JP4444797B2 - Magnetic circuit for generating radial magnetic field used for film formation by sputtering process - Google Patents

Magnetic circuit for generating radial magnetic field used for film formation by sputtering process Download PDF

Info

Publication number
JP4444797B2
JP4444797B2 JP2004329903A JP2004329903A JP4444797B2 JP 4444797 B2 JP4444797 B2 JP 4444797B2 JP 2004329903 A JP2004329903 A JP 2004329903A JP 2004329903 A JP2004329903 A JP 2004329903A JP 4444797 B2 JP4444797 B2 JP 4444797B2
Authority
JP
Japan
Prior art keywords
magnetic field
permanent magnet
ring
radial
arrangement surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004329903A
Other languages
Japanese (ja)
Other versions
JP2005209326A (en
Inventor
秀樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004329903A priority Critical patent/JP4444797B2/en
Publication of JP2005209326A publication Critical patent/JP2005209326A/en
Application granted granted Critical
Publication of JP4444797B2 publication Critical patent/JP4444797B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、径方向磁場発生用磁気回路に関し、特に、磁気ディスク装置の製造において、基板の成膜工程や熱処理工程などにおいて必要な径方向磁場を発生させる磁気回路に関する。   The present invention relates to a magnetic circuit for generating a radial magnetic field, and more particularly to a magnetic circuit for generating a radial magnetic field required in a film forming process or a heat treatment process of a substrate in the manufacture of a magnetic disk device.

磁気ディスク装置における情報記録の方法として、水平磁気記録方式および垂直記録方式の二方法がある。一般的に、記録媒体のトラックに対して水平方向に磁化する水平磁気記録方式が広く用いられている。この方式では、記録膜に対して水平方向に磁化された微小磁石が、隣接する微小磁石との間で互いに反磁界を及ぼす関係にある。このため、記録密度が上がり微小磁石が小さくなるにつれて、磁化が減磁したり、消磁したりする現象が起きて、記録信号が読み出せなくなるおそれがある。   There are two methods of information recording in a magnetic disk device: a horizontal magnetic recording method and a vertical recording method. In general, a horizontal magnetic recording system that magnetizes in a horizontal direction with respect to a track of a recording medium is widely used. In this method, the micromagnets magnetized in the horizontal direction with respect to the recording film have a relationship of exerting a demagnetizing field between the adjacent micromagnets. For this reason, as the recording density increases and the micromagnet becomes smaller, there is a possibility that the magnetization is demagnetized or demagnetized, and the recording signal cannot be read out.

このような水平記録方式の高密度記録の限界を解決する方法として、垂直記録方式が提案されている。垂直記録方式の記録媒体は、例えば、高透磁率の軟磁性膜上に垂直方向に磁化した記録用の硬磁性膜を積層した2層構造のものとすることができる。この高透磁率の軟磁性膜は、信号記録時に磁気ヘッドからの記録磁界を水平方向に通して磁気ヘッド側に還流させる磁気回路としての機能を担い、記録磁界の強度を強めて記録・再生の効率を向上させる役割を果たしている。このため、この高透磁率の軟磁性膜は、より高透磁率であることが望まれる。また、記録媒体や磁気ヘッドの周囲に浮遊磁界が存在すると、その浮遊磁界が磁気ヘッドの磁極部に集中されて、その集中磁界によって軟磁性膜の磁壁が移動して再生出力や記録磁化が変化することがあった。   A vertical recording method has been proposed as a method for solving the limitation of the high density recording of the horizontal recording method. The recording medium of the perpendicular recording system can have, for example, a two-layer structure in which a recording hard magnetic film magnetized in the perpendicular direction is laminated on a high magnetic permeability soft magnetic film. This high permeability soft magnetic film functions as a magnetic circuit that recirculates the recording magnetic field from the magnetic head to the magnetic head side during signal recording, and increases the strength of the recording magnetic field for recording and reproduction. It plays a role in improving efficiency. For this reason, it is desired that the high magnetic permeability soft magnetic film has a higher magnetic permeability. In addition, if a stray magnetic field exists around the recording medium or the magnetic head, the stray magnetic field is concentrated on the magnetic pole of the magnetic head, and the magnetic wall of the soft magnetic film is moved by the concentrated magnetic field, thereby changing the reproduction output and recording magnetization. There was something to do.

この問題を解決する方法の一つとして、軟磁性膜に基板に対して周方向または径方向の磁気異方性を与えることが提案されている。磁気異方性をもつ軟磁性膜は透磁率が向上して記録書き込み時の磁気効率が良くなる。さらに、この磁気異方性を与えるための磁場発生源として、3層膜構造の磁気ディスク110が提案されている(特許文献1参照)。図12に、このような磁気ディスクにおける膜構成の一例を示す。すなわち、図12のようにリング状基板111と軟磁性膜(下地膜)113の間に硬磁性膜(下地膜)112を成膜した3層膜構造とし、この軟磁性膜113の上に記録膜としての硬磁性膜114が積層されている。この下地膜としての硬磁性膜112は径方向に磁化されており、軟磁性膜113には常に径方向の磁界が印加されることになる。このため、前記の浮遊磁界による磁壁の移動が抑制され、再生出力の変化や記録磁化の消磁などの問題を解決することができる。   As one method for solving this problem, it has been proposed to impart a circumferential or radial magnetic anisotropy to the soft magnetic film with respect to the substrate. A soft magnetic film having magnetic anisotropy has improved magnetic permeability and improved magnetic efficiency during recording and writing. Further, a magnetic disk 110 having a three-layer film structure has been proposed as a magnetic field generation source for giving this magnetic anisotropy (see Patent Document 1). FIG. 12 shows an example of the film configuration in such a magnetic disk. That is, as shown in FIG. 12, a three-layer film structure in which a hard magnetic film (undercoat film) 112 is formed between a ring-shaped substrate 111 and a soft magnetic film (undercoat film) 113 is recorded on the soft magnetic film 113. A hard magnetic film 114 as a film is laminated. The hard magnetic film 112 as the base film is magnetized in the radial direction, and a magnetic field in the radial direction is always applied to the soft magnetic film 113. For this reason, the movement of the domain wall due to the stray magnetic field is suppressed, and problems such as a change in reproduction output and demagnetization of recording magnetization can be solved.

この他にも種々の問題を解決するために、さらなる多層構造の媒体構成を持つ方法が採用されており、また、水平記録方式においても高密度化における前記問題を解決するための多層構造が提案されている。しかし、これら多層膜では基板に対して周方向や径方向に一様に磁化させる工程が必要な場合が増えている。   In addition to this, in order to solve various problems, a method having a medium structure of a further multilayer structure is adopted, and a multilayer structure for solving the above-mentioned problem in high density is also proposed in the horizontal recording method. Has been. However, in these multilayer films, there are increasing cases in which a step of uniformly magnetizing the substrate in the circumferential direction and the radial direction is required.

以上のように、磁気ディスクの媒体基板の製造工程において、軟磁性膜や硬磁性膜に周方向または径方向の磁場を印加して成膜することの有効性や、成膜後の熱処理工程中に前記方向の磁場を基板に与えることの有効性が提案されている。基板への成膜は主にスパッタリング法等いろいろな成膜法で行われるが、それぞれに適した磁場発生用磁気回路が必要である。   As described above, in the manufacturing process of a magnetic disk medium substrate, the effectiveness of applying a circumferential or radial magnetic field to a soft magnetic film or a hard magnetic film, and the heat treatment process after the film formation In addition, the effectiveness of applying a magnetic field in the above direction to the substrate has been proposed. Film formation on the substrate is mainly performed by various film formation methods such as sputtering, but a magnetic circuit for generating a magnetic field suitable for each is required.

特開平5−258274号公報JP-A-5-258274

磁気ディスクの媒体基板の製造工程において、基板に対して径方向や周方向に磁場を与える場合、これらの磁場方向は基板面とより平行にすることが好ましい。基板面に対して印加磁場の方向が傾いていると、硬磁性膜の磁化方向が同様に傾き、また軟磁性膜の磁気異方性の方向も一様でなくなるため、高密度な記録・再生を実現する上で不利となるためである。   In the manufacturing process of the medium substrate of the magnetic disk, when a magnetic field is applied to the substrate in the radial direction or the circumferential direction, it is preferable that these magnetic field directions are more parallel to the substrate surface. If the direction of the applied magnetic field is tilted with respect to the substrate surface, the magnetization direction of the hard magnetic film is similarly tilted, and the direction of magnetic anisotropy of the soft magnetic film is not uniform. This is because it is disadvantageous in realizing the above.

そこで、本発明は、リング状基板の径方向に磁場を発生するための磁気回路において、リング状基板が配置される配置面に形成される磁場の向きを、リング状基板の径方向に対してより完全に平行にすることを目的とする。特に、磁気ディスクの媒体基板の製造工程において、リング状基板上に形成される軟磁性膜および硬磁性膜に印加される磁場の向きが、基板の径方向に対してより完全に平行となる磁場の発生源としての磁気回路を提供することを目的とする。   Accordingly, the present invention provides a magnetic circuit for generating a magnetic field in the radial direction of a ring-shaped substrate, wherein the direction of the magnetic field formed on the arrangement surface on which the ring-shaped substrate is disposed is relative to the radial direction of the ring-shaped substrate. The goal is to be more completely parallel. In particular, in the manufacturing process of the magnetic disk medium substrate, the magnetic field applied to the soft magnetic film and the hard magnetic film formed on the ring-shaped substrate is more completely parallel to the radial direction of the substrate. It is an object of the present invention to provide a magnetic circuit as a generation source.

本発明によると、リング状の第一の永久磁石ユニットと、第二の永久磁石ユニットとを含んでなり、該第一および第二の永久磁石ユニットに挟まれた空間に被処理物であるリング状基板を配置でき、該リング状基板が配置された際に該リング状基板を含む平面を配置面とすると、該配置面において該リング状基板の径方向に磁場を発生するための径方向磁場発生用磁気回路であって、
該第一の永久磁石ユニットと該第二の永久磁石ユニットとの間に成膜ができるようにスペースを備え
該第一および第二の永久磁石ユニットのそれぞれにより形成される磁場が、前記配置面において前記リング状基板の径方向に磁場成分を有し、周方向に磁場成分を実質的に有さないように配置され
前記第一および第二の永久磁石ユニットが、前記配置面に関して対称な磁化方向および形状を有し、前記配置面に関して対称な位置に設けられ
前記第一および第二の永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも大きく設定され、前記第一および第二の永久磁石ユニットが、該配置面と垂直な方向に磁化成分を有し、
前記第一および第二の永久磁石ユニットが、前記リング状基板の径方向と平行な方向に磁化成分をさらに有する、スパッタ処理による成膜工程に用いる径方向磁場発生用磁気回路が提供される。
According to the present invention, a ring that includes a ring-shaped first permanent magnet unit and a second permanent magnet unit, and is an object to be processed in a space sandwiched between the first and second permanent magnet units. A radial magnetic field for generating a magnetic field in the radial direction of the ring-shaped substrate on the arrangement surface when a plane including the ring-shaped substrate is the arrangement surface when the ring-shaped substrate is arranged. A magnetic circuit for generation,
A space is provided so that a film can be formed between the first permanent magnet unit and the second permanent magnet unit ,
The magnetic field formed by each of the first and second permanent magnet units has a magnetic field component in the radial direction of the ring-shaped substrate and substantially does not have a magnetic field component in the circumferential direction on the arrangement surface. It is located in,
The first and second permanent magnet units have a magnetization direction and a shape symmetric with respect to the arrangement surface, and are provided at positions symmetrical with respect to the arrangement surface ;
An inner diameter of the first and second permanent magnet units is set to be larger than an outer diameter of a ring-shaped substrate that is an object to be processed, and the first and second permanent magnet units are in a direction perpendicular to the arrangement surface. the magnetization component possess to,
There is provided a magnetic circuit for generating a radial magnetic field used in a film forming process by sputtering, wherein the first and second permanent magnet units further have a magnetization component in a direction parallel to the radial direction of the ring-shaped substrate.

以下に詳細に説明するように、本発明によると、リング状基板の径方向に磁場を発生するための磁気回路において、リング状基板が配置される配置面に形成される磁場の向きを、リング状基板の径方向に対してより完全に平行にすることができる。特に、本発明によると、磁気ディスク装置の製造に関して、基板の成膜工程(参考例として熱処理工程などにおいて必要な径方向磁場を発生させることができる磁気回路が提供され、基板全体においてより完全に径方向に向いた放射状磁場を発生することができる。 As described in detail below, according to the present invention, in the magnetic circuit for generating a magnetic field in the radial direction of the ring-shaped substrate, the direction of the magnetic field formed on the arrangement surface on which the ring-shaped substrate is disposed is Can be made more completely parallel to the radial direction of the substrate. In particular, according to the present invention, a magnetic circuit capable of generating a radial magnetic field required in a substrate film formation process (a heat treatment process or the like as a reference example ) for the manufacture of a magnetic disk device is provided. A radial magnetic field oriented radially can be generated.

以下に、本発明の実施の形態を、添付図面を参照しながら説明する。もっとも、以下に説明する実施の形態は本発明を限定するものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. However, the embodiments described below do not limit the present invention.

上記したように、本発明によると、リング状の第一の永久磁石ユニットと、第二の永久磁石ユニットとを含んでなり、該第一および第二の永久磁石ユニットに挟まれた空間に被処理物であるリング状基板を配置でき、該リング状基板が配置された際に該リング状基板を含む平面を配置面とすると、該配置面において該リング状基板の径方向に磁場を発生するための径方向磁場発生用磁気回路が提供される。   As described above, according to the present invention, the ring-shaped first permanent magnet unit and the second permanent magnet unit are included, and the space between the first and second permanent magnet units is covered. A ring-shaped substrate that is a processed object can be disposed, and when the ring-shaped substrate is disposed, a plane including the ring-shaped substrate is defined as a placement surface, and a magnetic field is generated in the radial direction of the ring-shaped substrate on the placement surface. A magnetic circuit for generating a radial magnetic field is provided.

特に限定されるものではないが、本発明にかかる磁気回路は、垂直磁気記録媒体の製造に好適に用いることができる。この場合、特に限定されるものではないが、被処理物であるリング状基板として、ガラス、Al,Si等の非磁性基板を用いると好ましい。このようなリング状基板に対して、その径方向に磁場を印加しながら所定の処理をすることで、好適に垂直磁気記録媒体を製造することができる。特に限定されるものではないが、このような処理として、CVD法、めっき法、PVD法(スパッタ法含む)等が挙げられる。これらの処理により、基板上に高透磁率の軟磁性膜と記録用の硬磁性膜とを有し、好ましくは基板と軟磁性膜との間に硬磁性膜を成膜した垂直磁気記録媒体を好適に製造することができる(特許文献1参照)。さらに、成膜時ではなく熱処理工程において径方向磁場を印加することもできる。なお、本発明にかかる磁気回路の用途は、垂直磁気記録媒体の製造に限られるものではなく、この場合、リング状基板および処理は、当業者により適宜選択し得るものである。なお、特に限定されるものではないが、リング状は、内径と外径とを同心円状に有するものが好ましい。   Although not particularly limited, the magnetic circuit according to the present invention can be suitably used for manufacturing a perpendicular magnetic recording medium. In this case, although not particularly limited, it is preferable to use a non-magnetic substrate such as glass, Al, Si, or the like as the ring-shaped substrate that is the object to be processed. By subjecting such a ring-shaped substrate to a predetermined treatment while applying a magnetic field in the radial direction, a perpendicular magnetic recording medium can be suitably manufactured. Although not particularly limited, examples of such treatment include CVD, plating, PVD (including sputtering), and the like. By these treatments, a perpendicular magnetic recording medium having a high magnetic permeability soft magnetic film and a recording hard magnetic film on a substrate, and preferably a hard magnetic film formed between the substrate and the soft magnetic film, is obtained. It can manufacture suitably (refer patent document 1). Further, a radial magnetic field can be applied not in the film formation but in the heat treatment step. The use of the magnetic circuit according to the present invention is not limited to the manufacture of a perpendicular magnetic recording medium. In this case, the ring-shaped substrate and the treatment can be appropriately selected by those skilled in the art. Although not particularly limited, the ring shape preferably has an inner diameter and an outer diameter concentrically.

第一の永久磁石ユニットは、リング状であって、該第一の永久磁石ユニットにより形成される磁場が、前記配置面において前記リング状基板の径方向に磁場成分を有し、周方向に磁場成分を実質的に有さないように配置される。このため、一般に、第一の永久磁石ユニットは、処理対象となるリング形状基板と軸が同一となるように配置される。上記したように、このように配置面において、周方向には磁場を実質的に発生せずに、径方向に磁場を発生させることで、例えば、被処理物であるリング状基板に対して、磁性材料の薄膜の形成処理または加工処理を好適に行うことができる。しかしながら、第一の永久磁石ユニットのみでは、第一の永久磁石ユニットにより形成される磁場は、配置面において、中心からの距離に応じて配置面と垂直な方向に磁場成分を有することとなる。なお、周方向に磁場成分を実質的に有さないとは、本発明にかかる径方向磁場発生用磁気回路の目的とする処理において、不都合がない範囲で周方向に磁場成分を有さないことをいう。   The first permanent magnet unit has a ring shape, and the magnetic field formed by the first permanent magnet unit has a magnetic field component in the radial direction of the ring-shaped substrate on the arrangement surface, and the magnetic field in the circumferential direction. Arranged so as to be substantially free of components. For this reason, generally, the first permanent magnet unit is arranged so that the axis is the same as the ring-shaped substrate to be processed. As described above, by generating a magnetic field in the radial direction without substantially generating a magnetic field in the circumferential direction as described above, for example, for a ring-shaped substrate that is an object to be processed, A thin film forming process or a processing process of the magnetic material can be suitably performed. However, with only the first permanent magnet unit, the magnetic field formed by the first permanent magnet unit has a magnetic field component in the direction perpendicular to the arrangement surface on the arrangement surface according to the distance from the center. Note that “substantially no magnetic field component in the circumferential direction” means that there is no magnetic field component in the circumferential direction as long as there is no inconvenience in the intended processing of the radial magnetic field generating magnetic circuit according to the present invention. Say.

図13に、特許文献1を含め、従来の径方向磁場発生用磁気回路の模式図を示す(特許文献1、図2参照)。具体的には、例えば図13に示すように、リング状基板111に対して片側のみにリング状永久磁石121を配置する。リング状永久磁石は、リング状基板と中心軸を同一とし、リング状基板が配置される配置面と垂直な磁化方向を有するように配置される。さらに、リング状永久磁石121と同一平面状であって、リング状永久磁石121の中心軸上に円柱状永久磁石122が配置される。円柱状永久磁石122は、リング状永久磁石121とは異なる向きに磁化方向を有するように配置される。好ましくは、リング状永久磁石121および円柱状永久磁石122は、リング状基板111とは異なる側において、ヨーク126により磁気的に結合される。さらに、リング状永久磁石121および円柱状永久磁石122と、リング状基板111との間に、ターゲットを備える。このように永久磁石等を配置すると、これらの永久磁石は、図13に磁力線125で模式的に示す磁場を形成し、配置面において、特に基板の中心付近と外周付近は磁力線が基板に対して傾きを持つことになる。このとき、上記したように、成膜された膜質の均一性に悪影響を与えるおそれがある。図14に、このときの磁場分布、すなわち、配置面における半径方向位置と径方向磁場強度および垂直方向磁場強度との関係の一例を示す。横軸は配置面上の半径方向位置を表し、縦軸は磁場強度を示している。図14から分かるように、配置面上で垂直磁場Bzが発生している。このように基板に対して片側のみに磁石を配置すると、垂直磁場が発生し、これにより成膜された膜質が悪影響を受けるおそれがある。   FIG. 13 shows a schematic diagram of a conventional magnetic circuit for generating a radial magnetic field including Patent Document 1 (see Patent Document 1 and FIG. 2). Specifically, for example, as shown in FIG. 13, a ring-shaped permanent magnet 121 is disposed only on one side with respect to the ring-shaped substrate 111. The ring-shaped permanent magnet has the same central axis as the ring-shaped substrate, and is arranged so as to have a magnetization direction perpendicular to the arrangement surface on which the ring-shaped substrate is arranged. Further, a cylindrical permanent magnet 122 is arranged on the same plane as the ring-shaped permanent magnet 121 and on the central axis of the ring-shaped permanent magnet 121. The columnar permanent magnet 122 is disposed so as to have a magnetization direction in a direction different from that of the ring-shaped permanent magnet 121. Preferably, ring-shaped permanent magnet 121 and columnar permanent magnet 122 are magnetically coupled by yoke 126 on a side different from ring-shaped substrate 111. Further, a target is provided between the ring-shaped permanent magnet 121 and the columnar permanent magnet 122 and the ring-shaped substrate 111. When the permanent magnets and the like are arranged in this way, these permanent magnets form a magnetic field schematically shown by magnetic lines of force 125 in FIG. Will have a tilt. At this time, as described above, the uniformity of the film quality may be adversely affected. FIG. 14 shows an example of the relationship between the magnetic field distribution at this time, that is, the radial position on the arrangement surface, the radial magnetic field strength, and the vertical magnetic field strength. The horizontal axis represents the radial position on the arrangement surface, and the vertical axis represents the magnetic field strength. As can be seen from FIG. 14, the vertical magnetic field Bz is generated on the arrangement surface. If the magnet is arranged only on one side with respect to the substrate in this way, a vertical magnetic field is generated, which may adversely affect the film quality.

そこで、本発明にかかる径方向磁場発生用磁気回路は、前記配置面に関して前記第一の永久磁石ユニットとは異なる側に配置された第二の永久磁石ユニットであって、該第二の永久磁石ユニットにより形成される磁場が、前記配置面において前記リング状基板の径方向に磁場成分を有し、周方向に磁場成分を実質的に有さないように配置された第二の永久磁石ユニットをさらに含む。このように、第二の永久磁石ユニットが、配置面に関して第一の永久磁石ユニットとは異なる側に配置されることで、第一の永久磁石ユニットにより配置面に形成される垂直方向磁場と、第二の永久磁石ユニットにより配置面に形成される垂直方向磁場とを相殺させることができ、これにより、全体として配置面に形成される垂直方向磁場を減じることができ、第二の永久磁石ユニットの位置等によっては、全体として配置面に形成される垂直方向磁場を完全になくすことができる。特に、該第一および第二の永久磁石ユニットのそれぞれにより形成される磁場が、前記配置面において前記リング状基板の径方向に磁場成分を有し、周方向に磁場成分を実質的に有さないように配置することで、第一の永久磁石ユニットにより配置面に形成された径方向磁場を乱すことなく、すなわち周方向に磁場を生じることなく、第二の永久磁石ユニットを設け、配置面に形成される垂直方向磁場を減じることができる。さらに、第一および第二の永久磁石ユニットのそれぞれが配置面に形成する磁場の径方向磁場成分は、同一の向きであると好ましい。このように第一および第二の永久磁石ユニットが配置面において同一の向きの径方向磁場を形成することで、より強い径方向磁場を配置面に形成することができる。   Therefore, the radial magnetic field generating magnetic circuit according to the present invention is a second permanent magnet unit arranged on a side different from the first permanent magnet unit with respect to the arrangement surface, and the second permanent magnet A second permanent magnet unit arranged such that the magnetic field formed by the unit has a magnetic field component in the radial direction of the ring-shaped substrate on the arrangement surface and substantially has no magnetic field component in the circumferential direction. In addition. Thus, the second permanent magnet unit is arranged on the side different from the first permanent magnet unit with respect to the arrangement surface, so that the vertical magnetic field formed on the arrangement surface by the first permanent magnet unit, The second permanent magnet unit can cancel the vertical magnetic field formed on the placement surface by the second permanent magnet unit, thereby reducing the vertical magnetic field formed on the placement surface as a whole. Depending on the position or the like, the vertical magnetic field formed on the arrangement surface as a whole can be completely eliminated. In particular, the magnetic field formed by each of the first and second permanent magnet units has a magnetic field component in the radial direction of the ring-shaped substrate on the arrangement surface and substantially has a magnetic field component in the circumferential direction. The second permanent magnet unit is provided without disturbing the radial magnetic field formed on the arrangement surface by the first permanent magnet unit, that is, without generating a magnetic field in the circumferential direction. It is possible to reduce the vertical magnetic field formed on the substrate. Furthermore, it is preferable that the radial direction magnetic field component of the magnetic field which each of the first and second permanent magnet units forms on the arrangement surface is in the same direction. As described above, the first and second permanent magnet units form a radial magnetic field in the same direction on the arrangement surface, whereby a stronger radial magnetic field can be formed on the arrangement surface.

ここで、第二の永久磁石ユニットの形状、位置、磁化方向等は、特に限定されるものではなく、任意に定めることができる。特に、前記第一および第二の永久磁石ユニットが、前記配置面に関して対称な磁化方向および形状を有し、前記配置面に関して対称な位置に設けられていることが好ましい。また、前記第一および第二の永久磁石ユニットが、同一の残留磁化を有することが好ましい。また、前記第一および第二の永久磁石ユニットが、同一の保磁力を有することが好ましい。このように、第一および第二の永久磁石ユニットを配置面に対して対称に設けることで、配置面における任意の点で、第一の永久磁石ユニットによる垂直方向磁場と、第二の永久磁石ユニットによる垂直方向磁場とを相殺させることができ、より効果的に配置面における垂直方向磁場を減じ、基板全体において完全に径方向に向いた放射状磁場を得ることができる。   Here, the shape, position, magnetization direction and the like of the second permanent magnet unit are not particularly limited and can be arbitrarily determined. In particular, it is preferable that the first and second permanent magnet units have magnetization directions and shapes that are symmetric with respect to the arrangement surface, and are provided at positions that are symmetric with respect to the arrangement surface. The first and second permanent magnet units preferably have the same residual magnetization. The first and second permanent magnet units preferably have the same coercive force. Thus, by providing the first and second permanent magnet units symmetrically with respect to the arrangement surface, the vertical direction magnetic field by the first permanent magnet unit and the second permanent magnet at any point on the arrangement surface. The vertical magnetic field generated by the unit can be canceled out, and the vertical magnetic field on the arrangement surface can be more effectively reduced, and a radial magnetic field that is completely in the radial direction can be obtained in the entire substrate.

特に限定されるものではないが、より具体的には、前記第一および第二の永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも大きく設定され、前記第一および第二の永久磁石ユニットが、該配置面と垂直な方向に磁化成分を有するものとすることができる。図1に、このような参考例の第一の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図(上図)および平面図(下図)を示す。図1に示すように、参考例の第一の実施の形態にあっては、リング状基板11を含む平面を配置面22とし、この配置面に対して対称な位置に対称な形状であるリング状永久磁石21を配置する。各リング状永久磁石21は、リング状基板と中心軸23が同一となるように配置されている。 Although not particularly limited, more specifically, the inner diameters of the first and second permanent magnet units are set larger than the outer diameter of the ring-shaped substrate that is the object to be processed. The second permanent magnet unit may have a magnetization component in a direction perpendicular to the arrangement surface. FIG. 1 shows a cross-sectional schematic view (upper view) and a plan view (lower view) of the radial direction magnetic field generating magnetic circuit according to the first embodiment of the reference example . As shown in FIG. 1, in the first embodiment of the reference example , a plane including the ring-shaped substrate 11 is a placement surface 22, and the ring has a symmetrical shape at a symmetrical position with respect to the placement surface. A permanent magnet 21 is disposed. Each ring-shaped permanent magnet 21 is arranged so that the ring-shaped substrate and the central axis 23 are the same.

ここで、上記したように、前記第一および第二の永久磁石ユニットが、該配置面と垂直な方向に磁化成分を有するものとすることが好ましい。これにより、配置面に好適に径方向磁場を形成することができる。図1に示した参考例の第一の実施の形態では、前記第一および第二の永久磁石ユニットが、該配置面と垂直な磁化方向を有する。すなわち、各永久磁石ユニットの磁化方向24は配置面に対して垂直で、配置面22に対して対称となっている。このように永久磁石ユニットを配置にすると、永久磁石ユニットは、全体として図1中に磁力線25で模式的に示す磁場を形成し、磁力線25は配置面上では放射状、すなわち径方向に向く。さらに磁石が基板に対して対称な位置にあるため、基板上での磁力線の向きが完全に基板に対して平行となる。図2に、このときの磁場分布、すなわち配置面における半径方向位置と径方向磁場強度との関係の一例を示す。横軸は配置面上の半径方向位置を表し、縦軸は磁場強度を示している。図2に示す通り、参考例にかかる径方向磁場発生用磁気回路によると、配置面上では径方向磁場Brが発生するが、垂直磁場Bzは常にゼロとなる。 Here, as described above, it is preferable that the first and second permanent magnet units have a magnetization component in a direction perpendicular to the arrangement surface. Thereby, a radial direction magnetic field can be suitably formed in an arrangement surface. In the first embodiment of the reference example shown in FIG. 1, the first and second permanent magnet units have a magnetization direction perpendicular to the arrangement surface. That is, the magnetization direction 24 of each permanent magnet unit is perpendicular to the placement surface and is symmetric with respect to the placement surface 22. When the permanent magnet unit is arranged as described above, the permanent magnet unit forms a magnetic field schematically shown by magnetic field lines 25 in FIG. 1 as a whole, and the magnetic field lines 25 are radial, that is, radially directed on the arrangement surface. Furthermore, since the magnet is in a symmetrical position with respect to the substrate, the direction of the lines of magnetic force on the substrate is completely parallel to the substrate. FIG. 2 shows an example of the relationship between the magnetic field distribution at this time, that is, the radial position on the arrangement surface and the radial magnetic field strength. The horizontal axis represents the radial position on the arrangement surface, and the vertical axis represents the magnetic field strength. As shown in FIG. 2, according to the radial magnetic field generating magnetic circuit according to the reference example , the radial magnetic field Br is generated on the arrangement surface, but the vertical magnetic field Bz is always zero.

また、前記第一および第二の永久磁石ユニットが、前記リング状基板の径方向と平行な方向に磁化成分をさらに有するものとすることもできる。図3に、このような本発明の第二の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。すなわち、各永久磁石ユニットの磁化方向は図3のように基板に対して垂直からある程度の傾きを持たせても良い。磁化方向に傾きがあっても配置面に対して対称形であれば、配置面では半径方向の磁場のみ発生させることができるためである。磁化方向に傾きを与えることにより径方向磁場の強さを上げることができる場合がある。これは、配置面に形成される磁力線の傾きが、配置面に対してより平行になることに基づく。   The first and second permanent magnet units may further have a magnetization component in a direction parallel to the radial direction of the ring-shaped substrate. FIG. 3 shows a schematic cross-sectional view in the central axis direction of such a magnetic circuit for generating a radial magnetic field according to the second embodiment of the present invention. That is, the magnetization direction of each permanent magnet unit may have a certain inclination from the perpendicular to the substrate as shown in FIG. This is because only the radial magnetic field can be generated on the arrangement surface as long as the magnetization direction is inclined as long as it is symmetrical with respect to the arrangement surface. In some cases, it is possible to increase the strength of the radial magnetic field by giving an inclination to the magnetization direction. This is based on the fact that the inclination of the magnetic field lines formed on the arrangement surface becomes more parallel to the arrangement surface.

なお、特に限定されるものではないが、傾きは、0≦t<90°または180≦t<270°とすることが好ましく、0≦t≦60°または180≦t<240°とすることがさらに好ましい。ここで、配置面に垂直な方向であって配置面から遠ざかる向きと、永久磁石ユニットの有する磁化の向きとの差を傾きtとした。図4に、永久磁石ユニットの磁化方向の傾きを変化させたときの、配置面における半径方向位置と径方向磁場強度との関係の一例を示す。図4は配置面上の径方向磁場分布の一例であるが、この場合、傾き角度=30°のときに最も高い磁場が得られている。この磁化方向の傾斜量と磁場強度の上昇量との関係は基板と磁石の幾何学的条件等によって異なり、必ずしも傾き30°が最良というわけではなく、一般には磁石の高さ寸法が大きいほど磁化傾きは小さいほうが良い。これは、前記したように、磁力線が基板と平行に近づくためである。また、磁化方向の傾きを与えることは磁石のコストアップにつながるので、磁化方向に傾きの大きさは、コストパフォーマンスを考慮して選択されなければならない。なお、図1等では、配置面において径方向磁場が外向きである態様について記載したが、逆に内向きとすることもできる。   Although not particularly limited, the inclination is preferably 0 ≦ t <90 ° or 180 ≦ t <270 °, and 0 ≦ t ≦ 60 ° or 180 ≦ t <240 °. Further preferred. Here, the difference between the direction perpendicular to the placement surface and away from the placement surface and the direction of magnetization of the permanent magnet unit was defined as the inclination t. FIG. 4 shows an example of the relationship between the radial position on the arrangement surface and the radial magnetic field strength when the magnetization direction inclination of the permanent magnet unit is changed. FIG. 4 shows an example of the radial magnetic field distribution on the arrangement surface. In this case, the highest magnetic field is obtained when the tilt angle = 30 °. The relationship between the amount of tilt in the magnetization direction and the amount of increase in magnetic field strength varies depending on the geometric conditions of the substrate and the magnet, and the tilt of 30 ° is not necessarily the best. In general, the larger the magnet height dimension, the greater the magnetization. A smaller slope is better. This is because the lines of magnetic force approach parallel to the substrate as described above. Moreover, since giving the magnetization direction inclination leads to an increase in the cost of the magnet, the magnitude of the inclination in the magnetization direction must be selected in consideration of cost performance. In addition, in FIG. 1 etc., although the aspect which the radial direction magnetic field was outward was described in the arrangement | positioning surface, it can also be made inward conversely.

ここで、前記第一および第二の永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも大きく設定されることが好ましい。換言すると、前記第一および第二の永久磁石ユニットの全体が、リング状基板の外径外側の上方および下方に設けられることが好ましい。すなわち、図1に示したように、永久磁石ユニット21は、その全体を基板11の外側に設けることが好ましい。図5に、参考例にかかる径方向磁場発生用磁気回路を用いたスパッタ処理による成膜の様子を模式的に示す。本発明にかかる径方向磁場発生用磁気回路をスパッタ装置と共に用いる場合、実際のスパッタ装置では、図5に示すように、ターゲット31から飛来した粒子が基板表面に対して概ね垂直な方向から進入し基板に堆積する(図5中に、スパッタ粒子の飛跡32を模式的に示す。)。このため、スパッタ処理を妨げないように永久磁石の全体を基板の外側に配置することが好ましい。また、基板の表裏両面を同時に成膜する場合でも、このような磁石配置であれば問題なく処理を行うことができる。さらに、この様な磁石配置では基板に対して対称に置かれた磁石の間にスペースができるため、このスペースを通して基板の入れ換えを行うことができる。例えば成膜が終了した基板を磁石間のスペースを通して図1右方向へ移動させ、次に成膜すべき基板を左方向から中心位置へ移動させてセットすることができる。このように基板搬送に複雑な経路を必要としないのでコスト的にも品質管理上も非常に有益である。 Here, it is preferable that the inner diameters of the first and second permanent magnet units are set larger than the outer diameter of the ring-shaped substrate that is the object to be processed. In other words, it is preferable that the entire first and second permanent magnet units are provided above and below the outside of the outer diameter of the ring-shaped substrate. That is, as shown in FIG. 1, the permanent magnet unit 21 is preferably provided entirely outside the substrate 11. FIG. 5 schematically shows the state of film formation by sputtering using the magnetic circuit for generating a radial magnetic field according to the reference example . When the radial magnetic field generating magnetic circuit according to the present invention is used together with a sputtering apparatus, in an actual sputtering apparatus, as shown in FIG. 5, particles flying from the target 31 enter from a direction substantially perpendicular to the substrate surface. Deposited on the substrate (in FIG. 5, a track 32 of sputtered particles is schematically shown). For this reason, it is preferable to arrange the entire permanent magnet outside the substrate so as not to interfere with the sputtering process. Further, even when the front and back surfaces of the substrate are simultaneously formed, if such a magnet arrangement is used, processing can be performed without any problem. Further, in such a magnet arrangement, there is a space between magnets placed symmetrically with respect to the substrate, so that the substrate can be exchanged through this space. For example, the substrate on which film formation has been completed can be set by moving the substrate to be filmed to the right in FIG. Thus, since a complicated path is not required for substrate transport, it is very beneficial in terms of cost and quality control.

複雑な経路を許容する条件であれば、本発明にかかる径方向磁場発生用磁気回路は、さらに永久磁石を含んでもよい。図6に、参考例の第三の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。図6中、永久磁石ユニット41で示すように、参考例にかかる径方向磁場発生用磁気回路は、前記配置面と同一平面上に設けられたリング状の永久磁石ユニットであって、該永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも大きく設定され、前記リング状基板の径方向と平行な磁化方向を有し、該永久磁石ユニットにより形成される磁場が、前記配置面において前記第一および第二の永久磁石ユニット21が前記配置面に形成する前記径方向磁場成分と同じ向きの磁場成分を有するように配置された永久磁石ユニットをさらに含んでもよい。このような態様は、参考例の第一の実施の形態にかかる磁石配置において、永久磁石ユニット間のスペースに径方向の磁化方向を持つリング状永久磁石ユニット41を足し合わせた構造となっている。このように、永久磁石ユニット41を、基板の円周に沿って、リング状基板の外径よりも外側に配置し、その磁化方向を第一および第二の永久磁石ユニットが配置面に形成する径方向磁場と同一とすることで、全体として配置面に形成される径方向磁場を強めることができる。 As long as a complicated path is allowed, the radial magnetic field generating magnetic circuit according to the present invention may further include a permanent magnet. FIG. 6 shows a schematic cross-sectional view in the central axis direction of a radial magnetic field generating magnetic circuit according to a third embodiment of the reference example . As shown by a permanent magnet unit 41 in FIG. 6, a radial magnetic field generating magnetic circuit according to a reference example is a ring-shaped permanent magnet unit provided on the same plane as the arrangement surface, and the permanent magnet The inner diameter of the unit is set larger than the outer diameter of the ring-shaped substrate that is the object to be processed, and has a magnetization direction parallel to the radial direction of the ring-shaped substrate, and the magnetic field formed by the permanent magnet unit is The first and second permanent magnet units 21 may further include a permanent magnet unit arranged on the arrangement surface so as to have a magnetic field component in the same direction as the radial magnetic field component formed on the arrangement surface. Such an aspect has a structure in which a ring-shaped permanent magnet unit 41 having a radial magnetization direction is added to the space between the permanent magnet units in the magnet arrangement according to the first embodiment of the reference example . . In this way, the permanent magnet unit 41 is arranged outside the outer diameter of the ring-shaped substrate along the circumference of the substrate, and the first and second permanent magnet units form the magnetization direction on the arrangement surface. By making it the same as the radial magnetic field, the radial magnetic field formed on the arrangement surface as a whole can be strengthened.

また、図6中、永久磁石ユニット42で示すように、参考例にかかる径方向磁場発生用磁気回路は、前記配置面と同一平面上に設けられたリング状の永久磁石ユニットであって、該永久磁石ユニットの外径が、被処理物であるリング状基板の内径よりも小さく設定され、前記リング状基板の径方向と平行な磁化方向を有し、該永久磁石ユニットにより形成される磁場が、前記配置面において前記第一の永久磁石ユニットが前記配置面に形成する前記径方向磁場成分と同じ向きの磁場成分を有するように配置された永久磁石ユニットをさらに含んでもよい。また、図6中、永久磁石43で示すように、参考例にかかる径方向磁場発生用磁気回路は、前記永久磁石ユニットの中心軸上であって、前記配置面に関して対称な位置に設けられた1対の永久磁石であって、前記配置面に関して対称な形状を有し、前記配置面と垂直な磁化方向を有し、該1対の永久磁石のそれぞれにより形成される磁場が、前記配置面において前記第一および第二の永久磁石ユニットが前記配置面に形成する前記径方向磁場成分と同じ向きの磁場成分を有するように配置された1対の永久磁石をさらに含んでもよい。すなわち、図4に示したように、第一の実施の形態にかかる磁石配置では基板中心付近の磁場が低くなっていることがある。このため、これを補正するために、図6に示すように基板中心に設けられた中心部、すなわちリング状基板の内径よりも内側に永久磁石42、43を追加することができる。この場合も、上記したように、中心部に配置される磁石の磁化方向は基板の外周部分に配置された磁石と同じ考え方で与えることができる。つまり、基板の中心部上方および下方には垂直磁化方向を持つ磁石43を、これらの上下の永久磁石43の間のスペースには径方向磁化を有する永久磁石ユニット42を配置することができる。このように基板搬送が複雑になる欠点を受け入れてでも磁場強度の上昇が必要な場合は図6の磁石配置を採用することができる。なお、1対の永久磁石を、前記永久磁石ユニットの中心軸上であって、前記配置面に関して対称な位置に設ける場合、該1対の永久磁石と配置面との距離は特に限定されるものではなく、任意の距離に該1対の永久磁石を設けることができる。 In addition, as shown by a permanent magnet unit 42 in FIG. 6, the radial magnetic field generating magnetic circuit according to the reference example is a ring-shaped permanent magnet unit provided on the same plane as the arrangement surface, The outer diameter of the permanent magnet unit is set to be smaller than the inner diameter of the ring-shaped substrate that is the object to be processed, has a magnetization direction parallel to the radial direction of the ring-shaped substrate, and the magnetic field formed by the permanent magnet unit is The arrangement may further include a permanent magnet unit arranged so that the first permanent magnet unit has a magnetic field component in the same direction as the radial magnetic field component formed on the arrangement surface on the arrangement surface. In addition, as shown by a permanent magnet 43 in FIG. 6, the radial magnetic field generating magnetic circuit according to the reference example is provided on the central axis of the permanent magnet unit and at a symmetrical position with respect to the arrangement surface. A pair of permanent magnets having a symmetrical shape with respect to the placement surface, having a magnetization direction perpendicular to the placement surface, and a magnetic field formed by each of the pair of permanent magnets, The first and second permanent magnet units may further include a pair of permanent magnets arranged to have a magnetic field component in the same direction as the radial magnetic field component formed on the arrangement surface. That is, as shown in FIG. 4, in the magnet arrangement according to the first embodiment, the magnetic field near the center of the substrate may be low. For this reason, in order to correct this, as shown in FIG. 6, permanent magnets 42 and 43 can be added at the center provided at the center of the substrate, that is, inside the inner diameter of the ring-shaped substrate. Also in this case, as described above, the magnetization direction of the magnet arranged at the center can be given in the same way as the magnet arranged at the outer peripheral portion of the substrate. That is, a magnet 43 having a perpendicular magnetization direction can be arranged above and below the central portion of the substrate, and a permanent magnet unit 42 having a radial magnetization can be arranged in the space between the upper and lower permanent magnets 43. In this way, the magnet arrangement shown in FIG. 6 can be adopted when the increase in the magnetic field strength is required even when the disadvantage of complicated substrate transfer is accepted. In addition, when a pair of permanent magnets is provided on the central axis of the permanent magnet unit at a symmetrical position with respect to the arrangement surface, the distance between the pair of permanent magnets and the arrangement surface is particularly limited. Instead, the pair of permanent magnets can be provided at any distance.

ここで、基板に対する成膜方法としてスパッタ法でなくめっき法を用いる場合や、成膜時ではなく熱処理工程において径方向磁場を印加する場合等では、図1のように基板上方に空間を設ける必要がない。このような場合、参考例として、径方向磁場発生用磁気回路は、前記第一および第二の永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも小さく設定され、前記第一および第二の永久磁石ユニットの外径が、被処理物であるリング状基板の内径よりも大きく設定され、前記第一および第二の永久磁石ユニットが、該リング状基板の径方向と平行な方向に磁化成分を有するものとすることができる。特に、第一および第二の永久磁石ユニットの内径は、リング状基板の内径と同一または略同一であることが好ましく、特に、リング状基板の内径の50〜100%とすることが好ましい。また、第一および第二の永久磁石ユニットの外径は、リング状基板の外径と同一または略同一であることが好ましく、特に、リング状基板の外径の100〜150%とすることが好ましい。ここで、略同一とは、磁気回路の目的とする処理に必要とされる強度の磁場が、基板面に形成されるものをいう。なお、この態様においても、リング状基板の磁化方向は、平行な状態から傾きをもたせることもできる。 Here, when a plating method is used instead of a sputtering method as a film formation method for the substrate, or when a radial magnetic field is applied in a heat treatment process rather than during film formation, a space needs to be provided above the substrate as shown in FIG. There is no. In such a case, as a reference example, in the radial magnetic field generating magnetic circuit, the inner diameters of the first and second permanent magnet units are set smaller than the outer diameter of the ring-shaped substrate that is the object to be processed, The outer diameters of the first and second permanent magnet units are set larger than the inner diameter of the ring-shaped substrate that is the object to be processed, and the first and second permanent magnet units are arranged in the radial direction of the ring-shaped substrate. It can have a magnetization component in a parallel direction. In particular, the inner diameters of the first and second permanent magnet units are preferably the same as or substantially the same as the inner diameter of the ring-shaped substrate, and particularly preferably 50 to 100% of the inner diameter of the ring-shaped substrate. The outer diameters of the first and second permanent magnet units are preferably the same as or substantially the same as the outer diameter of the ring-shaped substrate, and in particular, 100 to 150% of the outer diameter of the ring-shaped substrate. preferable. Here, the substantially the same, the magnetic field intensity required for processing for the purpose of magnetic circuits, refers to those formed on the substrate surface. In this embodiment as well, the magnetization direction of the ring-shaped substrate can be inclined from a parallel state.

図7に、このような参考例の第四の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。すなわち、基板の真上および真下の位置にリング形状で径方向に磁化された永久磁石ユニット51を基板とほぼ同じ内径に基板内径付近に有意義な径方向磁場が与えるため配置する。この場合も、基板面上に径方向磁場を発生することができる。すなわち、この場合も基板に対して上下対称形に磁石を配置することで、磁力線52は基板面上では完全に水平で、径方向となる。また、このように、前記第一および第二の永久磁石ユニットの少なくとも一部を、リング状基板の外径内側かつ内径外側の上方および下方に設けることで、上記態様における磁石配置に比べて磁場強度のより大きい径方向磁場が得ることができる。これは、この態様における磁石配置では、上記態様における磁石配置と比べて基板全面に対して磁石をより接近させることができるためである。なお、さらにこの態様に、図1や図6に例示した磁石の配置を組み合わせればより強い磁場を発生できる。 FIG. 7 shows a schematic cross-sectional view in the central axis direction of a magnetic circuit for generating a radial magnetic field according to the fourth embodiment of such a reference example . That is, permanent magnet units 51 that are ring-shaped and magnetized in the radial direction are arranged at positions just above and below the substrate so as to provide a significant radial magnetic field in the vicinity of the substrate inner diameter with the same inner diameter as the substrate. Also in this case, a radial magnetic field can be generated on the substrate surface. That is, also in this case, by arranging the magnets vertically symmetrical with respect to the substrate, the magnetic lines of force 52 are completely horizontal on the substrate surface and are in the radial direction. Further, in this way, by providing at least a part of the first and second permanent magnet units above and below the inside of the ring-shaped substrate and the outside of the inside of the inside of the ring, the magnetic field compared to the magnet arrangement in the above aspect is provided. A stronger radial magnetic field can be obtained. This is because the magnet arrangement in this aspect can bring the magnet closer to the entire surface of the substrate than the magnet arrangement in the above aspect. In addition, a stronger magnetic field can be generated by combining this embodiment with the arrangement of magnets illustrated in FIGS. 1 and 6.

なお、本発明にかかる磁気回路を構成するリング状永久磁石ユニットは、必ずしもリング状の形状を有する一体の磁石である必要は無く、分割された永久磁石片、好ましくは等分割された永久磁石片をリング状に並べることでリング状永久磁石ユニットを構成しても良い。図8に、このような、リング状永久磁石ユニットを複数の永久磁石片により構成した態様の一例を示す。なお、第一および第二の永久磁石ユニットと配置面との距離は、特に限定されるものではなく、目的とする処理等に応じて適宜設定されるべきものである。   The ring-shaped permanent magnet unit constituting the magnetic circuit according to the present invention does not necessarily have to be an integral magnet having a ring shape, and is divided into permanent magnet pieces, preferably equally divided permanent magnet pieces. You may comprise a ring-shaped permanent magnet unit by arranging in a ring shape. FIG. 8 shows an example of an aspect in which such a ring-shaped permanent magnet unit is constituted by a plurality of permanent magnet pieces. Note that the distance between the first and second permanent magnet units and the arrangement surface is not particularly limited, and should be set as appropriate in accordance with a target process or the like.

なお、特に限定されるものではないが、用いる磁石は、フェライト、希土類、アルニコのボンド、焼結磁石を用いることができ、その中でも希土類系永久磁石が好ましい。また、磁石特性については、用いる基板の大きさ等にもよるが、残留磁化=0.8T以上、保磁力=800kA/m以上が望ましい。   Although not particularly limited, ferrite, rare earth, alnico bond, and sintered magnet can be used as the magnet to be used. Among them, rare earth permanent magnets are preferable. Further, with respect to the magnet characteristics, although it depends on the size of the substrate to be used, it is desirable that residual magnetization = 0.8 T or more and coercive force = 800 kA / m or more.

以下に、本発明の参考実施例を、添付図面を参照しながら説明する Hereinafter, Reference Examples of the present invention will be described with reference to the accompanying drawings.

本発明の参考実施例1を以下に示す。参考実施例1では、図1に示した態様の径方向磁場発生用磁気回路を採用した。使用した永久磁石はNd−Fe−B焼結磁石(信越化学製N32Z、残留磁化=1.13T,保磁力iHc=2480kA/m)リング状である。磁石寸法は内径100mm、外径150mm、高さ30mmである。磁石間の距離は、30mmとした。磁石の磁化方向は、図1に示したように配置面に対して垂直上下方向とした。 Reference Example 1 of the present invention is shown below. In Reference Example 1, the magnetic circuit for generating a radial magnetic field having the mode shown in FIG. 1 was employed. The used permanent magnet is an Nd—Fe—B sintered magnet (N32Z manufactured by Shin-Etsu Chemical Co., Ltd., residual magnetization = 1.13 T, coercive force iHc = 2480 kA / m) in a ring shape. The magnet dimensions are an inner diameter of 100 mm, an outer diameter of 150 mm, and a height of 30 mm. The distance between the magnets was 30 mm. As shown in FIG. 1, the magnetization direction of the magnet was set to the vertical direction perpendicular to the arrangement surface.

この磁石を図1のように配置面に対して対称な関係に配置して、配置面上の磁場を測定した。図9に、参考実施例1にかかる径方向磁場発生用磁気回路おける配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。図9は横軸を基板中心からの距離r、縦軸を径方向磁場強度Bとしている。図9から、基板上では0.02T〜0.12Tの径方向磁場(Br)が発生していることがわかる。また、垂直方向磁場(Bz)は基板上全域でゼロとなっていることがわかる。このように参考実施例1にかかる磁気回路では、基板全域において完全に径方向に向いた磁場を発生することができた。 This magnet was placed in a symmetrical relationship with respect to the placement surface as shown in FIG. 1, and the magnetic field on the placement surface was measured. Figure 9 shows the relationship between the position and the radial direction magnetic field and the vertical magnetic field on the reference example magnetic circuit definitive for the radial direction magnetic field generator according to one arrangement surface. In FIG. 9, the horizontal axis represents the distance r from the substrate center, and the vertical axis represents the radial magnetic field strength B. FIG. 9 shows that a radial magnetic field (Br) of 0.02T to 0.12T is generated on the substrate. Also, it can be seen that the vertical magnetic field (Bz) is zero throughout the substrate. As described above, in the magnetic circuit according to Reference Example 1, it was possible to generate a magnetic field that was completely directed in the radial direction over the entire substrate.

また、参考実施例2では、上記参考実施例1のリング形状永久磁石ユニットを図8のように24分割した態様の径方向磁場発生用磁気回路を採用した。本参考実施例では、リング形状永久磁石ユニットを、永久磁石片間の隙間が2mmになるように分割し、他の条件は参考実施例1と同じとした。図10に、参考実施例2にかかる径方向磁場発生用磁気回路おける配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。この場合でも垂直磁場は常にゼロであった。水平磁場は磁石間に隙間を設けたために参考実施例1に比べて外周付近で若干下がっているが、外周付近はもともと磁場が内周付近に比べてかなり強いので、若干の低下は全く問題ない。もし磁場低下が問題になるようであれば、より残留磁化の高い磁石を用いるか、磁石寸法を大きくしてやればよい。 Further, in Reference Example 2, a radial magnetic field generating magnetic circuit in which the ring-shaped permanent magnet unit of Reference Example 1 was divided into 24 as shown in FIG. 8 was adopted. In the present reference example, the ring-shaped permanent magnet unit was divided so that the gap between the permanent magnet pieces was 2 mm, and other conditions were the same as those in the reference example 1. FIG. 10 shows the relationship between the position on the arrangement surface, the radial magnetic field, and the vertical magnetic field in the radial magnetic field generating magnetic circuit according to Reference Example 2. Even in this case, the vertical magnetic field was always zero. The horizontal magnetic field is slightly lower in the vicinity of the outer periphery than in Reference Example 1 due to the gap between the magnets. However, since the magnetic field in the vicinity of the outer periphery is considerably stronger than that in the vicinity of the inner periphery, there is no problem with a slight decrease. . If lowering of the magnetic field becomes a problem, a magnet with higher residual magnetization may be used or the size of the magnet may be increased.

また、参考実施例3では、図7に示した態様の径方向磁場発生用磁気回路を採用した。使用した永久磁石はNd−Fe−B焼結磁石(信越化学製N32Z、残留磁化=1.13T,保磁力iHc=2480kA/m)リング状である。磁石寸法は内径20mm、外径100mm、高さ20mmである。磁石間の距離は、30mmとした。図11に、実施例3にかかる径方向磁場発生用磁気回路おける配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。この場合でも垂直磁場は常にゼロであった。水平磁場は0.19T〜0.35Tと実施例1、2に比べて高い磁場が発生していた。このように、図7に示した態様の構造を採用すると基板全体に高い磁場を印加することができる。 Further, in Reference Example 3, the radial magnetic field generating magnetic circuit having the mode shown in FIG. 7 was employed. The used permanent magnet is an Nd—Fe—B sintered magnet (N32Z manufactured by Shin-Etsu Chemical Co., Ltd., residual magnetization = 1.13 T, coercive force iHc = 2480 kA / m) in a ring shape. The magnet dimensions are an inner diameter of 20 mm, an outer diameter of 100 mm, and a height of 20 mm. The distance between the magnets was 30 mm. FIG. 11 shows the relationship between the position on the arrangement surface, the radial magnetic field, and the vertical magnetic field in the radial magnetic field generating magnetic circuit according to the third embodiment. Even in this case, the vertical magnetic field was always zero. The horizontal magnetic field was 0.19 T to 0.35 T, and a higher magnetic field was generated compared to Examples 1 and 2. Thus, when the structure of the aspect shown in FIG. 7 is employed, a high magnetic field can be applied to the entire substrate.

参考例の第一の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図(上図)および平面図(下図)を示す。The central-axis direction cross-sectional schematic diagram (upper figure) and the top view (lower figure) of the radial direction magnetic field generation magnetic circuit concerning 1st embodiment of a reference example are shown. 参考例の第一の実施形態における、配置面における半径方向位置と径方向磁場強度との関係の一例を示す。 An example of the relationship between the radial position on the arrangement surface and the radial magnetic field strength in the first embodiment of the reference example is shown. 本発明の第二の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。The central axis direction cross-sectional schematic diagram of the magnetic circuit for radial direction magnetic field generation concerning 2nd embodiment of this invention is shown. 永久磁石ユニットの磁化方向の傾きを変化させたときの、配置面における半径方向位置と径方向磁場強度との関係の一例を示す。An example of the relationship between the radial position on the arrangement surface and the radial magnetic field strength when the inclination of the magnetization direction of the permanent magnet unit is changed will be shown. 参考例にかかる径方向磁場発生用磁気回路を用いたスパッタ法による成膜の様子を模式的に示す。A state of film formation by sputtering using a magnetic circuit for generating a radial magnetic field according to a reference example is schematically shown. 参考例の第三の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。The central axis direction cross-sectional schematic diagram of the magnetic circuit for radial direction magnetic field generation concerning 3rd embodiment of a reference example is shown. 参考例の第四の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。The central-axis direction cross-sectional schematic diagram of the magnetic circuit for radial direction magnetic field generation concerning 4th Embodiment of a reference example is shown. リング状永久磁石ユニットを複数の永久磁石片により構成した態様の一例を示す。An example of the aspect which comprised the ring-shaped permanent magnet unit by the several permanent magnet piece is shown. 参考実施例1にかかる径方向磁場発生用磁気回路おける、配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。The relationship between the position on the arrangement surface, the radial magnetic field, and the vertical magnetic field in the radial magnetic field generating magnetic circuit according to Reference Example 1 is shown. 参考実施例2にかかる径方向磁場発生用磁気回路おける、配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。The relationship between the position on the arrangement surface, the radial magnetic field, and the vertical magnetic field in the magnetic circuit for generating a radial magnetic field according to Reference Example 2 is shown. 参考実施例3にかかる径方向磁場発生用磁気回路おける、配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。The relationship between the position on the arrangement surface, the radial magnetic field, and the vertical magnetic field in the magnetic circuit for generating a radial magnetic field according to Reference Example 3 is shown. 磁気ディスクにおける膜構成の一例を示す。2 shows an example of a film configuration in a magnetic disk. 従来の径方向磁場発生用磁気回路の模式図を示す。The schematic diagram of the conventional magnetic circuit for radial direction magnetic field generation is shown. 従来の径方向磁場発生用磁気回路における、配置面における半径方向位置と径方向磁場強度および垂直方向磁場強度との関係の一例を示す。An example of the relationship between the radial position on the arrangement surface, the radial magnetic field strength, and the vertical magnetic field strength in a conventional magnetic circuit for generating a radial magnetic field is shown.

符号の説明Explanation of symbols

11,111 リング状基板
21,41,42,51,121 リング状永久磁石ユニット
43,122 永久磁石
22 配置面
23 中心軸
24 磁化方向
25,52,125 磁力線
126 ヨーク
31,131 ターゲット
32 スパッタ粒子の飛跡
110 磁気ディスク
112 硬磁性膜(下地膜)
113 軟磁性膜(下地膜)
114 硬磁性膜(記録膜)
11, 111 Ring-shaped substrates 21, 41, 42, 51, 121 Ring-shaped permanent magnet units 43, 122 Permanent magnet 22 Arrangement surface 23 Center axis 24 Magnetization directions 25, 52, 125 Magnetic field lines 126 Yoke 31, 131 Target 32 Sputtered particles Track 110 Magnetic disk 112 Hard magnetic film (underlayer)
113 Soft magnetic film (underlayer)
114 Hard magnetic film (recording film)

Claims (6)

リング状の第一の永久磁石ユニットと、第二の永久磁石ユニットとを含んでなり、該第一および第二の永久磁石ユニットに挟まれた空間に被処理物であるリング状基板を配置でき、該リング状基板が配置された際に該リング状基板を含む平面を配置面とすると、該配置面において該リング状基板の径方向に磁場を発生するための径方向磁場発生用磁気回路であって、
該第一の永久磁石ユニットと該第二の永久磁石ユニットとの間に成膜ができるようにスペースを備え
該第一および第二の永久磁石ユニットのそれぞれにより形成される磁場が、前記配置面において前記リング状基板の径方向に磁場成分を有し、周方向に磁場成分を実質的に有さないように配置され
前記第一および第二の永久磁石ユニットが、前記配置面に関して対称な磁化方向および形状を有し、前記配置面に関して対称な位置に設けられ
前記第一および第二の永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも大きく設定され、前記第一および第二の永久磁石ユニットが、該配置面と垂直な方向に磁化成分を有し、
前記第一および第二の永久磁石ユニットが、前記リング状基板の径方向と平行な方向に磁化成分をさらに有する、スパッタ処理による成膜工程に用いる径方向磁場発生用磁気回路。
A ring-shaped first permanent magnet unit and a second permanent magnet unit are included, and a ring-shaped substrate that is an object to be processed can be disposed in a space sandwiched between the first and second permanent magnet units. A magnetic circuit for generating a radial magnetic field for generating a magnetic field in the radial direction of the ring-shaped substrate on the arrangement surface when the plane including the ring-shaped substrate is an arrangement surface when the ring-shaped substrate is arranged. There,
A space is provided so that a film can be formed between the first permanent magnet unit and the second permanent magnet unit ,
The magnetic field formed by each of the first and second permanent magnet units has a magnetic field component in the radial direction of the ring-shaped substrate and substantially does not have a magnetic field component in the circumferential direction on the arrangement surface. It is located in,
The first and second permanent magnet units have a magnetization direction and a shape symmetric with respect to the arrangement surface, and are provided at positions symmetrical with respect to the arrangement surface ;
An inner diameter of the first and second permanent magnet units is set to be larger than an outer diameter of a ring-shaped substrate that is an object to be processed, and the first and second permanent magnet units are in a direction perpendicular to the arrangement surface. the magnetization component possess to,
A magnetic circuit for generating a radial magnetic field used in a film forming process by sputtering, wherein the first and second permanent magnet units further have a magnetization component in a direction parallel to a radial direction of the ring-shaped substrate.
前記第一および第二の永久磁石ユニットが有する前記リング状基板の径方向と平行な方向の磁化成分が、前記配置面に垂直な方向であって前記配置面から遠ざかる向きと、前記第一および第二永久磁石ユニットの有する磁化の向きとの差である傾きtによるものであり、該傾きtが、0<t<90 または180<t<270 である請求項1に記載のスパッタ処理による成膜工程に用いる径方向磁場発生用磁気回路 The magnetization component in the direction parallel to the radial direction of the ring-shaped substrate included in the first and second permanent magnet units is a direction perpendicular to the arrangement surface and away from the arrangement surface; 2. The sputtering process according to claim 1, which is based on an inclination t which is a difference from a magnetization direction of the second permanent magnet unit, and the inclination t is 0 <t <90 o or 180 <t <270 o. A magnetic circuit for generating a radial magnetic field used in a film forming process by the method . 前記傾きtが、0<t≦60または180<t≦240である請求項に記載のスパッタ処理による成膜工程に用いる径方向磁場発生用磁気回路。 The magnetic circuit for generating a radial magnetic field used in a film forming process by sputtering according to claim 2 , wherein the inclination t is 0 <t ≦ 60 o or 180 <t ≦ 240 o . 前記永久磁石ユニットの中心軸上であって、前記配置面に関して対称な位置に設けられた1対の永久磁石であって、前記配置面に関して対称な形状を有し、前記配置面と垂直な磁化方向を有し、該1対の永久磁石のそれぞれにより形成される磁場が、前記配置面において前記第一および第二の永久磁石ユニットが前記配置面に形成する前記径方向磁場成分と同じ向きの磁場成分を有するように配置された1対の永久磁石をさらに含む請求項1〜3のいずれかに記載のスパッタ処理による成膜工程に用いる径方向磁場発生用磁気回路。 A pair of permanent magnets provided on a central axis of the permanent magnet unit and symmetrically with respect to the arrangement surface, and having a symmetrical shape with respect to the arrangement surface and being perpendicular to the arrangement surface And the magnetic field formed by each of the pair of permanent magnets has the same orientation as the radial magnetic field component formed on the placement surface by the first and second permanent magnet units. The magnetic circuit for radial direction magnetic field generation used for the film-forming process by the sputter | spatter process in any one of Claims 1-3 further including a pair of permanent magnet arrange | positioned so that it may have a magnetic field component. 前記配置面と同一平面上に設けられたリング状の永久磁石ユニットであって、該永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも大きく設定され、前記リング状基板の径方向と平行な磁化方向を有し、該永久磁石ユニットにより形成される磁場が、前記配置面において前記第一および第二の永久磁石ユニットが前記配置面に形成する前記径方向磁場成分と同じ向きの磁場成分を有するように配置された永久磁石ユニットをさらに含む請求項1〜4のいずれかに記載のスパッタ処理による成膜工程に用いる径方向磁場発生用磁気回路。 A ring-shaped permanent magnet unit provided on the same plane as the arrangement surface, wherein an inner diameter of the permanent magnet unit is set larger than an outer diameter of a ring-shaped substrate that is an object to be processed, and the ring-shaped substrate The magnetic field formed by the permanent magnet unit has a magnetization direction parallel to the radial direction, and the radial magnetic field component formed on the placement surface by the first and second permanent magnet units The magnetic circuit for radial magnetic field generation used for the film-forming process by the sputter | spatter process in any one of Claims 1-4 further including the permanent magnet unit arrange | positioned so that it may have a magnetic field component of the same direction. 前記配置面と同一平面上に設けられたリング状の永久磁石ユニットであって、該永久磁石ユニットの外径が、被処理物であるリング状基板の内径よりも小さく設定され、前記リング状基板の径方向と平行な磁化方向を有し、該永久磁石ユニットにより形成される磁場が、前記配置面において前記第一の永久磁石ユニットが前記配置面に形成する前記径方向磁場成分と同じ向きの磁場成分を有するように配置された永久磁石ユニットをさらに含む請求項1〜5のいずれかに記載のスパッタ処理による成膜工程に用いる径方向磁場発生用磁気回路。 A ring-shaped permanent magnet unit provided on the same plane as the arrangement surface, wherein an outer diameter of the permanent magnet unit is set smaller than an inner diameter of a ring-shaped substrate that is an object to be processed, and the ring-shaped substrate The magnetic field formed by the permanent magnet unit has the same orientation as the radial magnetic field component formed on the placement surface by the first permanent magnet unit. The magnetic circuit for radial magnetic field generation used for the film-forming process by the sputter | spatter process in any one of Claims 1-5 further including the permanent magnet unit arrange | positioned so that it may have a magnetic field component.
JP2004329903A 2003-12-25 2004-11-15 Magnetic circuit for generating radial magnetic field used for film formation by sputtering process Expired - Fee Related JP4444797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329903A JP4444797B2 (en) 2003-12-25 2004-11-15 Magnetic circuit for generating radial magnetic field used for film formation by sputtering process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003429277 2003-12-25
JP2004329903A JP4444797B2 (en) 2003-12-25 2004-11-15 Magnetic circuit for generating radial magnetic field used for film formation by sputtering process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009026274A Division JP4399023B2 (en) 2003-12-25 2009-02-06 Magnetic circuit for radial magnetic field generation used in heat treatment process

Publications (2)

Publication Number Publication Date
JP2005209326A JP2005209326A (en) 2005-08-04
JP4444797B2 true JP4444797B2 (en) 2010-03-31

Family

ID=34914085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329903A Expired - Fee Related JP4444797B2 (en) 2003-12-25 2004-11-15 Magnetic circuit for generating radial magnetic field used for film formation by sputtering process

Country Status (1)

Country Link
JP (1) JP4444797B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272998A (en) * 2006-03-31 2007-10-18 Shin Etsu Chem Co Ltd Permanent magnet magnetic circuit, axisymmetric magnetic field forming method, and method of manufacturing perpendicular magnetic recording medium
JP4648876B2 (en) * 2006-06-28 2011-03-09 信越化学工業株式会社 Magnetic circuit for radial magnetic field generation
JP4617279B2 (en) 2006-08-10 2011-01-19 信越化学工業株式会社 Magnetic circuit and magnetic field application method
JP5452928B2 (en) * 2006-09-27 2014-03-26 ダブリュディ・メディア・シンガポール・プライベートリミテッド Method for manufacturing magnetic recording medium and method for manufacturing laminate

Also Published As

Publication number Publication date
JP2005209326A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
US6278579B1 (en) Dual-element thin-film magnetic head including a composite lower core
JP2006059498A (en) Magnetic recording medium, and magnetic recording and reproducing device
US6636371B1 (en) Magnetic transfer method and system
JPH06103553A (en) Perpendicular magnetic recording medium and its production
JP4444797B2 (en) Magnetic circuit for generating radial magnetic field used for film formation by sputtering process
US6646820B1 (en) Method for recording magnetic recording medium
JP4399023B2 (en) Magnetic circuit for radial magnetic field generation used in heat treatment process
JP2007026514A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2006172634A (en) Magnetic recording/reproducing device, magnetic recording medium, and magnetic head
JPH06180834A (en) Perpendicular magnetic recording medium
JP2008041223A (en) Magnetic circuit and method for applying magnetic field
JPH0785442A (en) Vertical magnetic recording medium
JP2007272998A (en) Permanent magnet magnetic circuit, axisymmetric magnetic field forming method, and method of manufacturing perpendicular magnetic recording medium
JP2003303413A (en) Magnetic transfer device
JP4648876B2 (en) Magnetic circuit for radial magnetic field generation
EP1143422A2 (en) Magnetic transfer method and system
JP2001101657A (en) Magnetic transfer method and magnetic transfer device
US7526855B1 (en) Methods of manufacturing voice coil motor magnetic returns
JP3441444B2 (en) Head for magnetization
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JP3655213B2 (en) Master information carrier, magnetic disk manufacturing method
JP2001209933A (en) Method for manufacturing perpendicular magnetic recording medium
JP2004005829A (en) Orientated magnetic field generating device
KR20010110982A (en) Method and apparatus for magnetic transfer
JP2006059453A (en) Manufacturing method of perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100114

R150 Certificate of patent or registration of utility model

Ref document number: 4444797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees