JP2008153295A - Magnetoresistance effect element, magnetic head, and magnetic storage device - Google Patents

Magnetoresistance effect element, magnetic head, and magnetic storage device Download PDF

Info

Publication number
JP2008153295A
JP2008153295A JP2006337349A JP2006337349A JP2008153295A JP 2008153295 A JP2008153295 A JP 2008153295A JP 2006337349 A JP2006337349 A JP 2006337349A JP 2006337349 A JP2006337349 A JP 2006337349A JP 2008153295 A JP2008153295 A JP 2008153295A
Authority
JP
Japan
Prior art keywords
pinned layer
layer
width direction
length
core width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006337349A
Other languages
Japanese (ja)
Inventor
Reiko Kondo
玲子 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006337349A priority Critical patent/JP2008153295A/en
Priority to KR1020070122809A priority patent/KR20080055636A/en
Priority to CNA2007101997328A priority patent/CN101207177A/en
Publication of JP2008153295A publication Critical patent/JP2008153295A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/398Specially shaped layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3912Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
  • Measuring Magnetic Variables (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetoresistance effect element capable of reducing the asymmetry of a reproduced waveform even in a fine structure for a high-density recording reproduction. <P>SOLUTION: The magnetoresistance effect element (10) has an antiferromagnetic layer (11) and a first pinned layer (12) fixing the direction of a magnetization by the antiferromagnetic layer. The magnetoresistance effect element (10) further has a reference pinned layer (14) bound with the first pinned layer in an antiferromagnetic manner and running antiparallel with the first pinned layer and a free layer (16) changing the direction of the magnetization to the reference pinned layer by an external magnetic field. A length in the core-width direction of the first pinned layer is longer than that of the reference pinned layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄膜磁気ヘッドで再生用に用いられる磁気抵抗効果素子に関する。   The present invention relates to a magnetoresistive effect element used for reproduction in a thin film magnetic head.

磁気抵抗効果型ヘッド(以下、「MRヘッド」ともいう)は、磁気抵抗効果素子(以下「MR素子」ともいう)を再生部に用いたヘッドである。MRヘッドは、再生出力が磁気記録媒体と磁気ヘッド間の相対速度に依存しないため、磁気記録装置の高記録密度化および小型化に対して有利な磁気ヘッドである。近年では、再生用のMRヘッドと、記録用の誘導型磁気記録ヘッドとを一体化した複合型薄膜磁気ヘッドが主力となっている。   The magnetoresistive head (hereinafter also referred to as “MR head”) is a head using a magnetoresistive element (hereinafter also referred to as “MR element”) as a reproducing unit. The MR head is an advantageous magnetic head for increasing the recording density and miniaturization of the magnetic recording apparatus because the reproduction output does not depend on the relative speed between the magnetic recording medium and the magnetic head. In recent years, a composite thin film magnetic head in which an MR head for reproduction and an induction type magnetic recording head for recording are integrated has become the mainstay.

MR素子としては、主に、フリー(free)層、中間層、ピンド(pinned)層、反強磁性層からなるスピンバルブ膜が知られているが、図1に示すように、ピンド層の外部磁界耐性強めた、主に、フリー層106、中間層105、基準(reference)ピンド層104、中間層103、第1ピンド層102、反強磁性ピニング層101からなる積層フェリ型スピンバルブ膜も知られている。   As an MR element, a spin valve film mainly composed of a free layer, an intermediate layer, a pinned layer, and an antiferromagnetic layer is known, but as shown in FIG. Also known is a laminated ferri-type spin valve film mainly composed of a free layer 106, an intermediate layer 105, a reference pinned layer 104, an intermediate layer 103, a first pinned layer 102, and an antiferromagnetic pinning layer 101 with enhanced magnetic field resistance. It has been.

電流を流す方向としては、積層の面内方向に電流を流す構造(CIP構造)に対し、高感度化をねらう構造の一つとして、高い抵抗変化を得るために、MR素子の積層面と垂直な方向に電流を流す構造(CPP構造)も採用されている。   In order to obtain a high resistance change as one of the structures aiming at high sensitivity as compared with the structure in which current flows in the in-plane direction of the stack (CIP structure), the direction of current flow is perpendicular to the stack surface of the MR element. A structure (CPP structure) in which current flows in any direction is also employed.

MR素子を用いたMRヘッドは、積層フェリ型スピンバルブ膜の場合、フリー層106の磁化と、基準ピンド層104の磁化のなす角度によって抵抗変化を生じる。このMRヘッドで、最も高い感度を得、かつ上下非対称性の良い再生波形を得るためには、媒体磁界が入ってこないときに、フリー層106の磁化がほぼコア幅方向に向いており、上向きまたは下向きの媒体磁界が入ったときに、フリー層106の磁化が、素子高さ方向に傾くようにすることが重要である。   In the case of an MR head using an MR element, in the case of a laminated ferrimagnetic spin valve film, a resistance change occurs depending on the angle formed by the magnetization of the free layer 106 and the magnetization of the reference pinned layer 104. With this MR head, in order to obtain the highest sensitivity and a reproduced waveform with good vertical asymmetry, when the medium magnetic field does not enter, the magnetization of the free layer 106 is substantially in the core width direction, and the upward direction Alternatively, it is important that the magnetization of the free layer 106 tilts in the element height direction when a downward medium magnetic field is applied.

ところで、MR素子を用いたMRヘッドは、MR素子が単磁区とならない場合、バルクハウゼンノイズが発生し、再生出力が大きく変動する。MR素子の磁区を制御するため、CoPt等に代表される高保磁力膜や、PdPtMn等に代表される反強磁性膜と強磁性膜との積層膜を磁区制御膜として、MR素子のトラック幅方向(コア幅方向と平行)の両サイドに設ける構成や、反強磁性膜をMR素子上に積層して設ける構成が採用されているが、この磁区制御膜は、媒体磁界のない場合に、フリー層の磁化をある程度コア幅方向に整合させる効果もある。   By the way, in the MR head using the MR element, when the MR element does not have a single magnetic domain, Barkhausen noise is generated and the reproduction output fluctuates greatly. In order to control the magnetic domain of the MR element, a high coercivity film typified by CoPt or the like, or a laminated film of an antiferromagnetic film and a ferromagnetic film typified by PdPtMn or the like as a magnetic domain control film, the track width direction of the MR element A structure provided on both sides (parallel to the core width direction) or a structure provided by stacking an antiferromagnetic film on the MR element are adopted. This magnetic domain control film is free when there is no medium magnetic field. There is also an effect of matching the magnetization of the layer to some extent in the core width direction.

一方、近年では磁気ディスク装置の大容量化とともに、媒体上のビット長およびトラック幅が急激に狭くなってきている。トラック幅が狭くなる一方で、MR素子の素子高さ方向の長さは、研磨等の加工で規定されており、短くすることが困難である。このため、MR素子のトラック幅方向に対する素子高さ方向の長さのアスペクト比が大きくなってきており、フリー層106の磁化が素子高さ方向に向きやすくなる要因となっている。   On the other hand, in recent years, the bit length and the track width on the medium have been abruptly narrowed along with the increase in the capacity of the magnetic disk device. While the track width becomes narrower, the length of the MR element in the element height direction is regulated by processing such as polishing and is difficult to shorten. For this reason, the aspect ratio of the length in the element height direction with respect to the track width direction of the MR element is increasing, and this causes the magnetization of the free layer 106 to be easily oriented in the element height direction.

また、フリー層106に作用する磁界としては、図1の矢印A、Bで示すように、離れた位置にある第1ピンド層102からの磁界Aに比べ、近接して配置される基準ピンド層104からの磁界Bの方が強いため、媒体磁界のない状態で、フリー層106に素子高さ方向の磁界が加わる。この差分の磁界も、フリー層106の磁化をコア幅方向から逸脱させる要因となる。図1の矢印Cで示すように、媒体磁界が入ってこないときに、フリー層106の磁化が素子高さ方向に向いていると、再生波形の上下非対称性が悪くなり、再生感度が悪くなる。   Further, as shown by arrows A and B in FIG. 1, the magnetic field acting on the free layer 106 is a reference pinned layer disposed closer to the magnetic field A from the first pinned layer 102 located at a distant position. Since the magnetic field B from 104 is stronger, a magnetic field in the element height direction is applied to the free layer 106 without a medium magnetic field. This difference magnetic field also causes the magnetization of the free layer 106 to deviate from the core width direction. As shown by the arrow C in FIG. 1, when the magnetic field does not enter and the magnetization of the free layer 106 is oriented in the element height direction, the vertical asymmetry of the reproduction waveform is deteriorated and the reproduction sensitivity is deteriorated. .

この問題を解決するために、基準ピンド層104の膜厚と飽和磁束密度との積(tref×Bsref)に比較して、第1ピンド層102の膜厚と飽和磁束密度との積(t1×Bs1)を大きくすることで、基準ピンド層104と第1ピンド層102の磁界をキャンセルさせる方法が提案されている(たとえば、特許文献1参照)。 In order to solve this problem, the product of the film thickness of the first pinned layer 102 and the saturation magnetic flux density (t ref × Bs ref ) compared to the product of the film thickness of the reference pinned layer 104 and the saturation magnetic flux density (t ref × Bs ref ) A method of canceling the magnetic fields of the reference pinned layer 104 and the first pinned layer 102 by increasing t 1 × Bs 1 ) has been proposed (for example, see Patent Document 1).

なお、低抵抗かつ高感度のスピンバルブ型MR素子を実現するために、基準ピンド層および第1ピンド層のコア幅方向の長さに比較して、フリー層のコア幅方向の長さを短くする構成が知られている(たとえば、特許文献2参照)。
特開2006−13430号公報 特開2005−167236号公報
In order to realize a low resistance and high sensitivity spin-valve MR element, the length of the free layer in the core width direction is made shorter than the length of the reference pinned layer and the first pinned layer in the core width direction. The structure which performs is known (for example, refer patent document 2).
JP 2006-13430 A JP 2005-167236 A

しかし、基準ピンド層の(膜厚×飽和磁束密度)に対して、第1ピンド層の(膜厚×飽和磁束密度)を大きくする方法は、材料開発において、MR比が減少してしまう等の問題が生じる。   However, the method of increasing the (film thickness × saturation magnetic flux density) of the first pinned layer with respect to the (film thickness × saturation magnetic flux density) of the reference pinned layer reduces the MR ratio in material development. Problems arise.

再生波形の上下非対称性を改善するために、MR素子のトラック幅(コア幅)に対して、素子高さを小さくすることが考えられるが、上述したように、MR素子の素子高さ方向の長さは、研磨等の加工で制限されるため、現状よりも小さく加工することは、非常に難しい。   In order to improve the vertical asymmetry of the reproduced waveform, it is conceivable to reduce the element height with respect to the track width (core width) of the MR element, but as described above, in the element height direction of the MR element. Since the length is limited by processing such as polishing, it is very difficult to process the length smaller than the current state.

そこで、本発明は、従来の加工技術を用い、簡単な構成で、媒体磁界がないときのフリー層の磁化の方向を、コア幅方向に整合させることのできる磁気抵抗効果素子と、その作製方法を提供することを課題とする。   Accordingly, the present invention provides a magnetoresistive effect element capable of aligning the magnetization direction of the free layer when there is no medium magnetic field with the simple processing and using the conventional processing technique in the core width direction, and a manufacturing method thereof. It is an issue to provide.

上記課題を解決するために、フリー層から離れた第1ピンド層のコア幅方向の長さを、フリー層と近接する基準ピンド層のコア幅方向の長さよりも、長く設定する。なお、本明細書および特許請求の範囲で、第1ピンド層のコア幅方向の長さを、上層の基準ピンド層のコア幅方向の長さよりも長くする、という場合は、通常のエッチング加工で必然的に生じるテーパ形状に起因する微細な長さの差を意味するものではなく、設計上で異なる長さに設定され、かつ作製後の製品においても段差として長さの差が現れるものを意味する。   In order to solve the above problem, the length in the core width direction of the first pinned layer separated from the free layer is set longer than the length in the core width direction of the reference pinned layer adjacent to the free layer. In the present specification and claims, when the length of the first pinned layer in the core width direction is longer than the length of the upper reference pinned layer in the core width direction, the normal etching process is used. It does not mean the minute length difference due to the taper shape that inevitably occurs, but it means that the length is set differently in the design and that the difference in length appears as a step even in the manufactured product. To do.

具体的には、磁気抵抗効果素子は、
(a)反強磁性層と、
(b)前記反強磁性層により磁化の方向が固定される第1ピンド層と、
(c)前記第1ピンド層と反強磁性結合し、かつ、前記第1ピンド層と反平行をなす基準ピンド層と、
(d)外部磁界により、前記基準ピンド層に対する磁化の方向が変化するフリー層と
を備え、
(e)前記第1ピンド層のコア幅方向の長さが、前記基準ピンド層のコア幅方向の長さよりも長いことを特徴とする。
Specifically, the magnetoresistive effect element is
(A) an antiferromagnetic layer;
(B) a first pinned layer whose magnetization direction is fixed by the antiferromagnetic layer;
(C) a reference pinned layer antiferromagnetically coupled to the first pinned layer and antiparallel to the first pinned layer;
(D) a free layer in which the direction of magnetization with respect to the reference pinned layer is changed by an external magnetic field,
(E) The length of the first pinned layer in the core width direction is longer than the length of the reference pinned layer in the core width direction.

良好な構成例では、前記第1ピンド層と基準ピンド層のコア幅方向の長さの差の1/2の値は、2nm〜5nmの範囲である。
別の構成例では、前記第1ピンド層と基準ピンド層のコア幅方向の長さの差は、前記基準ピンド層と前記フリー層のコア幅方向の長さの差よりも大きい。
In a favorable configuration example, a value of ½ of the difference in length in the core width direction between the first pinned layer and the reference pinned layer is in the range of 2 nm to 5 nm.
In another configuration example, a difference in length in the core width direction between the first pinned layer and the reference pinned layer is larger than a difference in length in the core width direction between the reference pinned layer and the free layer.

好ましくは、前記第1ピンド層と前記基準ピンド層のコア幅方向のそれぞれの長さは、前記フリー層に作用する前記第1ピンド層からの磁界と、前記フリー層に作用する前記基準層からの磁界が相殺される長さに設定される。   Preferably, the length of each of the first pinned layer and the reference pinned layer in the core width direction is determined from the magnetic field from the first pinned layer acting on the free layer and the reference layer acting on the free layer. Is set to a length that cancels out the magnetic field.

第2の側面では、磁気抵抗効果素子の作製方法は、
(a)反強磁性膜、第1ピンド層、第1中間層、基準ピンド層、第2中間層、フリー層をこの順に積層して積層体を形成する工程と、
(b)前記積層体が任意の記憶媒体と向き合う対向面において、前記第1ピンド層の前記記憶媒体のトラック幅方向に沿った長さが、前記基準ピンド層の前記トラック幅方向に沿った長さよりも長くなるように、前記積層体を加工する工程と、
を含む。
In the second aspect, a method for producing a magnetoresistive effect element includes:
(A) a step of laminating an antiferromagnetic film, a first pinned layer, a first intermediate layer, a reference pinned layer, a second intermediate layer, and a free layer in this order;
(B) The length along the track width direction of the storage layer of the first pinned layer is the length along the track width direction of the reference pinned layer on the facing surface where the stacked body faces an arbitrary storage medium. A step of processing the laminate so as to be longer than
including.

上記の構成および方法により、記録媒体から読み出す磁気情報の再生波形の上下非対称性を改善することができる。   With the above configuration and method, it is possible to improve the vertical asymmetry of the reproduction waveform of the magnetic information read from the recording medium.

図2は、本発明の一実施形態に係る磁気抵抗効果(MR)素子の概略構成図である。MR素子10は、反強磁性膜11、第1ピンド層12、中間層13、基準ピンド層14、中間層15、フリー層16をこの順に積層した積層フェリ型のスピンバルブ構造を含み、第1ピンド層12のコア幅方向の長さは、フリー層16に近接する基準ピンド層14のコア幅方向の長さよりも長い。   FIG. 2 is a schematic configuration diagram of a magnetoresistive (MR) element according to an embodiment of the present invention. The MR element 10 includes a laminated ferrimagnetic spin valve structure in which an antiferromagnetic film 11, a first pinned layer 12, an intermediate layer 13, a reference pinned layer 14, an intermediate layer 15, and a free layer 16 are stacked in this order. The length of the pinned layer 12 in the core width direction is longer than the length of the reference pinned layer 14 adjacent to the free layer 16 in the core width direction.

ここで、コア幅方向とは、図2に示すように、再生時に磁気記録媒体と対向する媒体対向面で、媒体のトラック幅と平行な方向をいう。これに対して素子高さ方向とは、再生時に磁気記録媒体に対して垂直な方向への素子の高さをいう。なお、図2では、図示の便宜上、ハード層等の磁区制御膜を省略してある。   Here, the core width direction means a direction parallel to the track width of the medium on the medium facing surface that faces the magnetic recording medium during reproduction, as shown in FIG. On the other hand, the element height direction refers to the element height in the direction perpendicular to the magnetic recording medium during reproduction. In FIG. 2, a magnetic domain control film such as a hard layer is omitted for convenience of illustration.

第1ピンド層12および基準ピンド層14は、反強磁性層11により磁化の方向が固定され、第1ピンド層12と基準ピンド層14の磁化は、反平行をなす。これによって、第1ピンド層12と基準ピンド層14の正味の磁化を抑制して、反強磁性層11との交換結合を増加させ、磁化固着力を強めている。   The magnetization directions of the first pinned layer 12 and the reference pinned layer 14 are fixed by the antiferromagnetic layer 11, and the magnetizations of the first pinned layer 12 and the reference pinned layer 14 are antiparallel. As a result, the net magnetization of the first pinned layer 12 and the reference pinned layer 14 is suppressed, the exchange coupling with the antiferromagnetic layer 11 is increased, and the magnetization pinning force is strengthened.

図2の例では、第1ピンド層12のコア幅方向の長さは、基準ピンド層14のコア幅方向の長さよりも2aだけ大きい。このような構成にすることで、図1に示す従来のMR素子に比べ、第1ピンド層12の体積が増える。すなわち、基準ピンド層14層からフリー層16にかかる磁界Aに対し、第1ピンド層12からフリー層16にかかる磁界Bを大きくすることができ、フリー層16における磁界Aと磁界Bの影響を相殺(キャンセル)することができる。この結果、フリー層16に対する素子高さ(MRh)方向の磁界を低減して、矢印Cで示すように、外部磁界のない場合に、フリー層16をほぼコア幅方向に保持することができる。   In the example of FIG. 2, the length of the first pinned layer 12 in the core width direction is 2a larger than the length of the reference pinned layer 14 in the core width direction. By adopting such a configuration, the volume of the first pinned layer 12 is increased as compared with the conventional MR element shown in FIG. That is, the magnetic field B applied from the first pinned layer 12 to the free layer 16 can be increased with respect to the magnetic field A applied from the reference pinned layer 14 to the free layer 16. Can be canceled (cancelled). As a result, the magnetic field in the element height (MRh) direction with respect to the free layer 16 can be reduced, and the free layer 16 can be held substantially in the core width direction when there is no external magnetic field, as indicated by arrow C.

再生時には、センス電流を積層方向に流し、磁気媒体からの磁界の方向によって、基準ピンド層14に対するフリー層16の磁化の向きが変わり、その相対的な向きに応じて、磁気抵抗が変化する。この磁気抵抗の変化が、スピンバルブの両端に生じる電圧変化として検出されるわけであるが、外部磁界のない状態でフリー層16の磁化の方向がコア幅方向に整合しているので、再生波形の上下非対称性が改善されている。   During reproduction, a sense current is passed in the stacking direction, and the magnetization direction of the free layer 16 with respect to the reference pinned layer 14 changes depending on the direction of the magnetic field from the magnetic medium, and the magnetoresistance changes according to the relative direction. This change in magnetoresistance is detected as a voltage change that occurs across the spin valve. However, since the magnetization direction of the free layer 16 is aligned with the core width direction in the absence of an external magnetic field, the reproduction waveform The vertical asymmetry of the has been improved.

この構成では、磁界AおよびBの影響がフリー層16で相殺されるように第1ピンド層12と基準ピンド層14のコア幅方向の長さを調整するだけでよいので、第1ピンド層12と基準ピンド層14の膜厚や飽和磁束密度を自由に設計できる。また、MR比等が最高となるような材料を選択できるので、高い再生出力が得られる。   In this configuration, it is only necessary to adjust the lengths of the first pinned layer 12 and the reference pinned layer 14 in the core width direction so that the effects of the magnetic fields A and B are offset by the free layer 16. The thickness and saturation magnetic flux density of the reference pinned layer 14 can be freely designed. In addition, since a material with the highest MR ratio can be selected, a high reproduction output can be obtained.

図2の例では、第1ピンド層12と反強磁性膜11のコア幅方向の長さが等しく、基準ピンド層14とフリー層16のコア幅方向の長さが等しくなっているが、フリー層16に作用する基準ピンド層14から磁界Bと、第1ピンド層12からの磁界Aが相殺されるように、基準ピンド層14と第1ピンド層12のコア幅方向の長さに差が設けられればよいので、第1ピンド層12と反強磁性膜11のコア幅方向の長さの関係や、フリー層16と基準ピンド層14のコア幅方向の長さの関係は、特に限定されない。もっとも、第1ピンド層12と基準ピンド層14のコア幅方向の長さの差は、基準ピンド層14とフリー層16のコア幅方向の長さの差よりも大きいことが望ましい。   In the example of FIG. 2, the first pinned layer 12 and the antiferromagnetic film 11 have the same length in the core width direction, and the reference pinned layer 14 and the free layer 16 have the same length in the core width direction. There is a difference in the length of the reference pinned layer 14 and the first pinned layer 12 in the core width direction so that the magnetic field B from the reference pinned layer 14 acting on the layer 16 and the magnetic field A from the first pinned layer 12 are canceled out. Since the first pinned layer 12 and the antiferromagnetic film 11 have a length relationship in the core width direction, and the length relationship between the free layer 16 and the reference pinned layer 14 in the core width direction is not particularly limited. . However, the difference in the length in the core width direction between the first pinned layer 12 and the reference pinned layer 14 is preferably larger than the difference in the length in the core width direction between the reference pinned layer 14 and the free layer 16.

図3は、図2の構成を採用することによる再生波形の上下非対称性の改善効果を示すシミュレーション結果のグラフである。図2における第1ピンド層12のコア幅方向の長さと、基準ピンド層14のコア幅方向の長さの差の1/2をaとすると、aの値を数nmとすることで、上下非対称性は大きく改善されることがわかる。
<実施例1>
図4は、本発明のMR素子をCPP構造に適用した構成例1を示す概略斜視図である。図のX軸方向がコア幅あるいはトラック幅方向、Y方向が素子高さ方向、XZ面がスライダーのABS(air bearing surface)面になる。
FIG. 3 is a graph of simulation results showing the effect of improving the vertical asymmetry of the reproduction waveform by adopting the configuration of FIG. When a half of the difference between the length of the first pinned layer 12 in the core width direction and the length of the reference pinned layer 14 in the core width direction in FIG. It can be seen that the asymmetry is greatly improved.
<Example 1>
FIG. 4 is a schematic perspective view showing a configuration example 1 in which the MR element of the present invention is applied to a CPP structure. In the figure, the X-axis direction is the core width or track width direction, the Y direction is the element height direction, and the XZ plane is the slider ABS (air bearing surface) plane.

この例では、第1ピンド層12のコア幅方向の長さが、基準ピンド層14のコア幅方向の長さよりも長く、反強磁性(ピニング)層11と第1ピンド層12のコア幅方向の長さ、および基準ピンド層14とフリー層16のコア幅方向の長さが、それぞれ等しい。また、基準ピンド層14およびフリー層16の積層部分のトラック幅に沿った両側に、磁区制御膜17が設けられている。   In this example, the length of the first pinned layer 12 in the core width direction is longer than the length of the reference pinned layer 14 in the core width direction, and the core width direction of the antiferromagnetic (pinning) layer 11 and the first pinned layer 12 is And the lengths of the reference pinned layer 14 and the free layer 16 in the core width direction are equal to each other. Magnetic domain control films 17 are provided on both sides along the track width of the laminated portion of the reference pinned layer 14 and the free layer 16.

図5A〜図5Eは、図4のMR素子の作製工程を示す媒体対向面での断面図である。まず、図5Aに示すように、図示しない基板上にシールドおよび/または電極端子18aを形成し、その上に積層フェリ型スピンバルブを形成する。すなわち、反強磁性膜11、第1ピンド層12、中間層13、基準ピンド層14、中間層15、フリー層16を、スパッタリング法等により、順次成膜する。   5A to 5E are cross-sectional views on the medium facing surface showing the manufacturing steps of the MR element of FIG. First, as shown in FIG. 5A, a shield and / or electrode terminal 18a is formed on a substrate (not shown), and a laminated ferrimagnetic spin valve is formed thereon. That is, the antiferromagnetic film 11, the first pinned layer 12, the intermediate layer 13, the reference pinned layer 14, the intermediate layer 15, and the free layer 16 are sequentially formed by a sputtering method or the like.

反強磁性膜11は、たとえばIrMn、PdPtMn等である。第1ピンド層12、基準ピンド層5、およびフリー層7としては、NiFe、CoFeB等の単層または積層膜を用いる。第1ピンド層12と基準ピンド層14との間の中間層13は、第1ピンド層12と基準ピンド層14を磁気的に結合する非磁性結合層であり、たとえばRuである。基準ピンド層14とフリー層16の間の中間層15は、Al2O3やMgO等の絶縁膜、あるいはCu等の低抵抗の導電膜を用いる。絶縁膜を用いた場合、MR素子はトンネル接合型のGMR素子となる。導電膜を用いた場合は、CPP−GMR素子となる。シールドおよび/または電極端子18aは、シールドが電極端子を兼ねる場合は、NiFe等の軟磁性金属膜となり、シールドが電極端子を兼ねない場合は、NiFe等の軟磁性金属膜と、Cu等の非磁性金属膜の積層膜となる。   The antiferromagnetic film 11 is, for example, IrMn, PdPtMn, or the like. As the first pinned layer 12, the reference pinned layer 5, and the free layer 7, a single layer or a laminated film such as NiFe or CoFeB is used. The intermediate layer 13 between the first pinned layer 12 and the reference pinned layer 14 is a nonmagnetic coupling layer that magnetically couples the first pinned layer 12 and the reference pinned layer 14 and is, for example, Ru. As the intermediate layer 15 between the reference pinned layer 14 and the free layer 16, an insulating film such as Al2O3 or MgO or a low resistance conductive film such as Cu is used. When an insulating film is used, the MR element is a tunnel junction type GMR element. When a conductive film is used, a CPP-GMR element is obtained. When the shield also serves as the electrode terminal, the shield and / or the electrode terminal 18a is a soft magnetic metal film such as NiFe, and when the shield also does not serve as the electrode terminal, the shield and / or the electrode terminal 18a and a nonmagnetic material such as Cu. It becomes a laminated film of magnetic metal films.

このような積層上に、レジスト膜を塗布し、所望の形状にパターニングしてレジストマスク21を形成する。   A resist film is applied on such a laminate and patterned into a desired shape to form a resist mask 21.

次に、図5Bに示すように、レジストマスク21を用いて、イオンミリング等により、少なくとも基準ピンド層14のほとんどが加工されるまで、エッチングする。図5B(a)の例では、第1ピンド層12が露出するまで、フリー層16、中間層15、基準ピンド層14、および中間層13をエッチングする。このとき、図5B(b)に示すように、基準ピンド層14の一部と、中間層13が残っていてもよいし、図5B(c)に示すように、第1ピンド層12の一部をエッチングしてしまっても、本発明の効果は得られる。   Next, as shown in FIG. 5B, etching is performed using the resist mask 21 until at least most of the reference pinned layer 14 is processed by ion milling or the like. In the example of FIG. 5B (a), the free layer 16, the intermediate layer 15, the reference pinned layer 14, and the intermediate layer 13 are etched until the first pinned layer 12 is exposed. At this time, a part of the reference pinned layer 14 and the intermediate layer 13 may remain as shown in FIG. 5B (b), or one of the first pinned layers 12 as shown in FIG. 5B (c). Even if the portion is etched, the effect of the present invention can be obtained.

次に、図5Cに示すように、レジストマスク21を残したまま、Al2O3等の絶縁膜23を、たとえばスパッタリングで成膜する。なお、図5Cでは、レジストマスク21上に堆積される絶縁膜23の図示は省略してある。
次に、図5Dに示すように、レジストマスク21を残したまま、磁区制御膜17と、非磁性絶縁膜25を順次成膜する。ここでも、レジストマスク21上に堆積される磁区制御膜17と非磁性絶縁膜25の図示は省略する。磁区制御膜17としては、CoCrPt等の高保磁力膜、又はIrMnやPdPtMnの反強磁性膜とNiFeやCoFeB等の軟磁性膜の積層膜等を用いる。非磁性絶縁膜25としてはAl2O3等を用いる。
Next, as shown in FIG. 5C, an insulating film 23 such as Al2O3 is formed by sputtering, for example, while leaving the resist mask 21 left. In FIG. 5C, illustration of the insulating film 23 deposited on the resist mask 21 is omitted.
Next, as shown in FIG. 5D, the magnetic domain control film 17 and the nonmagnetic insulating film 25 are sequentially formed with the resist mask 21 remaining. Also here, the illustration of the magnetic domain control film 17 and the nonmagnetic insulating film 25 deposited on the resist mask 21 is omitted. As the magnetic domain control film 17, a high coercive force film such as CoCrPt or a laminated film of an antiferromagnetic film such as IrMn or PdPtMn and a soft magnetic film such as NiFe or CoFeB is used. As the nonmagnetic insulating film 25, Al2O3 or the like is used.

次に、図5Eに示すように、レジスト21をリフトオフで除去し、シールド/電極端子18bを成膜する。シールド/電極端子18bも、シールド/電極端子18aと同様に、シールドが電極端子を兼ねる場合にはNiFe等の軟磁性金属膜となり、シールドが電極端子を兼ねない場合は、NiFe等の軟磁性金属膜とCu等の非磁性金属膜の積層膜となる。前者(シールドが電極端子を兼ねる)の場合は、軟磁性金属膜はめっき法や蒸着法により成膜する。後者(シールドが電極端子を兼ねない)の場合は、非磁性金属膜は、めっき法や蒸着法またはスパッタリング法等により成膜する。
<実施例2>
図6は、本発明のMR素子のCPP構造への別の適用例を示す。図6(a)は概略斜視図、図6(b)は媒体対向面での断面図である。この適用例では、磁区制御膜17を、フリー層16および基準ピンド層14のコア幅方向の両側ではなく、フリー層16の上部に配置したこと以外は、図4の構成と同じである。磁区制御膜17は、トラック幅方向に磁化されており、ここから発生する磁界によって、MR素子のフリー層16もトラック幅方向に磁化される。
Next, as shown in FIG. 5E, the resist 21 is removed by lift-off, and a shield / electrode terminal 18b is formed. Similarly to the shield / electrode terminal 18a, the shield / electrode terminal 18b is a soft magnetic metal film such as NiFe when the shield also serves as an electrode terminal, and the soft magnetic metal such as NiFe when the shield also does not serve as an electrode terminal. It becomes a laminated film of a film and a nonmagnetic metal film such as Cu. In the former case (the shield also serves as an electrode terminal), the soft magnetic metal film is formed by plating or vapor deposition. In the latter case (the shield does not serve as an electrode terminal), the nonmagnetic metal film is formed by plating, vapor deposition, sputtering, or the like.
<Example 2>
FIG. 6 shows another application example of the MR element of the present invention to a CPP structure. 6A is a schematic perspective view, and FIG. 6B is a cross-sectional view at the medium facing surface. In this application example, the configuration is the same as that of FIG. 4 except that the magnetic domain control film 17 is disposed not on both sides of the free layer 16 and the reference pinned layer 14 in the core width direction but on the free layer 16. The magnetic domain control film 17 is magnetized in the track width direction, and the free layer 16 of the MR element is also magnetized in the track width direction by a magnetic field generated therefrom.

作製方法は、最初に磁区制御膜17を積層堆積することを除いては、図5A〜図5Eとほぼ同様である。すなわち、図示しない基板上に、シールド/電極端子18a、積層フェリ型スピンバルブ、および磁区制御膜17を順次体積し、所定の箇所に所定の形状のレジストマスクを形成する。積層フェリ型スピンバルブは、上述のように、反強磁性(ピニング)膜11、第1ピンド層12、Ru等の中間層13、基準ピンド層14、中間層15、フリー層16の積層である。磁区制御膜17、CoCrPt等の高保磁力膜や、IrMn、PdPtMnといった反強磁性膜等を用いる。   The manufacturing method is substantially the same as that shown in FIGS. 5A to 5E except that the magnetic domain control film 17 is first laminated and deposited. That is, the shield / electrode terminal 18a, the laminated ferrimagnetic spin valve, and the magnetic domain control film 17 are sequentially volumed on a substrate (not shown), and a resist mask having a predetermined shape is formed at a predetermined location. As described above, the laminated ferrimagnetic spin valve is a laminated structure of the antiferromagnetic (pinning) film 11, the first pinned layer 12, the intermediate layer 13 such as Ru, the reference pinned layer 14, the intermediate layer 15, and the free layer 16. . A magnetic domain control film 17, a high coercive force film such as CoCrPt, an antiferromagnetic film such as IrMn, PdPtMn, or the like is used.

次に、図5Bと同様に、積層フェリ型スピンバルブを構成する各層11〜16および磁区制御膜17をエッチングし、図5Cと同様に、エッチングされた面上に絶縁膜23を形成する。絶縁膜23は、図5Cよりも厚く成膜する。なおこの絶縁膜23、図5Dの磁区制御膜17を絶縁膜とした場合と同じである。最後に、図5Eと同様に、レジストマスク21を除去し、シールド/電極端子18bを成膜する。各層の材料は、適用例1と同様である。
<実施例3>
図7は、本発明のMR素子をCPP構造に適用したさらに別の適用例を示す概略斜視図である。この適用例3では、第1ピンド層12のコア幅方向の長さは、基準ピンド層14のコア幅方向の長さよりも長く、かつ、反強磁性膜11のコア幅方向の長さよりも短く構成されている。また、磁区制御膜17は、フリー層16、基準ピンド層14および第1ピンド層12のコア幅方向の両側に位置する。
Next, as in FIG. 5B, the layers 11 to 16 and the magnetic domain control film 17 constituting the laminated ferrimagnetic spin valve are etched, and the insulating film 23 is formed on the etched surface as in FIG. 5C. The insulating film 23 is formed thicker than FIG. 5C. The insulating film 23 and the magnetic domain control film 17 in FIG. 5D are the same as the insulating film. Finally, similarly to FIG. 5E, the resist mask 21 is removed, and a shield / electrode terminal 18b is formed. The material of each layer is the same as in Application Example 1.
<Example 3>
FIG. 7 is a schematic perspective view showing still another application example in which the MR element of the present invention is applied to a CPP structure. In Application Example 3, the length of the first pinned layer 12 in the core width direction is longer than the length of the reference pinned layer 14 in the core width direction and shorter than the length of the antiferromagnetic film 11 in the core width direction. It is configured. The magnetic domain control film 17 is located on both sides of the free layer 16, the reference pinned layer 14, and the first pinned layer 12 in the core width direction.

図8A〜図8Fは、図7のMR素子の作製工程を示す媒体対向面(ABS面)での断面図である。まず、図8Aにおいて、図示しない基板上に、シールド/電極端子18aと、積層フェリ型スピンバルブ、すなわち反強磁性膜11、第1ピンド層12、Ru等の中間層13、基準ピンド層14、中間層15、フリー層16を順次成膜する。積層フェリ型スピンバルブ上にレジストを塗布し、所望の形状にパターニングして、レジストマスク21を形成する。   8A to 8F are cross-sectional views on the medium facing surface (ABS surface) showing the manufacturing process of the MR element of FIG. First, in FIG. 8A, a shield / electrode terminal 18a, a laminated ferrimagnetic spin valve, that is, an antiferromagnetic film 11, a first pinned layer 12, an intermediate layer 13 such as Ru, a reference pinned layer 14, An intermediate layer 15 and a free layer 16 are sequentially formed. A resist is applied on the laminated ferri-type spin valve and patterned into a desired shape to form a resist mask 21.

次に、図8Bに示すように、レジストマスク21を用いて、イオンミリング等により、フリー層16、中間層15、基準ピンド層14、中間層13、第1ピンド層12をエッチングする。このエッチングにおいて、第1ピンド層12の一部が残っていてもよいし、反強磁性膜11の一部または全てをエッチングし、あるいはシールド/電極端子18aの一部をエッチングしてしまっても、本発明の効果は得られる。   Next, as shown in FIG. 8B, using the resist mask 21, the free layer 16, the intermediate layer 15, the reference pinned layer 14, the intermediate layer 13, and the first pinned layer 12 are etched by ion milling or the like. In this etching, a part of the first pinned layer 12 may remain, a part or all of the antiferromagnetic film 11 may be etched, or a part of the shield / electrode terminal 18a may be etched. The effect of the present invention can be obtained.

次に、図8Cに示すように、レジストマスク21を除去し、新たにレジストと塗布、パターニングして、レジストマスク21よりもコア幅方向の長さが短いレジストマスク31を形成する。レジストマスク31を用いて、イオンミリング等により、フリー層16、中間層15、基準ピンド層14、中間層13をエッチングする。ここで、中間層13のエッチングは必須ではなく、また、エッチングにおいて、基準ピンド層14の一部が残っていてもよいし、第1ピンド層12の一部をエッチングしてしまっても、本発明の効果は得られる。   Next, as shown in FIG. 8C, the resist mask 21 is removed, and a new resist is applied and patterned to form a resist mask 31 that is shorter in the core width direction than the resist mask 21. Using the resist mask 31, the free layer 16, the intermediate layer 15, the reference pinned layer 14, and the intermediate layer 13 are etched by ion milling or the like. Here, the etching of the intermediate layer 13 is not essential, and in the etching, a part of the reference pinned layer 14 may remain or even if a part of the first pinned layer 12 is etched, The effects of the invention can be obtained.

次に、図8Dに示すように、レジストマスク31を残したまま、Al2O3等の絶縁膜23を成膜する。なお、レジストマスク31上に堆積した絶縁膜23については、図示を省略する。   Next, as shown in FIG. 8D, an insulating film 23 of Al2O3 or the like is formed with the resist mask 31 remaining. The illustration of the insulating film 23 deposited on the resist mask 31 is omitted.

次に、図8Eに示すように、レジストマスク31を残したまま、磁区制御膜17、非磁性絶縁膜25を順次成膜する。   Next, as shown in FIG. 8E, the magnetic domain control film 17 and the nonmagnetic insulating film 25 are sequentially formed while the resist mask 31 is left.

次に、図8Fに示すように、レジストマスク31をリフトオフで除去し、シールド/電極端子18bを成膜する。なお各層の材料は実施例1と同様である。
<実施例4>
図9は、本発明のMR素子をCIP構造に適用した構成例を示す概略斜視図である。実施例3と同様に、第1ピンド層12のコア幅方向の長さは、基準ピンド層14のコア幅方向の長さよりも長く、かつ、反強磁性膜11のコア幅方向の長さよりも短い。電流の流れる方向が積層の面内方向なので、フリー層16、基準ピンド層14、および第1ピンド層12のコア幅方向の両側に、導電層32が設けられる。
Next, as shown in FIG. 8F, the resist mask 31 is removed by lift-off, and a shield / electrode terminal 18b is formed. The material of each layer is the same as in Example 1.
<Example 4>
FIG. 9 is a schematic perspective view showing a configuration example in which the MR element of the present invention is applied to a CIP structure. As in the third embodiment, the length of the first pinned layer 12 in the core width direction is longer than the length of the reference pinned layer 14 in the core width direction, and is longer than the length of the antiferromagnetic film 11 in the core width direction. short. Since the direction of current flow is the in-plane direction of the stack, the conductive layers 32 are provided on both sides of the free layer 16, the reference pinned layer 14, and the first pinned layer 12 in the core width direction.

図10Aおよび図10Bは、図9のMR素子の作製工程を示す媒体対向面での断面図である。図8A〜8Cと同様に、レジストマスクの形成およびイオンミリング等によるエッチングを二度繰り返して、第1ピンド層12のコア幅方向の長さが、基準ピンド層14のコア幅方向の長さよりも長く、かつ反強磁性層11のコア幅方向の長さよりも短くなる形状に積層フェリ型スピンバルブを加工する。その後、図10Aに示すように、レジストマスクを維持したまま、エッチング面上に非磁性導電膜32と、磁区制御膜17を形成し、レジストマスクをリフトオフで除去する。   10A and 10B are cross-sectional views on the medium facing surface showing the manufacturing steps of the MR element of FIG. Similarly to FIGS. 8A to 8C, the resist mask is formed and etching by ion milling or the like is repeated twice so that the length of the first pinned layer 12 in the core width direction is longer than the length of the reference pinned layer 14 in the core width direction. The laminated ferri-type spin valve is processed into a shape that is long and shorter than the length of the antiferromagnetic layer 11 in the core width direction. Thereafter, as shown in FIG. 10A, the nonmagnetic conductive film 32 and the magnetic domain control film 17 are formed on the etching surface while maintaining the resist mask, and the resist mask is removed by lift-off.

次に、図10Bに示すように、全面に非磁性絶縁膜25とシールド/電極端子18bを順次成膜する。なお各層の材料は実施例1と同様である。   Next, as shown in FIG. 10B, a nonmagnetic insulating film 25 and a shield / electrode terminal 18b are sequentially formed on the entire surface. The material of each layer is the same as in Example 1.

以上説明したように、本発明のMR素子を用いた再生ヘッドは、高記録密度に対応した微細素子においても、再生波形の上下非対称性を良好にすることができる。この結果、歩留まりが向上し、感度よく再生信号を得ることができる。   As described above, the reproducing head using the MR element of the present invention can improve the vertical asymmetry of the reproduced waveform even in a fine element corresponding to a high recording density. As a result, the yield is improved and a reproduction signal can be obtained with high sensitivity.

図11は、本発明の実施形態のMR素子を再生ヘッドに適用した磁気ヘッドを含む磁気ディスク装置(磁気記憶装置)の要部を示す平面図である。磁気ディスク装置90は、ハウジング91内に収容される磁気記録媒体93と、磁気記録媒体93上を移動して情報の記録および再生を行う磁気ヘッド50を含む。磁気ヘッド50は、磁気抵抗効果型再生素子10と、誘導型磁気記録素子40を一体化した複合型薄膜磁気ヘッドである。この場合、誘導型磁気記録素子40は、たとえば、図4、6、7のZ軸方向で、MR素子の上方に薄膜磁極を形成することによって、一体的に形成される。   FIG. 11 is a plan view showing a main part of a magnetic disk device (magnetic storage device) including a magnetic head in which the MR element of the embodiment of the present invention is applied to a reproducing head. The magnetic disk device 90 includes a magnetic recording medium 93 housed in a housing 91 and a magnetic head 50 that moves on the magnetic recording medium 93 to record and reproduce information. The magnetic head 50 is a composite thin-film magnetic head in which the magnetoresistive effect reproducing element 10 and the inductive magnetic recording element 40 are integrated. In this case, the inductive magnetic recording element 40 is integrally formed by forming a thin film magnetic pole above the MR element, for example, in the Z-axis direction of FIGS.

磁気ヘッド50はアーム95から延びるサスペンション96の先端に支持される。磁気記録媒体93はハブ92に固定され、ハブ92が図示しないスピンドルによって回転駆動されることによって、回転する。アーム95は、アクチュエータ94により、磁気記録媒体93の半径方向に移動する。   The magnetic head 50 is supported at the tip of a suspension 96 extending from the arm 95. The magnetic recording medium 93 is fixed to a hub 92, and rotates when the hub 92 is rotationally driven by a spindle (not shown). The arm 95 is moved in the radial direction of the magnetic recording medium 93 by the actuator 94.

磁気ヘッド50のMR再生素子10は、図2に示すように、第1ピンド層12のコア幅方向、すなわち磁気記録媒体93のトラック幅方向の長さが、基準ピンド層14のコア幅方向の長さよりも長く設定され、フリー層16に作用する基準ピンド層14からの磁界と、第1ピンド層12からの磁界が相殺されるように設計されている。したがって、磁気記録媒体93からの磁界が入ってこないときに、フリー層16の磁化がコア幅方向に整合しているので、再生時の再生波形の上下非対称性が良好に改善されている。   As shown in FIG. 2, the MR reproducing element 10 of the magnetic head 50 has a length in the core width direction of the first pinned layer 12, that is, the length in the track width direction of the magnetic recording medium 93 in the core width direction of the reference pinned layer 14. The magnetic field from the reference pinned layer 14 that is set longer than the length and acts on the free layer 16 is designed to cancel out the magnetic field from the first pinned layer 12. Therefore, when the magnetic field from the magnetic recording medium 93 does not enter, the magnetization of the free layer 16 is aligned in the core width direction, so that the vertical asymmetry of the reproduced waveform during reproduction is improved satisfactorily.

最後に、以上の説明に対し、以下の付記を開示する。
(付記1)反強磁性層と、
前記反強磁性層により磁化の方向が固定される第1ピンド層と、
前記第1ピンド層と反強磁性結合し、かつ、前記第1ピンド層と反平行をなす基準ピンド層と、
外部磁界により、前記基準ピンド層に対する磁化の方向が変化するフリー層と
を備え、前記第1ピンド層のコア幅方向の長さが、前記基準ピンド層のコア幅方向の長さよりも長いことを特徴とする磁気抵抗効果素子。
(付記2)前記第1ピンド層と基準ピンド層のコア幅方向の長さの差の1/2の値は、2nm〜5nmの範囲であることを特徴とする付記1に記載の磁気抵抗効果素子。
(付記3)前記第1ピンド層と基準ピンド層のコア幅方向の長さの差は、前記基準ピンド層と前記フリー層のコア幅方向の長さの差よりも大きいことを特徴とする付記1に記載の磁気抵抗効果素子。
(付記4)前記第1ピンド層と前記基準ピンド層のコア幅方向のそれぞれの長さは、前記フリー層に作用する前記第1ピンド層からの磁界と、前記フリー層に作用する前記基準層からの磁界が相殺される長さであることを特徴とする付記1に記載の磁気抵抗効果素子。
(付記5)前記フリー層と前記基準ピンド層の間に位置する低抵抗の中間層
をさらに有することを特徴とする付記1に記載の磁気抵抗効果素子。
(付記6) 前記フリー層と前記基準ピンド層の間に位置して強磁性トンネル接合を構成する中間層
をさらに有することを特徴とする付記1に記載の磁気抵抗効果素子。
(付記7)磁気抵抗効果素子と、
前記磁気抵抗効果素子を挟む電極端子および/またはシールド
を備え、前記磁気抵抗効果素子は、
磁化の方向が固定される第1ピンド層と、
前記第1ピンド層と反平行をなす方向に磁化の方向が固定される基準ピンド層と、
外部磁界により、前記基準ピンド層に対する磁化の方向が変化するフリー層と
を備え、前記第1ピンド層のコア幅方向の長さが、前記基準ピンド層のコア幅方向の長さよりも長い
ことを特徴とする磁気ヘッド。
(付記8)前記磁気抵抗効果素子と一体的に設けられる誘導型記録素子
をさらに備えることを特徴とする付記7に記載の磁気ヘッド。
(付記9)前記磁気抵抗効果素子の磁区を制御する磁区制御膜
をさらに備えることを特徴とする付記7または8に記載の磁気ヘッド。
(付記10)前記磁区制御膜は高保磁力膜と、反強磁性膜の少なくとも一方であることを特徴とする付記9に記載の磁気ヘッド。
(付記11)前記磁区制御膜は、前記磁気抵抗効果素子のコア幅方向の両側に位置する
ことを特徴とする付記9に記載の磁気ヘッド。
(付記12)前記磁区制御膜は、前記磁気抵抗効果素子の前記フリー層上に位置する
ことを特徴とする付記9に記載の磁気ヘッド。
(付記13)記録媒体と、
付記6又は7に記載の磁気ヘッドと、
前記記録媒体に対して前記磁気ヘッドを駆動するヘッド駆動部と、
を備え、前記磁気ヘッドは前記記録媒体の磁気的信号を検出する
ことを特徴とする磁気記憶装置。
(付記14)反強磁性膜、第1ピンド層、第1中間層、基準ピンド層、第2中間層、フリー層をこの順に積層して積層体を形成する工程と、
前記積層体が任意の記憶媒体と向き合う対向面において、前記第1ピンド層の前記記憶媒体のトラック幅方向に沿った長さが、前記基準ピンド層の前記トラック幅方向に沿った長さよりも長くなるように、前記積層体を加工する工程と、
を含むことを特徴とする磁気抵抗効果素子の作製方法。
Finally, the following notes are disclosed for the above explanation.
(Appendix 1) an antiferromagnetic layer;
A first pinned layer whose magnetization direction is fixed by the antiferromagnetic layer;
A reference pinned layer antiferromagnetically coupled to the first pinned layer and antiparallel to the first pinned layer;
A free layer in which the direction of magnetization with respect to the reference pinned layer changes due to an external magnetic field, and the length of the first pinned layer in the core width direction is longer than the length of the reference pinned layer in the core width direction. A magnetoresistive effect element.
(Supplementary note 2) The magnetoresistive effect according to supplementary note 1, wherein a value of ½ of a difference in length in the core width direction between the first pinned layer and the reference pinned layer is in a range of 2 nm to 5 nm. element.
(Supplementary note 3) The difference in length between the first pinned layer and the reference pinned layer in the core width direction is larger than the difference in length between the reference pinned layer and the free layer in the core width direction. The magnetoresistive effect element according to 1.
(Supplementary Note 4) The lengths of the first pinned layer and the reference pinned layer in the core width direction are the magnetic field from the first pinned layer acting on the free layer, and the reference layer acting on the free layer. The magnetoresistive effect element according to claim 1, wherein the magnetoresistive element has a length that cancels out the magnetic field from the magnetic field.
(Additional remark 5) The magnetoresistive effect element of Additional remark 1 characterized by further having a low resistance intermediate | middle layer located between the said free layer and the said reference | standard pinned layer.
(Additional remark 6) The magnetoresistive effect element of Additional remark 1 characterized by further having an intermediate | middle layer which comprises a ferromagnetic tunnel junction located between the said free layer and the said reference | standard pinned layer.
(Supplementary note 7) magnetoresistive element;
The magnetoresistive effect element includes an electrode terminal and / or a shield sandwiching the magnetoresistive effect element,
A first pinned layer in which the direction of magnetization is fixed;
A reference pinned layer in which the direction of magnetization is fixed in a direction antiparallel to the first pinned layer;
A free layer in which the direction of magnetization with respect to the reference pinned layer changes due to an external magnetic field, and the length of the first pinned layer in the core width direction is longer than the length of the reference pinned layer in the core width direction. Characteristic magnetic head.
(Supplementary note 8) The magnetic head according to supplementary note 7, further comprising an inductive recording element provided integrally with the magnetoresistive effect element.
(Additional remark 9) The magnetic head of Additional remark 7 or 8 further provided with the magnetic domain control film which controls the magnetic domain of the said magnetoresistive effect element.
(Supplementary note 10) The magnetic head according to supplementary note 9, wherein the magnetic domain control film is at least one of a high coercive force film and an antiferromagnetic film.
(Supplementary note 11) The magnetic head according to supplementary note 9, wherein the magnetic domain control film is located on both sides of the magnetoresistive element in the core width direction.
(Additional remark 12) The said magnetic domain control film is located on the said free layer of the said magnetoresistive effect element, The magnetic head of Additional remark 9 characterized by the above-mentioned.
(Supplementary note 13) a recording medium;
The magnetic head according to appendix 6 or 7,
A head drive unit for driving the magnetic head with respect to the recording medium;
And the magnetic head detects a magnetic signal of the recording medium.
(Additional remark 14) The process of laminating | stacking an antiferromagnetic film | membrane, a 1st pinned layer, a 1st intermediate | middle layer, a reference | standard pinned layer, a 2nd intermediate | middle layer, and a free layer in this order,
In the facing surface where the stacked body faces an arbitrary storage medium, the length of the first pinned layer along the track width direction of the storage medium is longer than the length of the reference pinned layer along the track width direction. So as to process the laminate,
A method of manufacturing a magnetoresistive effect element comprising:

従来のMR素子の積層フェリ型スピンバルブ構造を示す図である。It is a figure which shows the laminated ferri-type spin valve structure of the conventional MR element. 本発明の一実施形態にかかるMR素子の積層フェリ型スピンバルブ構造を示す概略斜視図である。1 is a schematic perspective view showing a laminated ferri type spin valve structure of an MR element according to an embodiment of the present invention. 図2の構造により得られる再生波形の上下非対称性の改善効果を示すグラフである。It is a graph which shows the improvement effect of the up-down asymmetry of the reproduction | regeneration waveform obtained by the structure of FIG. 本発明のMR素子のCPP構造への適用例1の概略斜視図である。It is a schematic perspective view of the application example 1 to the CPP structure of the MR element of the present invention. 図4のMR素子の作製工程図その1である。FIG. 5 is a first manufacturing process diagram of the MR element of FIG. 図4のMR素子の作製工程図その2である。FIG. 6 is a second manufacturing process diagram of the MR element of FIG. 4. 図4のMR素子の作製工程図その3である。FIG. 6 is a third manufacturing process diagram of the MR element of FIG. 4. 図4のMR素子の作製工程図その4である。FIG. 5 is a fourth manufacturing process diagram of the MR element of FIG. 4. 図4のMR素子の作製工程図その5である。FIG. 6 is a fifth manufacturing process diagram of the MR element of FIG. 4. 本発明のMR素子のCPP構造への適用例2を示す図である。It is a figure which shows the example 2 of application to the CPP structure of MR element of this invention. 本発明のMR素子のCPP構造への適用例3を示す図である。It is a figure which shows the example 3 of application to the CPP structure of MR element of this invention. 図7のMR素子の作製工程図その1である。FIG. 8 is a first manufacturing process diagram of the MR element of FIG. 7; 図7のMR素子の作製工程図その2である。FIG. 8 is a second manufacturing process diagram of the MR element of FIG. 図7のMR素子の作製工程図その3である。FIG. 8 is a third manufacturing process diagram of the MR element of FIG. 7; 図7のMR素子の作製工程図その4である。FIG. 8 is a fourth manufacturing process diagram of the MR element of FIG. 7. 図7のMR素子の作製工程図その5である。FIG. 7 is a fifth manufacturing process diagram of the MR element of FIG. 図7のMR素子の作製工程図その6である。FIG. 7 is a sixth manufacturing process diagram of the MR element of FIG. 7; 本発明のMR素子のCIP構造への適用例を示す図である。It is a figure which shows the example of application to the CIP structure of MR element of this invention. 図9のMR素子の作製工程図その1である。FIG. 10 is a first manufacturing process diagram of the MR element of FIG. 9; 図9のMR素子の作製工程図その2である。FIG. 10 is a second production process diagram of the MR element of FIG. 9. 本発明の実施形態のMR素子を用いた磁気ヘッドを含む磁気ディスク装置の要部を示す図である。1 is a diagram showing a main part of a magnetic disk device including a magnetic head using an MR element according to an embodiment of the present invention.

符号の説明Explanation of symbols

10 MR素子(磁気抵抗効果素子)
11 反強磁性膜
12 第1ピンド層
14 基準ピンド層
16 フリー層
17 磁区制御層
18a、18b シールドおよび/または電極端子
23 絶縁膜
25 非磁性絶縁膜
32 非磁性導電膜
40 誘導型記録素子
50 磁気ヘッド(複合型薄膜磁気ヘッド)
90 磁気ディスク装置(磁気記憶装置)
10 MR element (magnetoresistance effect element)
11 Antiferromagnetic film 12 First pinned layer 14 Reference pinned layer 16 Free layer 17 Magnetic domain control layers 18a and 18b Shield and / or electrode terminal 23 Insulating film 25 Nonmagnetic insulating film 32 Nonmagnetic conductive film 40 Inductive recording element 50 Magnetic Head (Composite type thin film magnetic head)
90 Magnetic disk unit (magnetic storage unit)

Claims (10)

反強磁性層と、
前記反強磁性層により磁化の方向が固定される第1ピンド層と、
前記第1ピンド層と反強磁性結合し、かつ、前記第1ピンド層と反平行をなす基準ピンド層と、
外部磁界により、前記基準ピンド層に対する磁化の方向が変化するフリー層と
を備え、前記第1ピンド層のコア幅方向の長さが、前記基準ピンド層のコア幅方向の長さよりも長いことを特徴とする磁気抵抗効果素子。
An antiferromagnetic layer,
A first pinned layer whose magnetization direction is fixed by the antiferromagnetic layer;
A reference pinned layer antiferromagnetically coupled to the first pinned layer and antiparallel to the first pinned layer;
A free layer in which the direction of magnetization with respect to the reference pinned layer changes due to an external magnetic field, and the length of the first pinned layer in the core width direction is longer than the length of the reference pinned layer in the core width direction. A magnetoresistive effect element.
前記第1ピンド層と基準ピンド層のコア幅方向の長さの差の1/2の値は、2nm〜5nmの範囲であることを特徴とする請求項1に記載の磁気抵抗効果素子。   2. The magnetoresistive element according to claim 1, wherein a value of ½ of a difference in length in the core width direction between the first pinned layer and the reference pinned layer is in a range of 2 nm to 5 nm. 前記第1ピンド層と基準ピンド層のコア幅方向の長さの差は、前記基準ピンド層と前記フリー層のコア幅方向の長さの差よりも大きいことを特徴とする請求項1に記載の磁気抵抗効果素子。   2. The difference in length in the core width direction between the first pinned layer and the reference pinned layer is greater than the difference in length in the core width direction between the reference pinned layer and the free layer. Magnetoresistive effect element. 前記第1ピンド層と前記基準ピンド層のコア幅方向のそれぞれの長さは、前記フリー層に作用する前記第1ピンド層からの磁界と、前記フリー層に作用する前記基準層からの磁界が相殺される長さであることを特徴とする請求項1に記載の磁気抵抗効果素子。   The lengths of the first pinned layer and the reference pinned layer in the core width direction are determined by a magnetic field from the first pinned layer acting on the free layer and a magnetic field from the reference layer acting on the free layer, respectively. The magnetoresistive effect element according to claim 1, wherein the magnetoresistive effect element has a length offset. 前記フリー層と前記基準ピンド層の間に位置する低抵抗の中間層
をさらに有することを特徴とする請求項1に記載の磁気抵抗効果素子。
2. The magnetoresistive element according to claim 1, further comprising a low-resistance intermediate layer positioned between the free layer and the reference pinned layer.
前記フリー層と前記基準ピンド層の間に位置して強磁性トンネル接合を構成する中間層
をさらに有することを特徴とする請求項1に記載の磁気抵抗効果素子。
The magnetoresistive element according to claim 1, further comprising an intermediate layer that is located between the free layer and the reference pinned layer and forms a ferromagnetic tunnel junction.
磁気抵抗効果素子と、
前記磁気抵抗効果素子を挟む電極端子および/またはシールド
を備え、前記磁気抵抗効果素子は、
磁化の方向が固定される第1ピンド層と、
前記第1ピンド層と反平行をなす方向に磁化の方向が固定される基準ピンド層と、
外部磁界により、前記基準ピンド層に対する磁化の方向が変化するフリー層と
を備え、前記第1ピンド層のコア幅方向の長さが、前記基準ピンド層のコア幅方向の長さよりも長い
ことを特徴とする磁気ヘッド。
A magnetoresistive element;
The magnetoresistive effect element includes an electrode terminal and / or a shield sandwiching the magnetoresistive effect element,
A first pinned layer in which the direction of magnetization is fixed;
A reference pinned layer in which the direction of magnetization is fixed in a direction antiparallel to the first pinned layer;
A free layer in which the direction of magnetization with respect to the reference pinned layer changes due to an external magnetic field, and the length of the first pinned layer in the core width direction is longer than the length of the reference pinned layer in the core width direction. Characteristic magnetic head.
前記磁気抵抗効果素子と一体的に設けられる誘導型記録素子
をさらに備えることを特徴とする請求項7に記載の磁気ヘッド。
The magnetic head according to claim 7, further comprising an inductive recording element provided integrally with the magnetoresistive effect element.
記録媒体と、
請求項6又は7に記載の磁気ヘッドと、
前記記録媒体に対して前記磁気ヘッドを駆動するヘッド駆動部と、
を備え、前記磁気ヘッドは前記記録媒体の磁気的信号を検出する
ことを特徴とする磁気記憶装置。
A recording medium;
A magnetic head according to claim 6 or 7,
A head drive unit for driving the magnetic head with respect to the recording medium;
And the magnetic head detects a magnetic signal of the recording medium.
反強磁性膜、第1ピンド層、第1中間層、基準ピンド層、第2中間層、フリー層をこの順に積層して積層体を形成する工程と、
前記積層体が任意の記憶媒体と向き合う対向面において、前記第1ピンド層の前記記憶媒体のトラック幅方向に沿った長さが、前記基準ピンド層の前記トラック幅方向に沿った長さよりも長くなるように、前記積層体を加工する工程と、
を含むことを特徴とする磁気抵抗効果素子の作製方法。
A step of laminating an antiferromagnetic film, a first pinned layer, a first intermediate layer, a reference pinned layer, a second intermediate layer, and a free layer in this order; and
In the facing surface where the stacked body faces an arbitrary storage medium, the length of the first pinned layer along the track width direction of the storage medium is longer than the length of the reference pinned layer along the track width direction. So as to process the laminate,
A method of manufacturing a magnetoresistive effect element comprising:
JP2006337349A 2006-12-14 2006-12-14 Magnetoresistance effect element, magnetic head, and magnetic storage device Withdrawn JP2008153295A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006337349A JP2008153295A (en) 2006-12-14 2006-12-14 Magnetoresistance effect element, magnetic head, and magnetic storage device
KR1020070122809A KR20080055636A (en) 2006-12-14 2007-11-29 Magnetoresistance device, magnetic head and magnetic memory device
CNA2007101997328A CN101207177A (en) 2006-12-14 2007-12-12 Magnetoresistive device, film head and disc driving equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337349A JP2008153295A (en) 2006-12-14 2006-12-14 Magnetoresistance effect element, magnetic head, and magnetic storage device

Publications (1)

Publication Number Publication Date
JP2008153295A true JP2008153295A (en) 2008-07-03

Family

ID=39567180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337349A Withdrawn JP2008153295A (en) 2006-12-14 2006-12-14 Magnetoresistance effect element, magnetic head, and magnetic storage device

Country Status (3)

Country Link
JP (1) JP2008153295A (en)
KR (1) KR20080055636A (en)
CN (1) CN101207177A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9047893B1 (en) * 2014-01-31 2015-06-02 HGST Netherlands B.V. Magnetic sensor having narrow trackwidth and small read gap
JP2017040628A (en) * 2015-08-21 2017-02-23 株式会社デンソー Magnetic sensor
JP2022037688A (en) * 2020-08-25 2022-03-09 株式会社東芝 Magnetic sensor and inspection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612700B (en) * 2010-07-28 2018-01-21 應用材料股份有限公司 Resist fortification for magnetic media patterning
US8953284B1 (en) * 2013-11-20 2015-02-10 HGST Netherlands B.V. Multi-read sensor having a narrow read gap structure
CN112305468B (en) * 2019-07-29 2023-09-26 甘肃省科学院传感技术研究所 Method and structure for annealing giant magneto-resistance sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9047893B1 (en) * 2014-01-31 2015-06-02 HGST Netherlands B.V. Magnetic sensor having narrow trackwidth and small read gap
JP2015146224A (en) * 2014-01-31 2015-08-13 エイチジーエスティーネザーランドビーブイ Magnetic sensor having narrow trackwidth and small read gap
JP2017040628A (en) * 2015-08-21 2017-02-23 株式会社デンソー Magnetic sensor
JP2022037688A (en) * 2020-08-25 2022-03-09 株式会社東芝 Magnetic sensor and inspection device
JP7316719B2 (en) 2020-08-25 2023-07-28 株式会社東芝 Magnetic sensor and inspection device

Also Published As

Publication number Publication date
CN101207177A (en) 2008-06-25
KR20080055636A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
US8576518B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with exchange-coupled side shield structure
US8477461B2 (en) Thin film magnetic head having a pair of magnetic layers whose magnetization is controlled by shield layers
US8537505B2 (en) Magnetoresistive effect head having a free layer and a magnetic domain control layer that applies a magnetic field more strongly in an upper part of the free layer
JP2004178656A (en) Magnetic recording head and magnetic recording/reproducing device
US8098464B2 (en) CPP-type magneto resistance element having a pair of free layers and spacer layer sandwiched therebetween
US20090080125A1 (en) Magnetic head
JP4185528B2 (en) Thin film magnetic head
JP4371983B2 (en) CPP type magnetoresistive effect element, CPP type magnetic read head, method for forming CPP type magnetoresistive effect element, and method for manufacturing CPP type magnetic read head
JP2007531178A (en) Stabilizer for magnetoresistive head and manufacturing method
JP2008153295A (en) Magnetoresistance effect element, magnetic head, and magnetic storage device
US20040114284A1 (en) Thin-film magnetic head with current-perpendicular-to-the plane
US10249329B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with wedge shaped free layer
US7145755B2 (en) Spin valve sensor having one of two AP pinned layers made of cobalt
US7362547B2 (en) Magnetic head having PtMn layer formed by ion beam deposition
JP2001134910A (en) Magneto resistance sensor and thin film magnetic head
JP4204385B2 (en) Thin film magnetic head
JP2006134388A (en) Thin film magnetic head
JP2009064528A (en) Magnetoresistance effect head and manufacturing method thereof
JP2008192269A (en) Magnetic read head and its manufacturing method
JP2002358610A (en) Magneto-resistive head and its manufacturing method
US7894168B2 (en) Thin-film magnetic head comprising a magneto-resistive effect device of a CPP structure and having a shunting layer
JP2008176857A (en) Complex thin-film magnetic head
JP2006041120A (en) Magnetoresistive effect device, its manufacturing method, thin film magnetic head, head jimbal assembly, head arm assembly and magnetic disk device
JP4283169B2 (en) Magnetoresistive head
JP2002015407A (en) Thin film magnetic head and method of manufacture

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302