JP4642325B2 - 発電装置のための改良された流体通路 - Google Patents

発電装置のための改良された流体通路 Download PDF

Info

Publication number
JP4642325B2
JP4642325B2 JP2003119169A JP2003119169A JP4642325B2 JP 4642325 B2 JP4642325 B2 JP 4642325B2 JP 2003119169 A JP2003119169 A JP 2003119169A JP 2003119169 A JP2003119169 A JP 2003119169A JP 4642325 B2 JP4642325 B2 JP 4642325B2
Authority
JP
Japan
Prior art keywords
oxidant
section
solid oxide
flow
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003119169A
Other languages
English (en)
Other versions
JP2004006330A5 (ja
JP2004006330A (ja
Inventor
ロナルド・スコット・バンカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2004006330A publication Critical patent/JP2004006330A/ja
Publication of JP2004006330A5 publication Critical patent/JP2004006330A5/ja
Application granted granted Critical
Publication of JP4642325B2 publication Critical patent/JP4642325B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般的に発電装置に関し、より具体的には、改良された固体酸化物燃料電池のための流体通路に関する。
【0002】
【従来の技術】
高温の固体酸化物燃料電池(以後「SOFC」と呼ぶ)スタックは、典型的には軸方向に細長い管形の接合されたSOFCと、関連する燃料及び空気分配装置とのアレイで構成される。更に、管形式SOFCとは異なる典型的な構成としては、幾つかの平形単一セルの部材で構成された平形直交流式燃料電池、向流式燃料電池、及び平行流式燃料電池がある。そのような部材は、典型的にはセルからセルへ電流を流しかつ立方構造又はスタック内へガスを流すための流路を形成する、3層の陽極/電解質/陰極の構成要素を含む。
【0003】
SOFCは、酸化剤と炭化水素燃料ガスとの間の電気化学的反応により、電気エネルギーを発生して外部回路内に電子の流れを作り出す。更に、SOFCは廃熱も発生し、この廃熱は、陽極、陰極及び電解質のようなSOFC構成要素を所望の温度レベルに維持するために、典型的には酸化剤を介して除去される。
【0004】
SOFCは、電力発生における高効率及び低汚染という能力を実証してきたが、SOFC内の構成要素の温度調整に関連して幾つかの問題を残している。SOFCは、典型的には冷却流路(交互の平形単一セルのセクションにおける)又は上昇管(管形式SOFCにおける)を含み、これらの冷却流路又は上昇管内では、廃熱を伝達又は除去する目的のために酸化剤、典型的には空気が使用され、スタック温度を規定の限界に又は該限界以下に維持しかつSOFC内において所定の熱勾配を維持するようになっている。しかしながら、そのような冷却流路又は上昇管は、典型的には平滑な表面を備え、この平滑な表面は、該流路又は管と酸化剤との間で低い熱伝達率をもたらす望ましくない特性を有する。
【特許文献1】
米国特許第5820655号
【0005】
【発明が解決しようとする課題】
従って、改良された熱伝達率をもたらすような改良された流路を有するSOFCの技術における必要性がある。
【0006】
【課題を解決するための手段】
本発明の1つの実施形態は、熱管理セクションと該熱管理セクションに隣接して配置された電解セクションとを含む固体酸化物燃料電池を含み、複数の凹部が熱管理セクション及び電解セクションのうちの少なくとも一方の上に配置されて、流体が該凹部上を流れる時、流体力学的相互作用を生じさせて該流体と該凹部との間の熱伝達率に影響を与えるようになっている。
【0007】
【発明の実施の形態】
本発明のこれら及びその他の特徴、態様及び利点は、全ての図面において同一の参照符号が同様な部材を表している添付図面を参照しながら以下の詳細な説明を読むことによって、一層よく理解されるであろう。
【0008】
典型的な固体酸化物燃料電池が発電装置内に配置され、これらの固体酸化物燃料電池(以後SOFCと呼ぶ)には、管形式固体酸化物燃料電池(図1及び図2参照)又は平形直交流式固体酸化物燃料電池スタック(図3乃至図6参照)が含まれる。更に、SOFCは、典型的には熱管理セクション101と電解セクション102(図1参照)とを含む。以下に述べるように、熱管理セクション101は、典型的には管形式SOFCの電解セクション102内に配置された上昇管110を含む。更に、熱管理セクション101は、典型的には少なくとも1つの酸化剤セクション150と少なくとも1つの燃料セクション160とを含み、平形直交流式SOFCの場合、電解セクション102は、典型的には酸化剤セクションと燃料セクションとの間に置かれる(図3乃至図6参照)。電解セクション102は、典型的には陽極190と陰極200と電解質210とを含む。本明細書において使用される「〜の上に」、「〜の中に」、「〜上を」、「〜の上方に」及び「〜の下方に」などの用語は、図に示すようなSOFC100の諸構成要素の相対的な位置関係を表すために使用されるものであって、SOFC100の配向又は作動に関する如何なる状態の限定も意味するものではない。説明を単純化するために、以下の記述においては、管形式固体酸化物燃料電池(図1及び図2参照)及び平形直交流式固体酸化物燃料電池(図3乃至図6参照)の両方を包括的にSOFC100として説明することにする。
【0009】
作動中、天然ガス又は水素のようなガス燃料(図面の図1及び図2において「燃料」と呼ぶ実線矢印で示す)が、SOFC100の外壁面136上を軸方向に流される。更に、空気又は酸素のような酸化剤(図面の図1及び図2において「酸化剤」と呼ぶ破線矢印で示す)が、上昇管110(図1参照)を通して供給される。上昇管110は、上昇管内表面120と上昇管外表面130とを含み、SOFC100の環状空間内に置かれる。そのような酸化剤は、先ず上昇管内表面120内に導入され、次いで上昇管外表面130と内壁面135との間をSOFC100の上方に向かって逆流する。
【0010】
平形直交流式SOFC100は、内部に配置された少なくとも1つの酸化剤流路170を有する酸化剤セクション150と、内部に配置された少なくとも1つの燃料流路180を有する燃料セクション160と(図3参照)を含む。SOFC100のこの実施形態は、典型的には幾つかの平形単一セルのセクションから構成され、この平形単一セルのセクションは、典型的には酸化剤セクション150と燃料セクション160とを含み、これらのセクション内に設けられた流路により、酸化剤(図面の図3乃至図6において「酸化剤」と呼ぶ破線矢印で示す)とガス燃料(図面の図3乃至図6において「燃料」と呼ぶ実線矢印で示す)とが立体構造又はスタック内に流入することが可能になる。酸化剤セクション150及び燃料セクション160の位置と配向は変えることができ、図3乃至図6に示したそれらのセクションの位置と配向は説明の便宜上使用したものであって、これに限定するためのものではないことを理解されたい。
【0011】
作動中、燃料は管形式SOFC100(図1及び図2参照)の外壁面136上を流されるか、又は平形直交流式SOFC100(図3乃至図6参照)の燃料流路180を通して流される。典型的には与熱空気又は酸素である酸化剤は、管形式SOFC100(図1及び図2参照)内の上昇管110を通して流されるか、又は平形直交流式SOFC100(図3乃至図6参照)内の酸化剤流路170を通して流される。両方の形式のSOFC100において、酸化剤(酸素分子)は、陰極200を通過し、陰極−電解質境界面191において酸素イオンを形成する。その後、酸素イオンは、電解質210を通って移動し、陽極−電解質境界面192において燃料と結合し、それによって陽極190において電子が放出される。次に電子は、外部負荷回路(図示せず)を介して陰極200において回収され、それによって外部負荷回路内に陽極190から陰極200への電流の流れを発生する。陽極−電解質境界面192における相互作用の結果、SOFC100は熱を発生するが、この熱は、SOFC100内に望ましい温度レベルと所定の熱勾配を維持するために、除去されなくてはならない。そのような熱の除去は、典型的には酸化剤流体流がSOFC100から熱エネルギーを除去するように、酸化剤を上昇管110(図1及び図2参照)又は酸化剤流路170(図3参照)内に導入することにより達成される。
【0012】
本発明の1つの実施形態において、図1は、SOFC100の上昇管内表面120、上昇管外表面130、内壁面135及び外壁面136上に配置された複数の凹部140を示している。本明細書で使用される「凹部」という用語は、窪み、陥凹、ディンプル、小穴又はこれらに類するものを言う。凹部140の形状は、典型的には半球形又は逆切頭円錐形である。別の実施形態においては、凹部140の形状は、典型的には半球形の任意のセクタである。幾つかの実施形態においては、凹部140は上記の表面の全体又は一部分の上に配置される。
【0013】
凹部140は、陽極190、陰極200及び電解質210のようなSOFC100の構成要素から酸化剤又はガス燃料のような流体への熱伝達を高めるのに役立つパターンで上記の表面の上に形成される。例としてであってこれに限定するわけではないが、凹部140は、SOFC100の構成要素からガス燃料への熱の除去を高めるように、SOFCの外表面136(図1参照)の上に配置されるか又は燃料流路180(図3乃至図6参照)内に配置される。作動中、流体は凹部140上を流れるようにSOFC100内に導入される。その結果、流体と凹部140との間の流体力学的相互作用により、SOFC100内の熱伝達率は従来のSOFCと比べて増大される。本明細書で使用される「流体力学的相互作用」という用語は、凹部140と流体との間の相互作用のことであって、各々の凹部が、該凹部内に圧力場を形成して流体流の部分の中に渦パターンを作り出すことを言う。
【0014】
作動中、流体流の上記部分が流体の主流と相互作用するので、その流体流の部分は、流路の表面に向けられて該表面と熱的に相互作用し、それによってSOFC100の構成要素から流体への熱伝達を高めることなる。更に、凹部のない表面と比べて、各それぞれの凹部140の形状により生じる表面積の増加により、流体と各それぞれの凹部140との間の熱的相互作用が増大される。従って、流体はこのような増大された表面積と相互作用し、それによってSOFC100からの熱エネルギーの除去を高める。凹部140の任意の1つの深さ「Y」(図1参照)は、典型的には管形式SOFC100の全長「L」(図2参照)又は平形直交流式SOFC100の全長「L」(図3乃至図6参照)にわたり一定に保たれる。深さ「Y」(図1参照)は、一般に凹部表面の直径「d」の約0.10乃至約0.50倍の範囲である。更に、凹部140の深さ「Y」は、約0.002インチ乃至約0.125インチの範囲である。凹部140の中心から中心までの間隔「X」(図1参照)は、一般に凹部140の表面直径「d」の約1.1乃至約2倍の範囲である。1つの実施形態においては、凹部140は、典型的にはパルス電解加工(PECM)法を用いて形成される。別の実施形態においては、凹部140は、典型的には放電加工(EDM)法を用いて形成される。
【0015】
もう1つの実施形態においては、凹部140は酸化剤流路170内と燃料流路180内とに配置される(図3参照)。別の実施形態においては、凹部140は、酸化剤流路170内又は燃料流路180内のいずれかに配置される。更に別の実施形態においては、SOFC100は、それぞれ内部に配置された第1の流れ部材220及び第2の流れ部材230を有する酸化剤セクション150及び燃料セクション160(図4参照)を含む。この実施形態においては、第1の流れ部材220及び第2の流れ部材230は、それぞれ第1のウェッジ及び第2のウェッジを含む。本明細書で使用される「ウェッジ」という用語は、第1の流れ部材220及び第2の流れ部材230の形状を指しており、これらの部材の形状は一方の縁部に向かってテーパが付けられている。第1及び第2のウェッジは、典型的には酸化剤セクション150及び燃料セクション160内でウェッジを整列させかつ支持する働きをする複数の支持部材240を含む。別の実施形態においては、図6に示すように、酸化剤流路170及び燃料流路180は、テーパ付き流路として形成されている。本明細書で使用される「テーパ付き流路」という用語は、それらの流路の形状を指しており、これらの流路は一方の縁部に向かって、つまり酸化剤流入口250から酸化剤流出口(図示せず)に向かって、また燃料流入口260から燃料流出口270に向かってテーパが付けられている。
【0016】
ウェッジ(図4参照)及びテーパ付き流路(図6参照)は、それぞれ酸化剤セクション150又は燃料セクション160内における酸化剤又は燃料の流速を高め、それによってSOFC100内の熱伝達を増大させる。1つの例示的な実施形態においては、ウェッジ形状(図4参照)は、酸化剤セクション150の酸化剤流入口250から酸化剤流出口(図示せず)へと収束する流れ面積を作り出し、それによってSOFC100の構成要素と酸化剤との間の熱伝達率に影響を与える。図6のテーパ付き流路は、上に述べたウェッジと同じ特性を示すことが理解されるであろう。ウェッジ(図4参照)及びテーパ付き流路(図6参照)を使用して収束する流れを作り出すことは、酸化剤又はガス燃料の温度上昇により引き起こされる対流熱伝達における熱伝達能力の低下を効果的に補い、それによってそれぞれ酸化剤セクション150又は燃料セクション160内の熱勾配に影響を与えることにより、酸化剤又は燃料の流路全体にわたって実質的に均一な熱伝達率をもたらす。ウェッジ(図4参照)又はテーパ付き流路(図6参照)上に凹部140を配置したことにより、熱伝達率は更に増大されるが、そのような熱伝達率の増大は、酸化剤又は燃料が凹部140上を流れる時に起こる流体力学的相互作用によるものである。幾つかの実施形態においては、凹部140は上記のテーパ付き流路又はウェッジ(図4参照)の全体又は一部分の上に配置される。
【0017】
もう1つの実施形態において、第1の流れ部材220及び第2の流れ部材230は、それぞれ第1の波形部材及び第2の波形部材(図5参照)を含む。本明細書で使用される「波形」という用語は、第1の流れ部材220及び第2の流れ部材230の稜部面と溝部面とを形成するような形状を指している。上に述べたように、流体(酸化剤又はガス燃料)と凹部140との間に流体力学的相互作用を生じさせて、それによってSOFC100構成要素と流体との間の熱伝達率を増大させるために、凹部140が波形部材の上に配置される。1つの実施形態においては、波形部材は、例えばステンレス鋼薄板などの金属薄板で形成される。この金属薄板は、典型的にはその厚さが凹部140の所望の深さ形状に応じて変わり、波形部材の頂上部及び谷部は電気を流すために陽極190及び陰極200に接触する機能を果たすことが理解されるであろう。
【0018】
本明細書において本発明を特許法規に従って図示し説明してきたが、本発明の技術思想及び技術的範囲から逸脱することなく、開示した実施形態に修正及び変更を行うことができることは当業者には明らかであろう。なお、特許請求の範囲に記載された符号は、理解容易のためであってなんら発明の技術的範囲を実施例に限縮するものではない。
【図面の簡単な説明】
【図1】 本発明の1つの実施形態による管形式固体酸化物燃料電池の断面図。
【図2】 図1の線1−1に沿った上面斜視図。
【図3】 本発明のもう1つの実施形態による平形直交流式固体酸化物燃料電池の斜視図。
【図4】 本発明の別の実施形態による、図3に示すような平形直交流式固体酸化物燃料電池の斜視図。
【図5】 本発明の更に別の実施形態による、図3に示すような平形直交流式固体酸化物燃料電池の斜視図。
【図6】 本発明の更に別の実施形態による、図3に示すような平形直交流式固体酸化物燃料電池の斜視図。
【符号の説明】
100 固体酸化物燃料電池(SOFC)
110 上昇管
120 上昇管内表面
130 上昇管外表面
135 SOFC内壁面
136 SOFC外壁面
140 凹部
190 陽極
191 陰極−電解質境界面
192 陽極−電解質境界面
200 陰極
210 電解質
Y 凹部140の深さ
d 凹部140の表面直径
X 凹部140の中心から中心までの間隔

Claims (10)

  1. 発電装置内で使用するための固体酸化物燃料電池(100)であって、
    内部に配置された酸化剤流路(170)を有する酸化剤セクション(150)と、内部に配置された燃料流路(180)を有する燃料セクション(160)とを含み、
    前記酸化剤流路(170)及び前記燃料流路(180)が、その中に流体を受入れるように配置され、
    前記固体酸化物燃料電池(100)が、前記発電装置内に配置され、
    複数の凹部(140)が、前記酸化剤流路(170)の表面に形成されかつ前記燃料流路(180)の表面に形成され
    前記酸化剤流路は、該酸化剤流路の入口(250)から出口に向かって収束する流れ面積を有し、
    前記燃料流路は、該燃料流路の入口(260)から出口(270)に向かって収束する流れ面積を有する、
    ことを特徴とする固体酸化物燃料電池(100)。
  2. 前記酸化剤セクションと前記燃料セクションとの間に配置された電解セクション(102)をさらに備える請求項1に記載の固体酸化物燃料電池(100)。
  3. 前記電解セクション(102)が、陰極(200)と陽極(190)と電解質(210)とを含むことを特徴とする、請求項2に記載の固体酸化物燃料電池(100)。
  4. 前記凹部は、半球形である請求項1乃至3のいずれか1項に記載の固体酸化物燃料電池(100)。
  5. 前記凹部は、逆切頭円錐形である請求項1乃至3のいずれか1項に記載の固体酸化物燃料電池(100)。
  6. 発電装置内で使用するための固体酸化物燃料電池(100)であって、
    内部に配置された酸化剤流路(170)を有する酸化剤セクション(150)と、内部に配置された燃料流路(180)を有する燃料セクション(160)とを含み、
    前記固体酸化物燃料電池(100)が、前記発電装置内に配置され、
    第1の流れ部材(220)が前記酸化剤セクション(150)内に配置され、また第2の流れ部材(230)が前記燃料セクション(160)内に配置され、
    複数の凹部(140)が、前記第1の流れ部材(220)の表面と前記第2の流れ部材(230)の表面に形成され
    前記酸化剤流路の流れ面積は、前記第1の流れ部材(220)によって該酸化剤流路の入口(250)から出口に向かって収束され、
    前記燃料流路の流れ面積は、前記第2の流れ部材(230)によって該燃料流路の入口(260)から出口(270)に向かって収束される、
    ことを特徴とする固体酸化物燃料電池(100)。
  7. 前記酸化剤セクションと前記燃料セクションとの間に配置された電解セクション(102)をさらに備える請求項6に記載の固体酸化物燃料電池(100)。
  8. 前記電解セクション(102)が、陰極(200)と陽極(190)と電解質(210)とを含むことを特徴とする、請求項7に記載の固体酸化物燃料電池(100)。
  9. 前記凹部は、半球形である請求項6乃至8のいずれか1項に記載の固体酸化物燃料電池(100)。
  10. 前記凹部は、逆切頭円錐形である請求項6乃至8のいずれか1項に記載の固体酸化物燃料電池(100)。
JP2003119169A 2002-04-25 2003-04-24 発電装置のための改良された流体通路 Expired - Lifetime JP4642325B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/063,467 US7022429B2 (en) 2002-04-25 2002-04-25 Fluid passages for power generation equipment

Publications (3)

Publication Number Publication Date
JP2004006330A JP2004006330A (ja) 2004-01-08
JP2004006330A5 JP2004006330A5 (ja) 2006-06-08
JP4642325B2 true JP4642325B2 (ja) 2011-03-02

Family

ID=29248087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119169A Expired - Lifetime JP4642325B2 (ja) 2002-04-25 2003-04-24 発電装置のための改良された流体通路

Country Status (8)

Country Link
US (1) US7022429B2 (ja)
EP (1) EP1365469A3 (ja)
JP (1) JP4642325B2 (ja)
KR (1) KR20030084717A (ja)
CN (1) CN1316665C (ja)
AU (1) AU2003203817A1 (ja)
CA (1) CA2424990A1 (ja)
SG (1) SG119183A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038099A1 (en) * 2002-08-21 2004-02-26 General Electric Grc Fluid passages for power generation equipment
US6984102B2 (en) 2003-11-19 2006-01-10 General Electric Company Hot gas path component with mesh and turbulated cooling
US7186084B2 (en) 2003-11-19 2007-03-06 General Electric Company Hot gas path component with mesh and dimpled cooling
DE102015226740A1 (de) * 2015-12-28 2017-06-29 Robert Bosch Gmbh Brennstoffzellenvorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190255A (ja) * 1987-02-02 1988-08-05 Hitachi Ltd 燃料電池構造
JPH02129858A (ja) * 1988-11-10 1990-05-17 Sanyo Electric Co Ltd 燃料電池の冷却板
JPH07245120A (ja) * 1994-03-04 1995-09-19 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池
JPH111118A (ja) * 1997-06-11 1999-01-06 Toyota Autom Loom Works Ltd 車輌用熱発生器
JP2000505593A (ja) * 1996-02-29 2000-05-09 ウェスチングハウス・エレクトリック・コーポレイション 高温固体酸化物電解質電気化学的電池用の低コストで安定な空気電極
JP2001085033A (ja) * 1999-09-17 2001-03-30 Isuzu Motors Ltd 電気化学反応セルおよび該電気化学反応セルの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678724A (en) * 1982-06-23 1987-07-07 United Technologies Corporation Fuel cell battery with improved membrane cooling
US4664986A (en) * 1986-04-16 1987-05-12 Westinghouse Electric Corp. High thermal conductivity gas feeder system
JPH01313856A (ja) * 1988-06-14 1989-12-19 Nkk Corp 固体電解質型燃料電池の電極部材、その製造方法および固体電解質型燃料電池
JP2528989B2 (ja) * 1990-02-15 1996-08-28 日本碍子株式会社 固体電解質型燃料電池
US5820655A (en) 1997-04-29 1998-10-13 Praxair Technology, Inc. Solid Electrolyte ionic conductor reactor design
US6361892B1 (en) 1999-12-06 2002-03-26 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
EP1113518B1 (en) 1999-12-27 2013-07-10 Corning Incorporated Solid oxide electrolyte, fuel cell module and manufacturing method
JP2001357860A (ja) * 2000-06-14 2001-12-26 Mitsubishi Heavy Ind Ltd 燃料電池装置および燃料電池の冷却方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190255A (ja) * 1987-02-02 1988-08-05 Hitachi Ltd 燃料電池構造
JPH02129858A (ja) * 1988-11-10 1990-05-17 Sanyo Electric Co Ltd 燃料電池の冷却板
JPH07245120A (ja) * 1994-03-04 1995-09-19 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池
JP2000505593A (ja) * 1996-02-29 2000-05-09 ウェスチングハウス・エレクトリック・コーポレイション 高温固体酸化物電解質電気化学的電池用の低コストで安定な空気電極
JPH111118A (ja) * 1997-06-11 1999-01-06 Toyota Autom Loom Works Ltd 車輌用熱発生器
JP2001085033A (ja) * 1999-09-17 2001-03-30 Isuzu Motors Ltd 電気化学反応セルおよび該電気化学反応セルの製造方法

Also Published As

Publication number Publication date
CN1453892A (zh) 2003-11-05
EP1365469A2 (en) 2003-11-26
US7022429B2 (en) 2006-04-04
US20030203259A1 (en) 2003-10-30
AU2003203817A1 (en) 2003-11-13
CN1316665C (zh) 2007-05-16
CA2424990A1 (en) 2003-10-25
KR20030084717A (ko) 2003-11-01
JP2004006330A (ja) 2004-01-08
SG119183A1 (en) 2006-02-28
EP1365469A3 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
EP2859607B1 (en) Solid oxide fuel cell
KR102109057B1 (ko) 고체 산화물 연료 전지 또는 고체 산화물 전해 전지 및 이러한 전지를 작동시키기 위한 방법
US20070009779A1 (en) Fuel cell
CN108155400B (zh) 燃料电池双极板冷却流场结构
CN104218252A (zh) 平板式固体氧化物燃料电池电堆装置
JP2004071568A (ja) 燃料電池のファイバ冷却
JP5122319B2 (ja) 固体酸化物形燃料電池
US7011904B2 (en) Fluid passages for power generation equipment
CN110828843A (zh) 一种燃料电池双极板
JP4642325B2 (ja) 発電装置のための改良された流体通路
US20040038099A1 (en) Fluid passages for power generation equipment
JP2007294177A (ja) 燃料電池
CN113013437B (zh) 一种具有渐缩坡面结构的燃料电池阴极流道
CN101253649B (zh) 燃料电池
CN210379269U (zh) 一种燃料电池双极板
JP2005327554A (ja) 固体酸化物形燃料電池
CN117352763A (zh) 燃料电池单元及燃料电池堆
CN117727967A (zh) 一种固体氧化物燃料电池或电解池的连接体
JP2000285935A (ja) 固体高分子型燃料電池スタック
JP2010170947A (ja) 燃料電池スタック

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100215

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term