JP5738791B2 - 3D magnetic recording media - Google Patents

3D magnetic recording media Download PDF

Info

Publication number
JP5738791B2
JP5738791B2 JP2012068409A JP2012068409A JP5738791B2 JP 5738791 B2 JP5738791 B2 JP 5738791B2 JP 2012068409 A JP2012068409 A JP 2012068409A JP 2012068409 A JP2012068409 A JP 2012068409A JP 5738791 B2 JP5738791 B2 JP 5738791B2
Authority
JP
Japan
Prior art keywords
magnetic
recording
recording layer
dimensional
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012068409A
Other languages
Japanese (ja)
Other versions
JP2013200915A (en
Inventor
涛 楊
涛 楊
浩文 首藤
浩文 首藤
鶴美 永澤
鶴美 永澤
究 工藤
究 工藤
佐藤 利江
利江 佐藤
水島 公一
公一 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012068409A priority Critical patent/JP5738791B2/en
Publication of JP2013200915A publication Critical patent/JP2013200915A/en
Application granted granted Critical
Publication of JP5738791B2 publication Critical patent/JP5738791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Description

本発明の実施形態は、三次元磁気記録媒体に関する。   Embodiments described herein relate generally to a three-dimensional magnetic recording medium.

近年、ハードディスクドライブ(HDD)をはじめとする磁気記録製品の記録密度のさらなる向上のため、三次元磁気記録方式に対応する三次元磁気記録媒体が提案されている。三次元磁気記録媒体は、データを記録する記録層を複数層有する記録媒体である。三次元磁気記録媒体は、1層のみの記録層を有する単層記録媒体よりも、記録層の数に応じて媒体単位面積あたりの記録密度も増える。   In recent years, a three-dimensional magnetic recording medium corresponding to a three-dimensional magnetic recording method has been proposed in order to further improve the recording density of magnetic recording products such as a hard disk drive (HDD). A three-dimensional magnetic recording medium is a recording medium having a plurality of recording layers for recording data. The three-dimensional magnetic recording medium has a higher recording density per unit area of the medium than the single-layer recording medium having only one recording layer according to the number of recording layers.

特開2009−80904号公報JP 2009-80904 A

しかし、上述の三次元磁気記録方式では、各記録層に同じビットサイズで書き込みが行われ、複数の記録層の記録密度は全て同一である。記録層を多層化する場合は、各記録層で有効磁気異方性を差別化する必要があるので、記録層の限界記録密度は、有効磁気異方性の度合いに応じて変化する。よって、記録密度が全ての記録層で同一である場合は、限界記録密度が最も低い(ビットが大きい)記録層の記録密度より記録密度を高めることができないため、限界記録密度に達していない密度で記録される記録層が多くなり、記録効率が悪い。   However, in the above-described three-dimensional magnetic recording method, writing is performed on each recording layer with the same bit size, and the recording densities of the plurality of recording layers are all the same. When the recording layer is made multi-layered, it is necessary to differentiate the effective magnetic anisotropy in each recording layer, and therefore the limit recording density of the recording layer changes according to the degree of the effective magnetic anisotropy. Therefore, when the recording density is the same for all recording layers, the recording density cannot be increased beyond the recording density of the recording layer having the lowest limit recording density (the bit is large). Recording layers are recorded in a large number, resulting in poor recording efficiency.

本開示は、上述の課題を解決するためになされたものであり、記録効率を高めることができる三次元磁気記録媒体を提供することを目的とする。   The present disclosure has been made in order to solve the above-described problem, and an object thereof is to provide a three-dimensional magnetic recording medium capable of increasing recording efficiency.

本実施形態に係る三次元磁気記録媒体は、複数の記録層と複数の中間層とを含む。複数の記録層は、磁性体で形成される。複数の中間層は、非磁性体で形成される。前記記録層は、データの記録および該データの読み出しに用いられる磁気ヘッドから遠い位置にある記録層から該磁気ヘッドに近い位置にある記録層に向かって、該記録層の有効磁気異方性の度合いが順次高くなるように積層され、該有効磁気異方性の度合いが高いほど記録層の記録密度が高く設定される。前記記録層と前記中間層とが交互に積層される。   The three-dimensional magnetic recording medium according to the present embodiment includes a plurality of recording layers and a plurality of intermediate layers. The plurality of recording layers are made of a magnetic material. The plurality of intermediate layers are formed of a nonmagnetic material. The recording layer has an effective magnetic anisotropy of the recording layer from a recording layer located far from the magnetic head used for data recording and data reading toward a recording layer located near the magnetic head. The recording layers are stacked so that the degree becomes higher sequentially. The higher the degree of the effective magnetic anisotropy, the higher the recording density of the recording layer. The recording layer and the intermediate layer are alternately stacked.

本実施形態に係る三次元磁気記録媒体を示す図。The figure which shows the three-dimensional magnetic recording medium concerning this embodiment. 垂直磁気記録方式に対応する三次元磁気記録ビットパターンドメディア(BPM)媒体のビットパターンを示す図。The figure which shows the bit pattern of the three-dimensional magnetic recording bit patterned media (BPM) medium corresponding to a perpendicular magnetic recording system. 垂直磁気記録方式に対応する三次元磁気記録連続媒体のビットパターンを示す図。The figure which shows the bit pattern of the three-dimensional magnetic recording continuous medium corresponding to a perpendicular magnetic recording system. 三次元磁気記録媒体にデータを書き込む場合の一例を示す図。The figure which shows an example in the case of writing data in a three-dimensional magnetic recording medium. 三次元磁気記録媒体からデータを読み出す場合の一例を示す図。The figure which shows an example in the case of reading data from a three-dimensional magnetic recording medium. 面内磁気記録方式に対応する三次元磁気記録BPM媒体のビットパターンを示す図。The figure which shows the bit pattern of the three-dimensional magnetic recording BPM medium corresponding to an in-plane magnetic recording system. 面内磁気記録方式に対応する三次元磁気記録連続媒体のビットパターンを示す図。The figure which shows the bit pattern of the three-dimensional magnetic recording continuous medium corresponding to an in-plane magnetic recording system. 磁性層を複数結合した記録層を有するBPM媒体の一例を示す図。The figure which shows an example of the BPM medium which has a recording layer which couple | bonded multiple magnetic layers. 磁性層を複数結合した記録層を有する連続媒体の一例を示す図。The figure which shows an example of the continuous medium which has a recording layer which couple | bonded multiple magnetic layers. 本実施形態に係る三次元磁気記録媒体の作製例を示す図。The figure which shows the example of preparation of the three-dimensional magnetic recording medium which concerns on this embodiment.

従前の磁気記録媒体は、二進法の“1”と“0”とが「ビット」という微小領域の磁化向きとして記録される。磁気記録媒体へのデータの書き込みは、磁気ヘッドから磁気記録媒体の保磁力よりも大きい書き込み磁界をビットに印加し、ビットの磁化の向きを反転させることにより行われる。データの読み出しは、磁気ヘッドがビットからの漏れ磁界を検知することにより、ビットの磁化の向きを判定できる。   In a conventional magnetic recording medium, binary “1” and “0” are recorded as the magnetization direction of a minute region called “bit”. Data is written to the magnetic recording medium by applying a writing magnetic field larger than the coercive force of the magnetic recording medium from the magnetic head to the bit and reversing the magnetization direction of the bit. When reading data, the magnetic head detects the leakage magnetic field from the bit, whereby the direction of magnetization of the bit can be determined.

一般的に、磁気記録密度の向上はビットのサイズの縮小を意味する。1ビットのサイズを縮小した際に、十分な読み出し信号対ノイズ比(SN比)を維持するためには、磁気記録媒体の磁性結晶粒子を微細化する必要がある。磁性結晶粒子の微細化に伴い、磁性結晶粒子の熱安定性が問題となる。磁性結晶粒子の熱安定性はKeffV/kT(Keff、V、kおよびTはそれぞれ、磁性結晶粒子の有効磁気異方性エネルギー密度、体積、Boltzmann定数および温度を示す)で表される。十分な熱安定性が達成されないと、常温でも熱揺らぎの影響で、磁化の向きが反転し、記録したデータが失われる恐れがある。そのため、ビットサイズの縮小には限界がある。従来の単層磁気記録媒体では記録密度がTbit/in程度になると、ビットサイズの更なる縮小が困難になる。 In general, an increase in magnetic recording density means a reduction in bit size. In order to maintain a sufficient read signal-to-noise ratio (SN ratio) when the size of one bit is reduced, it is necessary to refine the magnetic crystal grains of the magnetic recording medium. With the miniaturization of magnetic crystal particles, the thermal stability of the magnetic crystal particles becomes a problem. The thermal stability of the magnetic crystal grains is K eff V / k B T (K eff , V, k B and T represent the effective magnetic anisotropic energy density, volume, Boltzmann constant and temperature of the magnetic crystal grains, respectively). expressed. If sufficient thermal stability is not achieved, the direction of magnetization may be reversed due to thermal fluctuations even at room temperature, and recorded data may be lost. Therefore, there is a limit to reducing the bit size. In the conventional single-layer magnetic recording medium, when the recording density is about Tbit / in 2 , it is difficult to further reduce the bit size.

以下、図面を参照しながら本実施形態に係る三次元磁気記録媒体について詳細に説明する。なお、以下の実施形態では、同一の参照符号を付した部分は同様の動作をおこなうものとして、重複する説明を適宜省略する。
本実施形態に係る三次元磁気記録媒体について図1を参照して説明する。
本実施形態に係る三次元磁気記録媒体100は、複数の記録層101と複数の非磁性中間層102とを含む。本実施形態に係る三次元磁気記録媒体100は、複数の記録層101が多層化され、図1の例では、記録層101はn層(nは2以上の自然数)積層される。図1に示すように、磁性層101と非磁性層102とが1層ずつ交互に積層される。
Hereinafter, the three-dimensional magnetic recording medium according to the present embodiment will be described in detail with reference to the drawings. Note that, in the following embodiments, the same reference numerals are assigned to the same operations, and duplicate descriptions are omitted as appropriate.
A three-dimensional magnetic recording medium according to this embodiment will be described with reference to FIG.
A three-dimensional magnetic recording medium 100 according to the present embodiment includes a plurality of recording layers 101 and a plurality of nonmagnetic intermediate layers 102. In the three-dimensional magnetic recording medium 100 according to the present embodiment, a plurality of recording layers 101 are multilayered. In the example of FIG. 1, the recording layer 101 is stacked in n layers (n is a natural number of 2 or more). As shown in FIG. 1, magnetic layers 101 and nonmagnetic layers 102 are alternately stacked one by one.

記録層101は、磁性体で形成され、磁性体の磁化の向きを変化させることによりデータを記録する。記録層101は、Tbit/in以上の磁気記録密度に達成するために、磁気異方性エネルギー密度が10erg/cm程度であることが望ましい。そのため、記録層101を形成する磁性体として、例えば、CoとPtとを主成分とする合金、FeとPtとを主成分とする合金、CoとFeとPtとを主成分とする合金、CoとCrとPtとを主成分とする合金、FeとPdを主成分とする合金、またはCo/Pt多層膜かCo/Pd多層膜を用いることが望ましい。 The recording layer 101 is made of a magnetic material, and records data by changing the direction of magnetization of the magnetic material. The recording layer 101 preferably has a magnetic anisotropy energy density of about 10 6 erg / cm 3 in order to achieve a magnetic recording density of Tbit / in 2 or higher. Therefore, as the magnetic material forming the recording layer 101, for example, an alloy containing Co and Pt as main components, an alloy containing Fe and Pt as main components, an alloy containing Co, Fe and Pt as main components, Co It is desirable to use an alloy containing Cr and Pt as main components, an alloy containing Fe and Pd as main components, or a Co / Pt multilayer film or a Co / Pd multilayer film.

また、記録層101の厚みが厚いほど三次元磁気記録媒体100の厚みが増えるので、磁気ヘッドから遠い記録層101に印加される磁気ヘッドからの磁界の強さが弱くなる。そのため、磁気ヘッドから遠い位置にある記録層の保磁力および有効磁気異方性の度合いを小さくする必要があり、限界記録密度が低くなる。よって、記録層101の厚みは薄いほうが好ましいが、薄すぎると、体積の減少により熱安定性が悪くなるので、各記録層の厚さは3nmから10nm程度が望ましい。有効磁気異方性の度合いは、例えば、試料振動型磁力計(VSM:Vibrating Sample Magnetometer)またはトルク磁力計(Torque Magnetometer)を用いて測定すればよい。   Further, as the thickness of the recording layer 101 increases, the thickness of the three-dimensional magnetic recording medium 100 increases, so that the strength of the magnetic field from the magnetic head applied to the recording layer 101 far from the magnetic head decreases. For this reason, it is necessary to reduce the degree of coercive force and effective magnetic anisotropy of the recording layer located far from the magnetic head, and the limit recording density is lowered. Accordingly, the thickness of the recording layer 101 is preferably thin. However, if the thickness is too thin, the thermal stability is deteriorated due to a decrease in volume. Therefore, the thickness of each recording layer is preferably about 3 nm to 10 nm. The degree of effective magnetic anisotropy may be measured using, for example, a sample vibration type magnetometer (VSM) or a torque magnetometer (Torque Magnetometer).

また、記録層は、磁気ヘッドから遠い位置にある記録層101から磁気ヘッドに近い位置にある記録層101に向かって、記録層101の有効磁気異方性の度合いが高くなるように積層し、有効磁気異方性の度合いが高いほど記録密度を高くする。
非磁性中間層102は、例えば、Ti、Crなどの非磁性材料で形成され、記録層101の間に積層される。非磁性中間層102は、上下の記録層101を隔離する役割を果たすとともに、記録層の結晶配向を制御する役割を果たす。非磁性中間層102を形成する非磁性材料は、記録層材料と結晶格子定数とが近いことが好ましい。非磁性中間層102が厚すぎると、上述したように、ヘッドから遠い記録層の記録密度が低くなる一方、非磁性中間層102が薄すぎると、十分な隔離効果が得られない。そのため、非磁性中間層102の厚さは1nmから5nmが望ましい。
The recording layer is laminated so that the degree of effective magnetic anisotropy of the recording layer 101 increases from the recording layer 101 located far from the magnetic head toward the recording layer 101 located near the magnetic head. The higher the degree of effective magnetic anisotropy, the higher the recording density.
The nonmagnetic intermediate layer 102 is formed of, for example, a nonmagnetic material such as Ti or Cr, and is laminated between the recording layers 101. The nonmagnetic intermediate layer 102 serves to isolate the upper and lower recording layers 101 and to control the crystal orientation of the recording layers. The nonmagnetic material forming the nonmagnetic intermediate layer 102 is preferably close to the recording layer material and the crystal lattice constant. If the nonmagnetic intermediate layer 102 is too thick, the recording density of the recording layer far from the head is lowered as described above. On the other hand, if the nonmagnetic intermediate layer 102 is too thin, a sufficient isolation effect cannot be obtained. Therefore, the thickness of the nonmagnetic intermediate layer 102 is preferably 1 nm to 5 nm.

三次元磁気記録では、磁気共鳴周波数により、記録層を選択して書き込みおよび読み出しを行うため、各記録層の磁気共鳴周波数を差別化する必要がある。例えば、垂直磁気記録の場合は、記録層の磁気共鳴周波数は(1)式で表される。

Figure 0005738791
In three-dimensional magnetic recording, the recording layer is selected according to the magnetic resonance frequency, and writing and reading are performed. Therefore, it is necessary to differentiate the magnetic resonance frequency of each recording layer. For example, in the case of perpendicular magnetic recording, the magnetic resonance frequency of the recording layer is expressed by equation (1).
Figure 0005738791

ここで、γは磁気回転比であり、H effは有効磁気異方性磁界である。(1)式からわかるように、記録層の有効磁気異方性磁界H effが高くなるほど、磁気共鳴周波数fも高くなる。よって、有効磁気異方性磁界がそれぞれ異なる記録層が積層されることにより、各記録層固有の磁気共鳴周波数を用いて、所望の記録層に対する書き込みおよび読み出しを行うことができる。 Here, γ is a magnetic rotation ratio, and H k eff is an effective magnetic anisotropy magnetic field. As can be seen from the equation (1), as the effective magnetic anisotropic magnetic field H k eff of the recording layer increases, the magnetic resonance frequency f also increases. Therefore, when recording layers having different effective magnetic anisotropy magnetic fields are laminated, it is possible to perform writing and reading with respect to a desired recording layer using a magnetic resonance frequency unique to each recording layer.

また、記録層にデータを書き込める最大の記録密度(以下、限界記録密度という)は、記録層の磁性体の有効磁気異方性で定められる。これは記録層のビットは、ビットサイズが小さいほど熱安定性を保つために高い有効磁気異方性が必要となるからである。よって、有効磁気異方性の度合いが高い記録層ほど、書き込みの記録密度を限界記録密度まで高く設定することができる。
なお、有効磁気異方性の度合いが大きいほど各記録層の保持力は大きくなり、書き込みに必要な磁界も大きくなる。一方、磁気ヘッドから発生する磁界は、磁気ヘッドからの距離が遠くなるほど弱くなる。従って、保持力が小さい、すなわち有効磁気異方性の度合いが低い記録層が三次元磁気記録媒体の下層に積層されることが望ましい。従って、図1に示すように、三次元磁気記録媒体100の最下層の記録層が最も有効磁気異方性の度合いが低く、磁気共鳴周波数も低い。反対に、三次元磁気記録媒体の最上層の記録層が最も有効磁気異方性の度合いが高く、磁気共鳴周波数も高くなる。
Further, the maximum recording density at which data can be written to the recording layer (hereinafter referred to as the limit recording density) is determined by the effective magnetic anisotropy of the magnetic material of the recording layer. This is because the bit of the recording layer requires higher effective magnetic anisotropy in order to maintain thermal stability as the bit size is smaller. Therefore, the recording layer with higher effective magnetic anisotropy can set the recording density of writing to the limit recording density.
Note that the greater the degree of effective magnetic anisotropy, the greater the retention of each recording layer, and the greater the magnetic field required for writing. On the other hand, the magnetic field generated from the magnetic head becomes weaker as the distance from the magnetic head increases. Accordingly, it is desirable that a recording layer having a low coercive force, that is, a low degree of effective magnetic anisotropy, is laminated on the lower layer of the three-dimensional magnetic recording medium. Therefore, as shown in FIG. 1, the lowermost recording layer of the three-dimensional magnetic recording medium 100 has the lowest degree of effective magnetic anisotropy and the magnetic resonance frequency is also low. On the other hand, the uppermost recording layer of the three-dimensional magnetic recording medium has the highest degree of effective magnetic anisotropy and the magnetic resonance frequency is also high.

次に、本実施形態に係る三次元磁気記録媒体のビットパターンの一例を図2および図3を参照して説明する。
図2に示すビットパターンは、隣接する記録ビット201が、非磁性体202で分離されるビットパターンドメディア(BPM)媒体の例を示す。図3は、ビットパターンドメディアではなく、記録ビット301が互いに隣接する連続媒体の例を示す。
図2および図3ともに、下層の記録層101ほどビットサイズが大きく、上層の記録層101ほどビットサイズが小さくなり、記録密度が高くなっていることがわかる。
Next, an example of the bit pattern of the three-dimensional magnetic recording medium according to the present embodiment will be described with reference to FIGS.
The bit pattern shown in FIG. 2 shows an example of a bit patterned medium (BPM) medium in which adjacent recording bits 201 are separated by a nonmagnetic material 202. FIG. 3 shows an example of a continuous medium in which recording bits 301 are adjacent to each other, not a bit patterned medium.
2 and 3, it can be seen that the lower recording layer 101 has a larger bit size, and the upper recording layer 101 has a smaller bit size and a higher recording density.

次に、本実施形態に係る三次元磁気記録媒体100に対してデータを書き込む場合の一例について図4を参照して説明する。
図4に示す例では、最下層の記録層101にデータを記録する場合を示す。
磁気ヘッド401は、最下層の記録層101の磁気共鳴周波数と同一の周波数で高周波磁界402を印加する。高周波磁界402が印加された最下層の記録層101は磁気共鳴状態となる。磁気ヘッド401は、高周波磁界402とは別に、書き込み磁界403を発生する。記録層101が磁気共鳴状態であれば、印加される磁界が保磁力以下でも磁化反転が起こるので、磁気ヘッド401からの高周波磁界402の周波数を調整することにより、所望の記録層にデータを書き込むことができる。
Next, an example of writing data to the three-dimensional magnetic recording medium 100 according to the present embodiment will be described with reference to FIG.
The example shown in FIG. 4 shows a case where data is recorded on the lowermost recording layer 101.
The magnetic head 401 applies a high frequency magnetic field 402 at the same frequency as the magnetic resonance frequency of the lowermost recording layer 101. The lowermost recording layer 101 to which the high-frequency magnetic field 402 is applied is in a magnetic resonance state. The magnetic head 401 generates a write magnetic field 403 separately from the high frequency magnetic field 402. If the recording layer 101 is in a magnetic resonance state, magnetization reversal occurs even if the applied magnetic field is less than the coercive force. Therefore, data is written to the desired recording layer by adjusting the frequency of the high-frequency magnetic field 402 from the magnetic head 401. be able to.

次に、本実施形態に係る三次元磁気記録媒体100からデータを読み出す場合の一例について図5を参照して説明する。
図5に示す例では、最下層の記録層101からデータを読み出す場合を示す。
読み出したい記録層の磁気共鳴周波数に合わせて、磁気ヘッド401から高周波磁界501を印加し、最下層の記録層101を磁気共鳴状態とする。さらに、磁気ヘッド401は読み出し磁界502を最下層の記録層101に印加する。磁気共鳴状態にある記録層のビットの磁化の向きにより、高周波磁界501によるエネルギー吸収が変わるので、磁気ヘッド401によりエネルギー吸収の変化を検知することで、磁化の向きを判定してデータを読み出すことができる。
Next, an example of reading data from the three-dimensional magnetic recording medium 100 according to the present embodiment will be described with reference to FIG.
The example shown in FIG. 5 shows a case where data is read from the lowermost recording layer 101.
A high frequency magnetic field 501 is applied from the magnetic head 401 in accordance with the magnetic resonance frequency of the recording layer to be read, and the lowermost recording layer 101 is brought into a magnetic resonance state. Further, the magnetic head 401 applies a read magnetic field 502 to the lowermost recording layer 101. Since the energy absorption by the high-frequency magnetic field 501 changes depending on the magnetization direction of the bit of the recording layer in the magnetic resonance state, the magnetic head 401 detects the change in energy absorption, thereby reading the data by determining the magnetization direction. Can do.

次に、三次元磁気記録媒体100の記録層の別例について図6および図7を参照して説明する。   Next, another example of the recording layer of the three-dimensional magnetic recording medium 100 will be described with reference to FIGS.

図6および図7の記録層は、垂直磁気記録方式ではなく、記録層の磁化が面内方向にある面内磁気記録方式の場合を示す。また、図6に示す記録層601は、ビット201間に非磁性体202が挿入されたBPMの場合を示し、図7に示す記録層701は、ビット201の間に非磁性体202が挿入されない場合を示す。このような面内磁気記録方式の記録層を多層化した三次元磁気記録媒体でも、上述した垂直磁気記録方式の三次元磁気記録媒体と同様に、記録層の有効磁気異方性の度合いが高いほど記録密度を高めることで、同様の効果を得ることができる。   6 and 7 show the case of the in-plane magnetic recording system in which the magnetization of the recording layer is in the in-plane direction, not the perpendicular magnetic recording system. Further, the recording layer 601 shown in FIG. 6 shows the case of BPM in which the nonmagnetic material 202 is inserted between the bits 201, and the recording layer 701 shown in FIG. 7 does not have the nonmagnetic material 202 inserted between the bits 201. Show the case. Even in such a three-dimensional magnetic recording medium in which the recording layer of the in-plane magnetic recording system is multilayered, the degree of effective magnetic anisotropy of the recording layer is high as in the above-described three-dimensional magnetic recording medium of the perpendicular magnetic recording system. The same effect can be obtained by increasing the recording density.

また、2つ以上の磁性層を磁気的に結合した記録層を用いてもよい。磁性層を2層結合して記録層を形成する場合を図8および図9に示す。磁性層を2層結合することにより記録層の磁化反転が易くなるという効果を奏する。   Further, a recording layer in which two or more magnetic layers are magnetically coupled may be used. FIGS. 8 and 9 show a case where a recording layer is formed by combining two magnetic layers. By combining two magnetic layers, there is an effect that the magnetization reversal of the recording layer is facilitated.

図8はBPM方式である記録層801が積層される三次元磁気記録媒体の場合を示し、図9は、BPM方式ではない記録層901が積層される三次元磁気記録媒体の場合を示す。各記録層801および記録層901は、上述した記録層101の上に書き込み補助層802が積層されており、2層合わせて1つの記録層を形成する。図8および図9に示す三次元磁気記録媒体でも、記録層の有効磁気異方性の度合いが高いほど記録密度を高めることにより、記録効率を高めることができる。書き込み補助層802は、例えばNiFeやFeSiなどの磁化反転しやすい材料を用いて形成することができる。   FIG. 8 shows the case of a three-dimensional magnetic recording medium on which a recording layer 801 of the BPM method is laminated, and FIG. 9 shows the case of a three-dimensional magnetic recording medium on which a recording layer 901 not of the BPM method is laminated. In each recording layer 801 and recording layer 901, the write auxiliary layer 802 is laminated on the above-described recording layer 101, and the two layers together form one recording layer. In the three-dimensional magnetic recording medium shown in FIGS. 8 and 9, the recording efficiency can be increased by increasing the recording density as the effective magnetic anisotropy of the recording layer is higher. The write assist layer 802 can be formed using a material that easily reverses magnetization, such as NiFe or FeSi.

以下、本実施形態に係るBPM方式の三次元磁気記録媒体の作製例について図10を参照して説明する。   Hereinafter, an example of manufacturing a BPM type three-dimensional magnetic recording medium according to the present embodiment will be described with reference to FIG.

図10は三次元磁気記録媒体の一部分を切り出した図である。三次元磁気記録媒体1000は、記録層101を3層有しており、スパッタ超高真空成膜によりガラス基板上に成膜した磁性層を含む積層膜が、電子ビームリソグラフィーとイオンミリングとを用いて生成される。各記録層の磁性ドット(ビット)201は非磁性体202でビットごとに仕切られる。   FIG. 10 is a diagram in which a part of the three-dimensional magnetic recording medium is cut out. The three-dimensional magnetic recording medium 1000 has three recording layers 101, and a laminated film including a magnetic layer formed on a glass substrate by sputtering ultrahigh vacuum film formation uses electron beam lithography and ion milling. Generated. The magnetic dots (bits) 201 of each recording layer are partitioned for each bit by a nonmagnetic material 202.

記録層101は、本実施例では、FePtCu合金またはFePt合金を用いて生成される。FePtCu合金を用いる場合は、Cuの成分が15パーセント以内であれば、Cuの濃度が高いほど、結晶磁気異方性も上がり、磁気異方性磁界が高くなる。   In this embodiment, the recording layer 101 is generated using an FePtCu alloy or an FePt alloy. When the FePtCu alloy is used, if the Cu component is within 15 percent, the higher the Cu concentration, the higher the magnetocrystalline anisotropy and the higher the magnetic anisotropy magnetic field.

また、FePtを主成分とする合金は、磁気異方性の度合いが大きい一方、ダンピング定数も大きい。そのため、磁気共鳴の線幅が数GHzほど広い。よって、選択した記録層だけを磁気共鳴状態にするために、各記録層の磁気共鳴周波数の差が3GHzから5GHz程度であることが望ましい。以下の実施例では、各記録層間の磁気共鳴周波数の差を5GHzと設定する。   Further, an alloy containing FePt as a main component has a large degree of magnetic anisotropy and a large damping constant. Therefore, the line width of magnetic resonance is as wide as several GHz. Therefore, in order to bring only the selected recording layer into a magnetic resonance state, it is desirable that the difference in magnetic resonance frequency between the recording layers is about 3 GHz to 5 GHz. In the following examples, the difference in magnetic resonance frequency between the recording layers is set to 5 GHz.

磁気ヘッドに一番近い最上層の記録層(以下、第1記録層1001という)は、(FePt)90Cu10を用いる。この組成では、有効磁気異方性エネルギー密度が3.5×10erg/cmであり、有効磁気異方性磁界が7kOeである。ここで、十分な熱安定性を保つためには、KeffV/kT>60となることが必要である。そのため、磁性ドットの体積は720nm以上である必要がある。記録層の厚さを5nmとし、微細加工できるドットの間隔を12nmとすれば、面内の磁性ドットのサイズを12nm×12nmよりも小さくすることはできない。よってここでは、限界密度を実現するために、第1記録層1001の面内における磁性ドットのサイズを12nm×12nmとする。このサイズでは、記録密度が1.12Tbit/inである。よって、有効磁気異方性磁界に基づいて、第1記録層1001の磁気共鳴周波数fは約20GHzになる。 The uppermost recording layer (hereinafter referred to as the first recording layer 1001) closest to the magnetic head uses (FePt) 90 Cu 10 . In this composition, the effective magnetic anisotropy energy density is 3.5 × 10 6 erg / cm 3 and the effective magnetic anisotropy magnetic field is 7 kOe. Here, in order to maintain sufficient thermal stability, it is necessary that K eff V / k B T> 60. Therefore, the volume of the magnetic dots needs to be 720 nm 3 or more. If the thickness of the recording layer is 5 nm and the interval between dots that can be finely processed is 12 nm, the in-plane magnetic dot size cannot be made smaller than 12 nm × 12 nm. Therefore, here, in order to realize the limiting density, the size of the magnetic dots in the plane of the first recording layer 1001 is set to 12 nm × 12 nm. At this size, the recording density is 1.12 Tbit / in 2 . Therefore, based on the effective magnetic anisotropic magnetic field, the magnetic resonance frequency f 1 of the first recording layer 1001 is about 20 GHz.

中間の記録層(以下、第2記録層1002という)は、磁気共鳴周波数が第1記録層1001の磁気共鳴周波数に比べて約5GHz小さくするため、磁気共鳴周波数fを15GHz程度にする必要がある。そのため、第2記録層1002を形成する材料として、(FePt)95Cuを用いる。(FePt)95Cuの有効磁気異方性エネルギー密度が約2.5×10erg/cmであり、有効磁気異方性磁界が約5.3kOeである。磁気共鳴周波数は15GHzとするので、上述したKeffV/kT>60の式を満たして、かつ十分な熱安定性を保つための面内の磁気ドットのサイズは、12nm×17nm以上にする必要がある。よって、第2記録層1002の面内における磁性ドットのサイズを12nm×17nmとする。このサイズでは、記録密度が0.93Tbit/inとなる。 Intermediate recording layer (hereinafter, referred to as a second recording layer 1002), since the magnetic resonance frequency is about 5GHz smaller than the magnetic resonance frequency of the first recording layer 1001, it is necessary to the magnetic resonance frequency f 2 to about 15GHz is there. Therefore, (FePt) 95 Cu 5 is used as a material for forming the second recording layer 1002. (FePt) 95 Cu 5 has an effective magnetic anisotropy energy density of about 2.5 × 10 6 erg / cm 3 and an effective magnetic anisotropy magnetic field of about 5.3 kOe. Since the magnetic resonance frequency is 15 GHz, the size of the in-plane magnetic dot that satisfies the above-described equation of K eff V / k B T> 60 and maintains sufficient thermal stability is 12 nm × 17 nm or more. There is a need to. Therefore, the size of the magnetic dots in the plane of the second recording layer 1002 is 12 nm × 17 nm. With this size, the recording density is 0.93 Tbit / in 2 .

最下層の記録層(以下、第3記録層1003という)は、第2記録層1002の磁気共鳴周波数に比べて約5GHz小さくするため、磁気共鳴周波数fを10GHz程度にする必要がある。そのため、磁気共鳴周波数fが約10GHzと設定するには、第3記録層1003の有効磁気異方性磁界が約3.6kOeであればよい。ここでは、FePt合金を用いる。FePtの有効磁気異方性エネルギー密度がおよそ1.8×10erg/cmであり、有効磁気異方性磁界が約3.5kOeである。十分な熱安定性を保つための面内の磁気ドットのサイズは、12nm×23nm以上にする必要がある。よって、ここでは、第3記録層1003の面内における磁性ドットのサイズは12nm×23nmである。このサイズで、記録密度が0.93Tbit/inとなる。 Lowermost recording layer (hereinafter, a third that recording layer 1003), in order to approximately 5GHz smaller than the magnetic resonance frequency of the second recording layer 1002, it is necessary to set the magnetic resonance frequency f 3 to about 10 GHz. Therefore, the magnetic resonance frequency f 3 is set to approximately 10GHz, the effective anisotropy field of the third recording layer 1003 may be about 3.6KOe. Here, an FePt alloy is used. FePt has an effective magnetic anisotropy energy density of about 1.8 × 10 6 erg / cm 3 and an effective magnetic anisotropy field of about 3.5 kOe. The size of the in-plane magnetic dots for maintaining sufficient thermal stability needs to be 12 nm × 23 nm or more. Therefore, here, the size of the magnetic dots in the plane of the third recording layer 1003 is 12 nm × 23 nm. With this size, the recording density is 0.93 Tbit / in 2 .

上述のように、有効磁気異方性の異なる記録層を積層し、磁性ドットのサイズをそれぞれ、12nm×12nmと12nm×17nmと12nm×23nmとに設計すれば、各記録層の限界記録密度がそれぞれ1.12Tbit/inと0.93Tbit/inと0.76Tbit/inとになる。よって、三層の記録層を有する三次元磁気記録媒体は、記録密度が総計2.81Tbit/inになる。 As described above, if recording layers having different effective magnetic anisotropies are stacked and the sizes of the magnetic dots are designed to be 12 nm × 12 nm, 12 nm × 17 nm, and 12 nm × 23 nm, the limit recording density of each recording layer is These are 1.12 Tbit / in 2 , 0.93 Tbit / in 2 and 0.76 Tbit / in 2 , respectively. Therefore, a three-dimensional magnetic recording medium having three recording layers has a total recording density of 2.81 Tbit / in 2 .

なお、従来の三次元磁気記録媒体のように各記録層に同じ密度で記録を行う場合は、媒体全体としての記録密度の総計は2.28Tbit/inであるので、本実施形態の三次元磁気記録媒体によれば、媒体全体としての記録密度が23%程度向上させることができる。 When recording is performed on each recording layer at the same density as in a conventional three-dimensional magnetic recording medium, the total recording density of the entire medium is 2.28 Tbit / in 2 , so that the three-dimensional structure of this embodiment is used. According to the magnetic recording medium, the recording density of the entire medium can be improved by about 23%.

以上に示した本実施形態に係る三次元磁気記録媒体によれば、磁気ヘッドに近い記録層ほど有効磁気異方性の度合いが高くなるように積層し、有効磁気異方性の度合いが高いほど記録密度を高くすることにより、記録効率を高めることができる。   According to the three-dimensional magnetic recording medium according to the present embodiment described above, the recording layer closer to the magnetic head is laminated so that the effective magnetic anisotropy is higher, and the higher the effective magnetic anisotropy is, the higher the effective magnetic anisotropy is. By increasing the recording density, the recording efficiency can be increased.

なお、本実施形態に係る三次元磁気記録媒体は、例えばHDD(Hard Disk Drive)のような円盤形状のディスクを想定するが、これに限らず、長方形、正方形、多角形、その他任意の形状で形成されてもよく、記録層が多層構造であればよい。   Note that the three-dimensional magnetic recording medium according to the present embodiment is assumed to be a disk-shaped disk such as an HDD (Hard Disk Drive), but is not limited to this, and may be a rectangle, square, polygon, or any other shape. It may be formed as long as the recording layer has a multilayer structure.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

100,1000・・・三次元磁気記録媒体、101,601,701,801,901・・・記録層、102・・・非磁性中間層、201,301・・・記録ビット、202・・・非磁性体、401・・・磁気ヘッド、402,501・・・高周波磁界、403・・・書き込み磁界、502・・・読み出し磁界、802・・・書き込み補助層、1001・・・第1記録層、1002・・・第2記録層、1003・・・第3記録層。 100, 1000 ... three-dimensional magnetic recording medium, 101, 601, 701, 801, 901 ... recording layer, 102 ... nonmagnetic intermediate layer, 201, 301 ... recording bit, 202 ... non Magnetic body 401... Magnetic head 402 501 High frequency magnetic field 403 Writing magnetic field 502 Reading magnetic field 802 Writing auxiliary layer 1001 First recording layer 1002... Second recording layer, 1003... Third recording layer.

Claims (9)

磁性体で形成される複数の記録層と、
非磁性体で形成される複数の中間層と、を具備し、
複数の前記記録層は、データの記録および該データの読み出しに用いられる磁気ヘッドから遠い位置にある記録層から該磁気ヘッドに近い位置にある記録層に向かって、該記録層の有効磁気異方性の度合いが順次高くなるように積層され、該有効磁気異方性の度合いが高いほど記録層の記録密度が高く設定され、
前記記録層と前記中間層とが交互に積層されることを特徴とする三次元磁気記録媒体。
A plurality of recording layers formed of a magnetic material;
A plurality of intermediate layers formed of a non-magnetic material,
The plurality of recording layers are arranged such that effective magnetic anisotropy of the recording layer is directed from a recording layer located far from a magnetic head used for data recording and data reading toward a recording layer located near the magnetic head. The recording density of the recording layer is set higher as the degree of effective magnetic anisotropy is higher.
A three-dimensional magnetic recording medium, wherein the recording layer and the intermediate layer are alternately laminated.
前記記録層は、前記磁気ヘッドから遠い記録層から該磁気ヘッドに近い記録層に向かって、前記記録密度が順次高くなるように積層されることを特徴とする請求項1に記載の三次元磁気記録媒体。   2. The three-dimensional magnetism according to claim 1, wherein the recording layer is laminated so that the recording density sequentially increases from a recording layer far from the magnetic head toward a recording layer close to the magnetic head. recoding media. 前記記録層は、磁気共鳴を利用することによりデータが記録されることを特徴とする請求項1または請求項2に記載の三次元磁気記録媒体。   The three-dimensional magnetic recording medium according to claim 1, wherein data is recorded on the recording layer by using magnetic resonance. 前記記録層は、磁気共鳴を利用することによりデータが読み出されることを特徴とする請求項1から請求項3のいずれか1項に記載の三次元磁気記録媒体。   4. The three-dimensional magnetic recording medium according to claim 1, wherein data is read from the recording layer by using magnetic resonance. 5. 前記記録層は、磁化の向きが該記録層の厚み方向であることを特徴とする請求項1から請求項4のいずれか1項に記載の三次元磁気記録媒体。   The three-dimensional magnetic recording medium according to claim 1, wherein the recording layer has a magnetization direction in a thickness direction of the recording layer. 前記記録層は、磁化の向きが該記録層の面内方向であることを特徴とする請求項1から請求項4のいずれか1項に記載の三次元磁気記録媒体。   The three-dimensional magnetic recording medium according to any one of claims 1 to 4, wherein the recording layer has a magnetization direction in an in-plane direction of the recording layer. 前記記録層は、磁性体で形成される2以上の磁性層が磁気的に結合することにより形成されることを特徴とする請求項1から請求項6のいずれか1項に記載の三次元磁気記録媒体。   The three-dimensional magnetism according to any one of claims 1 to 6, wherein the recording layer is formed by magnetically coupling two or more magnetic layers formed of a magnetic material. recoding media. 前記記録層は、前記データを記録するための複数のビットを含み、該複数のビットが磁気的に分離されることを特徴とする請求項1から請求項7のいずれか1項に記載の三次元磁気記録媒体。   The tertiary according to any one of claims 1 to 7, wherein the recording layer includes a plurality of bits for recording the data, and the plurality of bits are magnetically separated. Original magnetic recording medium. 前記記録層は、前記データを記録するための複数のビットを含み、該複数のビットが磁気的に分離されていないことを特徴とする請求項1から請求項7のいずれか1項に記載の三次元磁気記録媒体。   8. The recording layer according to any one of claims 1 to 7, wherein the recording layer includes a plurality of bits for recording the data, and the plurality of bits are not magnetically separated. Three-dimensional magnetic recording medium.
JP2012068409A 2012-03-23 2012-03-23 3D magnetic recording media Active JP5738791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068409A JP5738791B2 (en) 2012-03-23 2012-03-23 3D magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068409A JP5738791B2 (en) 2012-03-23 2012-03-23 3D magnetic recording media

Publications (2)

Publication Number Publication Date
JP2013200915A JP2013200915A (en) 2013-10-03
JP5738791B2 true JP5738791B2 (en) 2015-06-24

Family

ID=49521046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068409A Active JP5738791B2 (en) 2012-03-23 2012-03-23 3D magnetic recording media

Country Status (1)

Country Link
JP (1) JP5738791B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6563861B2 (en) 2016-06-06 2019-08-21 株式会社東芝 Magnetic recording / reproducing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1139657A (en) * 1997-07-22 1999-02-12 Toshiba Corp Optical disk and its reproducing device
JP2006309922A (en) * 2005-03-31 2006-11-09 Fujitsu Ltd Magnetic recording medium and magnetic recording device
JP2009080904A (en) * 2007-09-26 2009-04-16 Toshiba Corp Magnetic recording device
JP5509208B2 (en) * 2009-09-11 2014-06-04 株式会社東芝 Three-dimensional magnetic recording / reproducing device

Also Published As

Publication number Publication date
JP2013200915A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
US8530065B1 (en) Composite magnetic recording medium
Piramanayagam Perpendicular recording media for hard disk drives
JP3947727B2 (en) A vertical writer with a main pole of magnetically soft and stable high magnetic moment
US7354664B1 (en) Magnetically soft, high saturation magnetization laminate of iron-cobalt-nitrogen and iron-nickel for perpendicular media underlayers
JP5443065B2 (en) Perpendicular magnetic recording medium
JP4405436B2 (en) Negative anisotropic exchange coupled magnetic recording medium and magnetic recording / reproducing apparatus
JP2004348952A (en) Soft magnetic film for vertical recording disk
JP2010044848A (en) Thin-film magnetic head
JP2008071479A (en) Perpendicular magnetic recording medium with exchange-spring recording structure and lateral coupling layer for increasing intergranular exchange coupling
JP6442978B2 (en) Magnetic recording / reproducing device
JP2008084413A (en) Magnetic recording medium, manufacturing method of magnetic recording medium and magnetic recording device
US8064161B2 (en) Perpendicular magnetic recording head and method for manufacturing the same
JP5677248B2 (en) Magnetic medium and magnetic recording / reproducing method
JP2006127748A (en) Perpendicular magnetic recording medium having laminated soft magnetic base layers
US9984709B1 (en) Heat assisted magnetic recording (HAMR) media with thermal exchange control layer of lower curie temperature
JP2009289360A (en) Perpendicular magnetic recording medium and device
JP2006127588A (en) Perpendicular magnetic recording medium
JP2005056555A (en) Inclination medium for hard disk drive
JP6285785B2 (en) Vertical recording medium and vertical recording / reproducing apparatus
KR101683135B1 (en) Perpendicular magnetic recording medium
JP2008198316A (en) Vertical magnetic recording medium, manufacturing method, and magnetic recording system
JP2003045015A (en) Perpendicular magnetic recording medium and its manufacturing method
JP5738791B2 (en) 3D magnetic recording media
JP2009238273A (en) Manufacturing method of magnetic recording medium, magnetic recording medium and magnetic recording and reproducing device
CN106205644B (en) Perpendicular magnetic recording medium and magnetic recorder/reproducer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150422

R151 Written notification of patent or utility model registration

Ref document number: 5738791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151