JP4648294B2 - Electrode bonding method and electrode bonding structure - Google Patents

Electrode bonding method and electrode bonding structure Download PDF

Info

Publication number
JP4648294B2
JP4648294B2 JP2006334025A JP2006334025A JP4648294B2 JP 4648294 B2 JP4648294 B2 JP 4648294B2 JP 2006334025 A JP2006334025 A JP 2006334025A JP 2006334025 A JP2006334025 A JP 2006334025A JP 4648294 B2 JP4648294 B2 JP 4648294B2
Authority
JP
Japan
Prior art keywords
insulating adhesive
adhesive resin
insulating
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006334025A
Other languages
Japanese (ja)
Other versions
JP2008147473A (en
Inventor
健太郎 西脇
英信 西川
内田  修
正三 越智
裕平 山下
茂昭 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006334025A priority Critical patent/JP4648294B2/en
Publication of JP2008147473A publication Critical patent/JP2008147473A/en
Application granted granted Critical
Publication of JP4648294B2 publication Critical patent/JP4648294B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive

Landscapes

  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode connection method and electrode connection structure that controls generation of short circuit failure as well as the occurrence of migration failures. <P>SOLUTION: The electrode connection method is to dispose a first insulating adhesive resin 6, in which insulating particles are dispersed, at an edge of a facing area between a first circuit organizer having multiple first electrodes 4A and a second circuit organizer having multiple second electrodes 5A formed such that they face the multiple first electrodes of the first circuit organizer, dispose a second insulating adhesive resin 2, in which conductive particles are dispersed, inside the edge part of the facing area, and to pressurize and heat the first and second insulating adhesive resins through the first or second circuit organizer, thereby electrically connecting the respective first electrodes 4A of the first circuit organizer and the respective second electrodes 5A of the second circuit organizer facing them through the conductive particles, and intermingling the conductive and insulating particles in a close-by region of the edge of the facing area. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、回路形成体の電極に他の回路形成体の電極を、導電性粒子が分散された絶縁性接着剤樹脂を用いて接合する電極接合方法及び電極接合構造体に関する。   The present invention relates to an electrode bonding method and an electrode bonding structure in which an electrode of another circuit forming body is bonded to an electrode of a circuit forming body using an insulating adhesive resin in which conductive particles are dispersed.

従来、ガラス基板やフレキシブル基板等の回路形成体の電極に、他のガラス基板やフレキシブル基板、あるいは電子部品等の回路形成体の電極を電気的に接合する技術として、導電性粒子が分散された絶縁性接着剤樹脂、例えば異方性導電性シートを用いる技術が知られている。この技術は、接合対象となる電極間に異方性導電性シートを配置し、回路形成体を介して異方性導電性シートを圧着ツールで加圧加熱することで、上記絶縁性接着剤樹脂を溶融させて、導電性粒子を介して電極間を導通させる技術である。   Conventionally, conductive particles have been dispersed as a technique for electrically bonding an electrode of a circuit forming body such as another glass substrate or flexible substrate or an electronic component to an electrode of a circuit forming body such as a glass substrate or a flexible substrate. A technique using an insulating adhesive resin such as an anisotropic conductive sheet is known. This technique arranges an anisotropic conductive sheet between electrodes to be joined, and pressurizes and heats the anisotropic conductive sheet with a crimping tool through a circuit forming body, thereby the insulating adhesive resin. Is a technique in which the electrodes are melted and the electrodes are electrically connected through the conductive particles.

この異方性導電性シートを用いる電極接合技術は、様々な形態の電極接合に適応可能であり、例えば、ガラス基板とフレキシブル基板との電極接合(FOG)、ガラス基板とICチップ部品との電極接合(COG)、フレキシブル基板とICチップ部品との電極接合(COF)、プリント配線基板とICチップ部品との電極接合、フレキシブル基板とフレキシブル基板との電極接合、フレキシブル基板とプリント配線基板との電極接合等、幅広く適用されている。   This electrode bonding technique using an anisotropic conductive sheet can be applied to various types of electrode bonding, for example, electrode bonding (FOG) between a glass substrate and a flexible substrate, and an electrode between a glass substrate and an IC chip component. Bonding (COG), electrode bonding (COF) between flexible substrate and IC chip component, electrode bonding between printed wiring substrate and IC chip component, electrode bonding between flexible substrate and flexible substrate, electrode between flexible substrate and printed wiring substrate Widely used for bonding, etc.

近年、例えばガラス基板とフレキシブル基板との電極接合に代表されるフラットパネルの接合技術においては、電極間に高電圧が印加されるときの信頼性の確保とともに、電子機器の高密度化に伴って隣接配線電極間の更なる狭ピッチ化(微細化)が求められている。具体的には、その隣接配線電極間のピッチは、従来求められていた200μm〜100μmから、100μm〜50μm以下まで狭ピッチ化することが求められている。また、例えばガラス基板とICチップ部品との電極接合やフレキシブル基板とICチップ部品との電極接合等の、ICチップ部品をフェイスダウン方式で接合する技術においても、同様に、多機能化に伴いバンプ電極間の更なる狭ピッチ化(微細化)が求められている。具体的には、それらの隣接配線電極間のピッチは、従来求められていた120μm〜80μmから、80μm〜40μm以下まで狭ピッチ化することが求められている。   In recent years, for example, in flat panel bonding technology represented by electrode bonding between a glass substrate and a flexible substrate, along with ensuring the reliability when a high voltage is applied between the electrodes, along with the increase in the density of electronic devices There is a demand for further narrowing (miniaturization) between adjacent wiring electrodes. Specifically, the pitch between adjacent wiring electrodes is required to be narrowed from 200 μm to 100 μm, which has been conventionally required, to 100 μm to 50 μm or less. Similarly, in the technology for bonding IC chip components in a face-down manner, such as electrode bonding between a glass substrate and an IC chip component, or electrode bonding between a flexible substrate and an IC chip component, bumps are also developed along with the increase in functionality. There is a demand for further narrowing (miniaturization) between electrodes. Specifically, the pitch between the adjacent wiring electrodes is required to be narrowed from 120 μm to 80 μm, which has been conventionally required, to 80 μm to 40 μm or less.

上記のレベルまで隣接配線電極間の狭ピッチ化が進むと、異方性導電性シートを用いる電極接合技術においては、ショート不良やマイグレーション不良等の不具合を生じる可能性が高くなる。   When the pitch between adjacent wiring electrodes is reduced to the above level, in the electrode joining technique using the anisotropic conductive sheet, there is a high possibility that defects such as a short circuit failure and a migration failure occur.

ショート不良は、図11Aに示すように、異方性導電性シート101が、例えば第1の電極104Aを有するガラス基板104と、第1の電極104Aと対向するように形成された第2の電極105Aを有するフレキシブル基板105との対向領域100Xに配置された状態で、圧着ツール106により加圧及び加熱されることにより、図11Bに示すように、異方性導電性シート101の絶縁性接着剤樹脂102が溶融して対向領域100Xの縁部の近傍領域100Yに流動し、この流動に伴って異方性導電性シート101の導電性粒子103が近傍領域100Yに流動して凝集することによって起こるものである。
隣接配線電極間100P(図11C参照)が狭ピッチ化(例えば100μm〜50μm以下)すると、隣接する電極と電極との間に電極接合に関与しない導電性粒子103が溜まることができる量が少なくなり、より多くの導電性粒子103が上記近傍領域100Yに押し出されて上記近傍領域100Yで凝集することになるため、ショート不良が起きやすくなる。
As shown in FIG. 11A, the short circuit failure is caused by the anisotropic conductive sheet 101, for example, the glass substrate 104 having the first electrode 104A and the second electrode formed so as to face the first electrode 104A. As shown in FIG. 11B, the insulating adhesive of the anisotropic conductive sheet 101 is pressed and heated by the crimping tool 106 in a state where it is disposed in the region 100X facing the flexible substrate 105 having 105A. This occurs when the resin 102 melts and flows into the vicinity region 100Y of the edge of the opposing region 100X, and the conductive particles 103 of the anisotropic conductive sheet 101 flow and aggregate in the vicinity region 100Y along with this flow. Is.
When the pitch between the adjacent wiring electrodes 100P (see FIG. 11C) is reduced (for example, 100 μm to 50 μm or less), the amount of conductive particles 103 that do not participate in electrode bonding between the adjacent electrodes decreases. More conductive particles 103 are pushed out to the neighboring region 100Y and agglomerate in the neighboring region 100Y, so that a short circuit is likely to occur.

一方、マイグレーション不良は、圧着ツール106による加圧及び加熱時に、絶縁性接着剤樹脂102の流動速度が速過ぎたり遅過ぎたりすることなどにより、ガラス基板104及びフレキシブル基板105と絶縁性接着剤樹脂102とが密着不足になったり、絶縁性接着剤樹脂102中にボイドが発生したりすることによって起こるものである。隣接配線電極間100Pが狭ピッチになると、絶縁性接着剤樹脂102の隣接配線電極間100Pに溜まることができる量が少なくなり、また、絶縁性接着剤樹脂102は圧縮されながら流動するために、絶縁性接着剤樹脂102の流動が速くなって加圧不足の部分が生じ、マイグレーション不良が起きやすくなる。   On the other hand, the migration failure is caused by the insulating adhesive resin being in contact with the glass substrate 104 and the flexible substrate 105 due to the flow rate of the insulating adhesive resin 102 being too fast or too slow when being pressed and heated by the crimping tool 106. This is caused by insufficient adhesion to 102 or voids generated in the insulating adhesive resin 102. When the pitch between the adjacent wiring electrodes 100P becomes a narrow pitch, the amount of the insulating adhesive resin 102 that can be accumulated in the adjacent wiring electrodes 100P decreases, and the insulating adhesive resin 102 flows while being compressed, The flow of the insulating adhesive resin 102 is accelerated, resulting in an insufficiently pressurized portion, which tends to cause a migration failure.

上記ショート不良を解決する技術としては、例えば特許文献1(特開平06−349339号公報)や特許文献2(特開平05−013119号公報)に開示された技術が知られている。特許文献1の技術は、絶縁性接着剤樹脂に導電性粒子が分散された異方性導電性シートに、更に絶縁性粒子を分散させることで、ショート不良を防ぐものである。また、特許文献2の技術は、異方性導電性シートの上に絶縁性粒子を分散した絶縁層を形成することで、ショート不良を防ぐものである。
特開平06−349339号公報 特開平05−013119号公報
As techniques for solving the short circuit defect, for example, techniques disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 06-349339) and Patent Document 2 (Japanese Patent Laid-Open No. 05-013119) are known. The technique of Patent Document 1 prevents short-circuit defects by further dispersing insulating particles in an anisotropic conductive sheet in which conductive particles are dispersed in an insulating adhesive resin. Moreover, the technique of patent document 2 prevents a short circuit defect by forming the insulating layer which disperse | distributed insulating particle | grains on the anisotropic conductive sheet.
Japanese Patent Laid-Open No. 06-349339 JP 05-013119 A

しかしながら、特許文献1及び特許文献2の技術では、絶縁性接着剤樹脂中に導電性粒子に加えて、更に絶縁性粒子が存在することとなるために粒子密度が高くなる。これにより、絶縁性接着剤樹脂の流動性が悪くなり、回路形成体と絶縁性接着剤樹脂との密着性が低下するといった問題がある。また、絶縁性粒子が導電性粒子と回路形成体の電極との接触を阻害して、必要な導通が確保できない可能性もある。   However, in the techniques of Patent Document 1 and Patent Document 2, in addition to the conductive particles, insulating particles are further present in the insulating adhesive resin, so that the particle density is increased. Thereby, the fluidity | liquidity of insulating adhesive resin worsens and there exists a problem that the adhesiveness of a circuit formation body and insulating adhesive resin falls. In addition, the insulating particles may interfere with the contact between the conductive particles and the electrodes of the circuit forming body, and the necessary conduction may not be ensured.

従って、本発明の目的は、上記問題を解決することにあって、回路形成体の電極に他の回路形成体の電極を、導電性粒子が分散された絶縁性接着剤樹脂を用いて接合する電極接合において、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑えた電極接合方法及び電極接合構造体を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problem, and join an electrode of another circuit forming body to an electrode of the circuit forming body using an insulating adhesive resin in which conductive particles are dispersed. An object of the present invention is to provide an electrode bonding method and an electrode bonding structure that suppress the occurrence of short-circuit defects and the occurrence of migration defects in electrode bonding.

上記目的を達成するために、本発明は以下のように構成する。
本発明の第1態様によれば、複数の第1の電極を有するガラス基板の端部と、上記ガラス基板の複数の上記第1の電極にそれぞれ対向するように形成された複数の第2の電極を有するフレキシブル基板の端部との対向領域の両縁部に、絶縁性粒子が分散された第1の絶縁性接着剤樹脂を配置するとともに、上記対向領域の上記両縁部の内側に、導電性粒子が分散された第2の絶縁性接着剤樹脂を配置し、
上記ガラス基板又は上記フレキシブル基板を介して上記第1及び第2の絶縁性接着剤樹脂を加圧加熱して、上記ガラス基板の上記それぞれの第1の電極とそれらに対向する上記フレキシブル基板の上記それぞれの第2の電極とを上記導電性粒子を介して電気的に接合するとともに、上記対向領域の上記両縁部の近傍領域で上記導電性粒子と上記絶縁性粒子とを混在させる、電極接合方法であって、
上記対向領域において上記ガラス基板の端部側の縁部に配置される上記第1の絶縁性接着剤樹脂は、上記対向領域において上記フレキシブル基板の端部側の縁部に配置される上記第1の絶縁性接着剤樹脂より、上記両縁部間を結ぶ方向で幅広く形成され、かつ、上記第1及び第2の絶縁性接着剤樹脂を加圧加熱したのち、上記ガラス基板の端部側の縁部の近傍領域のみ絶縁性封止樹脂により覆い隠す、電極接合方法を提供する。
なお、本発明において前記近傍領域には、前記対向領域の前記縁部の外周の外側で隣接する領域も含まれる。すなわち、前記近傍領域は、第1又は第2の回路形成体の厚み方向で第1の回路形成体と第2の回路形成体とに挟まれていない領域を含む。さらに言い換えれば、前記近傍領域は、ガラス基板とフレキシブル基板との間に第1及び第2の絶縁性接着剤樹脂を挟んだ状態で加圧加熱したときに、第1及び第2の絶縁性接着剤樹脂が第1の回路形成体と第2の回路形成体との間からはみ出した領域を含む。
In order to achieve the above object, the present invention is configured as follows.
According to the first aspect of the present invention, the end portions of the glass substrate having a plurality of first electrodes and the plurality of second electrodes formed to face the plurality of first electrodes of the glass substrate, respectively. The first insulating adhesive resin in which the insulating particles are dispersed is arranged on both edges of the facing area with the end of the flexible substrate having electrodes, and inside the both edges of the facing area, Arranging a second insulating adhesive resin in which conductive particles are dispersed;
The first and second insulating adhesive resins are pressurized and heated through the glass substrate or the flexible substrate, and the first electrode of the glass substrate and the flexible substrate facing the first electrode are the same. Electrode bonding in which each of the second electrodes is electrically bonded through the conductive particles, and the conductive particles and the insulating particles are mixed in a region in the vicinity of the both edges of the facing region. A method,
The first insulating adhesive resin disposed at the edge portion on the end side of the glass substrate in the facing region is the first insulating resin disposed on the edge portion on the end portion side of the flexible substrate in the facing region. The insulating adhesive resin is formed wider than the insulating adhesive resin in the direction connecting the both edges, and after the first and second insulating adhesive resins are heated under pressure , Provided is an electrode bonding method in which only a region near an edge is covered with an insulating sealing resin.
In the present invention, the vicinity region includes a region adjacent outside the outer periphery of the edge of the facing region. That is, the vicinity region includes a region that is not sandwiched between the first circuit formation body and the second circuit formation body in the thickness direction of the first or second circuit formation body. Furthermore, in other words, the neighboring region has the first and second insulating adhesions when heated under pressure with the first and second insulating adhesive resins sandwiched between the glass substrate and the flexible substrate. The area | region which agent resin protruded from between the 1st circuit formation body and the 2nd circuit formation body is included.

本発明の第2態様によれば、上記第1及び第2の絶縁性接着剤樹脂は熱硬化性の樹脂であり、
上記第1の絶縁性接着剤樹脂の溶融温度は上記第2の絶縁性接着剤樹脂の溶融温度よりも低い、第1態様に記載の電極接合方法を提供する。
According to the second aspect of the present invention, the first and second insulating adhesive resins are thermosetting resins,
The electrode joining method according to the first aspect, wherein the melting temperature of the first insulating adhesive resin is lower than the melting temperature of the second insulating adhesive resin.

本発明の第3態様によれば、上記第1及び第2の絶縁性接着剤樹脂は熱硬化性の樹脂であり、
上記第1及び第2の絶縁性接着剤樹脂を加圧加熱したとき、上記第1の絶縁性接着剤樹脂が溶融し始めたのち、上記第2の絶縁性接着剤樹脂が溶融し始め、次いで、上記第1の絶縁性接着剤樹脂が硬化し始めたのち、上記第2の絶縁性接着剤樹脂が硬化を始めるようにされている、第1態様に記載の電極接合方法を提供する。
ここで、「溶融」には、絶縁性接着剤樹脂が軟化していく過程が含まれる。
According to the third aspect of the present invention, the first and second insulating adhesive resins are thermosetting resins,
When the first and second insulating adhesive resins are heated under pressure, after the first insulating adhesive resin begins to melt, the second insulating adhesive resin begins to melt, and then The electrode joining method according to the first aspect, wherein the second insulating adhesive resin starts to harden after the first insulating adhesive resin starts to harden, is provided.
Here, “melting” includes a process in which the insulating adhesive resin is softened.

本発明の第4態様によれば、上記第2の絶縁性接着剤樹脂が硬化し始めるとき、上記第1の絶縁性接着剤樹脂の溶融粘度は、上記第2の絶縁性接着剤樹脂の溶融粘度よりも高い、第3態様に記載の電極接合方法を提供する。
ここで、「溶融粘度」とは、加圧加熱された絶縁性接着剤樹脂の軟化状態での粘度をいう。
According to the fourth aspect of the present invention, when the second insulating adhesive resin starts to cure, the melt viscosity of the first insulating adhesive resin is equal to the melting temperature of the second insulating adhesive resin. The electrode joining method according to the third aspect, which is higher than the viscosity, is provided.
Here, the “melt viscosity” refers to the viscosity in a softened state of the insulating adhesive resin heated under pressure.

本発明の第5態様によれば、上記第1の絶縁性接着剤樹脂の熱伝導率が、上記第2の絶縁性接着剤樹脂の熱伝導率よりも低い、第1〜4態様のいずれか1つに記載の電極接合方法を提供する。   According to a fifth aspect of the present invention, any one of the first to fourth aspects, wherein the thermal conductivity of the first insulating adhesive resin is lower than the thermal conductivity of the second insulating adhesive resin. An electrode joining method as described in one is provided.

本発明の第6態様によれば、上記絶縁性粒子の平均粒子径の大きさが、上記導電性粒子の平均粒子径の大きさに比べて、同一又は小さい、第1〜5態様のいずれか1つに記載の電極接合方法を提供する。   According to the sixth aspect of the present invention, any one of the first to fifth aspects, wherein the average particle size of the insulating particles is the same or smaller than the average particle size of the conductive particles. An electrode joining method as described in one is provided.

本発明の第7態様によれば、上記第1の絶縁性接着剤樹脂における上記絶縁性粒子の体積密度が、上記第2の絶縁性接着剤樹脂における上記導電性粒子の体積密度に比べて、同一又は少ない、第1〜6態様のいずれか1つに記載の電極接合方法を提供する。   According to the seventh aspect of the present invention, the volume density of the insulating particles in the first insulating adhesive resin is larger than the volume density of the conductive particles in the second insulating adhesive resin. The electrode joining method according to any one of the first to sixth aspects, which is the same or less, is provided.

本発明の第8態様によれば、上記導電性粒子が分散された上記第2の絶縁性接着剤樹脂が、異方性導電性シートである、第1〜7態様のいずれか1つに記載の電極接合方法を提供する。   According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the second insulating adhesive resin in which the conductive particles are dispersed is an anisotropic conductive sheet. An electrode joining method is provided.

本発明の第9態様によれば、複数の第1の電極を有するガラス基板と、
上記ガラス基板の複数の上記第1の電極にそれぞれ対向して配置された複数の第2の電極を有するフレキシブル基板と、
上記ガラス基板の端部と上記フレキシブル基板の端部との対向領域の両端部に配置されて両者を接合する絶縁性粒子が分散された第1の絶縁性接着剤樹脂と、
上記対向領域の上記両縁部の内側に配置された、導電性粒子が分散された第2の絶縁性接着剤樹脂と、
を備える電極接合構造体であって、
上記対向領域において上記ガラス基板の端部側の縁部に配置される上記第1の絶縁性接着剤樹脂は、上記対向領域において上記フレキシブル基板の端部側の縁部に配置される上記第1の絶縁性接着剤樹脂より、上記両端部間を結ぶ方向で幅広く形成され、
上記ガラス基板の端部側の縁部の近傍領域のみを覆い隠す絶縁性封止樹脂をさらに備える、電極接合構造体を提供する。
According to the ninth aspect of the present invention, a glass substrate having a plurality of first electrodes;
A flexible substrate having a plurality of second electrodes disposed respectively facing the plurality of first electrodes of the glass substrate;
A first insulating adhesive resin in which insulating particles that are disposed at both ends of an opposing region between the end of the glass substrate and the end of the flexible substrate and in which both are bonded are dispersed;
A second insulating adhesive resin in which conductive particles are dispersed, disposed on the inner side of the both edges of the opposing region;
An electrode joint structure comprising:
The first insulating adhesive resin disposed at the edge portion on the end side of the glass substrate in the facing region is the first insulating resin disposed on the edge portion on the end portion side of the flexible substrate in the facing region. From the insulating adhesive resin, is formed in a wider direction in the direction connecting the both ends,
Provided is an electrode bonding structure further comprising an insulating sealing resin that covers only a region in the vicinity of an edge portion on the end side of the glass substrate.

本発明の第10態様によれば、上記絶縁性粒子の平均粒子径の大きさが、上記導電性粒子の平均粒子径の大きさに比べて、同一又は小さい、第態様に記載の電極接合構造体を提供する。 According to a tenth aspect of the present invention, in the electrode junction according to the ninth aspect, the average particle diameter of the insulating particles is the same or smaller than the average particle diameter of the conductive particles. Provide a structure.

本発明の電極接合方法によれば、ガラス基板フレキシブル基板との対向領域の縁部の近傍領域では、導電性粒子と絶縁性粒子とが混在するようにしているので、絶縁性粒子により導電性粒子の凝集(分散していたものが1つに集まり固まること)が抑制され、ショート不良の発生が抑えられる。また、上記対向領域の縁部に絶縁性粒子が分散された第1の絶縁性接着剤樹脂を配置し、上記対向領域の上記縁部の内側に導電性粒子が分散された第2の絶縁性接着剤樹脂を配置した状態で、第1及び第2の絶縁性接着剤樹脂を加圧加熱するようにしているので、加圧及び加熱した後のガラス基板フレキシブル基板との対向領域の縁部の内側には、全くあるいはほとんど絶縁性粒子が存在しないこととなる。したがって、導電性粒子と各基板との接触は阻害されない。また、電極間の導通が必要な領域では粒子密度が高くならないこととともに、上記対向領域の上記縁部に絶縁性粒子が分散された第1の絶縁性接着剤樹脂が配置されることにより導電性粒子の流動速度が緩和(減速)されるので、各基板と絶縁性接着剤樹脂との密着性は低下しない。したがって、本発明の電極接合方法によれば、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑えて、電極間の狭ピッチ化に対応することができる。 According to the electrode bonding method of the present invention, the conductive particles and the insulating particles are mixed in the region near the edge of the opposing region between the glass substrate and the flexible substrate . Aggregation of particles (dispersed particles gather together and harden) is suppressed, and occurrence of short-circuit defects is suppressed. Further, the first insulating adhesive resin insulating particles are dispersed in the edges of the facing region is arranged, a second inner conductive particles of the opposite edges of the facing region is dispersed Since the first and second insulating adhesive resins are pressurized and heated in a state where the insulating adhesive resin is arranged, the opposing region between the glass substrate and the flexible substrate after the pressing and heating is arranged. There will be no or little insulating particles inside the edge. Therefore, the contact between the conductive particles and each substrate is not hindered. Further, in the region where conduction between the electrodes is required, the particle density does not increase, and the first insulating adhesive resin in which the insulating particles are dispersed is disposed at the edge of the facing region. Since the flow rate of the particles is relaxed (decelerated), the adhesion between each substrate and the insulating adhesive resin does not decrease. Therefore, according to the electrode joining method of the present invention, it is possible to suppress the occurrence of short-circuit defects and suppress the occurrence of migration defects, and cope with the narrow pitch between electrodes.

本発明の電極接合構造体によれば、対向領域の縁部の近傍領域に導電性粒子同士の接触を抑制する絶縁性粒子を備えているので、絶縁性粒子により導電性粒子の凝集が抑制され、ショート不良の発生が抑えられる。また、対向領域の縁部の内側には絶縁性粒子は分散されていないので、導電性粒子と各基板との接触は阻害されず、また、電極間の導通が必要な領域では粒子密度が高くならないので、各基板と絶縁性接着剤樹脂との密着性は低下せず、マイグレーション不良の発生も抑えられる。 According to the electrode bonded structure of the present invention, since the insulating particles that suppress the contact between the conductive particles are provided in the region near the edge of the facing region, aggregation of the conductive particles is suppressed by the insulating particles. The occurrence of short-circuit defects can be suppressed. In addition, since the insulating particles are not dispersed inside the edge of the opposing region, the contact between the conductive particles and each substrate is not hindered, and the particle density is high in the region where conduction between the electrodes is required. Therefore, the adhesion between each substrate and the insulating adhesive resin does not decrease, and the occurrence of migration failure can be suppressed.

本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号を付している。
以下、本発明の最良の実施の形態について、図面を参照しながら説明する。
Before continuing the description of the present invention, the same parts are denoted by the same reference numerals in the accompanying drawings.
The best mode for carrying out the present invention will be described below with reference to the drawings.

《第1実施形態》
図1A〜図1Dを用いて、本発明の第1実施形態にかかる電極接合構造体の構成を説明する。本発明の第1実施形態では、フラットパネルの端子部の接合構造であるガラス基板とフレキシブル基板の接合構造を例にとって説明する。図1Aは、本発明の第1実施形態にかかる電極接合構造体の構成を示す平面図であり、図1Bは、図1Aのa−a断面図であり、図1Cは、図1Aのb−b断面図であり、図1Dは、図1Aのc−c断面図である。
<< First Embodiment >>
The configuration of the electrode joint structure according to the first embodiment of the present invention will be described with reference to FIGS. 1A to 1D. In the first embodiment of the present invention, a description will be given taking as an example a bonding structure of a glass substrate and a flexible substrate, which is a bonding structure of terminal portions of a flat panel. 1A is a plan view showing a configuration of an electrode bonding structure according to a first embodiment of the present invention, FIG. 1B is a cross-sectional view along aa in FIG. 1A, and FIG. 1C is a cross-sectional view along b- in FIG. 1A. It is b sectional drawing, FIG. 1D is cc sectional drawing of FIG. 1A.

本発明の第1実施形態にかかる電極接合構造体は、複数の第1の電極4Aを有する第1の回路形成体の一例であるガラス基板4と、ガラス基板4の複数の第1の電極4Aにそれぞれ対向して配置された複数の第2の電極5Aを有する第2の回路形成体の一例であるフレキシブル基板5と、ガラス基板4とフレキシブル基板5との対向領域51に配置されて両者を接合する絶縁性接着剤樹脂20と、絶縁性接着剤樹脂20中に分散され、ガラス基板4の複数の第1の電極4Aと、それらに対向するフレキシブル基板5の複数の第2の電極5Aとをそれぞれ接続する導電性粒子3と、上記対向領域51の縁部51Aの近傍領域52において絶縁性接着剤樹脂20中に分散され、導電性粒子3同士の接触を抑制する絶縁性粒子7とを備えている。
ここで、「対向領域51の縁部51A」は、全体の電極間の導通にほとんど影響がない部分に位置している。
The electrode joint structure according to the first embodiment of the present invention includes a glass substrate 4 that is an example of a first circuit forming body having a plurality of first electrodes 4A, and a plurality of first electrodes 4A of the glass substrate 4. The flexible substrate 5 which is an example of a second circuit forming body having a plurality of second electrodes 5A disposed to face each other, and the glass substrate 4 and the flexible substrate 5 are disposed in a facing region 51 and both are disposed. Insulating adhesive resin 20 to be joined, a plurality of first electrodes 4A of glass substrate 4 dispersed in insulating adhesive resin 20, and a plurality of second electrodes 5A of flexible substrate 5 facing them Conductive particles 3 that are connected to each other, and insulating particles 7 that are dispersed in the insulating adhesive resin 20 in the vicinity region 52 of the edge portion 51A of the facing region 51 and suppress contact between the conductive particles 3. I have.
Here, “the edge portion 51A of the facing region 51” is located at a portion that hardly affects the conduction between the entire electrodes.

ガラス基板4の複数の第1の電極4Aは、例えば厚さ3μm〜5μm程度の厚膜電極(例えば厚膜銀電極)で構成されている。
フレキシブル基板5の複数の第2の電極5Aは、例えば厚さ10〜20μm程度の厚膜電極(例えば厚膜銅電極)で構成されている。
The plurality of first electrodes 4A of the glass substrate 4 are constituted by thick film electrodes (for example, thick film silver electrodes) having a thickness of about 3 μm to 5 μm, for example.
The plurality of second electrodes 5A of the flexible substrate 5 are constituted by thick film electrodes (for example, thick film copper electrodes) having a thickness of about 10 to 20 μm, for example.

絶縁性接着剤樹脂20は、ガラス基板4の複数の第1の電極4Aとフレキシブル基板5の複数の第2の電極5Aとを封止するように配置されている。また、絶縁性接着剤樹脂20は、絶縁性粒子7が(好ましくは均一に)分散された第1の絶縁性接着剤樹脂6と、導電性粒子3が(好ましくは均一に)分散された第2の絶縁性接着剤樹脂2とで構成されている。第1の絶縁性接着剤樹脂6は、主に対向領域51の縁部51Aの近傍領域52に配置されている。第2の絶縁性接着剤樹脂2は、主に対向領域51の縁部54より内側に配置されている。なお、第1の絶縁性接着剤樹脂6と第2の絶縁性接着剤樹脂2との境界付近は、図1A〜図1Dでは図示の都合上それらが隣接するように示したが、当該境界付近においてそれらが混在していても良い。   The insulating adhesive resin 20 is disposed so as to seal the plurality of first electrodes 4 </ b> A of the glass substrate 4 and the plurality of second electrodes 5 </ b> A of the flexible substrate 5. The insulating adhesive resin 20 includes a first insulating adhesive resin 6 in which the insulating particles 7 are dispersed (preferably uniformly) and a first insulating resin 6 in which the conductive particles 3 are dispersed (preferably uniformly). 2 insulating adhesive resins 2. The first insulating adhesive resin 6 is mainly disposed in the vicinity region 52 of the edge portion 51 </ b> A of the facing region 51. The second insulating adhesive resin 2 is mainly disposed inside the edge portion 54 of the facing region 51. Although the vicinity of the boundary between the first insulating adhesive resin 6 and the second insulating adhesive resin 2 is shown in FIGS. 1A to 1D as being adjacent to each other for the sake of illustration, They may be mixed.

第1の絶縁性接着剤樹脂6は、例えば、加圧されるとともに加熱されたときに低温で且つ短時間で硬化するアクリル樹脂や、耐熱性、耐吸湿性、接着性、絶縁性等の面で機能的に優れたエポキシ樹脂等の熱硬化性樹脂で構成されている。
また、第2の絶縁性接着剤樹脂2も、第1の絶縁性接着剤樹脂6と同様に、例えば、アクリル樹脂やエポキシ樹脂等の熱硬化性樹脂で構成されている。
The first insulating adhesive resin 6 is, for example, an acrylic resin that is cured at a low temperature and in a short time when pressed and heated, and a surface such as heat resistance, moisture absorption resistance, adhesiveness, and insulation. It is composed of a thermosetting resin such as an epoxy resin that is functionally superior.
Moreover, the 2nd insulating adhesive resin 2 is also comprised with thermosetting resins, such as an acrylic resin and an epoxy resin, similarly to the 1st insulating adhesive resin 6. FIG.

導電性粒子3は、例えば、金属球又は樹脂性のボールをコアとして、その表面上にニッケルメッキが形成され、当該ニッケルメッキの表面上にさらに金メッキが形成されてなる粒子である。導電性粒子3の平均粒子径は、3〜15μmの範囲内で形成されることが好ましい。導電性粒子3の平均粒子径が3μm未満である場合には電極間の導通を確保することが困難であり、導電性粒子3の平均粒子径が15μmを越える場合には電極間のショート不良が発生しやすくなるといった不都合がある。   The conductive particle 3 is, for example, a particle in which a metal sphere or a resin ball is used as a core, nickel plating is formed on the surface, and gold plating is further formed on the surface of the nickel plating. The average particle diameter of the conductive particles 3 is preferably formed within a range of 3 to 15 μm. When the average particle diameter of the conductive particles 3 is less than 3 μm, it is difficult to ensure conduction between the electrodes, and when the average particle diameter of the conductive particles 3 exceeds 15 μm, short-circuit failure between the electrodes is caused. There is a disadvantage that it is likely to occur.

絶縁性粒子7は、導電性粒子3同士の接触を抑制する粒子、すなわち、ショート不良が発生するような導電性粒子3の凝集を防止する粒子である。絶縁性粒子7は、例えば、SiO(シリカ)やセラミックス、アルミナ等の絶縁性の材質で形成される。絶縁性粒子7の材質としては、上記の中でも、熱伝導率が低いSiO(シリカ)が選択されることがより好ましい。SiO(シリカ)は絶縁性が高く、吸湿性が低い上に、さらに微粒子状に加工しやすいので、第1の絶縁性接着剤樹脂6に分散される絶縁性粒子7の材質としては最適である。 The insulating particles 7 are particles that suppress contact between the conductive particles 3, that is, particles that prevent aggregation of the conductive particles 3 that cause a short circuit failure. The insulating particles 7 are made of, for example, an insulating material such as SiO 2 (silica), ceramics, or alumina. Among the above, it is more preferable to select SiO 2 (silica) having a low thermal conductivity as the material of the insulating particles 7. Since SiO 2 (silica) has high insulating properties, low hygroscopicity, and is easily processed into fine particles, it is optimal as a material for the insulating particles 7 dispersed in the first insulating adhesive resin 6. is there.

絶縁性粒子7の平均粒子径は、導電性粒子3の平均粒子径と同程度か或いは小さく設定されることが好ましい。絶縁性粒子7の平均粒子径が導電性粒子3の平均粒子径に比べて大きい場合には、接合時に、絶縁性粒子7により導電性粒子3の流動が阻害されてマイグレーション不良が発生する可能性が高くなる。また、絶縁性粒子7は、対向領域51の縁部51Aの近傍領域52に分散されるものであるが、接合時に、電極間の導通が必要な領域(最も縁部51Aに近い第1及び第2の電極4A,5Aから内側の領域)に、僅かながらでも混入してしまうことが有り得る。このような場合に、絶縁性粒子7の平均粒子径が導電性粒子3の平均粒子径に比べて大きいと、導電性粒子3による第1の電極4Aと第2の電極4Bと間の導通が阻害される可能性がある。
なお、絶縁性粒子7の平均粒子径が導電性粒子3の平均粒子径に比べて極端に小さい場合には、絶縁性粒子7が導電性粒子3同士の接触を抑制して導電性粒子3の凝集を防止することが困難になるので、絶縁性粒子7の平均粒子径は、適度な大きさを有するように設定されることが好ましい。具体的には、絶縁性粒子7の平均粒子径は、導電性粒子3の平均粒子径の50%以上で設定されることがより好ましい。
The average particle diameter of the insulating particles 7 is preferably set to be the same as or smaller than the average particle diameter of the conductive particles 3. When the average particle diameter of the insulating particles 7 is larger than the average particle diameter of the conductive particles 3, the flow of the conductive particles 3 may be hindered by the insulating particles 7 at the time of bonding, which may cause migration failure. Becomes higher. Further, the insulating particles 7 are dispersed in the vicinity region 52 of the edge portion 51A of the facing region 51. At the time of bonding, the insulating particles 7 are regions that require conduction between the electrodes (first and It is possible that even a slight amount will be mixed into the second electrode 4A, 5A. In such a case, when the average particle diameter of the insulating particles 7 is larger than the average particle diameter of the conductive particles 3, the conduction between the first electrode 4A and the second electrode 4B by the conductive particles 3 is reduced. May be hindered.
When the average particle diameter of the insulating particles 7 is extremely smaller than the average particle diameter of the conductive particles 3, the insulating particles 7 suppress the contact between the conductive particles 3 and the conductive particles 3. Since it becomes difficult to prevent aggregation, the average particle diameter of the insulating particles 7 is preferably set to have an appropriate size. Specifically, the average particle diameter of the insulating particles 7 is more preferably set to 50% or more of the average particle diameter of the conductive particles 3.

本発明の第1実施形態にかかる電極接合構造体は以上のように構成されている。
本発明の第1実施形態にかかる電極接合構造体によれば、対向領域51の縁部51Aの近傍領域52に導電性粒子3同士の接触を抑制する絶縁性粒子7を備えているので、絶縁性粒子7により導電性粒子3の凝集が抑制され、ショート不良の発生が抑えられる。また、対向領域51の縁部51Aの内側には絶縁性粒子7は分散されていないので、導電性粒子3とガラス基板4及びフレキシブル基板5との接触は阻害されず、また、電極間の導通が必要な領域では粒子密度が高くならないので、ガラス基板4及びフレキシブル基板5と絶縁性接着剤樹脂20との密着性は低下せず、マイグレーション不良の発生も抑えられる。
The electrode joint structure according to the first embodiment of the present invention is configured as described above.
According to the electrode bonded structure according to the first embodiment of the present invention, the insulating region 7 that suppresses the contact between the conductive particles 3 is provided in the region 52 near the edge 51A of the facing region 51. Aggregation of the conductive particles 3 is suppressed by the conductive particles 7 and occurrence of short-circuit defects is suppressed. Further, since the insulating particles 7 are not dispersed inside the edge portion 51A of the facing region 51, the contact between the conductive particles 3, the glass substrate 4 and the flexible substrate 5 is not hindered, and conduction between the electrodes is not caused. Since the particle density does not increase in the region where the resistance is necessary, the adhesion between the glass substrate 4 and the flexible substrate 5 and the insulating adhesive resin 20 does not decrease, and the occurrence of migration failure can be suppressed.

また、本発明の第1実施形態にかかる電極接合構造体によれば、絶縁性粒子7の平均粒子径の大きさが導電性粒子3の平均粒子径の大きさに比べて同一又は小さくなるようにされているので、絶縁性粒子7により導電性粒子3の流動が阻害されることが抑えられ、ショート不良を回避することができるとともにマイグレーション不良の発生を抑えることができる。さらに、接合時に、絶縁性粒子3が意図せず第1及び第2の電極4A,5A間に混入してしまったとしても、導電性粒子3による第1及び第2の電極4A,5A間の導通(電気的接続)を確保することができ、高信頼性の接合品質を実現することができる。   In addition, according to the electrode bonded structure according to the first embodiment of the present invention, the average particle size of the insulating particles 7 is the same or smaller than the average particle size of the conductive particles 3. Therefore, it is possible to suppress the flow of the conductive particles 3 from being hindered by the insulating particles 7, thereby avoiding a short circuit failure and suppressing the occurrence of a migration failure. Further, even when the insulating particles 3 are not intentionally mixed between the first and second electrodes 4A and 5A at the time of joining, between the first and second electrodes 4A and 5A due to the conductive particles 3 Conductivity (electrical connection) can be ensured, and highly reliable joining quality can be realized.

また、本発明の第1実施形態にかかる電極接合構造体によれば、上記のようにマイグレーションの発生が抑えられるので、ガラス基板4の第1の電極4Aを銀で形成することができ、フラットディスプレイパネルなどへの適用が可能となる。   Moreover, according to the electrode junction structure concerning 1st Embodiment of this invention, since generation | occurrence | production of migration is suppressed as mentioned above, the 1st electrode 4A of the glass substrate 4 can be formed with silver, and it is flat. It can be applied to display panels.

なお、上記では第1の回路形成体として、ガラス基板を一例に挙げたがプリント配線基板やフレキシブル基板等であってもよい。また、上記では第2の回路形成体として、フレキシブル基板を一例に挙げたがICチップ等の電子部品であってもよい。
また、上記では、各部材の材質や寸法について例を挙げて説明したが、本発明はこれに限定されるものではなく、種々な態様で変形が可能である。
In the above description, a glass substrate is taken as an example of the first circuit forming body, but a printed wiring board, a flexible board, or the like may be used. In the above description, a flexible substrate is taken as an example of the second circuit forming body, but an electronic component such as an IC chip may be used.
In the above description, the materials and dimensions of each member have been described by way of example. However, the present invention is not limited to this, and can be modified in various ways.

次に、図2A〜図2C、図3、及び図4を用いて、本発明の第1実施形態にかかる電極接合構造体の電極接合方法について説明する。図2A〜図2Cは、本発明の第1実施形態にかかる電極接合構造体の電極接合方法の手順を示す断面図である。図3は、第1の絶縁性接着剤樹脂6と第2の絶縁性接着剤樹脂2の、時間に対する溶融粘度の変化を示すグラフである。図4は、本発明の第1実施形態にかかる電極接合構造体の電極接合方法のフローチャートである。   Next, an electrode bonding method for the electrode bonding structure according to the first embodiment of the present invention will be described with reference to FIGS. 2A to 2C, 3, and 4. 2A to 2C are cross-sectional views illustrating the procedure of the electrode bonding method for the electrode bonding structure according to the first embodiment of the present invention. FIG. 3 is a graph showing the change in melt viscosity with respect to time of the first insulating adhesive resin 6 and the second insulating adhesive resin 2. FIG. 4 is a flowchart of the electrode bonding method for the electrode bonding structure according to the first embodiment of the present invention.

なお、本第1実施形態においては、ガラス基板4とフレキシブル基板5との電極接合を行うのに、図2Bに示す圧着ツール8を使用する。圧着ツール8は、図2Bに示すように、その下端部に加熱用ヒータ8Aを備えるとともに、その上部にエアシリンダ8Bを備え、別途設けられたモータ8Cが駆動することにより上下動可能に構成されている。圧着ツール8は、モータ8Cの駆動によりガラス基板4又はフレキシブル基板5にその下端部が接触し、その接触状態で、エアシリンダ8Bにエアーが供給されてエアシリンダ8Bが駆動するとともに加熱用ヒータ8Aが発熱することで、第1及び第2の絶縁性接着剤樹脂2,6を同時的に加圧するとともに加熱(加圧加熱)するように構成された装置である。
また、本第1実施形態においては、図示していないが、ガラス基板4を下にした状態で圧着ステージである支持台に載置されて電極接合が行われるものとする。
In the first embodiment, the crimping tool 8 shown in FIG. 2B is used to perform electrode bonding between the glass substrate 4 and the flexible substrate 5. As shown in FIG. 2B, the crimping tool 8 includes a heater 8A for heating at the lower end portion thereof, an air cylinder 8B at the upper portion thereof, and is configured to be movable up and down by driving a separately provided motor 8C. ing. The crimping tool 8 has its lower end in contact with the glass substrate 4 or the flexible substrate 5 by the drive of the motor 8C, and in this contact state, air is supplied to the air cylinder 8B to drive the air cylinder 8B and the heater 8A for heating. Is a device configured to simultaneously pressurize and heat (pressurize and heat) the first and second insulating adhesive resins 2 and 6 by generating heat.
Further, in the first embodiment, although not shown, it is assumed that electrode bonding is performed by placing the glass substrate 4 on a support table that is a pressure-bonding stage with the glass substrate 4 facing down.

まず、ステップS1では、複数の第1の電極4Aを有するガラス基板4と、ガラス基板4の複数の第1の電極4Aにそれぞれ対向するように形成された複数の第2の電極5Aを有する第2の回路成形体5との対向領域51の縁部51Aに、図2Bに示すように、絶縁性粒子7が分散された第1の絶縁性接着剤樹脂6を配置するとともに、対向領域51の縁部51Aの内側に第1の絶縁性接着剤樹脂6に隣接して、導電性粒子3が分散された第2の絶縁性接着剤樹脂2を配置する。   First, in step S1, a glass substrate 4 having a plurality of first electrodes 4A and a second electrode 5A having a plurality of second electrodes 5A formed to face the plurality of first electrodes 4A of the glass substrate 4, respectively. As shown in FIG. 2B, the first insulating adhesive resin 6 in which the insulating particles 7 are dispersed is disposed on the edge 51 </ b> A of the facing region 51 with the second circuit molded body 5. The second insulating adhesive resin 2 in which the conductive particles 3 are dispersed is disposed inside the edge portion 51 </ b> A adjacent to the first insulating adhesive resin 6.

上記ステップS1のように第1及び第2の絶縁性接着剤樹脂2,6を配置する方法としては、種々の方法がある。例えば、ガラス基板4の複数の第1の電極4A又はフレキシブル基板5の複数の電極5A上で且つ対向領域51の縁部51Aに絶縁性粒子7が分散された第1の絶縁性接着剤樹脂6を貼り付けるとともに、ガラス基板4の複数の第1の電極4A又はフレキシブル基板5の複数の電極5A上で且つ対向領域51の縁部51Aの内側に、導電性粒子3が分散された第2の絶縁性接着剤樹脂2を貼り付けたのち、ガラス基板4及びフレキシブル基板5を重ね合わせることでも、上記配置を実現することができる。図2Aは、一例として、ガラス基板4の複数の第1の電極4A上に異方性導電性シート1を貼り付け、フレキシブル基板5の複数の第2の電極5A上に絶縁性粒子7が分散された第1の絶縁性接着剤樹脂6を貼り付けた状態を示している。   There are various methods for arranging the first and second insulating adhesive resins 2 and 6 as in step S1. For example, the first insulating adhesive resin 6 in which the insulating particles 7 are dispersed on the plurality of first electrodes 4 </ b> A of the glass substrate 4 or the plurality of electrodes 5 </ b> A of the flexible substrate 5 and on the edge 51 </ b> A of the facing region 51. And the conductive particles 3 are dispersed on the plurality of first electrodes 4A of the glass substrate 4 or the plurality of electrodes 5A of the flexible substrate 5 and inside the edge portion 51A of the facing region 51. The above arrangement can also be realized by attaching the insulating adhesive resin 2 and then superposing the glass substrate 4 and the flexible substrate 5. In FIG. 2A, as an example, the anisotropic conductive sheet 1 is pasted on the plurality of first electrodes 4A of the glass substrate 4, and the insulating particles 7 are dispersed on the plurality of second electrodes 5A of the flexible substrate 5. The state which affixed 1st insulating adhesive resin 6 was shown is shown.

なお、対向領域51の縁部51Aは、上記したように、全体の電極間の導通にほとんど影響がない部分に位置している。例えば、電極間の導通が必要な領域である縁部51Aの内側に配置される第2の絶縁性接着剤樹脂2の長さ(図2Bの横方向)が3mmである場合には、縁部51Aに配置される第1の絶縁性接着剤樹脂6の長さは0.1mm〜1.0mm程度である。   In addition, the edge part 51A of the opposing area | region 51 is located in the part which has little influence on the conduction | electrical_connection between the whole electrodes as mentioned above. For example, when the length (the horizontal direction in FIG. 2B) of the second insulating adhesive resin 2 disposed inside the edge 51A, which is a region where conduction between electrodes is required, is 3 mm, the edge The length of the first insulating adhesive resin 6 disposed at 51A is about 0.1 mm to 1.0 mm.

なお、第1の絶縁性接着剤樹脂6は、第2の絶縁性接着剤樹脂2が加圧されるとともに加熱されたときに流動する側、すなわち導電性粒子3の凝集が起きやすい部分に配置されていればよく、第2の絶縁性接着剤樹脂2の全周に配置される必要はない。例えば、第2の絶縁性接着剤樹脂2が図1Aの左右に向かってのみ流動する場合には、その左右両側に配置されていればよい。また、導電性粒子3の凝集が起きやすい部分であっても、ショート不良を発生する可能性が低い又は無い部分には、第1の絶縁性接着剤樹脂6を配置する必要はない。なお、本発明の第1実施形態においては、主にガラス基板4の端部側(図2Bの右側)に向かって第2の絶縁性接着剤樹脂2が流動するものとし、フレキシブル基板5の端部側(図2Bの左側)には、ほとんど第2の絶縁性接着剤樹脂2が流動しないものとして各図を図示している。したがって、ガラス基板4の端部側の縁部51Aに配置される第1の絶縁性接着剤樹脂6は、フレキシブル基板5の端部側の縁部51Aに配置される第1の絶縁性接着剤樹脂6よりも大きく形成している。
The first insulating adhesive resin 6 is arranged on the side that flows when the second insulating adhesive resin 2 is pressurized and heated, that is, on the portion where the aggregation of the conductive particles 3 is likely to occur. It is only necessary that the second insulating adhesive resin 2 is disposed around the entire circumference. For example, when the second insulating adhesive resin 2 flows only in the left and right directions in FIG. 1A, the second insulating adhesive resin 2 may be disposed on both the left and right sides. Even if the conductive particles 3 are likely to aggregate, it is not necessary to dispose the first insulating adhesive resin 6 in a portion where the possibility of short circuit failure is low or absent. In the first embodiment of the present invention, the second insulating adhesive resin 2 flows mainly toward the end side of the glass substrate 4 (the right side in FIG. 2B), and the end of the flexible substrate 5 Each figure is illustrated on the part side (left side of FIG. 2B) on the assumption that the second insulating adhesive resin 2 hardly flows. Therefore, the first insulating adhesive resin 6 disposed on the edge 51 </ b> A on the end side of the glass substrate 4 is the first insulating adhesive disposed on the edge 51 </ b> A on the end side of the flexible substrate 5. It is formed larger than the resin 6.

なお、上記ステップS1で用いる第2の絶縁性接着剤樹脂2の形態は、ペースト状であってもシート(フィルム)化されたものでもよい。例えば、異方性導電性ペーストや異方性導電性フィルム、異方性導電性シートであってもよい。それらの中でも異方性導電性シートが用いられることが、加工性や取り扱い性が優れているので好ましい。   In addition, the form of the 2nd insulating adhesive resin 2 used by said step S1 may be a paste form, or the sheet (film) form. For example, an anisotropic conductive paste, an anisotropic conductive film, or an anisotropic conductive sheet may be used. Among them, it is preferable to use an anisotropic conductive sheet because of excellent workability and handleability.

また、第2の絶縁性接着剤樹脂2の厚さは、15μm〜60μmの範囲で設定されることが好ましい。第2の絶縁性接着剤樹脂2の厚さが、15μm未満である場合には、第1及び第2の電極4A,5A間の電極接合強度が不足し剥がれ易くなり、60μmを越える場合には、第1及び第2の電極4A,5A間の電気的接続が取り難くなる。また、第2の絶縁性接着剤樹脂2の厚さは、第1の電極4A又は第2の電極5Aの厚さに応じて設定されることが好ましく、例えば第1の電極4A又は第2の電極5Aの厚さが10〜20μmであれば、35μm〜50μm程度の範囲で設定されることが好ましい。   The thickness of the second insulating adhesive resin 2 is preferably set in the range of 15 μm to 60 μm. When the thickness of the second insulating adhesive resin 2 is less than 15 μm, the electrode bonding strength between the first and second electrodes 4A and 5A becomes insufficient and easily peels, and when the thickness exceeds 60 μm It becomes difficult to establish electrical connection between the first and second electrodes 4A and 5A. The thickness of the second insulating adhesive resin 2 is preferably set according to the thickness of the first electrode 4A or the second electrode 5A, for example, the first electrode 4A or the second electrode If the thickness of the electrode 5A is 10 to 20 μm, it is preferably set in a range of about 35 μm to 50 μm.

また、第2の絶縁性接着剤樹脂2の形状は、特に限定されるものではなく、その幅及び長さはそれぞれ、第1の電極4A又は第2の電極5Aの形状に応じるとともに導電性粒子3により第1及び第2の電極4A,5A間の電気的接続が確保できるように設定されればよい。   In addition, the shape of the second insulating adhesive resin 2 is not particularly limited, and the width and length thereof depend on the shape of the first electrode 4A or the second electrode 5A, and are conductive particles. 3 may be set so that electrical connection between the first and second electrodes 4A and 5A can be secured.

上記ステップS1で用いる第1の絶縁性接着剤樹脂6の形態は、第2の絶縁性接着剤樹脂2と同様に、ペースト状であってもシート(フィルム)化されたものでもよい。もし、第1の絶縁性接着剤樹脂6としてペースト状の形態のものを用いる場合には、例えば、ディスペンサによる塗布やマスク印刷、コータ塗工等の方法により、ガラス基板4又はフレキシブル基板5の複数の第1又は第2の電極4A,5A上に供給すればよい。また、ペースト状の形態の第1の絶縁性接着剤樹脂6を、コータ塗工等の公知の方法でシート状にしてリールに巻き取り、必要に応じてリール供給するようにしてもよい。   The form of the first insulating adhesive resin 6 used in the step S1 may be a paste or a sheet (film) as in the case of the second insulating adhesive resin 2. If a paste-like form is used as the first insulating adhesive resin 6, a plurality of glass substrates 4 or flexible substrates 5 can be formed by a method such as application by a dispenser, mask printing, or coater coating, for example. The first and second electrodes 4A and 5A may be supplied. Alternatively, the first insulating adhesive resin 6 in the form of a paste may be formed into a sheet by a known method such as coater coating, wound around a reel, and supplied to the reel as necessary.

また、第1の絶縁性接着剤樹脂6の厚さは、第2の絶縁性接着剤樹脂2の厚さと同等程度か或いはそれ以下に設定されることが好ましい。第1の絶縁性接着剤樹脂6の厚さが、第2の絶縁性接着剤樹脂2の厚さに比べて大きい場合には、図2Bに示すようにガラス基板4とフレキシブル基板5とを重ね合わせたときに、第1及び第2の絶縁性接着剤樹脂2,6の厚さ方向の高さにバラツキが生じ、このバラツキにより位置ズレが生じて、接続不良に繋がる可能性がある。
また、第1の絶縁性接着剤樹脂6の形状は、特に限定されるものではなく、その幅及び長さはそれぞれ、第1の電極4A又は第2の電極5Aの形状に応じて設定されればよい。
In addition, the thickness of the first insulating adhesive resin 6 is preferably set to be approximately equal to or less than the thickness of the second insulating adhesive resin 2. When the thickness of the first insulating adhesive resin 6 is larger than the thickness of the second insulating adhesive resin 2, the glass substrate 4 and the flexible substrate 5 are overlapped as shown in FIG. 2B. When they are combined, the first and second insulating adhesive resins 2 and 6 vary in height in the thickness direction, and this variation may cause misalignment, leading to poor connection.
Further, the shape of the first insulating adhesive resin 6 is not particularly limited, and the width and length thereof are set according to the shape of the first electrode 4A or the second electrode 5A, respectively. That's fine.

また、第1の絶縁性接着剤樹脂6における絶縁性粒子7の体積密度は、第2の絶縁性接着剤樹脂2における導電性粒子3の体積密度に比べて同程度か或いは小さいことが好ましい。第1の絶縁性接着剤樹脂6における絶縁性粒子7の体積密度が第2の絶縁性接着剤樹脂2における導電性粒子3の体積密度に比べて大きい場合には、導電性粒子3が流動するときに、絶縁性粒子7が防壁となって導電性粒子3の流動が阻害され、導電性粒子3が凝集しやすくなる。さらに、絶縁性接着剤粒子3が対向領域51の縁部51Aの内側(電極接合側)に多量に混入して、導電性粒子3による第1及び第2の電極4A,5A間の電気的接続を阻害する可能性が高くなる。
なお、第1の絶縁性接着剤樹脂6における絶縁性粒子7の体積密度が第2の絶縁性接着剤樹脂2における導電性粒子3の体積密度に比べて極端に小さい場合には、絶縁性粒子7が導電性粒子3同士の接触を抑制して導電性粒子3の凝集を防止することが困難になるので、絶縁性粒子7の体積密度は、適度な大きさを有するように設定されることが好ましい。具体的には、絶縁性粒子7の体積密度は、導電性粒子3の体積密度の50%以上で設定されることがより好ましい。
In addition, the volume density of the insulating particles 7 in the first insulating adhesive resin 6 is preferably the same or smaller than the volume density of the conductive particles 3 in the second insulating adhesive resin 2. When the volume density of the insulating particles 7 in the first insulating adhesive resin 6 is larger than the volume density of the conductive particles 3 in the second insulating adhesive resin 2, the conductive particles 3 flow. In some cases, the insulating particles 7 serve as a barrier to inhibit the flow of the conductive particles 3 and the conductive particles 3 tend to aggregate. Further, the insulating adhesive particles 3 are mixed in a large amount on the inner side (electrode bonding side) of the edge portion 51A of the facing region 51, and the electrical connection between the first and second electrodes 4A and 5A by the conductive particles 3 is performed. The possibility of inhibiting is increased.
If the volume density of the insulating particles 7 in the first insulating adhesive resin 6 is extremely smaller than the volume density of the conductive particles 3 in the second insulating adhesive resin 2, the insulating particles 7 makes it difficult to prevent contact between the conductive particles 3 and prevent aggregation of the conductive particles 3, so that the volume density of the insulating particles 7 is set to have an appropriate size. Is preferred. Specifically, the volume density of the insulating particles 7 is more preferably set to 50% or more of the volume density of the conductive particles 3.

また、図3に示すように、第1の絶縁性接着剤樹脂6(図3では太線で示す)は、第2の絶縁性接着剤樹脂2(図3では破線で示す)よりも先に溶融して硬化し始め、その後、第2の絶縁性接着剤樹脂2が溶融して硬化し始めたときには、その溶融粘度が第2の絶縁性接着剤樹脂2の溶融粘度よりも高く又は同程度になるように構成されることが好ましい。   Also, as shown in FIG. 3, the first insulating adhesive resin 6 (shown by a thick line in FIG. 3) melts before the second insulating adhesive resin 2 (shown by a broken line in FIG. 3). Then, when the second insulating adhesive resin 2 starts to melt and harden, the melt viscosity is higher than or equal to the melt viscosity of the second insulating adhesive resin 2. It is preferable to be configured as follows.

このような構成は、例えば、第1の絶縁性接着剤樹脂6の最低溶融粘度Fに達する溶融温度を第2の絶縁性接着剤樹脂2の最低溶融粘度Fに達する溶融温度よりも低く又は同程度にすることでも実現可能である。具体的には、例えば第2の絶縁性接着剤樹脂2として異方性導電性シートを用いたときには、一般的な異方性導電性シートの溶融温度が120〜130℃程度であるので、第1の絶縁性接着剤樹脂6の溶融温度は、120〜130℃よりも低い温度(好ましくは80〜120℃)に設定すればよい。 Such a configuration, for example, lowers the melting temperature at which the first insulating adhesive resin 6 reaches the minimum melt viscosity F 1 lower than the melting temperature at which the second insulating adhesive resin 2 reaches the minimum melt viscosity F 2. Alternatively, it can be realized by setting the same level. Specifically, for example, when an anisotropic conductive sheet is used as the second insulating adhesive resin 2, the melting temperature of a general anisotropic conductive sheet is about 120 to 130 ° C. What is necessary is just to set the melting temperature of 1 insulating adhesive resin 6 to the temperature lower than 120-130 degreeC (preferably 80-120 degreeC).

なお、第1の絶縁性接着剤樹脂6の溶融温度を第2の絶縁性接着剤樹脂2の溶融温度よりも高く(上記例では120〜130℃以上)した場合には、第2の絶縁性接着剤樹脂2が先に最低溶融粘度に達して硬化を開始したのち、第1の絶縁性接着剤樹脂6が遅れて最低溶融粘度に達して硬化を開始することになる。この場合、対向領域51の縁部51A側により多くの量の導電性粒子3が流動して凝集しやすい状態になり、導電性粒子3の凝集を抑制することができない可能性がある。また、第1の絶縁性接着剤樹脂6の溶融温度を第2の絶縁性接着剤樹脂2の溶融温度よりも極端に低くして、第2の絶縁性接着剤樹脂2が溶融を開始する前に、第1の絶縁性接着剤樹脂6が溶融したのち硬化している状態にある場合には、絶縁性粒子7と導電性粒子3とが効果的に混在せず、導電性粒子3の凝集を抑制することができない可能性がある。   When the melting temperature of the first insulating adhesive resin 6 is higher than the melting temperature of the second insulating adhesive resin 2 (120 to 130 ° C. or more in the above example), the second insulating property After the adhesive resin 2 first reaches the minimum melt viscosity and starts to be cured, the first insulating adhesive resin 6 is delayed and reaches the minimum melt viscosity to start the cure. In this case, a large amount of the conductive particles 3 tends to flow and aggregate on the edge 51A side of the facing region 51, and the aggregation of the conductive particles 3 may not be suppressed. Further, the melting temperature of the first insulating adhesive resin 6 is made extremely lower than the melting temperature of the second insulating adhesive resin 2 and the second insulating adhesive resin 2 starts to melt. Further, when the first insulating adhesive resin 6 is in a cured state after being melted, the insulating particles 7 and the conductive particles 3 are not effectively mixed, and the conductive particles 3 are aggregated. May not be suppressed.

上記のように、第1及び第2の絶縁性接着剤樹脂2,6の溶融粘度及び溶融温度を調整する方法としては、例えば、第1の絶縁性接着剤樹脂6と第2の絶縁性接着剤樹脂2の材質を異種材料(異種成分)とする方法や、分子量に差をつける方法などがある。また、第1及び第2の絶縁性接着剤樹脂2,6の、時間に対する溶融粘度の変化に差をつける方法としては、例えば、第1の絶縁性接着剤樹脂6の熱伝導率が第2の絶縁性接着剤樹脂2の熱伝導率よりも低くなるように第1の絶縁性接着剤樹脂6に分散される絶縁性粒子7の材質を適宜選択する方法などがある。   As described above, as a method of adjusting the melt viscosity and the melt temperature of the first and second insulating adhesive resins 2 and 6, for example, the first insulating adhesive resin 6 and the second insulating adhesive can be used. There are a method of making the material of the agent resin 2 a different material (a different component), a method of making a difference in molecular weight, and the like. Moreover, as a method of making a difference in the change in melt viscosity with respect to time of the first and second insulating adhesive resins 2 and 6, for example, the thermal conductivity of the first insulating adhesive resin 6 is the second. There is a method of appropriately selecting the material of the insulating particles 7 dispersed in the first insulating adhesive resin 6 so as to be lower than the thermal conductivity of the insulating adhesive resin 2.

上記ステップS1に次いで、ステップS2では、圧着ツール8によりガラス基板4又はフレキシブル基板5を介して第1及び第2の絶縁性接着剤樹脂2,6を同時的に加圧するとともに加熱して、ガラス基板4の複数の第1の電極4Aとそれらに対向するフレキシブル基板5の複数の第2の電極5Aとを導電性粒子3を介してそれぞれ電気的に接合するとともに、対向領域51の縁部51Aの近傍領域52で導電性粒子3と絶縁性粒子7とを混在させる。   Subsequent to step S1, in step S2, the first and second insulating adhesive resins 2 and 6 are simultaneously pressurized and heated by the crimping tool 8 via the glass substrate 4 or the flexible substrate 5, and the glass is heated. The plurality of first electrodes 4 </ b> A of the substrate 4 and the plurality of second electrodes 5 </ b> A of the flexible substrate 5 that oppose them are electrically joined to each other through the conductive particles 3, and the edge portion 51 </ b> A of the facing region 51. The conductive particles 3 and the insulating particles 7 are mixed in the vicinity region 52.

このステップS2における第1の絶縁性接着剤樹脂6と第2の絶縁性接着剤樹脂2の、時間に対する溶融粘度の変化を、図3を用いて詳しく説明する。図3においては、第1の絶縁性接着剤樹脂6の時間に対する溶融粘度の変化を太線で示し、第2の絶縁性接着剤樹脂2の時間に対する溶融粘度の変化を破線で示している。   The change in the melt viscosity with respect to time of the first insulating adhesive resin 6 and the second insulating adhesive resin 2 in step S2 will be described in detail with reference to FIG. In FIG. 3, the change of the melt viscosity with respect to time of the first insulating adhesive resin 6 is indicated by a bold line, and the change of the melt viscosity with respect to time of the second insulating adhesive resin 2 is indicated by a broken line.

図2Bに示すようにガラス基板4及びフレキシブル基板5を第1及び第2の絶縁性接着剤樹脂2,6をそれらの間に挟んで重ね合わせた状態で、圧着ツール8を用いてフレキシブル基板5を介して第1及び第2の絶縁性接着剤樹脂2,6を同時的に加圧するとともに加熱したとき、まず、第1の絶縁性接着剤樹脂6が第2の絶縁性接着剤樹脂2よりも先に溶融(軟化)して流動し始め、最低溶融粘度Fに達する(図3の領域A)。このとき、第2の絶縁性接着剤樹脂2は、第1の絶縁性接着剤樹脂6に後追いして溶融し流動し始め、最低溶融粘度Fに達する(図3の領域C)。すなわち、第1の絶縁性接着剤樹脂6が最低溶融粘度に達したときには、第2の絶縁性接着剤樹脂2は軟化して流動している状態にあり、そのときの第2の絶縁性接着剤樹脂2の溶融粘度は、第1の絶縁性接着剤樹脂6の溶融粘度よりも高くなっている。 As shown in FIG. 2B, the glass substrate 4 and the flexible substrate 5 are stacked using the crimping tool 8 with the first and second insulating adhesive resins 2 and 6 being sandwiched between them. When the first and second insulating adhesive resins 2 and 6 are simultaneously pressurized and heated through the first and second insulating adhesive resins 6, first, the first insulating adhesive resin 6 is more than the second insulating adhesive resin 2. First, it melts (softens) and starts to flow and reaches the minimum melt viscosity F 1 (region A in FIG. 3). At this time, the second insulating adhesive resin 2 begins to melt and catch-up flow to the first insulating adhesive resin 6, it reaches the minimum melt viscosity F 2 (area of Figure 3 C). That is, when the first insulating adhesive resin 6 reaches the minimum melt viscosity, the second insulating adhesive resin 2 is in a softened and flowing state, and the second insulating adhesive at that time The melt viscosity of the agent resin 2 is higher than the melt viscosity of the first insulating adhesive resin 6.

第1の絶縁性接着剤樹脂6は、最低溶融粘度Fに達したのち、徐々に硬化し、硬化状態に達する(図3の領域B)。この第1の絶縁性接着剤樹脂6の硬化の過程で、第2の絶縁性接着剤樹脂2は最低溶融粘度Fに達する。このとき、第1の絶縁性接着剤樹脂6の溶融粘度は、第2の絶縁性接着剤樹脂2の溶融粘度よりも高くなっている。
第2の絶縁性接着剤樹脂2は、最低溶融粘度Fに達したのち、徐々に硬化し、第1の絶縁性接着剤樹脂6に後追いして硬化状態に達する(図3の領域D)。
The first insulating adhesive resin 6, after reaching a minimum melt viscosity F 1, and cured gradually reaches cured state (region in FIG. 3 B). In the course of curing of the first insulating adhesive resin 6, a second insulating adhesive resin 2 reaches the minimum melt viscosity F 2. At this time, the melt viscosity of the first insulating adhesive resin 6 is higher than the melt viscosity of the second insulating adhesive resin 2.
After the second insulating adhesive resin 2 reaches the minimum melt viscosity F 2 , it gradually cures and follows the first insulating adhesive resin 6 to reach a cured state (region D in FIG. 3). .

このような溶融形態の関係から、第1の絶縁性接着剤樹脂6が溶融(軟化)して流動を開始してから、第2の絶縁性接着剤樹脂2が溶融(軟化)して流動を開始するまでの図3のIの期間は、複数の第1又は第2の電極4A,5Aの電極間への第2の絶縁性接着剤樹脂2の充填性を高めて、加圧不足による第2の絶縁性接着剤樹脂2とガラス基板4及びフレキシブル基板5との密着性を向上させるプロセスとなる。   From such a melting state relationship, after the first insulating adhesive resin 6 is melted (softened) and starts to flow, the second insulating adhesive resin 2 melts (softens) and flows. In the period I in FIG. 3 until the start, the filling property of the second insulating adhesive resin 2 between the plurality of first or second electrodes 4A and 5A is increased, and the first due to insufficient pressurization. This is a process for improving the adhesion between the insulating adhesive resin 2 and the glass substrate 4 and the flexible substrate 5.

また、第2の絶縁性接着剤樹脂2が溶融(軟化)して流動を開始してから最低溶融粘度Fに達するまでの図3のIIの期間は、第1の絶縁性接着剤樹脂6が第2の絶縁性接着剤樹脂2に先行して溶融し硬化することにより、第2の絶縁性接着剤樹脂2及び導電性粒子3の流動性が緩和されるので、加圧不足による第2の絶縁性接着剤樹脂2とガラス基板4及びフレキシブル基板5との密着性を向上させるとともに、絶縁性粒子7が導電性粒子3の凝集を抑制するプロセスとなる。 Further, the period II in FIG. 3 from when the second insulating adhesive resin 2 melts (softens) and starts to flow until it reaches the minimum melt viscosity F 2 is the first insulating adhesive resin 6. Since the fluidity of the second insulating adhesive resin 2 and the conductive particles 3 is eased by melting and curing prior to the second insulating adhesive resin 2, the second due to insufficient pressurization. This improves the adhesion between the insulating adhesive resin 2 and the glass substrate 4 and the flexible substrate 5, and the insulating particles 7 suppress the aggregation of the conductive particles 3.

また、第2の絶縁性接着剤樹脂2が最低溶融粘度Fに達してから硬化状態に達するまでの図3のIIIの期間は、導電性粒子3が絶縁性粒子7により凝集が抑制されて分散された状態で第1及び第2の絶縁性接着剤樹脂2,6が硬化するプロセスとなる。 Further, during the period III in FIG. 3 from when the second insulating adhesive resin 2 reaches the minimum melt viscosity F 2 until reaching the cured state, the conductive particles 3 are prevented from aggregating by the insulating particles 7. The first and second insulating adhesive resins 2 and 6 are cured in a dispersed state.

本発明の第1実施形態にかかる電極接合方法によれば、ガラス基板4とフレキシブル基板5との対向領域51の縁部51Aの近傍領域52では、導電性粒子3と絶縁性粒子7とが混在するようにしているので、絶縁性粒子7により導電性粒子3の凝集が抑制され、ショート不良の発生が抑えられる。また、対向領域51の縁部51Aに絶縁性粒子7が分散された第1の絶縁性接着剤樹脂6を配置し、対向領域51の縁部51Aの内側に導電性粒子3が分散された第2の絶縁性接着剤樹脂2を配置した状態で、第1及び第2の絶縁性接着剤樹脂2,6を加圧するとともに加熱するようにしているので、加圧及び加熱した後のガラス基板4とフレキシブル基板5との対向領域51の縁部51Aの内側には、全くあるいはほとんど絶縁性粒子7が存在しないこととなる。したがって、導電性粒子3とガラス基板4及びフレキシブル基板5との接触(電気的接続)は阻害されない。また、電極間の導通が必要な領域では粒子密度が高くならないこととともに、対向領域51の縁部51Aに絶縁性粒子7が分散された第1の絶縁性接着剤樹脂6が配置されることにより導電性粒子3の流動速度が緩和(減速)されるので、第1及び第2の回路成形体4,5と第2の絶縁性接着剤樹脂2との密着性は低下しない。したがって、本発明の第1実施形態にかかる電極接合方法によれば、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑えて、例えば0.1mm以下の電極間の狭ピッチ化に対応することができるとともに電極間に高電圧が印加されるときの信頼性も確保することができる。これにより、特にガラス基板とフレキシブル基板との電極接合に代表されるフラットパネルの接合技術においては、本発明の第1実施形態にかかる電極接合方法は、その効果が絶大である。   According to the electrode bonding method according to the first embodiment of the present invention, the conductive particles 3 and the insulating particles 7 are mixed in the vicinity region 52 of the edge portion 51 </ b> A of the facing region 51 between the glass substrate 4 and the flexible substrate 5. As a result, the insulating particles 7 suppress the aggregation of the conductive particles 3 and suppress the occurrence of short circuit defects. In addition, the first insulating adhesive resin 6 in which the insulating particles 7 are dispersed is disposed at the edge 51A of the facing region 51, and the conductive particles 3 are dispersed inside the edge 51A of the facing region 51. Since the first and second insulating adhesive resins 2 and 6 are pressurized and heated in a state where the two insulating adhesive resins 2 are arranged, the glass substrate 4 after being pressurized and heated is used. No or almost no insulating particles 7 are present inside the edge 51 </ b> A of the facing region 51 facing the flexible substrate 5. Therefore, contact (electrical connection) between the conductive particles 3 and the glass substrate 4 and the flexible substrate 5 is not hindered. In addition, the particle density does not increase in the region where conduction between the electrodes is necessary, and the first insulating adhesive resin 6 in which the insulating particles 7 are dispersed is arranged on the edge 51A of the facing region 51. Since the flow rate of the conductive particles 3 is relaxed (decelerated), the adhesion between the first and second circuit molded bodies 4 and 5 and the second insulating adhesive resin 2 does not decrease. Therefore, according to the electrode joining method according to the first embodiment of the present invention, it is possible to suppress the occurrence of short-circuit defects and suppress the occurrence of migration defects, and cope with a narrow pitch between electrodes of, for example, 0.1 mm or less. In addition, it is possible to ensure reliability when a high voltage is applied between the electrodes. Thereby, especially in the flat panel joining technique represented by the electrode joining of the glass substrate and the flexible substrate, the effect of the electrode joining method according to the first embodiment of the present invention is great.

また、本発明の第1実施形態にかかる電極接合方法によれば、第1及び第2の絶縁性接着剤樹脂2,6を同時的に加圧するとともに加熱するという簡単な(1つの)作業で、上記効果を得ることができるので、1組の回路形成体の電極接合を行うのにかかる時間が短いという特有な効果もある。   In addition, according to the electrode joining method according to the first embodiment of the present invention, the first and second insulating adhesive resins 2 and 6 can be simultaneously pressurized and heated in a simple (one) operation. Since the above effect can be obtained, there is also a specific effect that the time required for performing electrode joining of a set of circuit formed bodies is short.

また、本発明の第1実施形態にかかる電極接合方法によれば、第1の絶縁性接着剤樹脂6が、第2の絶縁性接着剤樹脂2よりも先に溶融して硬化し始め、その後、第2の絶縁性接着剤樹脂2が溶融して硬化し始めたときには、その溶融粘度が第2の絶縁性接着剤樹脂2の溶融粘度よりも高く又は同程度になるように構成されているので、導電性粒子が分散された第2の絶縁性接着剤樹脂の流動速度をより効果的に緩和することが可能となり、第1及び第2の電極間の絶縁性接着剤樹脂の充填率を高めて、回路成形体と絶縁性接着剤樹脂との密着性を向上させることができる。   Further, according to the electrode bonding method according to the first embodiment of the present invention, the first insulating adhesive resin 6 starts to melt and harden before the second insulating adhesive resin 2, and thereafter When the second insulating adhesive resin 2 starts to melt and harden, the melt viscosity is higher than or equal to the melt viscosity of the second insulating adhesive resin 2. Therefore, the flow rate of the second insulating adhesive resin in which the conductive particles are dispersed can be more effectively reduced, and the filling rate of the insulating adhesive resin between the first and second electrodes can be reduced. The adhesion between the circuit molded body and the insulating adhesive resin can be improved.

また、本発明の第1実施形態にかかる電極接合方法によれば、第1の絶縁性接着剤樹脂6における絶縁性粒子7の体積密度が第2の絶縁性接着剤樹脂2における導電性粒子3の体積密度に比べて同一又は小さくなるようにされているので、絶縁性粒子7により導電性粒子3の流動が阻害されることが抑えられ、ショート不良を回避することができるとともにマイグレーション不良の発生を抑えることができる。   Moreover, according to the electrode joining method according to the first embodiment of the present invention, the volume density of the insulating particles 7 in the first insulating adhesive resin 6 is the conductive particles 3 in the second insulating adhesive resin 2. Therefore, the flow of the conductive particles 3 is inhibited from being inhibited by the insulating particles 7, so that a short circuit failure can be avoided and a migration failure can be generated. Can be suppressed.

《第2実施形態》
図5及び図6を用いて、本発明の第2実施形態にかかる電極接合構造体及び電極接合方法について説明する。図5は、本発明の第2実施形態にかかる電極接合構造体の断面図である。図6は、本発明の第2実施形態にかかる電極接合構造体の電極接合方法のフローチャートである。本発明の第2実施形態にかかる電極接合構造体は、さらに絶縁性封止樹脂10を備える点で、本発明の第1実施形態にかかる電極接合構造体と相違する。本発明の第2実施形態にかかる電極接合方法は、上記ステップS2の後、対向領域51の縁部51Aの近傍領域52を絶縁性封止樹脂により外部に露出しないように覆い隠すステップS3の工程をさらに備える点で、本発明の第1実施形態にかかる電極接合方法と相違する。それ以外の点については同様であるので重複する説明は省略し、主に相違点を説明する。
<< Second Embodiment >>
An electrode bonding structure and an electrode bonding method according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a cross-sectional view of an electrode joint structure according to a second embodiment of the present invention. FIG. 6 is a flowchart of an electrode bonding method for an electrode bonding structure according to a second embodiment of the present invention. The electrode joint structure according to the second embodiment of the present invention is different from the electrode joint structure according to the first embodiment of the present invention in that it further includes an insulating sealing resin 10. In the electrode joining method according to the second embodiment of the present invention, after step S2, the step 52 of step S3 is performed to cover the region 52 near the edge 51A of the facing region 51 so as not to be exposed to the outside by the insulating sealing resin. Is further different from the electrode joining method according to the first embodiment of the present invention. Since the other points are the same, redundant description will be omitted, and differences will be mainly described.

絶縁性封止樹脂10は、図5に示すように、対向領域51の縁部51Aの近傍領域52が外部に露出しないように覆う(封止する)よう設けられている。すなわち、絶縁性封止樹脂10は、ガラス基板4とフレキシブル基板5との電極接合部を封止するように設けられている。
このように絶縁性封止樹脂10を設けることにより、ガラス基板4とフレキシブル基板5との電極接合部に外部から水や腐食性ガス等が侵入することを防ぐことができる。また、第1及び第2の電極4A,5Aや導電性粒子3の酸化が防止され、電気的な導通が阻害されることがないので、高信頼性の接合品質を実現することができる。また、絶縁性封止樹脂10が硬化することにより、第1及び第2の電極4A,5Aの接合強度が補強され、機械的曲げ強度等に対する信頼性も向上する。
As shown in FIG. 5, the insulating sealing resin 10 is provided so as to cover (seal) the vicinity region 52 of the edge portion 51 </ b> A of the facing region 51 so as not to be exposed to the outside. That is, the insulating sealing resin 10 is provided so as to seal the electrode joint portion between the glass substrate 4 and the flexible substrate 5.
By providing the insulating sealing resin 10 in this way, it is possible to prevent water, corrosive gas, or the like from entering the electrode joint portion between the glass substrate 4 and the flexible substrate 5 from the outside. In addition, since the oxidation of the first and second electrodes 4A and 5A and the conductive particles 3 is prevented and electrical conduction is not hindered, highly reliable bonding quality can be realized. Further, since the insulating sealing resin 10 is cured, the bonding strength of the first and second electrodes 4A and 5A is reinforced, and the reliability with respect to the mechanical bending strength and the like is improved.

なお、絶縁性封止樹脂10は、シリコーン樹脂や、ウレタン、ポリブタジエンなどのUV硬化性樹脂などで構成されること好ましい。また、絶縁性封止樹脂10は、熱で硬化するものであっても、光で硬化するものであってもよく、また、光と熱の併用で硬化するものでもよい。
また、絶縁性封止樹脂10の材質としては、作業環境、揮発成分の再付着の問題から、無溶剤型の樹脂が用いられることが好ましい。
また、絶縁性封止樹脂10には、高温高湿の環境下において電圧を印加した際に発生するイオンマイグレーションを防止する特性を有することも求められている。このため、絶縁性封止樹脂10の材質としては、透水性が小さく、イオン不純物も少ない材質が用いられることが好ましい。
さらに、絶縁性封止樹脂10の材質としては、第1及び第2の電極4A,5Aの接合強度の補強効果を有するとともにフレキシブル基板5の変形に追従できるように、ある程度の可撓性を有する弾性体であることが好ましい
The insulating sealing resin 10 is preferably composed of a silicone resin, a UV curable resin such as urethane or polybutadiene, or the like. The insulating sealing resin 10 may be cured by heat, cured by light, or cured by a combination of light and heat.
Moreover, as a material of the insulating sealing resin 10, it is preferable to use a solvent-free resin from the viewpoint of work environment and the problem of redeposition of volatile components.
Further, the insulating sealing resin 10 is also required to have a characteristic of preventing ion migration that occurs when a voltage is applied in a high temperature and high humidity environment. For this reason, as the material of the insulating sealing resin 10, it is preferable to use a material having low water permeability and few ionic impurities.
Furthermore, the material of the insulating sealing resin 10 has a certain degree of flexibility so as to have a reinforcing effect on the bonding strength of the first and second electrodes 4A and 5A and to follow the deformation of the flexible substrate 5. Preferably it is an elastic body

また、絶縁性封止樹脂10の厚さは、0.1mm〜5.0mmの範囲で設定されることが好ましい。絶縁性封止樹脂10の厚さが0.1mm未満である場合には、ガラス基板4とフレキシブル基板5との電極接合部に外部から水や腐食性ガス等が侵入することを防止することが困難となり、絶縁性封止樹脂10の厚さが5mmを越える場合には、絶縁性封止樹脂10が硬化するのに時間を要し、タクトが長くなる。   Moreover, it is preferable that the thickness of the insulating sealing resin 10 is set in a range of 0.1 mm to 5.0 mm. When the thickness of the insulating sealing resin 10 is less than 0.1 mm, it is possible to prevent water or corrosive gas from entering the electrode joint portion between the glass substrate 4 and the flexible substrate 5 from the outside. When the thickness of the insulating sealing resin 10 exceeds 5 mm, it takes time to cure the insulating sealing resin 10 and the tact time becomes long.

また、絶縁性封止樹脂10の形成方法としては、ディスペンサを用いて塗布することにより形成する方法が採られることが好ましい。この場合の塗布粘度は、塗布性の観点から2mPa・s〜20Pa・s程度の範囲であることが好ましい。しかしながら、これに限定されることなく、絶縁性封止樹脂10の粘度に応じて、スクリーン印刷、インクジェット、コータなどにより形成する方法が採られてもよい。   In addition, as a method for forming the insulating sealing resin 10, it is preferable to adopt a method in which the insulating sealing resin 10 is formed by application using a dispenser. The coating viscosity in this case is preferably in the range of about 2 mPa · s to 20 Pa · s from the viewpoint of applicability. However, the present invention is not limited to this, and a method of forming by screen printing, inkjet, coater, or the like may be employed according to the viscosity of the insulating sealing resin 10.

また、絶縁性封止樹脂10を形成するときには、ガラス基板4及びフレキシブル基板5と絶縁性封止樹脂10との密着性を向上させるために、予めUV洗浄を行っておくことが好ましい。このようにして作製した電極接合構造体は、長期接合信頼性に優れ、例えば0.1mmピッチ以下の電極間の狭ピッチ化にも対応することができる。   Further, when forming the insulating sealing resin 10, it is preferable to perform UV cleaning in advance in order to improve the adhesion between the glass substrate 4 and the flexible substrate 5 and the insulating sealing resin 10. The electrode bonded structure produced in this way is excellent in long-term bonding reliability, and can cope with a narrow pitch between electrodes having a pitch of 0.1 mm or less, for example.

《実施例》
次に、本発明の第2実施形態の電極接合方法の具体例の1つである実施例を、図1A〜図1D及び図2A〜図2Cを参照しながら説明する。まず、各構成要素の具体的構成について説明する。
"Example"
Next, an example which is one of the specific examples of the electrode bonding method according to the second embodiment of the present invention will be described with reference to FIGS. 1A to 1D and FIGS. 2A to 2C. First, a specific configuration of each component will be described.

本実施例において、第1の回路形成体は、厚さ1.8mmのガラス上に、厚さ3μmの銀で形成した複数の第1の電極4AをL/S=50μm/50μmの幅で配置したガラス基板4で構成している。なお、Lは電極の幅を示し、Sは隣り合う電極間の隙間の幅を示す。
また、本実施例において、第2の回路形成体は、厚さ50μmのポリイミドフィルム上に、厚さ12μmの銅で形成した複数の第2の電極5AをL/S=50μm/50μmの幅で配置したフレキシブル基板5で構成している。すなわち、上記構成の電極間のピッチは50μm+50μm=100μm=0.1mmである。
また、本実施例において、第1の絶縁性接着剤樹脂は、SiO(シリカ)材質で平均粒径2〜4μm程度に形成した絶縁性粒子7を均一に分散した、厚さ35μmの熱硬化性のエポキシ樹脂を主成分とした絶縁性接着剤樹脂シート6で構成している。
また、本実施例において、第2の絶縁性接着剤樹脂は、樹脂性のボールをコアとしてNi−Auで金属メッキして平均粒径8μm程度に形成した導電性粒子3を均一に分散した、厚さ35μmの熱硬化性のエポキシ樹脂を主成分とした異方性導電性シート2で構成している。
なお、絶縁性接着剤樹脂シート6における絶縁性粒子7の体積密度は、異方性導電性シート2における導電性粒子3の体積密度と同程度としている。
In the present embodiment, the first circuit formed body has a plurality of first electrodes 4A formed of silver having a thickness of 3 μm on a glass having a thickness of 1.8 mm and having a width of L / S = 50 μm / 50 μm. The glass substrate 4 is made up of. L represents the width of the electrode, and S represents the width of the gap between the adjacent electrodes.
Further, in this example, the second circuit formation body has a plurality of second electrodes 5A formed of copper having a thickness of 12 μm on a polyimide film having a thickness of 50 μm with a width of L / S = 50 μm / 50 μm. The flexible substrate 5 is arranged. That is, the pitch between the electrodes having the above configuration is 50 μm + 50 μm = 100 μm = 0.1 mm.
In this embodiment, the first insulating adhesive resin is a thermosetting film having a thickness of 35 μm, in which insulating particles 7 made of SiO 2 (silica) and having an average particle diameter of about 2 to 4 μm are uniformly dispersed. It is comprised with the insulating adhesive resin sheet 6 which has an epoxy resin as a main component.
Further, in this example, the second insulating adhesive resin uniformly dispersed the conductive particles 3 formed to have an average particle diameter of about 8 μm by metal plating with Ni—Au using a resinous ball as a core. The anisotropic conductive sheet 2 is mainly composed of a thermosetting epoxy resin having a thickness of 35 μm.
The volume density of the insulating particles 7 in the insulating adhesive resin sheet 6 is approximately the same as the volume density of the conductive particles 3 in the anisotropic conductive sheet 2.

また、本実施例において、絶縁性封止樹脂10は、水銀ランプで2000mJ/cmの積算光量で硬化するポリブタジエンアクリレートでなる樹脂で構成している。
なお、絶縁性封止樹脂10の材質は、特に不純物塩素イオン濃度が数ppmと低く、吸水率が低く、高温高湿の環境下で電圧を印加した際に発生するイオンマイグレーションに対する耐性が優れているか否かを選定基準とした。
なお、絶縁性封止樹脂10の材質としてエポキシアクリレート系の樹脂を採用した電極接合構造体においては、樹脂の不純物塩素イオン濃度が原料からの混入により比較的高いことから、THB信頼性試験により絶縁不良が発生することを確認している。
In this embodiment, the insulating sealing resin 10 is made of a resin made of polybutadiene acrylate that is cured with a mercury lamp with an integrated light quantity of 2000 mJ / cm 2 .
The material of the insulating sealing resin 10 is particularly low in impurity chlorine ion concentration of several ppm, low in water absorption, and excellent in resistance to ion migration that occurs when voltage is applied in a high temperature and high humidity environment. Whether or not there was a selection criterion.
In addition, in the electrode joint structure that employs an epoxy acrylate resin as the material of the insulating sealing resin 10, since the impurity chlorine ion concentration of the resin is relatively high due to contamination from the raw material, it is insulated by THB reliability test. It is confirmed that a defect occurs.

以下、本実施例の電極接合方法を説明する。
まず、図2Aに示すように、ガラス基板4の複数の電極4A上で且つ対向領域51の縁部51Aの内側に異方性導電性シート2を貼り付けるとともに、フレキシブル基板5の複数の電極5A上で且つ対向領域51の縁部51Aに絶縁性接着剤樹脂シート6を貼り付ける。
Hereinafter, the electrode joining method of the present embodiment will be described.
First, as shown in FIG. 2A, the anisotropic conductive sheet 2 is pasted on the plurality of electrodes 4 </ b> A of the glass substrate 4 and inside the edge 51 </ b> A of the facing region 51, and the plurality of electrodes 5 </ b> A of the flexible substrate 5. The insulating adhesive resin sheet 6 is affixed to the edge 51 </ b> A of the facing region 51.

次いで、図2Bに示すように、ガラス基板4とフレキシブル基板5とを、貼り付けた異方性導電性シート2と絶縁性接着剤樹脂シート6とが重ならずに隣接するように位置合わせして重ね合わせる(図6のステップS1)。   Next, as shown in FIG. 2B, the glass substrate 4 and the flexible substrate 5 are aligned so that the bonded anisotropic conductive sheet 2 and insulating adhesive resin sheet 6 are adjacent to each other without overlapping. Are superimposed (step S1 in FIG. 6).

次いで、圧着ツール8の加熱用ヒータ8A及びエアシリンダ8Bによりフレキシブル基板5を介して異方性導電性シート2及び絶縁性接着剤樹脂シート6を同時的に加圧するとともに加熱して、ガラス基板4の複数の第1の電極4Aとそれらに対向するフレキシブル基板5の複数の第2の電極5Aとを導電性粒子3を介してそれぞれ電気的に接合するとともに、対向領域51の縁部51Aの近傍領域52で導電性粒子3と絶縁性粒子7とを混在させる(図6のステップS2)。このとき、加熱用ヒータ8Aによる加熱温度は異方性導電性シート2及び絶縁性接着剤樹脂シート6に対して180℃となるように設定し、エアシリンダ8Bによる加圧力は3MPaに設定し、それらの加圧及び加熱時間は10秒に設定した。   Next, the anisotropic conductive sheet 2 and the insulating adhesive resin sheet 6 are simultaneously pressed and heated by the heating heater 8A of the crimping tool 8 and the air cylinder 8B via the flexible substrate 5, and the glass substrate 4 is heated. The plurality of first electrodes 4 </ b> A and the plurality of second electrodes 5 </ b> A of the flexible substrate 5 facing them are electrically joined via the conductive particles 3, and in the vicinity of the edge 51 </ b> A of the facing region 51. In the region 52, the conductive particles 3 and the insulating particles 7 are mixed (step S2 in FIG. 6). At this time, the heating temperature by the heating heater 8A is set to 180 ° C. with respect to the anisotropic conductive sheet 2 and the insulating adhesive resin sheet 6, and the pressing force by the air cylinder 8B is set to 3 MPa. Their pressurization and heating time was set to 10 seconds.

次いで、対向領域51の縁部51Aの近傍領域52に、UV洗浄を行ったのち、ディスペンサ(武蔵エンジニアリング製)を用いて絶縁性封止樹脂10を塗布し、外部に露出しないように覆い隠す(図6のステップS3)。このとき、絶縁性封止樹脂10の塗布量は、光硬化後の厚さが0.5mm程度となるような量とした。
なお、絶縁性封止樹脂10の光硬化後の厚みを数十μm程度まで薄くしたときには、表面の硬化阻害が発生してUV照射後も表面にベタ付きが残り、この状態でTHB試験を行ったときには、絶縁性封止樹脂10が水を吸って絶縁不良が発生することを確認している。
Next, after UV cleaning is performed on the region 52 in the vicinity of the edge 51A of the facing region 51, the insulating sealing resin 10 is applied using a dispenser (manufactured by Musashi Engineering) and is covered so as not to be exposed to the outside ( Step S3 in FIG. At this time, the coating amount of the insulating sealing resin 10 was such that the thickness after photocuring was about 0.5 mm.
In addition, when the thickness of the insulating sealing resin 10 after photocuring is reduced to about several tens of μm, the surface is inhibited from being cured, and the surface remains sticky even after UV irradiation. In this state, the THB test was performed. It has been confirmed that the insulating sealing resin 10 sucks water and causes insulation failure.

上記電極接合方法により接合された電極接合構造体は、ガラス基板4及びフレキシブル基板5と異方性導電性シート2との密着性に優れ、マイグレーション不良の発生が抑えられており、また対向領域51の縁部51Aの近傍領域52において、絶縁性粒子7により導電性粒子3の凝集が抑制され、ショート不良の発生も抑えられている。したがって、0.1mmピッチ以下の電極間の狭ピッチ化にも対応することができる。   The electrode bonded structure bonded by the above electrode bonding method is excellent in adhesion between the glass substrate 4 and the flexible substrate 5 and the anisotropic conductive sheet 2, the occurrence of migration failure is suppressed, and the opposing region 51 In the vicinity region 52 of the edge portion 51A, the insulating particles 7 suppress the aggregation of the conductive particles 3, and the occurrence of short-circuit defects is also suppressed. Therefore, it is possible to cope with a narrow pitch between electrodes having a pitch of 0.1 mm or less.

次に、図7A〜図7C、図8A〜図8C、図9、及び図10を用いて、第2の回路形成体がICチップ部品等の矩形の電子部品15であるときの電極接合構造体について説明する。なお、図8A〜図8Cにおいては、図示の都合上、第1の絶縁性接着剤樹脂6と第2の絶縁性接着剤樹脂2との境界付近は、それらが隣接するように示しているが、それらが混在していても良い。   Next, referring to FIGS. 7A to 7C, 8A to 8C, 9, and 10, the electrode bonding structure when the second circuit formation body is a rectangular electronic component 15 such as an IC chip component. Will be described. 8A to 8C, for convenience of illustration, the vicinity of the boundary between the first insulating adhesive resin 6 and the second insulating adhesive resin 2 is shown as being adjacent to each other. , They may be mixed.

図7Aは、従来において、第2の回路形成体が電子部品15であるときの電極接合構造体の構造を示す模式平面図である。図7Aでは、電極接合部分の構造を理解し易くするために、電子部品15を取り除いた状態を示している。図7Bは、図7Aのd−d断面図であり、図7Cは、図7Aのe−e断面図である。なお、図7A中の大きな楕円は導電性粒子3の凝集が発生している領域を示している。
図8Aは、本発明の第1実施形態において、第2の回路形成体が電子部品15であるときの電極接合構造体の構造を示す模式平面図である。図8Aでは、電極接合部分の構造を理解し易くするために、電子部品15を取り除いた状態を示している。図8Bは、図8Aのf−f断面図であり、図8Cは、図8Aのg−g断面図である。なお、図8A中の白丸は導電性粒子3を示し、黒丸は絶縁性粒子7を示している。
FIG. 7A is a schematic plan view showing the structure of an electrode joint structure when the second circuit forming body is an electronic component 15 in the related art. FIG. 7A shows a state in which the electronic component 15 has been removed in order to facilitate understanding of the structure of the electrode joint portion. 7B is a sectional view taken along the line dd of FIG. 7A, and FIG. 7C is a sectional view taken along the line ee of FIG. 7A. In addition, the big ellipse in FIG. 7A has shown the area | region where aggregation of the electroconductive particle 3 has generate | occur | produced.
FIG. 8A is a schematic plan view showing the structure of the electrode joint structure when the second circuit forming body is the electronic component 15 in the first embodiment of the present invention. FIG. 8A shows a state in which the electronic component 15 has been removed in order to facilitate understanding of the structure of the electrode joint portion. 8B is a sectional view taken along line ff in FIG. 8A, and FIG. 8C is a sectional view taken along line gg in FIG. 8A. The white circles in FIG. 8A indicate the conductive particles 3, and the black circles indicate the insulating particles 7.

第2の回路形成体が電子部品15である場合には、矩形の電子部品15の各辺部分に沿って配置される複数の第2の電極5Aに対向するように、図7A〜図7C及び図8A〜図8Cに示すようにガラス基板4の複数の電極4Aが配置され、第1の絶縁性接着剤樹脂6が圧着ツール8によって加熱されるとともに加圧されたとき、第1の絶縁性接着剤樹脂6は、図7A及び図8Aの主に上下左右方向に広がる。このため、電極接合構造体の接合時に、第1の絶縁性接着剤樹脂6及び第2の絶縁性接着剤樹脂2の配置が図1Aに示した構成と異なる。   When the second circuit formed body is the electronic component 15, the plurality of second electrodes 5 </ b> A arranged along each side portion of the rectangular electronic component 15 are opposed to the second electrode 5 </ b> A and FIGS. When the plurality of electrodes 4A of the glass substrate 4 are arranged as shown in FIGS. 8A to 8C and the first insulating adhesive resin 6 is heated and pressed by the crimping tool 8, the first insulating property is obtained. The adhesive resin 6 spreads mainly in the vertical and horizontal directions in FIGS. 7A and 8A. For this reason, when the electrode bonded structure is bonded, the arrangement of the first insulating adhesive resin 6 and the second insulating adhesive resin 2 is different from the configuration shown in FIG. 1A.

図9は、一例として、単体の第2の絶縁性接着剤樹脂2がガラス基板4の複数の第1の電極4Aの全てを覆う(封止する)ように配置され、第1の絶縁性接着剤樹脂6の全周沿って第1の絶縁性接着剤樹脂6が配置された構成を示している。
また、第1の絶縁性接着剤樹脂6は、上述したように、第2の絶縁性接着剤樹脂2が加圧されるとともに加熱されたときに流動する側に配置されていればよいものである。第2の回路形成体が矩形の電子部品15であるとき、電子部品15の角部においては、他の部分に比べて加圧及び加熱された第2の絶縁性接着剤樹脂2の流動速度が遅く、また、導電性粒子3が凝集したとしてもショート不良を起こす可能性が低い。
図10は、その一例として、単体の第2の絶縁性接着剤樹脂2がガラス基板4の複数の第1の電極4Aの全てを覆う(封止する)ように配置され、電子部品15の角部以外の部分に第1の絶縁性接着剤樹脂6が配置された構成を示している。
以上、第2の回路形成体が電子部品15である場合について説明したが、上記以外の点については、他の構成と同様であるので詳しい説明は省略する。
In FIG. 9, as an example, the single second insulating adhesive resin 2 is disposed so as to cover (seal) all of the plurality of first electrodes 4 </ b> A of the glass substrate 4, and the first insulating adhesive The structure by which the 1st insulating adhesive resin 6 is arrange | positioned along the perimeter of the agent resin 6 is shown.
Moreover, the 1st insulating adhesive resin 6 should just be arrange | positioned at the side which flows, when the 2nd insulating adhesive resin 2 is pressurized and heated as mentioned above. is there. When the second circuit forming body is a rectangular electronic component 15, the flow rate of the second insulating adhesive resin 2 that has been pressurized and heated in the corners of the electronic component 15 as compared with other portions is higher. Slowly, even if the conductive particles 3 agglomerate, the possibility of short circuit failure is low.
FIG. 10 shows an example in which a single second insulating adhesive resin 2 is disposed so as to cover (seal) all of the plurality of first electrodes 4A of the glass substrate 4, and the corners of the electronic component 15 are arranged. A configuration in which the first insulating adhesive resin 6 is disposed in a portion other than the portion is shown.
The case where the second circuit formed body is the electronic component 15 has been described above. However, since points other than those described above are the same as other configurations, detailed description thereof will be omitted.

なお、本発明は上記実施形態に限定されるものではなく、その他種々の態様で実施できる。
なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
In addition, this invention is not limited to the said embodiment, It can implement with another various aspect.
It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.

本発明にかかる電極接合方法及び電極接合構造体は、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑える効果を有するので、回路形成体の電極に他の回路形成体の電極を導電性粒子が分散された絶縁性接着剤樹脂を用いて接合する技術、特にガラス基板とフレキシブル基板との電極接合に代表されるフラットパネルの接合技術において、隣接する電極間の狭ピッチ化が求められるときに有用である。   Since the electrode bonding method and the electrode bonding structure according to the present invention have the effect of suppressing the occurrence of short-circuit defects and the occurrence of migration defects, the conductive particles are connected to the electrodes of other circuit-formed bodies. Useful when a narrow pitch between adjacent electrodes is required in technology for joining using dispersed insulating adhesive resin, especially in flat panel joining technology represented by electrode joining between glass substrate and flexible substrate. It is.

本発明の第1実施形態にかかる電極接合構造体の構成を示す平面図である。It is a top view which shows the structure of the electrode junction structure concerning 1st Embodiment of this invention. 図1Aのa−a断面図である。It is aa sectional drawing of FIG. 1A. 図1Aのb−b断面図である。It is bb sectional drawing of FIG. 1A. 図1Aのc−c断面図である。It is cc sectional drawing of FIG. 1A. 本発明の第1実施形態にかかる電極接合構造体の電極接合方法の手順を示す断面図である。It is sectional drawing which shows the procedure of the electrode joining method of the electrode joining structure concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる電極接合構造体の電極接合方法の手順を示す他の断面図である。It is other sectional drawing which shows the procedure of the electrode joining method of the electrode joining structure concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる電極接合構造体の電極接合方法の手順を示すさらに他の断面図である。It is other sectional drawing which shows the procedure of the electrode bonding method of the electrode bonding structure concerning 1st Embodiment of this invention. 第1の絶縁性接着剤樹脂と第2の絶縁性接着剤樹脂の、時間に対する溶融粘度の変化を示すグラフである。It is a graph which shows the change of the melt viscosity with respect to time of 1st insulating adhesive resin and 2nd insulating adhesive resin. 本発明の第1実施形態にかかる電極接合構造体の電極接合方法のフローチャートである。It is a flowchart of the electrode bonding method of the electrode bonding structure concerning 1st Embodiment of this invention. 本発明の第2実施形態にかかる電極接合構造体の断面図である。It is sectional drawing of the electrode junction structure concerning 2nd Embodiment of this invention. 本発明の第2実施形態にかかる電極接合構造体の電極接合方法のフローチャートである。It is a flowchart of the electrode joining method of the electrode joining structure concerning 2nd Embodiment of this invention. 従来の電極接合構造体において、第2の回路形成体が電子部品であるときの、電子部品を取り除いた状態を示す平面図である。In the conventional electrode junction structure, it is a top view which shows the state which removed the electronic component when the 2nd circuit formation body is an electronic component. 図7Aのd−d断面図である。It is dd sectional drawing of FIG. 7A. 図7Aのe−e断面図である。It is ee sectional drawing of FIG. 7A. 本発明の第1実施形態にかかる電極接合構造体において、第2の回路形成体が電子部品であるときの、電子部品を取り除いた状態を示す平面図である。In the electrode junction structure concerning a 1st embodiment of the present invention, it is a top view showing the state where the electronic part was removed when the 2nd circuit formation object is an electronic part. 図8Aのf−f断面図である。It is ff sectional drawing of FIG. 8A. 図8Aのg−g断面図である。It is gg sectional drawing of FIG. 8A. 第2の回路形成体が電子部品であるときの、第1及び第2の絶縁性接着剤樹脂の配置構成を示す平面図である。It is a top view which shows the arrangement configuration of 1st and 2nd insulating adhesive resin when a 2nd circuit formation body is an electronic component. 第2の回路形成体が電子部品であるときの、第1及び第2の絶縁性接着剤樹脂の他の配置構成を示す平面図である。It is a top view which shows the other arrangement structure of 1st and 2nd insulating adhesive resin when a 2nd circuit formation body is an electronic component. 従来の電極接合構造体の電極接合方法の手順を示す断面図である。It is sectional drawing which shows the procedure of the electrode bonding method of the conventional electrode bonding structure. 従来の電極接合構造体の電極接合方法の手順を示す他の断面図である。It is other sectional drawing which shows the procedure of the electrode joining method of the conventional electrode joining structure. 図11Bのx−x断面図である。It is xx sectional drawing of FIG. 11B.

符号の説明Explanation of symbols

2 第2の絶縁性接着剤樹脂
3 導電性粒子
4 ガラス基板
4A 第1の電極
5 フレキシブル基板
5A 第2の電極
6 第1の絶縁性接着剤樹脂
7 絶縁性粒子
8 圧着ツール
10 絶縁性封止樹脂
2 Second Insulating Adhesive Resin 3 Conductive Particles 4 Glass Substrate 4A First Electrode 5 Flexible Substrate 5A Second Electrode 6 First Insulating Adhesive Resin 7 Insulating Particle 8 Crimping Tool 10 Insulating Seal resin

Claims (10)

複数の第1の電極を有するガラス基板の端部と、上記ガラス基板の複数の上記第1の電極にそれぞれ対向するように形成された複数の第2の電極を有するフレキシブル基板の端部との対向領域の両縁部に、絶縁性粒子が分散された第1の絶縁性接着剤樹脂を配置するとともに、上記対向領域の上記両縁部の内側に、導電性粒子が分散された第2の絶縁性接着剤樹脂を配置し、
上記ガラス基板又は上記フレキシブル基板を介して上記第1及び第2の絶縁性接着剤樹脂を加圧加熱して、上記ガラス基板の上記それぞれの第1の電極とそれらに対向する上記フレキシブル基板の上記それぞれの第2の電極とを上記導電性粒子を介して電気的に接合するとともに、上記対向領域の上記両縁部の近傍領域で上記導電性粒子と上記絶縁性粒子とを混在させる、電極接合方法であって、
上記対向領域において上記ガラス基板の端部側の縁部に配置される上記第1の絶縁性接着剤樹脂は、上記対向領域において上記フレキシブル基板の端部側の縁部に配置される上記第1の絶縁性接着剤樹脂より、上記両縁部間を結ぶ方向で幅広く形成され、かつ、上記第1及び第2の絶縁性接着剤樹脂を加圧加熱したのち、上記ガラス基板の端部側の縁部の近傍領域のみ絶縁性封止樹脂により覆い隠す、電極接合方法。
An end of a glass substrate having a plurality of first electrodes, and an end of a flexible substrate having a plurality of second electrodes formed to face the plurality of first electrodes of the glass substrate, respectively. A first insulating adhesive resin in which insulating particles are dispersed is disposed on both edges of the opposing region, and second conductive particles are dispersed on the inner sides of both edges of the opposing region. Place the insulating adhesive resin,
The first and second insulating adhesive resins are pressurized and heated through the glass substrate or the flexible substrate, and the first electrode of the glass substrate and the flexible substrate facing the first electrode are the same. Electrode bonding in which each of the second electrodes is electrically bonded through the conductive particles, and the conductive particles and the insulating particles are mixed in a region in the vicinity of the both edges of the facing region. A method,
The first insulating adhesive resin disposed at the edge portion on the end side of the glass substrate in the facing region is the first insulating resin disposed on the edge portion on the end portion side of the flexible substrate in the facing region. The insulating adhesive resin is formed wider than the insulating adhesive resin in the direction connecting the both edges, and after the first and second insulating adhesive resins are heated under pressure , An electrode joining method in which only a region near the edge is covered with an insulating sealing resin.
上記第1及び第2の絶縁性接着剤樹脂は熱硬化性の樹脂であり、
上記第1の絶縁性接着剤樹脂の溶融温度は、上記第2の絶縁性接着剤樹脂の溶融温度よりも低い、請求項1に記載の電極接合方法。
The first and second insulating adhesive resins are thermosetting resins,
The electrode joining method according to claim 1, wherein a melting temperature of the first insulating adhesive resin is lower than a melting temperature of the second insulating adhesive resin.
上記第1及び第2の絶縁性接着剤樹脂は熱硬化性の樹脂であり、
上記第1及び第2の絶縁性接着剤樹脂を加圧加熱したとき、上記第1の絶縁性接着剤樹脂が溶融し始めたのち、上記第2の絶縁性接着剤樹脂が溶融し始め、次いで、上記第1の絶縁性接着剤樹脂が硬化し始めたのち、上記第2の絶縁性接着剤樹脂が硬化を始めるようにされている、請求項1に記載の電極接合方法。
The first and second insulating adhesive resins are thermosetting resins,
When the first and second insulating adhesive resins are heated under pressure, after the first insulating adhesive resin begins to melt, the second insulating adhesive resin begins to melt, and then The electrode joining method according to claim 1, wherein the second insulating adhesive resin starts to harden after the first insulating adhesive resin starts to harden.
上記第2の絶縁性接着剤樹脂が硬化し始めるとき、上記第1の絶縁性接着剤樹脂の溶融粘度は、上記第2の絶縁性接着剤樹脂の溶融粘度よりも高い、請求項3に記載の電極接合方法。   The melt viscosity of the first insulating adhesive resin is higher than the melt viscosity of the second insulating adhesive resin when the second insulating adhesive resin begins to cure. Electrode joining method. 上記第1の絶縁性接着剤樹脂の熱伝導率が、上記第2の絶縁性接着剤樹脂の熱伝導率よりも低い、請求項1〜4のいずれか1つに記載の電極接合方法。   The electrode joining method according to any one of claims 1 to 4, wherein a thermal conductivity of the first insulating adhesive resin is lower than a thermal conductivity of the second insulating adhesive resin. 上記絶縁性粒子の平均粒子径の大きさが、上記導電性粒子の平均粒子径の大きさに比べて、同一又は小さい、請求項1〜5のいずれか1つに記載の電極接合方法。   The electrode joining method according to any one of claims 1 to 5, wherein an average particle size of the insulating particles is the same or smaller than an average particle size of the conductive particles. 上記第1の絶縁性接着剤樹脂における上記絶縁性粒子の体積密度が、上記第2の絶縁性接着剤樹脂における上記導電性粒子の体積密度に比べて、同一又は少ない、請求項1〜6のいずれか1つに記載の電極接合方法。   The volume density of the insulating particles in the first insulating adhesive resin is the same as or less than the volume density of the conductive particles in the second insulating adhesive resin. The electrode joining method according to any one of the above. 上記導電性粒子が分散された上記第2の絶縁性接着剤樹脂が、異方性導電性シートである、請求項1〜7のいずれか1つに記載の電極接合方法。   The electrode joining method according to claim 1, wherein the second insulating adhesive resin in which the conductive particles are dispersed is an anisotropic conductive sheet. 複数の第1の電極を有するガラス基板と、
上記ガラス基板の複数の上記第1の電極にそれぞれ対向して配置された複数の第2の電極を有するフレキシブル基板と、
上記ガラス基板の端部と上記フレキシブル基板の端部との対向領域の両端部に配置されて両者を接合する絶縁性粒子が分散された第1の絶縁性接着剤樹脂と、
上記対向領域の上記両縁部の内側に配置された、導電性粒子が分散された第2の絶縁性接着剤樹脂と、
を備える電極接合構造体であって、
上記対向領域において上記ガラス基板の端部側の縁部に配置される上記第1の絶縁性接着剤樹脂は、上記対向領域において上記フレキシブル基板の端部側の縁部に配置される上記第1の絶縁性接着剤樹脂より、上記両端部間を結ぶ方向で幅広く形成され、
上記ガラス基板の端部側の縁部の近傍領域のみを覆い隠す絶縁性封止樹脂をさらに備える、電極接合構造体。
A glass substrate having a plurality of first electrodes;
A flexible substrate having a plurality of second electrodes disposed respectively facing the plurality of first electrodes of the glass substrate;
A first insulating adhesive resin in which insulating particles that are disposed at both ends of an opposing region between the end of the glass substrate and the end of the flexible substrate and in which both are bonded are dispersed;
A second insulating adhesive resin in which conductive particles are dispersed, disposed on the inner side of the both edges of the opposing region;
An electrode joint structure comprising:
The first insulating adhesive resin disposed at the edge portion on the end side of the glass substrate in the facing region is the first insulating resin disposed on the edge portion on the end portion side of the flexible substrate in the facing region. From the insulating adhesive resin of, is formed widely in the direction connecting the both ends,
An electrode joint structure, further comprising an insulating sealing resin that covers only a region in the vicinity of the edge on the end side of the glass substrate.
上記絶縁性粒子の平均粒子径の大きさが、上記導電性粒子の平均粒子径の大きさに比べて、同一又は小さい、請求項9に記載の電極接合構造体。   The electrode junction structure according to claim 9, wherein the average particle size of the insulating particles is the same as or smaller than the average particle size of the conductive particles.
JP2006334025A 2006-12-12 2006-12-12 Electrode bonding method and electrode bonding structure Expired - Fee Related JP4648294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334025A JP4648294B2 (en) 2006-12-12 2006-12-12 Electrode bonding method and electrode bonding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334025A JP4648294B2 (en) 2006-12-12 2006-12-12 Electrode bonding method and electrode bonding structure

Publications (2)

Publication Number Publication Date
JP2008147473A JP2008147473A (en) 2008-06-26
JP4648294B2 true JP4648294B2 (en) 2011-03-09

Family

ID=39607298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334025A Expired - Fee Related JP4648294B2 (en) 2006-12-12 2006-12-12 Electrode bonding method and electrode bonding structure

Country Status (1)

Country Link
JP (1) JP4648294B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5498123B2 (en) * 2008-12-25 2014-05-21 パナソニック株式会社 Electrode bonding structure and manufacturing method thereof
JP6600019B2 (en) * 2017-09-08 2019-10-30 株式会社タムラ製作所 Method for manufacturing electronic substrate and anisotropic conductive paste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513119A (en) * 1991-07-04 1993-01-22 Sharp Corp Tape connector for connecting electronic parts
JPH0645024A (en) * 1992-07-22 1994-02-18 Hitachi Chem Co Ltd Anisotropic conductive adhesive film
JP2006286790A (en) * 2005-03-31 2006-10-19 Canon Inc Method of bonding wiring board, structure of bonded part thereof, and electric circuit device with bonded part thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513119A (en) * 1991-07-04 1993-01-22 Sharp Corp Tape connector for connecting electronic parts
JPH0645024A (en) * 1992-07-22 1994-02-18 Hitachi Chem Co Ltd Anisotropic conductive adhesive film
JP2006286790A (en) * 2005-03-31 2006-10-19 Canon Inc Method of bonding wiring board, structure of bonded part thereof, and electric circuit device with bonded part thereof

Also Published As

Publication number Publication date
JP2008147473A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP2016207842A (en) Connection structure of circuit member, connection method and connection material
JP2000286297A (en) Mounting method for electronic component and its device
JP5569676B2 (en) Electronic component mounting method
JP2000195584A (en) Electrical connection device and electrical connection method
JP4648294B2 (en) Electrode bonding method and electrode bonding structure
JP2003007768A (en) Interlayer connection material, and manufacturing method and using method therefor
JPH10199936A (en) Flip-chip mounting structure on flexible wiring board
JPH1116949A (en) Acf-bonding structure
JP2006339160A (en) Thermosetting circuit connection member, connection structure of electrode using it and connection method of electrode
JP4411819B2 (en) Electrical connection material
JP5008476B2 (en) Electrode bonding unit and electrode bonding method
JP4762873B2 (en) Electrode bonding method
WO1998004000A1 (en) Plug-in type electronic control unit, connecting structure between wiring board and plug member, connecting unit between electronic parts and wiring board, and electronic parts mounting method
JP5004574B2 (en) Electrode bonding structure and electrode bonding method
JP5245270B2 (en) Semiconductor device and manufacturing method thereof
JP4874176B2 (en) Electrode bonding structure
JP5281762B2 (en) Electrode bonding structure
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP4977194B2 (en) Electronic component mounting method
JP2008311411A (en) Electrode bonding structure and electrode bonding method
JP2004004947A (en) Plasma display panel
JP2008306024A (en) Electrode connection method and electrode connection structure
JP2005191386A (en) Electrode connecting method and method for manufacturing liquid crystal display element
JP6474008B2 (en) Connecting material
JP4459258B2 (en) Electronic component mounting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees