle distribution of the free magnetic layer in 1st Embodiment of the magnetoresistive effect element of this invention. 本願発明の磁気抵抗効果素子の第2の実施形態の構成を示す斜面図である。It is a perspective view which shows the structure of 2nd Embodiment of the magnetoresistive effect element of this invention. 本願発明の磁気抵抗効果素子の第2の実施形態における、自由磁性層の磁化回転角度分布の模式図である。It is a schematic diagram of the magnetization rotation angle distribution of the free magnetic layer in 2nd Embodiment of the magnetoresistive effect element of this invention. 本願発明の磁気抵抗効果素子の第3の実施形態の構成を示す斜面図である。It is a perspective view which shows the structure of 3rd Embodiment of the magnetoresistive effect element of this invention. 第3の実施形態における磁気抵抗効果素子の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the magnetoresistive effect element in 3rd Embodiment. 本願発明の磁気抵抗効果素子の第3の実施形態における、自由磁性層の磁化回転角度分布の模式図である。It is a schematic diagram of magnetization rotation angle distribution of a free magnetic layer in 3rd Embodiment of the magnetoresistive effect element of this invention. 図11に示す磁気抵抗効果素子のII-II方向の断面図である。It is sectional drawing of the II-II direction of the magnetoresistive effect element shown in FIG. 図11に示す磁気抵抗効果素子のIII-III方向の断面図である。It is sectional drawing of the III-III direction of the magnetoresistive effect element shown in FIG.

符号の説明Explanation of symbols

1下部シールド
2磁気抵抗効果素子
3上部シールド
4リードヘッド
5下部磁極
6ライトギャップ
7上部磁極
8コイル
9ライトヘッド
10素子部
11自由磁性層
12固定磁性層
13反強磁性層
14非磁性層
15強磁性層
16下地層
17磁気抵抗効果素子の媒体対向面側の縦バイアス方向の幅
18磁気抵抗効果素子の媒体対向面に対向する面側の縦バイアス方向の幅
19自由磁性層と強磁性層の媒体対向面側の間隔
20自由磁性層と強磁性層の媒体対向面に対向する面側の間隔
21強磁性層の媒体対向面側の膜厚
22強磁性層の媒体対向面に対向する面側の膜厚
23自由磁性層の磁化回転が小さい低感度部分
24レジスト
25レジスト
26レジスト
27レジスト
28中間層
1 Bottom shield
2 Magnetoresistive effect element
3 Upper shield
4 readhead
5 Bottom pole
6 Light gap
7 Upper magnetic pole
8 coils
9 light head
10 elements
11 Free magnetic layer
12 Fixed magnetic layer
13 Antiferromagnetic layer
14 Nonmagnetic layer
15 ferromagnetic layer
16 Underlayer
17Width in the longitudinal bias direction on the medium facing surface side of the magnetoresistive effect element
18Width in the longitudinal bias direction of the surface facing the medium facing surface of the magnetoresistive element
19 Spacing of the free magnetic layer and the ferromagnetic layer on the medium facing side
20 Distance between the surface of the free magnetic layer and the ferromagnetic layer facing the medium facing surface
21 Film thickness on the medium facing side of the ferromagnetic layer
22 Film thickness on the side of the ferromagnetic layer facing the medium facing surface
23 Low sensitivity part with small magnetization rotation of free magnetic layer
24 resists
25 resists
26 resists
27 resists
28 middle class

Claims (3)

自由磁性層と、固定磁性層と、前記固定磁性層の磁化を固定する反強磁性層と、前記自由磁性層と前記固定磁性層の間の非磁性層と、前記自由磁性層に縦バイアス磁界を印加する強磁性層とを有し、
少なくとも前記自由磁性層の縦バイアス方向の幅が媒体対向面側よりも媒体対向面と対向する面側で狭くなっていることを特徴とする磁気抵抗効果素子。
A free magnetic layer, a pinned magnetic layer, an antiferromagnetic layer for pinning the magnetization of the pinned magnetic layer, a nonmagnetic layer between the free magnetic layer and the pinned magnetic layer, and a longitudinal bias magnetic field in the free magnetic layer A ferromagnetic layer for applying
A magnetoresistive effect element characterized in that at least the width of the free magnetic layer in the longitudinal bias direction is narrower on the side facing the medium facing surface than on the medium facing surface side.
自由磁性層と、固定磁性層と、前記固定磁性層の磁化を固定する反強磁性層と、前記自由磁性層と前記固定磁性層の間の非磁性層と、前記自由磁性層に縦バイアス磁界を印加する強磁性層とを有し、
前記自由磁性層と前記強磁性層との間隔が、媒体対向面側よりも媒体対向面と対向する面側で広くなっていることを特徴とする磁気抵抗効果素子。
A free magnetic layer, a pinned magnetic layer, an antiferromagnetic layer for pinning the magnetization of the pinned magnetic layer, a nonmagnetic layer between the free magnetic layer and the pinned magnetic layer, and a longitudinal bias magnetic field in the free magnetic layer A ferromagnetic layer for applying
The magnetoresistive effect element is characterized in that the space between the free magnetic layer and the ferromagnetic layer is wider on the surface facing the medium facing surface than on the medium facing surface.
自由磁性層と、固定磁性層と、前記固定磁性層の磁化を固定する反強磁性層と、前記自由磁性層と前記固定磁性層の間の非磁性層と、前記自由磁性層に縦バイアス磁界を印加する強磁性層とを有し、
前記強磁性層の膜厚が、媒体対向面側よりも媒体対向面と対向する面側で薄くなっていることを特徴とする磁気抵抗効果素子。
A free magnetic layer, a pinned magnetic layer, an antiferromagnetic layer for pinning the magnetization of the pinned magnetic layer, a nonmagnetic layer between the free magnetic layer and the pinned magnetic layer, and a longitudinal bias magnetic field in the free magnetic layer A ferromagnetic layer for applying
The magnetoresistive element according to claim 1, wherein the ferromagnetic layer is thinner on the side facing the medium facing surface than on the medium facing surface side.
JP2006253069A 2006-09-19 2006-09-19 Magnetoresistance effect element Withdrawn JP2008078214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253069A JP2008078214A (en) 2006-09-19 2006-09-19 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253069A JP2008078214A (en) 2006-09-19 2006-09-19 Magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JP2008078214A true JP2008078214A (en) 2008-04-03

Family

ID=39350009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253069A Withdrawn JP2008078214A (en) 2006-09-19 2006-09-19 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JP2008078214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8339752B1 (en) 2011-09-26 2012-12-25 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head with wide sensor back edge, low resistance, and high signal to-noise ratio and methods of production thereof
US9490421B2 (en) 2012-12-21 2016-11-08 Samsung Electronics Co., Ltd. Method and system for providing vertical spin transfer switched magnetic junctions and memories using such junctions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8339752B1 (en) 2011-09-26 2012-12-25 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head with wide sensor back edge, low resistance, and high signal to-noise ratio and methods of production thereof
US9490421B2 (en) 2012-12-21 2016-11-08 Samsung Electronics Co., Ltd. Method and system for providing vertical spin transfer switched magnetic junctions and memories using such junctions

Similar Documents

Publication Publication Date Title
JP3813914B2 (en) Thin film magnetic head
JP2007087551A (en) Manufacturing method of perpendicular magnetic recording head
JP2006202393A (en) Magnetic head and its manufacturing method
JP2010277621A (en) Magneto-resistive head and magnetic recording and playback device
JP2011086331A (en) Magnetoresistive effect magnetic head
JP4185528B2 (en) Thin film magnetic head
JP5718384B2 (en) Magnetic head for perpendicular magnetic recording with main pole and shield
US7123451B2 (en) Thin-film magnetic head for reading magnetic information on a hard disk by utilizing a magnetoresistance effect
JP2009230810A (en) Manufacturing method of perpendicular magnetic recording head
JP2008153295A (en) Magnetoresistance effect element, magnetic head, and magnetic storage device
JP2000113421A (en) Magnetic tunnel junction magneto-resistive head
US7817381B2 (en) Thin film magnetic head which suppresses inflow of magnetic generated by bias-applying layers into a free layer from a layering direction
JP2008078214A (en) Magnetoresistance effect element
JP2009283094A (en) Magnetic head and magnetic disk unit
JP2008192269A (en) Magnetic read head and its manufacturing method
JP2008010052A (en) Magnetic head
JP2008176857A (en) Complex thin-film magnetic head
JP2004171692A (en) Combination type magnetic head
JP4003442B2 (en) Magnetoresistive effect type magnetic sensor and manufacturing method of magnetoresistive effect type magnetic head
JP4005957B2 (en) Thin film magnetic head, head gimbal assembly, and hard disk drive
JP2005235250A (en) Magnetic head and its manufacturing method, and magnetic recording and reproducing device
JP2008047795A (en) Magnetro-resistance effect element and its manufacturing method
JP2000020914A (en) Formation of metallic film and formation of pole for thin-film magnetic head
JP2004206822A (en) Manufacturing method of thin film magnetic head having magnetoresistve effect element
JP2006004492A (en) Magnetoresistive head

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201