JP4648813B2 - Infrared cut coat film, optical element having infrared cut coat film, and endoscope apparatus having the optical element - Google Patents

Infrared cut coat film, optical element having infrared cut coat film, and endoscope apparatus having the optical element Download PDF

Info

Publication number
JP4648813B2
JP4648813B2 JP2005289177A JP2005289177A JP4648813B2 JP 4648813 B2 JP4648813 B2 JP 4648813B2 JP 2005289177 A JP2005289177 A JP 2005289177A JP 2005289177 A JP2005289177 A JP 2005289177A JP 4648813 B2 JP4648813 B2 JP 4648813B2
Authority
JP
Japan
Prior art keywords
light
infrared
coat film
infrared cut
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005289177A
Other languages
Japanese (ja)
Other versions
JP2007101729A (en
Inventor
秀雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2005289177A priority Critical patent/JP4648813B2/en
Publication of JP2007101729A publication Critical patent/JP2007101729A/en
Application granted granted Critical
Publication of JP4648813B2 publication Critical patent/JP4648813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、可視光を透過し、赤外光を吸収する赤外カットコート膜に関し、より詳しくは広範な波長範囲の赤外光をカットすることができ、内視鏡の光源光学系に好適な赤外カットコート膜及び係る赤外カットコート膜を有する光学素子に関する。   The present invention relates to an infrared cut coat film that transmits visible light and absorbs infrared light, and more specifically, can cut infrared light in a wide wavelength range and is suitable for a light source optical system of an endoscope. The present invention relates to an infrared cut coat film and an optical element having the infrared cut coat film.

内視鏡の光源光学系の照明光源には、キセノンランプやハロゲンランプが用いられることが多い。いずれのランプの照射光も、照明光として求められる可視光ばかりでなく、波長750 nm以上の赤外光を含んでいる。照明光源から照射された光は、集光レンズでライトガイドの入射端面に導かれるが、赤外光まで集光してしまうと、ライトガイドが焼けてしまう。最近、内視鏡用光源に多用されているキセノンランプの照射光の波長は220〜2000 nmであり、高い割合で波長750 nm以上の赤外光を含むので、ライトガイドの焼損が特に問題となっている。   In many cases, a xenon lamp or a halogen lamp is used as an illumination light source of a light source optical system of an endoscope. Irradiation light of any lamp includes not only visible light required as illumination light but also infrared light having a wavelength of 750 nm or more. The light emitted from the illumination light source is guided to the incident end face of the light guide by the condensing lens, but if the light is condensed to the infrared light, the light guide is burnt. Recently, xenon lamps, which are frequently used for endoscope light sources, have a wavelength of 220 to 2000 nm, which includes infrared light with a wavelength of 750 nm or more at a high rate. It has become.

そこで、図6に示すように、照明光源3と集光レンズ1との間に赤外カットフィルター5が設けられる。照明光源3から赤外光を含む光が照射されても、集光レンズ1の手前で赤外光をカットして可視光のみを透過させることによって、ライトガイド4の過熱を防止しつつ、必要な光を内視鏡に導くことができる。光の干渉によって赤外光をカットする多層干渉コート膜を設けた光学部材は、赤外カットフィルター5として用いられている。一般的な多層干渉コート膜は、図8に示すような分光透過率を示す。すなわち可視光を透過し、波長800〜1100 nmの赤外光を反射し、波長1100〜2000 nmの光を透過する。ライトガイド4の過熱を防ぐ観点からは、波長1100〜2000 nmの光も透過させないのが好ましいが、この波長域に干渉を生じさせて反射を起こさせると、可視光でも反射が起こってしまう。例えば波長1550 nmの光を反射させるようにすると、その1/3の波長である517 nmの光の反射も大きくなる(図9)。このように、可視光の透過性能を損なうのを防ぐ観点から、多層干渉コート膜は波長1100〜2000 nmの光をカットしない透過率を有するように設計されている。   Therefore, as shown in FIG. 6, an infrared cut filter 5 is provided between the illumination light source 3 and the condenser lens 1. Even if light including infrared light is irradiated from the illumination light source 3, it is necessary to prevent the light guide 4 from being overheated by cutting the infrared light in front of the condenser lens 1 and transmitting only visible light. Light can be guided to the endoscope. An optical member provided with a multilayer interference coating film that cuts infrared light by light interference is used as an infrared cut filter 5. A general multilayer interference coating film exhibits a spectral transmittance as shown in FIG. That is, it transmits visible light, reflects infrared light having a wavelength of 800 to 1100 nm, and transmits light having a wavelength of 1100 to 2000 nm. From the viewpoint of preventing the light guide 4 from being overheated, it is preferable not to transmit light having a wavelength of 1100 to 2000 nm. However, if interference is caused in this wavelength range to cause reflection, reflection also occurs in visible light. For example, when light having a wavelength of 1550 nm is reflected, the reflection of light having a wavelength of 1/3, that is, 517 nm is also increased (FIG. 9). Thus, from the viewpoint of preventing impairing the visible light transmission performance, the multilayer interference coating film is designed to have a transmittance that does not cut light having a wavelength of 1100 to 2000 nm.

赤外吸収ガラスのように赤外光を吸収する基板も、赤外カットフィルターとして機能しうる。しかし、赤外光を吸収する基板は、100〜300℃において70×10-7-1という大きな熱膨張係数を有するので、内視鏡用光源光学系の赤外カットフィルターとして用いると、短時間のうちに表面温度が数百度まで上昇してしまう。その結果、光が入射する面と出射する面及び/又は基板の中心部と周辺部との間に急激な温度分布を生じ、基板が割れたり欠けたりしてしまうという問題がある。 A substrate that absorbs infrared light, such as infrared absorbing glass, can also function as an infrared cut filter. However, since the substrate that absorbs infrared light has a large thermal expansion coefficient of 70 × 10 −7 ° C. −1 at 100 to 300 ° C., it is short when used as an infrared cut filter for an endoscope light source optical system. Over time, the surface temperature will rise to several hundred degrees. As a result, there is a problem that a rapid temperature distribution is generated between the light incident surface and the light emitting surface and / or the central portion and the peripheral portion of the substrate, and the substrate is cracked or chipped.

特許2876998号(特許文献1)には、図7に示すように、照明光源3とライトガイド4の間に、所定の透過エネルギー量を有する赤外線反射型フィルター51と、赤外線吸収型フィルター52とを具備する内視鏡用光源光学系が記載されている。この内視鏡用光源光学系においては、赤外線吸収型フィルター52が波長1100 nm以上の光を吸収し、赤外線反射型フィルター51が波長750〜1100 nmの赤外光を反射すると共に赤外線吸収型フィルター52の発熱量を低減する。そのため、照明光源3とライトガイド4との間にこれらのフィルター51,52を設けると、ライトガイド4の焼損を防止できる。しかし、赤外線反射型フィルター51と赤外線吸収型フィルター52という二つの部材を十分離して設けなければならず、光学系を小型化し難いという問題がある。   Japanese Patent No. 2876998 (Patent Document 1) includes, as shown in FIG. 7, an infrared reflection filter 51 having a predetermined transmission energy amount and an infrared absorption filter 52 between the illumination light source 3 and the light guide 4. An endoscope light source optical system is described. In this endoscope light source optical system, the infrared absorbing filter 52 absorbs light having a wavelength of 1100 nm or more, the infrared reflecting filter 51 reflects infrared light having a wavelength of 750 to 1100 nm, and the infrared absorbing filter. Reduce the calorific value of 52. Therefore, if these filters 51 and 52 are provided between the illumination light source 3 and the light guide 4, the light guide 4 can be prevented from being burned out. However, the two members of the infrared reflection filter 51 and the infrared absorption filter 52 must be separated from each other, and there is a problem that it is difficult to reduce the size of the optical system.

特許2876998号公報Japanese Patent No. 2876998

従って本発明の目的は、発熱による割れや欠けを生じることなく、一つの部材で広い波長範囲の赤外光をカットできる赤外カット材及びこれを有する内視鏡装置を提供することである。   Accordingly, an object of the present invention is to provide an infrared cut material capable of cutting infrared light in a wide wavelength range with a single member without causing cracks or chips due to heat generation, and an endoscope apparatus having the same.

上記目的に鑑み鋭意研究の結果、本発明者は、可視光を透過し、赤外光を吸収する材料からなる層を有する膜を集光レンズ等の表面に設けることによって、内視鏡の照明光学系の光路に赤外線カットフィルターを別途設けなくても、赤外光による焼損を防止しつつ必要な可視光をライトガイドに取り入れることができることを発見し、本発明に想到した。   As a result of diligent research in view of the above object, the present inventor has provided a film having a layer made of a material that transmits visible light and absorbs infrared light on the surface of a condensing lens or the like, thereby illuminating an endoscope. The present inventors have found that necessary visible light can be taken into the light guide while preventing burning by infrared light without separately providing an infrared cut filter in the optical path of the optical system.

すなわち、本発明の赤外カットコート膜は、可視光を透過する層が積層されてなり、前記赤外カットコート膜の少なくとも一部が赤外光波長領域に吸収を有する赤外光吸収層と赤外光を吸収しない非吸収層とが交互に積層されており、前記赤外光吸収層は主成分として酸化亜鉛を含有し、副成分としてガリウムを含有し、前記副成分の含有量が0.1〜20質量%であり、800〜2000 nmの赤外光波長領域で0〜5%の透過率を有することを特徴とする。
That is, the infrared cut coat film of the present invention is formed by laminating layers that transmit visible light, and an infrared light absorption layer in which at least a part of the infrared cut coat film has absorption in the infrared light wavelength region. Non-absorbing layers that do not absorb infrared light are alternately laminated, and the infrared light absorbing layer contains zinc oxide as a main component, gallium as a subcomponent, and the content of the subcomponent is 0.1. It is characterized by having a transmittance of 0 to 5% in the infrared light wavelength region of 800 to 2000 nm .

本発明の光学素子は、本発明の赤外カットコート膜が基材の表面に形成されているのが好ましく、前記基材の熱膨張係数は1×10 -7 〜50×10 -7 -1 であるのが好ましい。
The optical element of the present invention, rather is preferably of the infrared cut coating film of the present invention is formed on the surface of the substrate, the thermal expansion coefficient of the substrate is 1 × 10 -7 ~50 × 10 -7 C.- 1 is preferred.

本発明の赤外カットコート膜は可視光を透過し、赤外線を吸収する。好ましい赤外カットコート膜は、波長800〜2000 nmの赤外光に対して5%以下という低い透過率を示す。そのため、照明光学系の集光レンズの表面に本発明の赤外カットコート膜を形成すると、キセノンランプのように幅広い波長の光を照射する光源を用いた場合であっても、光路に赤外光カットフィルター等の部材を別途設けなくても、赤外光によるライトガイドの焼損を防止できる。このように、幅広い波長範囲の赤外光をカットしうる赤外カットコート膜を有する光学素子は、小型化を要する照明光学系に好適である。   The infrared cut coat film of the present invention transmits visible light and absorbs infrared light. A preferred infrared cut coat film exhibits a low transmittance of 5% or less for infrared light having a wavelength of 800 to 2000 nm. For this reason, when the infrared cut coat film of the present invention is formed on the surface of the condenser lens of the illumination optical system, even if a light source that irradiates light of a wide wavelength, such as a xenon lamp, is used, Even if a member such as a light cut filter is not separately provided, it is possible to prevent the light guide from being burned by infrared light. Thus, an optical element having an infrared cut coat film capable of cutting infrared light in a wide wavelength range is suitable for an illumination optical system that requires downsizing.

[1] 赤外カットコート膜
赤外カットコート膜は、赤外光波長領域に吸収を有する赤外光吸収層を有する。本明細書中、「赤外光波長領域に吸収を有する」とは、いわゆる赤外光のうち800〜2000 nmの範囲で0〜5%の透過率を示すことを言う。波長850〜2000 nmの光をカットしうる広帯域赤外カットコート膜は、内視鏡の照明光学系に好適である。
[1] Infrared cut coat film The infrared cut coat film has an infrared light absorbing layer having absorption in an infrared light wavelength region. In the present specification, “having absorption in the infrared light wavelength region” refers to showing a transmittance of 0 to 5% in the range of 800 to 2000 nm of so-called infrared light. A broadband infrared cut coat film capable of cutting light having a wavelength of 850 to 2000 nm is suitable for an illumination optical system of an endoscope.

赤外光吸収層は可視光を透過し、透明である。赤外光吸収層は波長400〜700 nmで、80%以上の分光透過率を有するのが好ましい。このような透過率を示す層は、実質的に透明である。   The infrared light absorbing layer transmits visible light and is transparent. The infrared light absorbing layer preferably has a wavelength of 400 to 700 nm and a spectral transmittance of 80% or more. A layer exhibiting such transmittance is substantially transparent.

赤外光吸収層は可視光を透過する主成分と、副成分とからなるのが好ましい。副成分を含有すると主成分の結晶格子には乱れが生じるが、この乱れによって赤外光の吸収が起こると考えられている。副成分の含有量は0.1〜20質量%である含有量が0.1質量%未満であると、赤外光吸収層が十分な赤外光吸収率を示し難過ぎる。20質量%超であると、可視光の領域で十分な透過性を示し難過ぎる。
The infrared light absorbing layer is preferably composed of a main component that transmits visible light and a subcomponent. When the subcomponent is contained, the crystal lattice of the main component is disturbed, and it is considered that infrared light is absorbed by this disorder. The content of subcomponents is 0.1 to 20% by mass . When the content is less than 0.1% by mass, the infrared light absorption layer is too difficult to exhibit a sufficient infrared light absorption rate. If it exceeds 20% by mass, it is difficult to exhibit sufficient transparency in the visible light region.

赤外光吸収層の主成分は酸化亜鉛であり、副成分はガリウムである。これらの主成分及び副成分からなる層は可視光を透過し、高い効率で赤外光を吸収する
The main component of the infrared light absorbing layer is zinc oxide, the sub-component is gallium. The layer composed of these main components and subcomponents transmits visible light and absorbs infrared light with high efficiency .

赤外カットコート膜は赤外光吸収層の他に、可視光透過材からなり、赤外光を吸収しない非吸収層を有するまた1.7〜2.5程度の高い屈折率の層と、1.1〜1.6程度の低い屈折率の層とが交互に積層されてなるものであるのが好ましい。高屈折率層と低屈折率層を適当な膜厚で交互に積層することにより、広い波長範囲の可視光を透過しうる反射防止膜が得られる。赤外光吸収層が高屈折率の場合、非吸収層は低屈折率であるのが好ましく、赤外光吸収層が低屈折率の場合、非吸収層は高屈折率であるのが好ましい。例えば赤外光吸収層であるガリウム添加酸化亜鉛層は、1.9程度の高い屈折率を有するので、酸化ケイ素(屈折率1.48)のような低い屈折率を有する非吸収層と交互に積層されるのが好ましい。もちろん複数の高屈折率層及び低屈折率層を有し、それらのうち一部の層のみが赤外光吸収層であってもよい。非吸収層の好ましい材料の例として、酸化ケイ素、酸化タンタル、酸化チタン、酸化ニオブ、酸化ジルコニウム、酸化セリウム、酸化ハフニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化イットリウム、酸化アルミニウム、フッ化マグネシウムが挙げられる。 In addition to the infrared light absorbing layer, the infrared cut coat film is made of a visible light transmitting material and has a non-absorbing layer that does not absorb infrared light . Moreover, it is preferable that layers having a high refractive index of about 1.7 to 2.5 and layers having a low refractive index of about 1.1 to 1.6 are alternately laminated. By alternately laminating the high refractive index layer and the low refractive index layer with an appropriate film thickness, an antireflection film capable of transmitting visible light in a wide wavelength range can be obtained. When the infrared light absorbing layer has a high refractive index, the non-absorbing layer preferably has a low refractive index, and when the infrared light absorbing layer has a low refractive index, the non-absorbing layer preferably has a high refractive index. For example, a gallium-doped zinc oxide layer, which is an infrared light absorbing layer, has a high refractive index of about 1.9, and therefore is alternately laminated with a non-absorbing layer having a low refractive index such as silicon oxide (refractive index: 1.48). Is preferred. Of course, a plurality of high refractive index layers and low refractive index layers may be provided, and only some of them may be infrared light absorbing layers. Examples of preferred materials for the non-absorbing layer include silicon oxide, tantalum oxide, titanium oxide, niobium oxide, zirconium oxide, cerium oxide, hafnium oxide, tin oxide, indium oxide, zinc oxide, yttrium oxide, aluminum oxide, and magnesium fluoride. Can be mentioned.

赤外光吸収層及び非吸収層の厚さや層数は、各層の屈折率、吸収すべき波長範囲等によって適宜決定すればよい。赤外光吸収層と非吸収層とが交互に積層された赤外カットコート膜の場合、一般的には、各層の光学膜厚(nd)が50〜650 nmであり、各層の数は20〜80程度である。   The thickness and the number of layers of the infrared light absorbing layer and the non-absorbing layer may be appropriately determined depending on the refractive index of each layer, the wavelength range to be absorbed, and the like. In the case of an infrared cut coat film in which infrared light absorbing layers and non-absorbing layers are alternately laminated, generally, the optical film thickness (nd) of each layer is 50 to 650 nm, and the number of each layer is 20 It is about ~ 80.

赤外カットコート膜は、赤外波長域に低透過率帯を有する。低透過率帯の光透過率は5%以下であるのが好ましく、3%以下であるのがより好ましい。赤外波長域にある低透過率帯の光透過率が5%以下であると、内視鏡装置の照明光学系に用いた場合に、ライトガイドの過熱を有効に防止できる。低透過率帯の短波長端は650〜850 nmにあるのが好ましい。短波長端がこの範囲にあれば、可視光の透過を実質的に妨げない。長波長端は1300 nm以上であるのが好ましく、1300〜2300 nmにあるのがより好ましい。   The infrared cut coat film has a low transmittance band in the infrared wavelength region. The light transmittance in the low transmittance band is preferably 5% or less, and more preferably 3% or less. When the light transmittance in the low transmittance band in the infrared wavelength region is 5% or less, overheating of the light guide can be effectively prevented when used in the illumination optical system of the endoscope apparatus. The short wavelength end of the low transmittance band is preferably 650 to 850 nm. If the short wavelength end is in this range, visible light transmission is not substantially prevented. The long wavelength end is preferably 1300 nm or more, and more preferably 1300 to 2300 nm.

[2] 光学素子
図1は、赤外カットコート膜を有する光学素子の一例を示す。図1に示す光学素子10は基材1と、基材1の表面11に形成された赤外カットコート膜2とからなる。図1に示す例では基材1はレンズであるが、本発明の光学素子10の基材1はレンズに限定されず、平板、プリズム、回折格子、偏光素子、吸収型フィルター等でも良い。
[2] Optical Element FIG. 1 shows an example of an optical element having an infrared cut coat film. An optical element 10 shown in FIG. 1 includes a base material 1 and an infrared cut coat film 2 formed on a surface 11 of the base material 1. In the example shown in FIG. 1, the substrate 1 is a lens, but the substrate 1 of the optical element 10 of the present invention is not limited to a lens, and may be a flat plate, a prism, a diffraction grating, a polarizing element, an absorption filter, or the like.

赤外カットコート膜は赤外光を吸収して高温になるので、基材1は150〜450℃の熱に耐性を有する材料からなるのが好ましい。また基材1の熱膨張係数は1×10-7〜50×10-7-1であるのが好ましい。熱膨張係数がこの範囲であると、光学素子10の使用時に赤外カットコート膜2が昇温しても、基材1から剥がれ難い。好ましい基材1の材料の例として、パイレックス(登録商標)等の耐熱性ガラス、低膨張ガラス、透明セラミックスが挙げられる。 Since the infrared cut coat film absorbs infrared light and becomes high temperature, the substrate 1 is preferably made of a material resistant to heat of 150 to 450 ° C. The coefficient of thermal expansion of the substrate 1 is preferably 1 × 10 −7 to 50 × 10 −7 ° C. −1 . When the thermal expansion coefficient is within this range, even if the infrared cut coat film 2 is heated when the optical element 10 is used, it is difficult to peel off from the substrate 1. Examples of a preferable material for the substrate 1 include heat-resistant glass such as Pyrex (registered trademark), low expansion glass, and transparent ceramics.

部分拡大図に示すように、赤外光吸収層21と、非吸収層22とが交互に積層され、赤外カットコート膜2となっている。図1に示す例では、基材1上に赤外光吸収層21が形成され、媒質に接触する層は非吸収層22であるが、基材1や各層21,22の屈折率等によっては、基材1上に非吸収層22が形成される場合や、媒質に接触する層が赤外光吸収層21である場合もある。   As shown in the partially enlarged view, the infrared light absorbing layer 21 and the non-absorbing layer 22 are alternately laminated to form the infrared cut coat film 2. In the example shown in FIG. 1, an infrared light absorbing layer 21 is formed on the substrate 1, and the layer in contact with the medium is the non-absorbing layer 22, but depending on the refractive index of the substrate 1 and the layers 21 and 22, etc. In some cases, the non-absorbing layer 22 is formed on the substrate 1, or the layer in contact with the medium is the infrared light absorbing layer 21.

赤外カットコート膜2の各層21,22は、真空蒸着法、イオンビームアシスト法、イオンプレーティング法、スパッタリング法、パルスレーザー蒸着法等によって形成することができる。これらの形成方法のうち、最も好ましいのはイオンビームアシスト法である。イオンビームアシスト法によって形成された膜は、基材1との高い密着性を示す。従って、赤外カットコート膜2が温度変化しても、基材1から剥がれ難い。   The layers 21 and 22 of the infrared cut coat film 2 can be formed by a vacuum deposition method, an ion beam assist method, an ion plating method, a sputtering method, a pulse laser deposition method, or the like. Of these forming methods, the ion beam assist method is most preferable. A film formed by the ion beam assist method exhibits high adhesion to the substrate 1. Therefore, even if the infrared cut coat film 2 changes in temperature, it is difficult to peel off from the substrate 1.

赤外光Li及び可視光Lvを含む光が赤外カットコート膜2側から光学素子10に入射すると、赤外光Liは赤外カットコート膜2によって吸収され、可視光Lvは赤外カットコート膜2を透過してレンズ1によって光軸上に集光される。赤外波長域の光透過率は5%以下であるのが好ましく、可視波長域の光透過率は95%以上であるのが好ましい。このような透過率を有する光学素子10を光路上にを設けると、赤外光Liを有効にカットすることによって他の光学部品が過熱されるのを防止しつつ、可視光Lvを利用し得る。   When light including infrared light Li and visible light Lv enters the optical element 10 from the infrared cut coat film 2 side, the infrared light Li is absorbed by the infrared cut coat film 2, and the visible light Lv is infrared cut coat. The light passes through the film 2 and is collected on the optical axis by the lens 1. The light transmittance in the infrared wavelength region is preferably 5% or less, and the light transmittance in the visible wavelength region is preferably 95% or more. When the optical element 10 having such a transmittance is provided on the optical path, the visible light Lv can be used while preventing other optical components from being overheated by effectively cutting the infrared light Li. .

[3] 内視鏡装置
図2は、内視鏡装置の照明光学系の一例を概略的に示す。キセノンランプ31及び反射鏡32からなる光源3の光軸上に集光レンズ10と、ライトガイド4とが光路上にこの順に設けられている。キセノンランプ31から発せられた光は集光レンズ10に直接届くとともに、反射鏡32によって反射されて集光レンズ10に入射する。集光レンズ10の有効径は、光源3の光径以上であるのが好ましく、光源3の光径に等しいのがより好ましい。集光レンズ10の有効径が光源3の光径より小さいと、可視光を有効に集光できない上、カットされない赤外光が多く、ライトガイド4等が過熱され易過ぎる。
[3] Endoscope Device FIG. 2 schematically shows an example of an illumination optical system of the endoscope device. A condensing lens 10 and a light guide 4 are provided on the optical path in this order on the optical axis of the light source 3 including the xenon lamp 31 and the reflecting mirror 32. The light emitted from the xenon lamp 31 reaches the condenser lens 10 directly and is reflected by the reflecting mirror 32 to enter the condenser lens 10. The effective diameter of the condenser lens 10 is preferably equal to or larger than the light diameter of the light source 3, and more preferably equal to the light diameter of the light source 3. If the effective diameter of the condensing lens 10 is smaller than the light diameter of the light source 3, visible light cannot be collected effectively, and there is much infrared light that is not cut, and the light guide 4 and the like are easily overheated.

キセノンランプ31から照射される光のうち、可視光Lvは赤外カットコート膜2を透過し、レンズ1によって集光され、ライトガイド4に入る。赤外光Liは、赤外カットコート膜2に吸収されるので、ライトガイド4が過熱されない。すなわち、赤外カットコート膜2を有する光学素子10により、赤外光Liをカットしてライトガイド4の焼損を防止しつつ、ライトガイド4に可視光Lvを取り入れることができる。   Of the light emitted from the xenon lamp 31, the visible light Lv passes through the infrared cut coat film 2, is condensed by the lens 1, and enters the light guide 4. Since the infrared light Li is absorbed by the infrared cut coat film 2, the light guide 4 is not overheated. That is, the optical element 10 having the infrared cut coat film 2 can incorporate the visible light Lv into the light guide 4 while cutting the infrared light Li to prevent the light guide 4 from being burned out.

本発明を以下の実施例によってさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

実施例1
50 mm×50 mm、厚さ1mmのパイレックス(登録商標)ガラス(熱膨張係数36×10-7-1、屈折率1.474)に、イオンビームアシスト法により、表1に示す赤外カットコート膜を成膜した。その際、Ta2O5(屈折率2.26)層やSiO2(屈折率1.48)層は、純度99.9%以上の材料を用いて形成した。ガリウムを添加した酸化亜鉛の層(ZnO+Ga、屈折率1.92)の材料には、純度99.9%の酸化亜鉛と、純度99.9%の酸化ガリウムとを予めガリウムの含有量が2.7質量%になるように混合したものを用いた。イオンアシストには、コモンウェルス社製MARK-IIイオンソースを使用し、イオン化ガスをアルゴン、加速電圧100 V、イオン電流2Aとした。真空槽には反応ガスとしてO2を導入し、真空度を5×10-2Paとした。
Example 1
Infrared cut coat film shown in Table 1 on Pyrex (registered trademark) glass (thermal expansion coefficient 36 × 10 −7 ° C −1 , refractive index 1.474) of 50 mm × 50 mm and thickness 1 mm by ion beam assist method Was deposited. At that time, the Ta 2 O 5 (refractive index 2.26) layer and the SiO 2 (refractive index 1.48) layer were formed using a material having a purity of 99.9% or more. The material of the zinc oxide layer (ZnO + Ga, refractive index 1.92) to which gallium is added is mixed with 99.9% pure zinc oxide and 99.9% pure gallium oxide so that the gallium content is 2.7% by mass in advance. What was done was used. For the ion assist, a MARK-II ion source manufactured by Commonwealth was used, and the ionized gas was argon, the acceleration voltage was 100 V, and the ion current was 2A. O 2 was introduced as a reaction gas into the vacuum chamber, and the degree of vacuum was 5 × 10 −2 Pa.

Figure 0004648813
Figure 0004648813

比較例1
50 mm×50 mm、厚さ1mmの赤外線吸収基板(HA15、熱膨張係数67×10-7-1、屈折率1.524、HOYA株式会社製)に、イオンビームアシスト法により、表2に示す光学膜を成膜した。Ta2O5及びSiO2は、実施例1と同じものを用い、イオンビームアシストの条件も実施例1と同じにした。
Comparative Example 1
Table 2 shows the optics shown in Table 2 using an ion beam assist method on an infrared absorption substrate (HA15, thermal expansion coefficient 67 × 10 −7 ° C −1 , refractive index 1.524, manufactured by HOYA Corporation) with a thickness of 50 mm × 50 mm and thickness 1 mm. A film was formed. Ta 2 O 5 and SiO 2 were the same as in Example 1, and the conditions for ion beam assist were the same as in Example 1.

Figure 0004648813
Figure 0004648813

比較例2
基板上に形成する光学膜の構成を表3の通りとした以外実施例1と同様にして、光学素子を作製した。
Comparative Example 2
An optical element was produced in the same manner as in Example 1 except that the configuration of the optical film formed on the substrate was as shown in Table 3.

Figure 0004648813
表3(続き)
Figure 0004648813
Figure 0004648813
Table 3 (continued)
Figure 0004648813

実施例1、比較例1及び比較例2の赤外カットコート膜の表面における分光透過率をそれぞれ図3〜5に示した。実施例1は、可視域で高い透過率を示し、赤外域(波長800〜2000 nm)では3%以下という低い透過率であった。   The spectral transmittances on the surfaces of the infrared cut coat films of Example 1, Comparative Example 1 and Comparative Example 2 are shown in FIGS. Example 1 showed a high transmittance in the visible region, and a low transmittance of 3% or less in the infrared region (wavelength 800 to 2000 nm).

実施例1の光学素子と比較例1の光学素子を200℃で500時間保持した後、セロハンテープ(登録商標)を貼って剥がすテストをし、膜の状態を観察した。比較例1は、テープと共に膜も剥離したが、実施例1の赤外カットコート膜には全く変化が見られなかった。   After holding the optical element of Example 1 and the optical element of Comparative Example 1 at 200 ° C. for 500 hours, a test was conducted by attaching and removing a cellophane tape (registered trademark), and the state of the film was observed. In Comparative Example 1, the film was peeled off together with the tape, but no change was observed in the infrared cut coat film of Example 1.

本発明の赤外カットコート膜を有する光学素子を示す断面図である。It is sectional drawing which shows the optical element which has the infrared cut coat film of this invention. 本発明の光学素子を有する照明光学系を示す構成図である。It is a block diagram which shows the illumination optical system which has the optical element of this invention. 実施例1の膜面透過率を示すグラフである。3 is a graph showing the film surface transmittance of Example 1. 比較例1の膜面透過率を示すグラフである。5 is a graph showing the film surface transmittance of Comparative Example 1. 比較例2の膜面透過率を示すグラフである。10 is a graph showing the film surface transmittance of Comparative Example 2. 従来の赤外カットフィルターを有する照明光学系の一例を示す構成図である。It is a block diagram which shows an example of the illumination optical system which has the conventional infrared cut filter. 従来の赤外カットフィルターを有する照明光学系の別の例を示す構成図である。It is a block diagram which shows another example of the illumination optical system which has the conventional infrared cut filter. 従来の赤外カットフィルターの膜面透過率を示すグラフである。It is a graph which shows the film surface transmittance | permeability of the conventional infrared cut filter. 従来の赤外カットフィルターの膜面透過率を示すグラフである。It is a graph which shows the film surface transmittance | permeability of the conventional infrared cut filter.

符号の説明Explanation of symbols

1・・・基材
2・・・赤外カットコート膜
21・・・赤外光吸収層
22・・・非吸収層
3・・・光源
31・・・キセノンランプ
32・・・反射鏡
4・・・ライトガイド
Lv・・・可視光
Li・・・赤外光
DESCRIPTION OF SYMBOLS 1 ... Base material 2 ... Infrared cut coat film
21 ... Infrared light absorbing layer
22 ... Non-absorbing layer 3 ... Light source
31 ... Xenon lamp
32 ... Reflector 4 ... Light guide
Lv ・ ・ ・ Visible light
Li: Infrared light

Claims (4)

可視光を透過する層が積層されてなる赤外カットコート膜であって、前記赤外カットコート膜の少なくとも一部が赤外光波長領域に吸収を有する赤外光吸収層と赤外光を吸収しない非吸収層とが交互に積層されており、前記赤外光吸収層は主成分として酸化亜鉛を含有し、副成分としてガリウムを含有し、前記副成分の含有量が0.1〜20質量%であり、800〜2000 nmの赤外光波長領域で0〜5%の透過率を有することを特徴とする赤外カットコート膜。 An infrared cut coat film formed by laminating layers that transmit visible light, wherein at least part of the infrared cut coat film has an infrared light absorption layer and an infrared light having absorption in an infrared light wavelength region. Non-absorbing non-absorbing layers are alternately laminated, the infrared light absorbing layer contains zinc oxide as a main component, gallium as a subcomponent, and the content of the subcomponent is 0.1 to 20% by mass An infrared cut coat film characterized by having a transmittance of 0 to 5% in an infrared light wavelength region of 800 to 2000 nm . 請求項に記載の赤外カットコート膜を基材の表面に形成してなる光学素子。 An optical element formed by forming the infrared cut coat film according to claim 1 on the surface of a substrate. 請求項2に記載の光学素子において、前記基材の熱膨張係数は1×103. The optical element according to claim 2, wherein the base material has a coefficient of thermal expansion of 1 * 10. -7-7 〜50×10~ 50 × 10 -7-7 -1-1 であることを特徴とする光学素子。An optical element characterized by the above. 請求項2又は3に記載の光学素子を有する内視鏡装置。 An endoscope apparatus comprising the optical element according to claim 2 .
JP2005289177A 2005-09-30 2005-09-30 Infrared cut coat film, optical element having infrared cut coat film, and endoscope apparatus having the optical element Expired - Fee Related JP4648813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289177A JP4648813B2 (en) 2005-09-30 2005-09-30 Infrared cut coat film, optical element having infrared cut coat film, and endoscope apparatus having the optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289177A JP4648813B2 (en) 2005-09-30 2005-09-30 Infrared cut coat film, optical element having infrared cut coat film, and endoscope apparatus having the optical element

Publications (2)

Publication Number Publication Date
JP2007101729A JP2007101729A (en) 2007-04-19
JP4648813B2 true JP4648813B2 (en) 2011-03-09

Family

ID=38028743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289177A Expired - Fee Related JP4648813B2 (en) 2005-09-30 2005-09-30 Infrared cut coat film, optical element having infrared cut coat film, and endoscope apparatus having the optical element

Country Status (1)

Country Link
JP (1) JP4648813B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078470B2 (en) 2007-07-05 2012-11-21 ペンタックスリコーイメージング株式会社 Optical low-pass filter and imaging apparatus including the same
JP5008211B2 (en) * 2010-10-01 2012-08-22 株式会社エス・エフ・シー Deposition method
WO2019058833A1 (en) * 2017-09-25 2019-03-28 富士フイルム株式会社 Infrared absorptive material, infrared sensor, wavelength selective light source and radiation cooling system
CN111936896B (en) * 2018-06-28 2022-10-21 Agc株式会社 Optical filter and information acquisition device
CN112596140B (en) * 2020-11-26 2022-11-01 中国航空工业集团公司洛阳电光设备研究所 Infrared long-wave cut-off filter and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249914A (en) * 1995-03-08 1996-09-27 Iwasaki Electric Co Ltd Wind band heat ray cutting filter
JPH09243935A (en) * 1996-03-13 1997-09-19 Olympus Optical Co Ltd Lens with multilayer film filter
JP2715860B2 (en) * 1993-06-30 1998-02-18 三菱マテリアル株式会社 Infrared cutoff film and its forming material
JPH1134216A (en) * 1997-05-21 1999-02-09 Asahi Glass Co Ltd Laminate and glass laminate for window
JP2000221322A (en) * 1999-02-01 2000-08-11 Sony Corp Ultraviolet and infrared ray shielding filter and projection type display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006117979A1 (en) * 2005-04-12 2008-12-18 東海光学株式会社 Infrared cut filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2715860B2 (en) * 1993-06-30 1998-02-18 三菱マテリアル株式会社 Infrared cutoff film and its forming material
JPH08249914A (en) * 1995-03-08 1996-09-27 Iwasaki Electric Co Ltd Wind band heat ray cutting filter
JPH09243935A (en) * 1996-03-13 1997-09-19 Olympus Optical Co Ltd Lens with multilayer film filter
JPH1134216A (en) * 1997-05-21 1999-02-09 Asahi Glass Co Ltd Laminate and glass laminate for window
JP2000221322A (en) * 1999-02-01 2000-08-11 Sony Corp Ultraviolet and infrared ray shielding filter and projection type display device

Also Published As

Publication number Publication date
JP2007101729A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP7404367B2 (en) optical filter
JP4648813B2 (en) Infrared cut coat film, optical element having infrared cut coat film, and endoscope apparatus having the optical element
JP5279428B2 (en) Wide area heat ray cut filter
JP2000314807A (en) Visible light shielding and infrared ray transmitting filter
JP2011503654A (en) Ultraviolet reflective optical element, method for producing ultraviolet reflective optical element, and projection exposure apparatus including ultraviolet reflective optical element
JP2009204577A (en) Light-transmitting member and timepiece provided with same
JP2014148454A (en) Cutting method of glass substrate, glass substrate and near-infrared cut filter glass
JP2003139945A5 (en)
KR20220111321A (en) Optical element with protective coating, method for manufacturing such optical element and optical arrangement
JP2006010764A (en) Optical filter
JP2010191471A (en) Optical filter
JP2007298661A (en) Antireflection film for infrared light
US7963676B2 (en) Reflector window for use in a light lamp
JP3864677B2 (en) Illumination device and color rendering improvement filter
JP2691651B2 (en) Reflector
CN107783218B (en) Deep ultraviolet band-pass filter and preparation method thereof
WO2023008123A1 (en) Film-equipped base material and manufacturing method for same
JP7041424B2 (en) Thin film formation method and optical elements
JPH05241017A (en) Optical interference multilayered film having yellow filter function
JP5730147B2 (en) Optical element and antireflection film for transmitting carbon dioxide laser beam
JP2006292784A (en) Oblique vapor deposition film element
JP2008203493A (en) Image projection device
CN111032271A (en) Laser processing head with an optical element for filtering ultraviolet process radiation and corresponding laser processing method
JP6982951B2 (en) Silicon substrate with functional film for infrared rays
JP2005266211A (en) Multilayer film reflecting mirror

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees