JP4645448B2 - Vacuum film forming apparatus, vacuum film forming method, and solar cell material - Google Patents

Vacuum film forming apparatus, vacuum film forming method, and solar cell material Download PDF

Info

Publication number
JP4645448B2
JP4645448B2 JP2005505953A JP2005505953A JP4645448B2 JP 4645448 B2 JP4645448 B2 JP 4645448B2 JP 2005505953 A JP2005505953 A JP 2005505953A JP 2005505953 A JP2005505953 A JP 2005505953A JP 4645448 B2 JP4645448 B2 JP 4645448B2
Authority
JP
Japan
Prior art keywords
substrate
gas
heating
heated
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005505953A
Other languages
Japanese (ja)
Other versions
JPWO2004097913A1 (en
Inventor
秀作 山崎
敬晃 長谷川
昌幸 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Publication of JPWO2004097913A1 publication Critical patent/JPWO2004097913A1/en
Application granted granted Critical
Publication of JP4645448B2 publication Critical patent/JP4645448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4587Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6734Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders specially adapted for supporting large square shaped substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67712Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrate being handled substantially vertically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【技術分野】
【0001】
本発明は、真空成膜装置及び真空成膜方法並びに太陽電池材料に関する。
【背景技術】
【0002】
基板を加熱してその表面に薄膜を成膜する真空成膜装置としては、化学的気相成長(CVD)法に分類される手法を用いた減圧CVD装置及びプラズマCVD装置等、並びに物理的気相成長(PVD)法に分類される手法を用いた蒸着装置、スパッタリング装置及びイオン化蒸着装置等が知られている。
【0003】
これらの内、CVD法を用いた装置では、基板を所定の温度まで加熱した後、真空が保持された成膜室内に基板を保持して薄膜材料を構成する元素を含む原料ガスを基板上に供給することにより、気相及び基板表面での化学反応による化学気相成長によって所望の薄膜を基板に形成している。このCVD法では、PVD法に比較して成膜される基板の温度が膜特性とより密接な開係を持っていることが多く、また、より高温での反応を要求することが多い。従って、特にCVD法では基板温度を均一に素早く昇温させることが重要となる。
【0004】
CVD法のうち、プラズマCVD法は、近年、その工業的応用分野として大量の大面積基板への成膜が重要度を増している。中でもガラス基板への成膜は、応用分野として重要な位置を占めるに至っている。ガラス基板は、基板温度の面内分布が不均一であると容易に破損するが、そのような特質を持つ大面積の基板を安価に、高速昇温することは難易度の高い技術である。
【0005】
このために、従来の真空成膜装置は、通常1枚又は2枚の基板しか処理できないために能率が悪く、一方、この装置で3枚以上の基板を同時に処理しようとした場合には装置が極めて大型化する問題がある。
【0006】
従来から提案されているこの種の真空成膜装置としては、例えば特許文献1に示す如く、基板を成膜温度以上に加熱する加熱チャンバーと、ロードロックチャンバーと、基板の表面に所定の薄膜を作成する成膜チャンバーとがゲートバルブを介在させながらこの順で気密に接続され、加熱チャンバーでは強制対流により基板を加熱するようにされて、熱源を通る気体を送風機によって循環供給させることにより高温気体を基板に供給して基板を加熱するようにされたものがある。
【0007】
また、特許文献2に示す如く、インライン式プラズマCVD装置として、基板に予備加熱を行う大気加熱炉と、大気加熱炉から搬送された基板を真空中で所定の温度まで加熱を行うロード室と、基板表面に膜形成を行う反応室と、基板の冷却を行うアンロード室とを連続して配置したものがある。
【先行技術文献】
【特許文献】
【008】
【特許文献1】
特開2001−187332号公報
【特許文献2】
特許第3211356号
【発明の概要】
【発明が解決しようとする課題】
【0009】
前記特許文献1によれば、装置を大型化することなく大面積の基板を複数枚同時に処理することができるので、基板に薄膜を形成する作業の生産性を大幅に向上できる。
【0010】
しかし、前記特許文献1では、基板全面を均一温度で短時間に加熱することは困難である。即ち、特許文献1では、加熱した高温気体を基板間に流動させて強制対流により基板を加熱しており、高温気体は基板の面と平行な層流となって流れる。このような層流による加熱によっても基板温度の昇温が完了した時点では面方向に略均一温度が得られるものの、昇温過程においては大きな温度不均一を生じることが多い。層流加熱の昇温過程において流れの上流側では、被加熱体の直近を流れる気体のもつ熱が被加熱体に伝達されて被加熱体が加熱されると同時に気体は冷却される。この冷却された気体は層流のまま被加熱体に沿って下流側に流れるが、この移動中において被加熱体から離れた位置を流れる高温気体の熱を奪って(熱が補給されて)再度加熱される。このようにして再度加熱された気体は下流側の被加熱体の温度を上昇させる。こうした理由から、被加熱体直近の気体の温度は下流に行くに従い徐々に低下する。このために、層流による加熱では、必ず上流側に比べて下流側の昇温速度が遅くなる。従って、被加熱体がガラスのように温度勾配に対して脆い材質である場合には、昇温途中で熱歪みにより破損に至る可能性がある。
【0011】
上記したように、層流の加熱では、被加熱体から離れた位置の気体から被加熱体直近の気体への熱伝達が大きな役割を果たしている。しかし、層流中での気流に対して直角方向への伝熱は拡散に支配されるので、その熱伝導の速度は遅い。この結果として、被加熱体の下流側での昇温速度は更に遅くなる傾向を示す。
【0012】
また、幅の広い(スリット状の)高温気体を基板に沿って流動させて加熱する場合は幅方向での気体流量の偏りが生じ易いが、このような気体流量の偏りが生じると被加熱体全体を所望の温度まで昇温させるのに必要な時間が延長される問題があり、また、昇温過程における温度勾配が著しい場合には熱歪みによって被加熱体に破損を生じさせる問題がある。
【0013】
一方、前記特許文献2においては、真空中で基板を所定の温度まで加熱するために、ランプヒータを備えて輻射加熱で加熱しているが、加熱効率が悪く加熱に長時間を要するという問題がある。更に、基板の移動をステンレスチェーンコンベアで行っているために、同時に複数の基板を加熱することは困難であり基本的には1枚ずつしか加熱することができず、よって生産性が非常に低いという問題がある。
【0014】
また、前記特許文献1では、大気圧で加熱するために、単位発生熱量あたりのコストが安価で単位発生熱量あたりの炭酸ガス発生量が小さい都市ガスや灯油等を熱源として使用することが可能であるが、特許第3211356号は、真空中での加熱であるために電気エネルギを使用せざるを得ず、環境負荷の大きな加熱方法であると言える。
【0015】
また、特許文献2に示されるランプヒータによる加熱では、高温熱源から発せられる高エネルギ密度の近赤外線が使用されている。このように高エネルギ密度の熱源を使用すると、被加熱体の熱容量が場所によって大きく異なる場合には昇温完了時に大きな面方向の温度不均一が発生する可能性がある。例えば、被加熱体を支持する保持器の熱容量が小さく被加熱体の熱容量が大きい場合には、被加熱体を所望の温度に上昇させると保持器の温度が異常に上昇することが起こり得る。また、一般に、近赤外線に対する輻射率や反射率は、物質の種類や表面状態により大きく異なることが知られている。従って、被加熱体自身の面内或いは被加熱体と保持器との間に赤外線に対する表面性状の相違や変化があると、均一で再現性の良い加熱は望めなくなる。
【0016】
本発明は、上述の実情に鑑み、基板に真空成膜する際の前処理として行う基板の加熱を、短時間で高能率に加熱し、しかも昇温途中及び加熱完了後において均一な面温度になるようにし、しかも複数の基板を同時に加熱して太陽電池材料等の生産性を高めることを目的とする。
【課題を解決するための手段】
【0017】
本発明は、基板加熱装置により加熱した基板を成膜室に導入して成膜を行う真空成膜装置であって、前記基板加熱装置が、加熱室と、前記基板の面を鉛直方向に支持して前記加熱室に搬入する台車と、前記加熱室に搬入される基板の面と所要の間隔を有して加熱室に配置され袋状の両側の面板が前記基板に対向した扁平形状のプレートノズルと、該プレートノズルの面板間に加熱ガスを導くガス導入口と、該ガス導入口に加熱ガスを導く加熱ガス導入装置とを備え、前記プレートノズルにおける基板と対向する面板に基板を加熱ガスの衝突噴流により加熱するための複数のガス噴出口を備えたものである。
【0018】
従って、本発明によれば、プレートノズルに形成したガス噴出口により、加熱ガスを導出し、衝突噴流によって基板を加熱するようにしたので、加熱効率を高めて基板の加熱時間を短縮できる。
【0019】
一般に衝突する対象物がない場合、噴流の流れの状態は、ガス噴出口近傍から順に、ポテンシャルコア領域、遷移領域、そして発達領域に分類できる。加熱対象となる基板をどの領域に置くかによって、熱伝達率が変化するが、遷移領域に近い発達領域までに基板を配置することにより、大きな熱伝達率が得られる。逆に、基板をガス噴出口から遠い拒離を隔てて配置すると、大きな熱伝達率が得られなくなる。噴流の流れの状態は、また、プレートノズルのガス噴出口の大きさにも関係している。ここにいうガス噴出口は、加熱ガスを基板へ向かって噴出させる開口部である。
【0020】
ガス噴出口の開口部形状は、方形あるいは円形等、設計的要件に応じてその形状を選択することができるが、その噴出口の代表的寸法をBとしたとき、このBと、前記基板とプレートノズルの面板との間隔(距離)Hとの間に、H/B<20なる関係を持つことが望ましい。代表的寸法Bとは、例えば、正方形の開口を選択したときは正方形の一辺の長さを示し、円形の開口を選択したときはその円の直径を示す。より一般的には、ガス噴出口部分の流れを支配するレイノルズ数を決定するときに採用する寸法が代表的寸法である。
【0021】
比H/Bを20以下にすることにより工業的に充分大きな加熱速度を得ることができる。
【0022】
衝突噴流による加熱では、ガス噴出口正面のよどみ点を中心とした局所的な加熱が行われる。局所的な入熱は、基板の横方向の熱移動により緩和され、基板全体温度が上昇すると共に、基板の均熱化が行われる。ガラスのように、局所的な温度上昇が激しくなると破損してしまうような材料では、衝突噴流による加熱において充分にこの点を配慮する必要がある。ガラスの厚さが充分に厚ければ、ガラスの面内の熱伝導が大きくなるのでガラス面内温度不均一は小さくなり、また、ガス噴出口の数密度を増やしても不均一が小さくなる。
【0023】
ガラスの破損を防ぐために、前記基板が厚さtのガラスである場合、前記ガス噴出口相互の距離をrとしたときに、r/t<20なる関係を持つことが望ましい。
【0024】
更に、前記プレートノズルの両側の面板にガス噴出部を備え、プレートノズルの両側の面板に対峙するように基板を配置してもよい。又、前記基板を挟むように配置したプレートノズルが、各プレートノズル内に発生する圧力勾配によって生じるガス噴出量の不均一が互いに相殺される位置にガス導入口を備えていてもよい。又、前記プレートノズルが、その相互間に基板が配置されるように櫛歯状に複数備えられた櫛歯ノズルであってもよい。又、前記基板が台車に支持されて搬送され、前記プレートノズルから噴出した加熱ガスが前記台車を通して前記加熱ガス導入装置に導かれるようになっていてもよい。
【0025】
基板を挟むように配置したプレートノズルが、各プレートノズル内に発生する圧力勾配によって生じるガス噴出量の不均一が互いに相殺される位置にガス導入口を備えたので、基板を更に均一な面温度で加熱できる。
【0026】
基板を加熱した後の加熱ガスが台車を通して加熱ガス導入装置に循環されるようにしてあるので、加熱ガスの流動が安定し基板の加熱が安定する。
【0027】
本発明の別の局面は、真空成膜方法であって、基板加熱装置を成膜室に連結して配置し、基板を基板加熱装置に搬入し、基板の面と所要の間隔を有するプレートノズルの面板に備えたガス噴出口から加熱ガスを噴出させ、噴流加熱によって基板を加熱し、基板を均一温度に加熱した後、該基板を成膜室へ搬入して成膜を行うようにしたものである。
【0028】
前記成膜の方法はプラズマCVD法であっても良い。
【0029】
本発明の別の局面は、上記により製造した太陽電池材料である。
【0030】
従って、本発明によれば、プレートノズルに形成したガス噴出口により、加熱ガスを導入し、衝突噴流によって基板を加熱するようにしたので、加熱効率を高めて基板の加熱時間を短縮できる。
【0031】
従って、太陽電池材料が高効率に製造できる。
【図面の簡単な説明】
【0032】
図1は、本発明の真空成膜装置の全体配置構成を表わす概略平面図、図2は、本発明の真空成膜装置における基板加熱装置の一例を示す切断正面図、図3は、台車の側面図、図4は、台車とレールの一部の斜視図、図5は、図2におけるプレートノズルの一部を拡大して示した断面図、図6は、プレートノズルの面板に形成するガス噴出口を説明するための斜視図、図7は、プレートノズルにより基板を加熱する他の実施例を示す部分断面図、図8は、プレートノズルにより基板を加熱する更に他の実施例を示す部分断面図、図9は、基板を挟むように配置するプレートノズルのガス導入口を相互に反対側の端部に形成した場合の切断平面図、図10は、本発明の衝突噴流により基板を加熱した場合と、従来の層流により基板を加熱した場合における時間の経過と基板の温度の変化との関係を比較して示した線図である。
【発明を実施するための形態】
【0033】
以下、本発明の実施例を図面と共に説明する。
【0034】
図1は本発明の真空成膜装置の一実施例であるプラズマCVD装置の全体配置構成を表わす概略平面図であり、このプラズマCVD装置は、基板装着部1と、プレートノズル33を備えた基板加熱装置3と、均熱器4及び減圧装置5を備えたロードロック室6と、誘導結合型電極7、減圧装置8、原料ガス供給装置9及び温度調節装置10を備えた成膜室11と、外気導入口2及び減圧装置12を備えたアンロードロック室13と、基板取出部14とを備えている。15a,15b,15c,15d,15eは気密を保持できる開閉可能なゲートバルブ、16は複数の基板17を鉛直に支持して移動できるようにした台車である。
【0035】
台車16に支持させた基板17を成膜する作業は次のようにして行われる。基板装着部1において台車16上に基板17を鉛直に支持させる。図1の例では台車16上に6枚の基板17を支持させている。
【0036】
基板17を支持した台車16は、ゲートバルブ15aを開いて基板加熱装置3に進入し、続いてゲートバルブ15aを閉じた後、プレートノズル33の作用によって基板17を所定の温度まで均一に加熱する。
【0037】
次に、ゲートバルブ15bを開けてロードロック室6に台車16を移動し、続いてゲートバルブ15bを閉じた後、減圧装置5によりロードロック室6内を成膜室11と同じ負圧まで減圧し、均熱器4により前記基板17の温度を前記所定温度に維持する。
【0038】
その後、ゲートバルブ15cを開けて基板17を成膜室11に搬入し、続いてゲートバルブ15cを閉めた後、減圧装置8により所定の負圧を保持した状態で、温度調節装置10により前記基板17の温度を前記所定温度に維持しつつ、原料ガス供給装置9により原料ガスを供給して、誘導結合型電極7の作用により基板17にシリコン膜を形成する。
【0039】
基板17の成膜が終了すると、ゲートバルブ15dを開けて基板17をアンロードロック室13に搬出する。このとき、アンロードロック室13の内部は、減圧装置12により予め前記成膜室11と同じ負圧に減圧されており、基板17がアンロードロック室13に搬出されたらゲートバルブ15dを閉める。
【0040】
その後、外気導入口2を開き、アンロードロック室13を大気圧に昇圧した後、ゲートバルブ15eを開いて台車16を外部に導出する。そして、台車16を基板取出部14に移動し、台車16に支持された成膜済みの基板17を取外す。
【0041】
図1に示した真空成膜装置によれば、基板17の加熱と加熱した基板17へのシリコン膜の形成とを略連続的に実施できるので、生産性を向上できると共に、台車16上に複数の基板17を支持して同時に加熱及びシリコン膜の形成ができるので更なる能率向上が図れる。
【0042】
上記図1のプラズマCVD装置において、基板17を短時間で所定温度にしかも均一面温度になるように加熱するための基板加熱装置3の詳細を以下に説明する。
【0043】
先ず、基板加熱装置3の説明に先立ち、台車16について説明する。台車16は、図2〜図4に示す如く、基板加熱装置3を構成する加熱室23の内定部に設けたレール18a,18b上を車輪19によって走行可能な矩形形状の支持台20を備えており、該支持台20の走行方向前後の辺上には、左右方向に所要の間隔で夫々5本の支柱21,21'が対向するよう鉛直に固設してある。そして、図4の最も左側における前後の支柱21,21'の右側面と左側から2番目の前後の支柱21,21'の左側面には、夫々支持具22を介して基板17が支持され、2枚の基板17は対向するように配置されている。 また、第3番目と第4番目の前後の支柱21,21'及び第5番目と第6番目の前後の支柱21,21'にも前記と同様に2枚の基板17が対向するように支持されている。これにより、台車16上には対向する3対、6枚の基板17が鉛直に配置されている。
【0044】
前記支持台20の下面には前後に延びるラック24が設けられており、該ラック24に噛合するピニオン25を備えた軸26が加熱室23を貫通して外部の駆動装置27に連結されている。よって、駆動装置27を駆動して前記ピニオン25を回転することにより、ラック24を介して前記台車16がレール18a,18bに沿って走行できるようになっている。このとき、前記レール18a,18bは図1のゲートバルブ15a,15b,15c,15d,15eの設置のために切断されており、よって前記駆動装置27とピニオン25はロードロック室6、成膜室11、アンロードロック室13の夫々に対応して設けられており、台車16は前記レール18a,18bの切断部分を乗り越えて走行できるように複数の車輪19を備えている。
【0045】
前記加熱室23の内部には、図2に示す如く、前記台車16の上部を仕切る上部仕切板28と、台車16の走行方向一側(右側)を仕切る側部仕切板29が設けてあり、側部仕切板29の上端は上部仕切板28に固定されており下端は支持台20の近傍まで延びている。更に、右側のレール18bは図4に示す如く梯子を横にした形状を有しておりガス流通用の開口30が形成されている。更に、前記台車16の基板17を支持する支持台20には、基板17間を流下した加熱ガスが下方に向かって流下できるようにしたガス通路36を形成している。これにより、前記加熱室23の内部には、台車16上の基板17間と、台車16の下部と、側部仕切板29の右側下部と、上部仕切板28の右側上部とが連通したガス循環流路31が形成され、加熱ガス導入装置32の一部を構成している。
【0046】
前記上部仕切板28の下部には、台車16に対向支持された基板17の中間に対応する位置において、基板17と平行で且つ基板17より面積が大きい矩形扁平形状を有するプレートノズル33の上端が固定されており、プレートノズル33の上端には上部仕切板28の上側のガス循環流路31とプレートノズル33の内部とを連通するガス導入口34が形成されている。従って、前記プレートノズル33は上部にガス導入口34が形成された扁平な袋状を呈している。図2では3組の対向した基板17間に対応するように3個のプレートノズル33が上部仕切板28に対して櫛歯状に設けられている。
【0047】
前記扁平な袋状を有するプレートノズル33における基板17と対向している面板33aには、図2、図5、図6に示す如く、基板17の面に対し鉛直に加熱ガスを噴出して衝突させる複数のガス噴出口35を形成することによりガス噴出部Aを構成している。このガス噴出部Aのガス噴出口35の配置は、基板17の温度分布が実用上均一となるものであればよく、従って升目状或いは千鳥状のように規則的なものであってもよいし、一定の面密度となるように不規則に配置したものであってもよい。
【0048】
前記加熱ガス導入装置32は、前記ガス循環流路31の上下中間位置に隔壁37を設けており、該隔壁37に形成した開口部に、駆動装置38によって回転駆動される循環ファン39を設けており、更に、前記ガス循環流路31内における隔壁37と前記開口30を備えたレール18bとの間にはガスを加熱するガス加熱器40を設けている。図2に示すガス加熱器40は、前記循環ファン39より下側のガス循環流路31に伝熱管41を配置し、該伝熱管41に調節弁42を介し高温流体を供給して熱交換によりガスを加熱するようにしている。また、上記伝熱管41にてガスを加熱する方法以外に、例えば燃焼筒をガス循環流路31に設置して燃料を燃焼筒で燃焼させることによりガスを加熱するようにしてもよく、この場合には前記調節弁42によって燃料流量を調節する。尚、上部仕切板28より上部の位置には高温用フィルタ43が設けられている。
【0049】
また、前記加熱室23内のガス温度、好ましくは上部仕切板28の直上のガス温度を検出する温度検出器44を備えており、該温度検出器44による検出温度を入力して該検出温度が所定の一定値に保持されるように前記調節弁42を調節してガス加熱器40によるガスの加熱を調節するようにした温度調節器45を備えている。
【0050】
図2、図5では、プレートノズル33の両側の面板33aにガス噴出口35によるガス噴出部Aを備え、且つ該ガス噴出部Aに対向するように基板17を配置し、これによって基板17の一方の面のみを加熱する場合を示しているが、図7に示すようにプレートノズル33の一側の面板33aのみにガス噴出部Aを備えることによって基板17の一方の面のみを加熱してもよい。一方、図8に示すように、プレートノズル33の両側の面板33aにガス噴出部Aを備え、ガス噴出口35からの加熱ガスの噴射によって基板17の両面を同時に加熱するようにしてもよい。
【0051】
また、図9の切断平面図に示すように、前記基板17を挟むように配置され、基板17と対向する面にガス噴出部Aを備えたプレートノズル33において、各プレートノズル33内に発生する圧力勾配によって生じるガス噴出量の不均一が互いに相殺される位置になるようにガス導入口34を備えることは好ましい。即ち、基板17を挟むプレートノズル33に備えるガス導入口34が、相互に反対側(上下反対側或いは左右反対側)の端部に位置するように形成してもよい。図9では一方(左側)のプレートノズル33には紙面の上部にガス導入口34を備え、他方(右側)のプレートノズル33には紙面の下側にガス導入口34を備えている。従って、一方のガス導入口34から一方のプレートノズル33に導入された加熱ガスと、他方のガス導入口34から他方のプレートノズル33に導入されたガスは、互いに反対方向に対向して流動し各ガス噴出口35から噴出するようになる。
【0052】
以下に、上記実施例の作用を説明する。
【0053】
図2の構成において、駆動装置38により循環ファン39を駆動し、ガス循環流路31内のガスが下から上に向かって流動するようにすると共に、ガス加熱器40の伝熱管41に高温流体を供給してガスを加熱する。ガス加熱器40で加熱された高温ガスは、循環ファン39より高温用フィルタ43に送られて清浄にされた後、ガス導入口34から各プレートノズル33内に導かれ、プレートノズル33の面板33aに形成したガス噴出部Aの複数のガス噴出口35から基板17の面に鉛直に衝突するように吹付けられる。これによって基板17は加熱される。
【0054】
基板17に吹付けられて基板17を加熱した後の加熱ガスは、対向している基板17間を流下し、支持台20のガス通路36を通って下方に流動し、レール18bの開口30を経て再びガス加熱器40に導かれる。
【0055】
このとき、上部仕切板28の上部に設けた温度検出器44の検出ガス温度を入力している温度調節器45は、調節弁42により高温流体の流量を調節して、プレートノズル33に導入される加熱ガスの温度を常に所定の一定値に保持するように制御する。これによって基板17は常に目的の所定温度に確実に加熱されるようになる。また、前記したガス加熱器40に供給する高温流体の流量を調節する方式以外に、循環ファン39による加熱ガスの循環量を調節して基板17の加熱温度を調節してもよい。
【0056】
図5、図7、図8に示した如く、プレートノズル33は、ガス噴出部Aの各ガス噴出口35によって加熱ガスを基板17の面に対して鉛直に衝突するように吹付けるので、加熱ガスの衝突によって生じる衝突噴流により基板17は高効率で加熱される。
【0057】
図10は図5、図7、図8に示したように基板17の面に加熱ガスを衝突させるように鉛直に吹付けて衝突噴流により基板を加熱した場合(実線)と、前記特開2001−187332号公報に示した従来例のように基板と平行な沿面流(層流)の加熱ガスによって基板を加熱した場合(破線)とにおける時間の経過と基板17の温度の変化との関係を比較して示したものである。図10では、同一の加熱ガス流量を用いて目標温度範囲まで加熱する場合の基板17の温度変化を定性的に示している。
【0058】
図10から明らかなように、層流による加熱(破線)は本発明における衝突噴流による加熱(実線)よりも目標温度範囲まで到達するのに長時間が必要である。従って、層流による加熱において加熱時間を短縮しようとした場合には、加熱ガスの供給を大幅に増大させる必要があり、従って運転コストが増加してしまう。また、このように大量の加熱ガスを基板17に沿って流す場合には、基板17の幅方向での流量が均一になるように調整することが更に難しくなり、そのために基板17の面温度の不均一が更に生じ易くなる問題がある。
【0059】
上記したように、プレートノズル33の面板33aに備えたガス噴出部Aのガス噴出口35によって、加熱ガスを基板17の面に鉛直に衝突するように吹付け、基板17を衝突噴流によって加熱するようにしたので、基板17を短時間に高効率で加熱することができる。
【0060】
更に、前記面板33aに備えたガス噴出部Aのガス噴出口35が、基板17を面方向に均一に加熱できる配置で形成してあるので、基板17の面温度を精度良く均一に加熱できる。
【0061】
本発明の実施例では、ガス噴出口35を円形とした。また、実験の中心条件としてその直径Bを3mm、また、面板33aと基板17との間隔Hを30mmに設定した。直径Bを一定にして間隔Hを15mmから150mmの範囲で変化させて基板17の昇温速度を測定した。その結果、15mmから20mmまでは、殆ど昇温速度は変化が無かったが、15mmから30mmにかけて一旦昇温速度が上昇して最大値をとり、その後、30mm以上の間隔で、昇温速度が低下した。間隔60mmでは、最大値の6割程度の昇温速度にまで低下した。同様の実験をガス噴出口35の直径を2mmとして行ったが、間隔40mm以上では、昇温速度の低下が激しかった。
【0062】
一般に、衝突噴流による加熱では、熱伝達率が間隔Hや直径Bや流速等により複雑に変化するために統一的に熱伝達率を記述することはできないといわれている。しかし、この実験により、工業的に応用可能な流速等の条件を加味した場合、比H/Bを20以下に保つと、基板17を高速に昇温することができることがわかった。
【0063】
また、本実施例では、ガス噴出口35のピッチrを35mmとして正方形の格子状に配列し、厚さ4mmのガラスを基板17として用いて実験を行った。ガス噴射口35正面のよどみ点とガス噴射口35から最も遠い位置の温度差を測定した。実験の中心条件で加熱を行ったとき、昇温過程においてこの各点の最大の温度差は、30℃となった。ガラス基板の面内温度差は50℃を超えると破損する確率が上がることが経験的にわかっている。本実施例では、ほぼ破損の心配が無いことがわかった。しかし、例えば、ガス噴射口35のビッチを60mm以上に拡大するとガラス面内の温度差によりガラス基板が破損することがわかった。また、ガラス基板の厚さを2mm程度以下に薄くすると、ガラス基板の面内の熱移動が遅くなるのでやはり破損することが推定できた。
【0064】
一方、袋形状を有しているプレートノズル33の上端のガス導入口34からプレートノズル33に導入された加熱ガスは、上部と下部とで圧力が変化することによって、上部のガス噴出口35から噴出される加熱ガス量に対し下部のガス噴出口35から噴出される加熱ガス量が減少し、このために、基板17の加熱温度に上下で偏差が生じる可能性が考えられる。しかし、実際には温度の偏差を殆ど生じさせないようにできることが判明した。即ち、上部のガス噴出口35のガス噴出量と下部のガス噴出口35のガス噴出量を殆ど同じにするには、プレートノズル33の上流側と下流側との圧力差をできるだけ小さくすることが有効であり、このために、プレートノズル33の空間容量を大きく設計することによって、上流のガス噴出量と下流のガス噴出量を略同等にして温度の偏差を殆どなくすことができた。
【0065】
一方、図9に示した如く、基板17を挟むように配置するプレートノズル33のガス導入口34を相互に反対側の端部に形成するようにした構成とすれば、プレートノズル33内の圧力の変化が互いに逆方向になって相殺され、これにより基板17を挟んで設けた左右のプレートノズル33から噴出される加熱ガスの噴出量の和が長手方向(図9では上下方向)で均等になり、よって、基板を均一温度で加熱することが可能になる。
【0066】
上記のように基板加熱装置3によって所定の温度で且つ均一な面温度に加熱された基板17は、図1のロードロック室6に搬入されて均熱器4によりその温度が維持され、続いて、基板17は成膜室11に搬入されてシリコン膜の形成が行われるが、このとき成膜室11に備えられた温度調節装置10によって基板17は前記所定の温度に維持される。従って、基板17は均一面温度を保持した状態でシリコン膜の形成が行われるので、基板17には良好な品質のシリコン膜が形成される。
【0067】
従って、上記の真空成膜装置によれば、高品質の太陽電池材料を高能率に生産することができる。
【0068】
尚、本発明は上記実施例にのみ限定されるものではなく、プラズマCVD装置以外のスパッタリング装置、蒸着装置、イオン化蒸着装置等の基板の加熱が必要である真空成膜装置にも適用できること、プレートノズルの形状は種々変更し得ること、加熱ガス導入装置は上述の実施例以外の構成のものも採用し得ること等、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【産業上の利用可能性】
【0069】
基板に真空成膜処理する際の前処理として行う基板の加熱が、短時間で高能率に行い得られ、更に昇温途中及び加熱完了後において均一な面温度が得られ、しかも複数の基板を同時に加熱でき、よって、高品質の太陽電池材料等の製品を高能率に生産できるようになる。
【Technical field】
[0001]
The present invention relates to a vacuum film forming apparatus, a vacuum film forming method, and a solar cell material.
[Background]
[0002]
The vacuum film forming apparatus for forming a thin film on the surface of the substrate by heating the substrate includes a low pressure CVD apparatus and a plasma CVD apparatus using a method classified as a chemical vapor deposition (CVD) method, and a physical atmosphere. A vapor deposition apparatus, a sputtering apparatus, an ionization vapor deposition apparatus, and the like using a method classified as a phase growth (PVD) method are known.
[0003]
Among these, in the apparatus using the CVD method, after heating the substrate to a predetermined temperature, the substrate is held in a film formation chamber in which a vacuum is maintained, and a source gas containing an element constituting the thin film material is placed on the substrate. By supplying, a desired thin film is formed on the substrate by chemical vapor deposition by chemical reaction on the vapor phase and the substrate surface. In this CVD method, the temperature of the substrate on which the film is formed is more closely related to the film characteristics than the PVD method, and a reaction at a higher temperature is often required. Therefore, particularly in the CVD method, it is important to raise the substrate temperature uniformly and quickly.
[0004]
Of the CVD methods, the plasma CVD method has recently become increasingly important as an industrial application field for forming a film on a large area substrate. In particular, film formation on a glass substrate has occupied an important position as an application field. A glass substrate easily breaks if the in-plane distribution of the substrate temperature is non-uniform, but it is a difficult technique to raise the temperature of a large-area substrate having such characteristics at a low cost at a high speed.
[0005]
For this reason, the conventional vacuum film-forming apparatus is usually inefficient because it can process only one or two substrates. On the other hand, when it is intended to process three or more substrates simultaneously, There is a problem of enlarging the size.
[0006]
As this type of vacuum film forming apparatus that has been conventionally proposed, for example, as shown in Patent Document 1, a heating chamber for heating a substrate to a temperature higher than the film forming temperature, a load lock chamber, and a predetermined thin film on the surface of the substrate. The film formation chamber to be created is hermetically connected in this order with a gate valve interposed therebetween. In the heating chamber, the substrate is heated by forced convection, and the gas passing through the heat source is circulated and supplied by a blower to generate high-temperature gas. Is supplied to the substrate to heat the substrate.
[0007]
Moreover, as shown in Patent Document 2, as an in-line plasma CVD apparatus, an atmospheric heating furnace that preheats the substrate, a load chamber that heats the substrate conveyed from the atmospheric heating furnace to a predetermined temperature in a vacuum, There is a chamber in which a reaction chamber for forming a film on a substrate surface and an unload chamber for cooling the substrate are continuously arranged.
[Prior art documents]
[Patent Literature]
[008]
[Patent Document 1]
JP 2001-187332 A
[Patent Document 2]
Japanese Patent No. 3211356
Summary of the Invention
[Problems to be solved by the invention]
[0009]
According to Patent Document 1, a plurality of large-area substrates can be processed at the same time without increasing the size of the apparatus, so that the productivity of forming a thin film on the substrate can be greatly improved.
[0010]
However, in Patent Document 1, it is difficult to heat the entire surface of the substrate at a uniform temperature in a short time. That is, in Patent Document 1, a heated high-temperature gas flows between substrates and the substrate is heated by forced convection, and the high-temperature gas flows in a laminar flow parallel to the surface of the substrate. Even when the heating of the substrate temperature is completed by such laminar heating, a substantially uniform temperature can be obtained in the surface direction, but a large temperature non-uniformity often occurs in the temperature rising process. In the temperature rising process of laminar heating, on the upstream side of the flow, the heat of the gas flowing in the immediate vicinity of the heated body is transmitted to the heated body, and the heated body is heated, and at the same time, the gas is cooled. This cooled gas flows in a laminar flow along the heated body downstream, but the heat of the high-temperature gas flowing away from the heated body is removed during this movement (heat is replenished) again. Heated. The gas heated again in this way raises the temperature of the heated object on the downstream side. For these reasons, the temperature of the gas immediately adjacent to the object to be heated gradually decreases as it goes downstream. For this reason, in the heating by the laminar flow, the temperature increase rate on the downstream side is always slower than that on the upstream side. Therefore, when the object to be heated is made of a material that is brittle with respect to the temperature gradient such as glass, there is a possibility that the material is damaged due to thermal distortion during the temperature increase.
[0011]
As described above, in laminar heating, heat transfer from a gas at a position away from the heated object to a gas in the immediate vicinity of the heated object plays a major role. However, since the heat transfer in the direction perpendicular to the air flow in the laminar flow is governed by diffusion, the heat conduction speed is slow. As a result, the temperature increase rate on the downstream side of the heated object tends to be further slowed down.
[0012]
In addition, when a wide (slit-shaped) high-temperature gas is flowed and heated along the substrate, a deviation in the gas flow rate in the width direction is likely to occur. There is a problem that the time required to raise the temperature to the desired temperature is extended, and there is a problem that the object to be heated is damaged due to thermal distortion when the temperature gradient in the temperature raising process is significant.
[0013]
On the other hand, in Patent Document 2, in order to heat a substrate to a predetermined temperature in a vacuum, a lamp heater is provided and radiant heating is performed. However, there is a problem that heating efficiency is low and heating takes a long time. is there. Furthermore, since the substrate is moved by the stainless steel chain conveyor, it is difficult to heat a plurality of substrates at the same time. Basically, only one sheet can be heated at a time, and thus the productivity is very low. There is a problem.
[0014]
Moreover, in the said patent document 1, since it heats by atmospheric pressure, it is possible to use city gas, kerosene, etc. with a low cost per unit heat generation amount and a small carbon dioxide generation amount per unit heat generation amount as a heat source. However, since the patent No. 311356 is heating in a vacuum, electric energy must be used, and it can be said that the heating method has a large environmental load.
[0015]
Moreover, in the heating by the lamp heater shown by patent document 2, the near infrared ray of the high energy density emitted from a high temperature heat source is used. When a heat source with a high energy density is used in this way, if the heat capacity of the object to be heated varies greatly depending on the location, there is a possibility that a large non-uniform temperature in the surface direction will occur when the temperature rise is completed. For example, when the heat capacity of the cage that supports the object to be heated is small and the heat capacity of the object to be heated is large, when the object to be heated is raised to a desired temperature, the temperature of the cage may rise abnormally. In general, it is known that the emissivity and reflectance for near-infrared rays vary greatly depending on the type of substance and the surface condition. Therefore, if there is a difference or change in the surface property with respect to infrared rays in the surface of the heated body itself or between the heated body and the cage, uniform and reproducible heating cannot be expected.
[0016]
In view of the above situation, the present invention heats the substrate as a pretreatment when performing vacuum film formation on the substrate with high efficiency in a short time, and at the same surface temperature during and after the temperature rise. In addition, an object is to increase the productivity of solar cell materials and the like by simultaneously heating a plurality of substrates.
[Means for Solving the Problems]
[0017]
The present invention is a vacuum film forming apparatus for forming a film by introducing a substrate heated by a substrate heating apparatus into the film forming chamber, wherein the substrate heating apparatus includes: a heating chamber; A carriage that supports the surface of the substrate in a vertical direction and carries it into the heating chamber; Placed in the heating chamber with the required distance from the surface of the substrate carried into the heating chamber. The bag-shaped face plates on both sides face the substrate. A flat plate nozzle, A gas inlet for introducing a heated gas between the face plates of the plate nozzle; A heating gas introduction device for introducing a heating gas to the gas introduction port is provided, and a plurality of gas injection ports for heating the substrate by a collision jet of heating gas are provided on a face plate facing the substrate in the plate nozzle.
[0018]
Therefore, according to the present invention, the heating gas is led out by the gas jet port formed in the plate nozzle and the substrate is heated by the collision jet, so that the heating efficiency can be improved and the heating time of the substrate can be shortened.
[0019]
In general, when there is no collision object, the state of the jet flow can be classified into a potential core region, a transition region, and a development region in order from the vicinity of the gas outlet. Although the heat transfer coefficient varies depending on the region where the substrate to be heated is placed, a large heat transfer coefficient can be obtained by placing the substrate in a development region close to the transition region. On the contrary, if the substrate is arranged at a distance away from the gas ejection port, a large heat transfer coefficient cannot be obtained. The state of the jet flow is also related to the size of the gas outlet of the plate nozzle. The gas ejection port here is an opening for ejecting heated gas toward the substrate.
[0020]
The shape of the opening of the gas outlet can be selected according to design requirements, such as square or circular, but when the representative dimension of the outlet is B, , The substrate and the face plate of the plate nozzle It is desirable to have a relationship of H / B <20 with the interval (distance) H. The representative dimension B indicates, for example, the length of one side of a square when a square opening is selected, and the diameter of the circle when a circular opening is selected. More generally, the dimensions employed when determining the Reynolds number that governs the flow at the gas outlet are typical dimensions.
[0021]
An industrially large heating rate can be obtained by setting the ratio H / B to 20 or less.
[0022]
In the heating by the impinging jet, local heating is performed around the stagnation point in front of the gas jet outlet. The local heat input is relaxed by the heat transfer in the lateral direction of the substrate, the temperature of the entire substrate rises, and the temperature of the substrate is equalized. For a material such as glass that breaks when the local temperature rises severely, it is necessary to sufficiently consider this point in heating by the impinging jet. If the glass is sufficiently thick, heat conduction in the glass surface increases, so that the glass surface temperature non-uniformity decreases, and the non-uniformity decreases even if the number density of gas outlets is increased.
[0023]
In order to prevent breakage of the glass, when the substrate is glass having a thickness t, it is desirable that r / t <20 when the distance between the gas ejection ports is r.
[0024]
Further, the gas nozzles may be provided on the face plates on both sides of the plate nozzle, and the substrate may be disposed so as to face the face plates on both sides of the plate nozzle. Further, the plate nozzle arranged so as to sandwich the substrate may be provided with a gas introduction port at a position where the nonuniformity of the gas ejection amount generated by the pressure gradient generated in each plate nozzle cancels each other. Further, the plate nozzle may be a comb-tooth nozzle provided in a plurality of comb-teeth so that the substrate is disposed between them. The substrate may be supported by a carriage and conveyed, and the heated gas ejected from the plate nozzle may be guided to the heated gas introduction device through the carriage.
[0025]
Since the plate nozzle arranged so as to sandwich the substrate is provided with a gas inlet at a position where the non-uniformity of the gas ejection amount caused by the pressure gradient generated in each plate nozzle cancels each other, the substrate has a more uniform surface temperature. Can be heated.
[0026]
Since the heated gas after heating the substrate is circulated through the carriage to the heated gas introducing device, the flow of the heated gas is stabilized and the heating of the substrate is stabilized.
[0027]
Another aspect of the present invention is a vacuum film forming method, in which a substrate heating apparatus is connected to a film forming chamber, arranged, a substrate is carried into the substrate heating apparatus, and a plate nozzle having a required distance from the surface of the substrate A heating gas is ejected from a gas outlet provided in the face plate, the substrate is heated by jet heating, the substrate is heated to a uniform temperature, and then the substrate is carried into a deposition chamber for film formation. It is.
[0028]
The film forming method may be a plasma CVD method.
[0029]
Another aspect of the present invention is a solar cell material manufactured as described above.
[0030]
Therefore, according to the present invention, since the heating gas is introduced by the gas jet port formed in the plate nozzle and the substrate is heated by the collision jet, the heating efficiency can be increased and the heating time of the substrate can be shortened.
[0031]
Therefore, the solar cell material can be manufactured with high efficiency.
[Brief description of the drawings]
[0032]
FIG. 1 is a schematic plan view showing the overall arrangement of the vacuum film forming apparatus of the present invention, FIG. 2 is a cut front view showing an example of a substrate heating apparatus in the vacuum film forming apparatus of the present invention, and FIG. 4 is a perspective view of a part of the carriage and the rail, FIG. 5 is an enlarged sectional view of a part of the plate nozzle in FIG. 2, and FIG. 6 is a gas formed on the face plate of the plate nozzle. FIG. 7 is a partial cross-sectional view showing another embodiment in which the substrate is heated by the plate nozzle, and FIG. 8 is a portion showing still another embodiment in which the substrate is heated by the plate nozzle. FIG. 9 is a cross-sectional view, FIG. 9 is a sectional plan view when the gas inlets of the plate nozzles arranged so as to sandwich the substrate are formed at opposite ends, and FIG. 10 is a diagram showing the heating of the substrate by the collision jet of the present invention. And when the substrate is heated by conventional laminar flow By comparing the relationship between the change of the course and the temperature of the substrate definitive time is a diagram showing.
BEST MODE FOR CARRYING OUT THE INVENTION
[0033]
Embodiments of the present invention will be described below with reference to the drawings.
[0034]
FIG. 1 is a schematic plan view showing the overall arrangement of a plasma CVD apparatus which is an embodiment of the vacuum film forming apparatus of the present invention. This plasma CVD apparatus is a substrate provided with a substrate mounting portion 1 and a plate nozzle 33. A load lock chamber 6 having a heating device 3, a soaking device 4 and a decompression device 5; a film formation chamber 11 having an inductively coupled electrode 7, a decompression device 8, a source gas supply device 9 and a temperature control device 10; And an unload lock chamber 13 provided with the outside air inlet 2 and the decompression device 12, and a substrate take-out portion 14. Reference numerals 15a, 15b, 15c, 15d, and 15e are openable and closable gate valves, and 16 is a carriage that supports a plurality of substrates 17 in a vertically movable manner.
[0035]
The operation of forming a film on the substrate 17 supported by the carriage 16 is performed as follows. The substrate 17 is vertically supported on the carriage 16 in the substrate mounting portion 1. In the example of FIG. 1, six substrates 17 are supported on a carriage 16.
[0036]
The carriage 16 that supports the substrate 17 opens the gate valve 15 a and enters the substrate heating device 3, and then closes the gate valve 15 a and then uniformly heats the substrate 17 to a predetermined temperature by the action of the plate nozzle 33. .
[0037]
Next, the gate valve 15b is opened, the carriage 16 is moved to the load lock chamber 6, and then the gate valve 15b is closed. Then, the pressure inside the load lock chamber 6 is reduced to the same negative pressure as the film forming chamber 11 by the pressure reducing device 5. Then, the temperature of the substrate 17 is maintained at the predetermined temperature by the soaking device 4.
[0038]
Thereafter, the gate valve 15c is opened and the substrate 17 is carried into the film forming chamber 11. Subsequently, after the gate valve 15c is closed, the substrate is controlled by the temperature adjusting device 10 while maintaining a predetermined negative pressure by the pressure reducing device 8. A raw material gas is supplied from the raw material gas supply device 9 while maintaining the temperature 17 at the predetermined temperature, and a silicon film is formed on the substrate 17 by the action of the inductively coupled electrode 7.
[0039]
When the film formation of the substrate 17 is completed, the gate valve 15 d is opened and the substrate 17 is carried out to the unload lock chamber 13. At this time, the inside of the unload lock chamber 13 is previously depressurized to the same negative pressure as the film forming chamber 11 by the decompression device 12, and the gate valve 15d is closed when the substrate 17 is carried out to the unload lock chamber 13.
[0040]
Thereafter, the outside air introduction port 2 is opened, the unload lock chamber 13 is increased to atmospheric pressure, the gate valve 15e is opened, and the carriage 16 is led out. Then, the carriage 16 is moved to the substrate take-out portion 14 and the film-formed substrate 17 supported by the carriage 16 is removed.
[0041]
According to the vacuum film forming apparatus shown in FIG. 1, the heating of the substrate 17 and the formation of the silicon film on the heated substrate 17 can be performed substantially continuously. Since the substrate 17 can be supported and heated and a silicon film can be formed at the same time, the efficiency can be further improved.
[0042]
Details of the substrate heating apparatus 3 for heating the substrate 17 to a predetermined temperature and a uniform surface temperature in a short time in the plasma CVD apparatus of FIG. 1 will be described below.
[0043]
First, the carriage 16 will be described prior to the description of the substrate heating apparatus 3. 2 to 4, the carriage 16 includes a rectangular-shaped support base 20 that can run on wheels 18 on rails 18 a and 18 b provided in an inner fixed portion of the heating chamber 23 that constitutes the substrate heating device 3. In addition, on the front and back sides of the support base 20 in the traveling direction, five support columns 21 and 21 'are fixed vertically so as to face each other at a required interval in the left-right direction. And the board | substrate 17 is supported via the support tool 22, respectively on the right side of the front and back support | pillars 21 and 21 'in the leftmost side of FIG. 4, and the left side of the 2nd front and back support | pillars 21 and 21' from the left side, respectively. The two substrates 17 are arranged so as to face each other. Further, the third and fourth support columns 21 and 21 'and the fifth and sixth support columns 21 and 21' are supported so that the two substrates 17 face each other in the same manner as described above. Has been. Thus, three pairs and six substrates 17 facing each other are vertically arranged on the carriage 16.
[0044]
A rack 24 extending in the front-rear direction is provided on the lower surface of the support base 20, and a shaft 26 having a pinion 25 that meshes with the rack 24 passes through the heating chamber 23 and is connected to an external drive device 27. . Therefore, the carriage 16 can travel along the rails 18a and 18b via the rack 24 by driving the driving device 27 and rotating the pinion 25. At this time, the rails 18a and 18b are cut for the installation of the gate valves 15a, 15b, 15c, 15d and 15e in FIG. 1, so that the driving device 27 and the pinion 25 are connected to the load lock chamber 6 and the film formation chamber. 11, the unload lock chamber 13 is provided correspondingly, and the carriage 16 includes a plurality of wheels 19 so that the carriage 16 can travel over the cut portions of the rails 18a, 18b.
[0045]
Inside the heating chamber 23, as shown in FIG. 2, an upper partition plate 28 for partitioning the upper portion of the carriage 16 and a side partition plate 29 for partitioning one side (right side) of the carriage 16 in the traveling direction are provided. The upper end of the side partition plate 29 is fixed to the upper partition plate 28, and the lower end extends to the vicinity of the support base 20. Further, as shown in FIG. 4, the right rail 18b has a shape in which a ladder is placed sideways, and an opening 30 for gas circulation is formed. Furthermore, a gas passage 36 is formed in the support base 20 that supports the substrate 17 of the carriage 16 so that the heated gas flowing between the substrates 17 can flow downward. As a result, gas circulation between the substrates 17 on the carriage 16, the lower part of the carriage 16, the lower right side of the side partition plate 29, and the upper right side of the upper partition plate 28 is communicated with the heating chamber 23. A flow path 31 is formed and constitutes a part of the heated gas introduction device 32.
[0046]
At the lower portion of the upper partition plate 28, the upper end of a plate nozzle 33 having a rectangular flat shape that is parallel to the substrate 17 and has a larger area than the substrate 17 at a position corresponding to the middle of the substrate 17 that is opposed and supported by the carriage 16. A gas inlet 34 is formed at the upper end of the plate nozzle 33 to communicate the gas circulation channel 31 on the upper side of the upper partition plate 28 with the inside of the plate nozzle 33. Accordingly, the plate nozzle 33 has a flat bag shape with a gas inlet 34 formed in the upper part. In FIG. 2, three plate nozzles 33 are provided in a comb-like shape with respect to the upper partition plate 28 so as to correspond to the three sets of opposed substrates 17.
[0047]
As shown in FIGS. 2, 5, and 6, the flat plate-like plate nozzle 33 has a face plate 33 a that faces the substrate 17, and as shown in FIGS. The gas ejection part A is configured by forming a plurality of gas ejection ports 35 to be formed. The arrangement of the gas ejection ports 35 of the gas ejection part A is not particularly limited as long as the temperature distribution of the substrate 17 is practically uniform, and therefore may be regular, such as a grid or staggered pattern. Alternatively, it may be irregularly arranged so as to have a constant surface density.
[0048]
The heating gas introduction device 32 is provided with a partition wall 37 at an upper and lower intermediate position of the gas circulation channel 31, and a circulation fan 39 that is rotated by a drive device 38 is provided at an opening formed in the partition wall 37. Further, a gas heater 40 for heating gas is provided between the partition wall 37 in the gas circulation passage 31 and the rail 18b having the opening 30. The gas heater 40 shown in FIG. 2 arranges a heat transfer pipe 41 in the gas circulation passage 31 below the circulation fan 39, supplies a high-temperature fluid to the heat transfer pipe 41 via a control valve 42, and performs heat exchange. The gas is heated. In addition to the method of heating the gas by the heat transfer tube 41, for example, a combustion cylinder may be installed in the gas circulation passage 31 and the gas may be heated by burning the fuel in the combustion cylinder. In this case, the fuel flow rate is adjusted by the control valve 42. A high temperature filter 43 is provided at a position above the upper partition plate 28.
[0049]
Further, a temperature detector 44 for detecting a gas temperature in the heating chamber 23, preferably a gas temperature just above the upper partition plate 28, is provided. A temperature regulator 45 is provided which regulates the heating of the gas by the gas heater 40 by adjusting the regulating valve 42 so as to be maintained at a predetermined constant value.
[0050]
In FIG. 2 and FIG. 5, the surface plate 33 a on both sides of the plate nozzle 33 is provided with the gas ejection part A by the gas ejection port 35, and the substrate 17 is disposed so as to face the gas ejection part A. Although the case where only one surface is heated is shown, as shown in FIG. 7, only one surface of the substrate 17 is heated by providing the gas ejection part A only on the face plate 33a on one side of the plate nozzle 33. Also good. On the other hand, as shown in FIG. 8, the gas ejection part A may be provided on the face plates 33 a on both sides of the plate nozzle 33, and both surfaces of the substrate 17 may be heated simultaneously by the ejection of the heating gas from the gas ejection port 35.
[0051]
Further, as shown in the cut plan view of FIG. 9, in the plate nozzles 33 arranged so as to sandwich the substrate 17 and provided with the gas ejection part A on the surface facing the substrate 17, it is generated in each plate nozzle 33. It is preferable to provide the gas inlet 34 so that the nonuniformity of the gas ejection amount caused by the pressure gradient is offset. In other words, the gas inlets 34 provided in the plate nozzles 33 sandwiching the substrate 17 may be formed so as to be located at the ends of the opposite sides (upper and lower sides or left and right sides). In FIG. 9, one (left) plate nozzle 33 is provided with a gas inlet 34 at the top of the paper surface, and the other (right) plate nozzle 33 is provided with a gas inlet 34 below the paper surface. Accordingly, the heated gas introduced from one gas inlet 34 to one plate nozzle 33 and the gas introduced from the other gas inlet 34 to the other plate nozzle 33 flow in opposite directions to each other. The gas is ejected from each gas ejection port 35.
[0052]
The operation of the above embodiment will be described below.
[0053]
In the configuration of FIG. 2, the circulation fan 39 is driven by the driving device 38 so that the gas in the gas circulation channel 31 flows from the bottom to the top, and the high-temperature fluid is supplied to the heat transfer tube 41 of the gas heater 40. To heat the gas. The high-temperature gas heated by the gas heater 40 is sent from the circulation fan 39 to the high-temperature filter 43 to be cleaned, and is then introduced into each plate nozzle 33 from the gas inlet 34, and the face plate 33 a of the plate nozzle 33. Are blown so as to vertically collide with the surface of the substrate 17 from the plurality of gas jets 35 of the gas jetting part A formed in the above. As a result, the substrate 17 is heated.
[0054]
The heated gas that has been sprayed onto the substrate 17 to heat the substrate 17 flows down between the opposing substrates 17, flows downward through the gas passage 36 of the support 20, and passes through the opening 30 of the rail 18 b. Then, it is led to the gas heater 40 again.
[0055]
At this time, the temperature controller 45 that inputs the detected gas temperature of the temperature detector 44 provided on the upper part of the upper partition plate 28 is introduced into the plate nozzle 33 by adjusting the flow rate of the high-temperature fluid by the control valve 42. The temperature of the heated gas is controlled to always be kept at a predetermined constant value. This ensures that the substrate 17 is always heated to the desired predetermined temperature. In addition to the method of adjusting the flow rate of the high-temperature fluid supplied to the gas heater 40, the heating temperature of the substrate 17 may be adjusted by adjusting the circulation amount of the heating gas by the circulation fan 39.
[0056]
As shown in FIGS. 5, 7, and 8, the plate nozzle 33 sprays the heated gas so as to collide vertically with the surface of the substrate 17 by the gas ejection ports 35 of the gas ejection part A. The substrate 17 is heated with high efficiency by the collision jet generated by gas collision.
[0057]
FIG. 10 shows the case where the substrate is heated by a collision jet flow so that the heated gas collides against the surface of the substrate 17 as shown in FIGS. The relationship between the passage of time and the change in temperature of the substrate 17 when the substrate is heated by a heating gas in a creeping flow (laminar flow) parallel to the substrate (broken line) as in the conventional example shown in JP-A-187332 It is shown in comparison. FIG. 10 qualitatively shows the temperature change of the substrate 17 when heating to the target temperature range using the same heating gas flow rate.
[0058]
As apparent from FIG. 10, the heating by the laminar flow (broken line) requires a longer time to reach the target temperature range than the heating by the impinging jet (solid line) in the present invention. Therefore, when it is attempted to shorten the heating time in the laminar heating, it is necessary to greatly increase the supply of the heating gas, thus increasing the operation cost. In addition, when a large amount of heated gas is caused to flow along the substrate 17 in this way, it becomes more difficult to adjust the flow rate in the width direction of the substrate 17 to be uniform. There is a problem that non-uniformity is more likely to occur.
[0059]
As described above, the heated gas is sprayed so as to vertically collide with the surface of the substrate 17 by the gas ejection port 35 of the gas ejection part A provided in the face plate 33a of the plate nozzle 33, and the substrate 17 is heated by the collision jet. As a result, the substrate 17 can be heated with high efficiency in a short time.
[0060]
Furthermore, since the gas outlets 35 of the gas ejection part A provided on the face plate 33a are formed so as to be able to uniformly heat the substrate 17 in the surface direction, the surface temperature of the substrate 17 can be uniformly heated with high accuracy.
[0061]
In the embodiment of the present invention, the gas outlet 35 is circular. Further, as a central condition of the experiment, the diameter B was set to 3 mm, and the distance H between the face plate 33a and the substrate 17 was set to 30 mm. The temperature increase rate of the substrate 17 was measured by changing the interval H in the range of 15 mm to 150 mm while keeping the diameter B constant. As a result, the rate of temperature increase was almost unchanged from 15 mm to 20 mm, but the rate of temperature increase increased once from 15 mm to 30 mm to take the maximum value, and then the rate of temperature increase decreased at intervals of 30 mm or more. did. When the interval was 60 mm, the temperature increased to a temperature increase rate of about 60% of the maximum value. A similar experiment was conducted with the diameter of the gas outlet 35 being 2 mm. However, when the interval was 40 mm or more, the temperature increase rate was drastically reduced.
[0062]
In general, it is said that the heat transfer coefficient cannot be described uniformly in the heating by the impinging jet because the heat transfer coefficient changes in a complicated manner depending on the interval H, the diameter B, the flow velocity, and the like. However, from this experiment, it was found that the substrate 17 can be heated at a high speed if the ratio H / B is kept at 20 or less when conditions such as industrially applicable flow rates are taken into account.
[0063]
Further, in this example, the experiment was performed by using a gas grid 35 having a pitch r of 35 mm and arranging the gas jets 35 in a square lattice pattern and using glass 4 mm in thickness as the substrate 17. The temperature difference between the stagnation point in front of the gas injection port 35 and the position farthest from the gas injection port 35 was measured. When heating was performed under the central conditions of the experiment, the maximum temperature difference at each point in the temperature rising process was 30 ° C. It is empirically known that the in-plane temperature difference of the glass substrate exceeds 50 ° C., so that the probability of breakage increases. In this example, it was found that there was almost no fear of breakage. However, for example, it has been found that when the bitch of the gas injection port 35 is enlarged to 60 mm or more, the glass substrate is damaged due to a temperature difference in the glass surface. Moreover, when the thickness of the glass substrate was reduced to about 2 mm or less, the heat transfer in the surface of the glass substrate was slowed, so that it could be estimated that the glass substrate was damaged.
[0064]
On the other hand, the heated gas introduced into the plate nozzle 33 from the gas inlet 34 at the upper end of the bag-shaped plate nozzle 33 changes from the upper and lower gas outlets 35 by changing the pressure between the upper and lower parts. The amount of heated gas ejected from the lower gas ejection port 35 is reduced with respect to the amount of heated gas ejected. For this reason, there is a possibility that the heating temperature of the substrate 17 may be deviated vertically. However, it has been found that in practice it is possible to cause almost no temperature deviation. That is, in order to make the gas ejection amount at the upper gas ejection port 35 and the gas ejection amount at the lower gas ejection port 35 almost the same, the pressure difference between the upstream side and the downstream side of the plate nozzle 33 should be made as small as possible. For this reason, by designing the space capacity of the plate nozzle 33 to be large, the upstream gas ejection amount and the downstream gas ejection amount can be made substantially equal, and the temperature deviation can be almost eliminated.
[0065]
On the other hand, as shown in FIG. 9, if the gas inlets 34 of the plate nozzles 33 arranged so as to sandwich the substrate 17 are formed at opposite ends, the pressure in the plate nozzles 33 will be described. Are offset in opposite directions, so that the sum of the ejection amounts of the heated gas ejected from the left and right plate nozzles 33 sandwiching the substrate 17 is even in the longitudinal direction (vertical direction in FIG. 9). Thus, the substrate can be heated at a uniform temperature.
[0066]
The substrate 17 heated to a predetermined surface temperature and a uniform surface temperature by the substrate heating device 3 as described above is carried into the load lock chamber 6 of FIG. The substrate 17 is carried into the film forming chamber 11 and a silicon film is formed. At this time, the substrate 17 is maintained at the predetermined temperature by the temperature adjusting device 10 provided in the film forming chamber 11. Accordingly, since the silicon film is formed on the substrate 17 while maintaining a uniform surface temperature, a silicon film of good quality is formed on the substrate 17.
[0067]
Therefore, according to said vacuum film-forming apparatus, a high quality solar cell material can be produced efficiently.
[0068]
The present invention is not limited only to the above-described embodiments, but can also be applied to a vacuum film forming apparatus that requires heating of a substrate, such as a sputtering apparatus other than a plasma CVD apparatus, a vapor deposition apparatus, and an ionization vapor deposition apparatus. Of course, various changes can be made without departing from the scope of the present invention, such as the shape of the nozzle can be variously changed, and the heated gas introduction device can also adopt a configuration other than the above-described embodiment. is there.
[Industrial applicability]
[0069]
Substrate heating can be performed efficiently as a pretreatment for vacuum film formation on the substrate, and a uniform surface temperature can be obtained in the middle of heating and after completion of heating. Heating can be performed at the same time, so that products such as high quality solar cell materials can be produced with high efficiency.

Claims (12)

基板加熱装置により加熱した基板を成膜室に導入して成膜を行う真空成膜装置であって、前記基板加熱装置が、加熱室と、前記基板の面を鉛直方向に支持して前記加熱室に搬入する台車と、前記加熱室に搬入される基板の面と所要の間隔を有して加熱室に配置され袋状の両側の面板が前記基板に対向した扁平形状のプレートノズルと、該プレートノズルの面板間に加熱ガスを導くガス導入口と、該ガス導入口に加熱ガスを導く加熱ガス導入装置とを備え、前記プレートノズルにおける基板と対向する面板に基板を加熱ガスの衝突噴流により加熱するための複数のガス噴出口を備えたことを特徴とする真空成膜装置。A vacuum film forming apparatus for forming a film by introducing a substrate heated by a substrate heating apparatus into the film forming chamber, wherein the substrate heating apparatus supports the heating chamber and the surface of the substrate in a vertical direction and performs the heating. a carriage for carrying the chamber, the plate nozzles flat shape plane as required intervals disposed in the heating chamber has a been bag-shaped sides of the face plate of the substrate opposed to the substrate to be carried into the heating chamber, said A gas introduction port for introducing a heating gas between the face plates of the plate nozzle and a heating gas introduction device for introducing the heating gas to the gas introduction port. The substrate is placed on the face plate facing the substrate in the plate nozzle by a collision jet of the heating gas. A vacuum film-forming apparatus comprising a plurality of gas jets for heating. 前記ガス噴出口の代表的寸法をBと置いたときに、このBと前記所要の間隔Hとの間に、H/B<20なる関係を持つことを特徴とする請求の範囲第1項記載の真空成膜装置。  2. The first aspect of claim 1, wherein when a representative dimension of the gas outlet is set to B, a relationship of H / B <20 is established between B and the required interval H. Vacuum deposition equipment. 前記基板の厚さがtのガラスであり、前記ガス噴出口相互の距離をrとしたときに、r/t<20なる関係を持つことを特徴とする請求の範囲第1項記載の真空成膜装置。  2. The vacuum forming method according to claim 1, wherein the substrate is made of glass having a thickness t, and a relationship r / t <20 is established, where r is a distance between the gas ejection ports. Membrane device. 前記ガス噴出口の代表的寸法をBと置いたときに、このBと前記所要の間隔Hとの間に、H/B<20なる関係を持ち、前記基板が厚さtのガラスであり、前記ガス噴出口相互の距離をrとしたときに、r/t<20なる関係を持つことを特徴とする請求の範囲第1項記載の真空成膜装置。  When a representative dimension of the gas outlet is set as B, a relationship of H / B <20 is established between B and the required interval H, and the substrate is glass having a thickness t. 2. The vacuum film forming apparatus according to claim 1, wherein a relationship r / t <20 is established, where r is a distance between the gas ejection ports. 前記プレートノズルの両側の面板にガス噴出口を備え、プレートノズルの両側の面板に対峙するように基板を配置したことを特徴とする請求の範囲第1項記載の真空成膜装置。  2. The vacuum film forming apparatus according to claim 1, wherein a gas jet is provided in the face plates on both sides of the plate nozzle, and the substrate is disposed so as to face the face plates on both sides of the plate nozzle. 前記基板を挟むように配置したプレートノズルが、各プレートノズル内に発生する圧力勾配によって生じるガス噴出量の不均一が互いに相殺される位置にガス導入口を備えたことを特徴とする請求の範囲第1項記載の真空成膜装置。  The plate nozzle arranged so as to sandwich the substrate includes a gas introduction port at a position where non-uniformity in gas ejection amount caused by a pressure gradient generated in each plate nozzle cancels each other. 2. A vacuum film forming apparatus according to item 1. 前記プレートノズルが、その相互間に基板が配置されるように櫛歯状に複数備えられた櫛歯ノズルであることを特徴とする請求の範囲第1項記載の真空成膜装置。  2. The vacuum film forming apparatus according to claim 1, wherein the plate nozzles are comb-tooth nozzles provided in a plurality of comb-teeth shapes so that the substrates are disposed therebetween. 前記基板が台車に支持されて搬送され、前記プレートノズルから噴出した加熱ガスが前記台車を通して前記加熱ガス導入装置に導かれるようにしたことを特徴とする請求の範囲第1項記載の真空成膜装置。  2. The vacuum film formation according to claim 1, wherein the substrate is supported by a carriage and conveyed, and the heated gas ejected from the plate nozzle is guided to the heated gas introduction device through the carriage. apparatus. 請求項1に記載の基板加熱装置を成膜室に連結して配置し、台車に鉛直方向に支持した基板を基板加熱装置に搬入し、基板の面と所要の間隔を有するプレートノズルの面板に備えたガス噴出口から加熱ガスを噴出させ、衝突噴流によって基板を加熱し、基板を均一温度に加熱した後、該基板を成膜室へ搬入して成膜を行うことを特徴とする真空成膜方法。 The substrate heating apparatus according to claim 1 is arranged in connection with the film forming chamber, and the substrate supported in the vertical direction on the carriage is carried into the substrate heating apparatus, and is attached to the face plate of the plate nozzle having the required distance from the substrate surface. A vacuum forming process is characterized in that a heating gas is ejected from a gas outlet provided, the substrate is heated by a collision jet, the substrate is heated to a uniform temperature, and then the substrate is carried into a deposition chamber for film formation. Membrane method. 前記成膜の方法がプラズマCVD法であることを特徴とする請求の範囲第9項記載の真空成膜方法。  10. The vacuum film forming method according to claim 9, wherein the film forming method is a plasma CVD method. 請求の範囲第9項記載の真空成膜方法により製造した太陽電池材料。  A solar cell material produced by the vacuum film-forming method according to claim 9. 請求の範囲第10項記載の真空成膜方法により製造した太陽電池材料。  The solar cell material manufactured by the vacuum film-forming method of Claim 10.
JP2005505953A 2003-05-02 2004-04-30 Vacuum film forming apparatus, vacuum film forming method, and solar cell material Expired - Fee Related JP4645448B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003126961 2003-05-02
JP2003126961 2003-05-02
JP2004079964 2004-03-19
JP2004079964 2004-03-19
PCT/JP2004/006317 WO2004097913A1 (en) 2003-05-02 2004-04-30 Vacuum film-forming apparatus, vacuum film-forming method and solar battery material

Publications (2)

Publication Number Publication Date
JPWO2004097913A1 JPWO2004097913A1 (en) 2006-07-13
JP4645448B2 true JP4645448B2 (en) 2011-03-09

Family

ID=33422093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005505953A Expired - Fee Related JP4645448B2 (en) 2003-05-02 2004-04-30 Vacuum film forming apparatus, vacuum film forming method, and solar cell material

Country Status (6)

Country Link
JP (1) JP4645448B2 (en)
KR (1) KR100919387B1 (en)
AU (1) AU2004234807B2 (en)
CA (1) CA2524487C (en)
TW (1) TWI348769B (en)
WO (1) WO2004097913A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849316B2 (en) * 2006-02-21 2012-01-11 株式会社Ihi Vacuum deposition system
KR101138612B1 (en) * 2007-12-27 2012-04-26 (주)에이디에스 Gas supply device improving vaporization efficiency
KR101041143B1 (en) 2009-04-16 2011-06-13 삼성모바일디스플레이주식회사 Apparatus for Processing Substarate
JP5319464B2 (en) * 2009-09-04 2013-10-16 株式会社カネカ Thin film manufacturing apparatus and thin film manufacturing method
JP5443127B2 (en) * 2009-10-28 2014-03-19 東京エレクトロン株式会社 Plasma processing equipment
KR101223489B1 (en) * 2010-06-30 2013-01-17 삼성디스플레이 주식회사 Apparatus for Processing Substrate
KR20120040433A (en) * 2010-10-19 2012-04-27 삼성전자주식회사 Device jetting an gas and solar cell manufacturing method using the same
JP5698059B2 (en) * 2011-04-08 2015-04-08 株式会社日立国際電気 Substrate processing apparatus and solar cell manufacturing method
CN112234938A (en) * 2020-10-14 2021-01-15 景德镇陶瓷大学 Impact jet cooling system for concentrating solar cell and solar cell device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338491A (en) * 1993-05-28 1994-12-06 Kyocera Corp Catalyzer cvd device
JP2001187332A (en) * 1999-12-28 2001-07-10 Anelva Corp Device for forming thin film
JP2001319885A (en) * 2000-03-02 2001-11-16 Hitachi Kokusai Electric Inc Processing system for substrate and method for producing semiconductor
JP2004006536A (en) * 2002-05-31 2004-01-08 Ishikawajima Harima Heavy Ind Co Ltd Method and device for manufacturing thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338491A (en) * 1993-05-28 1994-12-06 Kyocera Corp Catalyzer cvd device
JP2001187332A (en) * 1999-12-28 2001-07-10 Anelva Corp Device for forming thin film
JP2001319885A (en) * 2000-03-02 2001-11-16 Hitachi Kokusai Electric Inc Processing system for substrate and method for producing semiconductor
JP2004006536A (en) * 2002-05-31 2004-01-08 Ishikawajima Harima Heavy Ind Co Ltd Method and device for manufacturing thin film

Also Published As

Publication number Publication date
CA2524487C (en) 2012-01-17
KR20060007416A (en) 2006-01-24
JPWO2004097913A1 (en) 2006-07-13
AU2004234807B2 (en) 2009-08-06
WO2004097913A1 (en) 2004-11-11
KR100919387B1 (en) 2009-09-29
CA2524487A1 (en) 2004-11-11
TW200532933A (en) 2005-10-01
AU2004234807A1 (en) 2004-11-11
TWI348769B (en) 2011-09-11

Similar Documents

Publication Publication Date Title
KR100919387B1 (en) Vacuum film-forming apparatus, vacuum film-forming method and solar battery material
CN109559975B (en) Substrate processing apparatus, reaction tube, method for manufacturing semiconductor device, and program
CN108074845A (en) The manufacturing method of substrate board treatment, reaction tube and semiconductor device
CN108136464B (en) Uniform non-contact temperature control method and device for non-endless surface to be temperature controlled
JP5877358B2 (en) Heat treatment equipment
US20100162765A1 (en) Atmosphere Regulator and Coating Apparatus for Coating on Float Glass Production Line
JP2017040004A (en) Device for covering thin film coating, and coating method using such device
CN103649368B (en) Gas injection device, apparatus for atomic layer deposition and use the Atomic layer deposition method of this apparatus for atomic layer deposition
KR101321677B1 (en) Substrate processing apparatus
JP7074790B2 (en) Manufacturing method of substrate processing equipment and semiconductor equipment
CN103374709A (en) Chemical vapor deposition system
JP2007158358A (en) Substrate processing apparatus
KR20140069715A (en) Atommic layer deposition apparatus
KR101920331B1 (en) Substrate thermal processing Apparatus
JP2000311862A (en) Substrate treating system
KR101284084B1 (en) Apparatus for processing substrate
CN100431102C (en) Vacuum deposition apparatus and method and solar cell material
CN101361164B (en) Apparatus for degassing a disc-like substrate
JP4849316B2 (en) Vacuum deposition system
JP4220877B2 (en) Substrate cooling method, substrate cooling apparatus, and film forming apparatus
KR102033735B1 (en) Cooling apparatus for substrate and Chemical vapor deposition apparatus including the same
JP2012225557A (en) Heat treatment device
CN109338464A (en) A kind of gas injection apparatus for epitaxial growth system
KR200327634Y1 (en) Apparatus for atomic layer deposition
KR20190089663A (en) Object processing apparatus and gas controler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4645448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees