JP4641010B2 - Hollow metal body - Google Patents

Hollow metal body Download PDF

Info

Publication number
JP4641010B2
JP4641010B2 JP2006202354A JP2006202354A JP4641010B2 JP 4641010 B2 JP4641010 B2 JP 4641010B2 JP 2006202354 A JP2006202354 A JP 2006202354A JP 2006202354 A JP2006202354 A JP 2006202354A JP 4641010 B2 JP4641010 B2 JP 4641010B2
Authority
JP
Japan
Prior art keywords
metal body
hollow metal
mass
hollow
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006202354A
Other languages
Japanese (ja)
Other versions
JP2008025015A (en
Inventor
泰隆 福田
厚 小川
正広 阿部
宏 板谷
邦明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Techno Research Corp
Original Assignee
JFE Techno Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Techno Research Corp filed Critical JFE Techno Research Corp
Priority to JP2006202354A priority Critical patent/JP4641010B2/en
Publication of JP2008025015A publication Critical patent/JP2008025015A/en
Application granted granted Critical
Publication of JP4641010B2 publication Critical patent/JP4641010B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、内部に空孔を有する金属体(以下、中空金属体という)に関するものであり、特に強度が高くかつ耐食性に優れた中空金属体に関するものである。   The present invention relates to a metal body having pores therein (hereinafter referred to as a hollow metal body), and particularly to a hollow metal body having high strength and excellent corrosion resistance.

近年、地球の温暖化を防止するために、石油系燃料の消費量を削減する取り組みが様々な分野でなされている。その一環として自動車の車体を軽量化する技術が種々検討されている。
自動車の車体には、衝突時の衝撃を吸収して車体の損傷を軽減するために、バンパーと車体との間にクラッシュボックスが設けられている。このクラッシュボックスの軽量化を図るために、発泡アルミニウムや中空金属体を所定の形状に成形したクラッシュボックス(たとえば特許文献1,2参照)が検討されている。これらは、内部に気泡あるいは空孔を有する素材を使用することによって、クラッシュボックスを軽量化する技術である。
In recent years, in order to prevent global warming, efforts to reduce the consumption of petroleum-based fuels have been made in various fields. As part of this, various techniques for reducing the weight of automobile bodies have been studied.
A car body of a car is provided with a crash box between the bumper and the car body in order to absorb the impact at the time of collision and reduce the damage to the car body. In order to reduce the weight of the crash box, a crash box (for example, see Patent Documents 1 and 2) in which foamed aluminum or a hollow metal body is formed into a predetermined shape has been studied. These are techniques for reducing the weight of a crash box by using a material having bubbles or holes inside.

発泡アルミニウムからなるクラッシュボックスは、内部に気孔を有するアルミニウムを成形したものである。ところが、発泡アルミニウムの内部に発生させる気孔の寸法や分布を制御することは困難であり、その成形体(すなわちクラッシュボックス)の強度は大きく変動する。したがって、衝撃を吸収する作用が安定しない。
中空金属体からなるクラッシュボックスは、内部が中空になっている金属体を所定の形状に加圧成形して焼結したものである。したがって、一定の寸法を有する中空金属体を選択して使用すれば、発泡アルミニウムに比べて強度の変動を抑制でき、かつ複雑な形状に成形することも可能である。ところが、中空金属体は金属粉末を水素雰囲気中で焼結して製造するので、外表面が水素で活性化され、中空金属体同士が凝集し易い。中空金属体を加圧成形する際には凝集した中空金属体を引き剥がさなければならず、その過程で外表面に疵が発生し、中空金属体の強度が低下するという問題がある。また、中空金属体の素材となる金属粉末は鉄粉が一般的に使用されるので、自動車が走行する環境によってはクラッシュボックスに腐食が生じるという問題もある。
特開昭64-56137号公報 特表2003-531287号公報
A crash box made of foamed aluminum is formed by molding aluminum having pores inside. However, it is difficult to control the size and distribution of pores generated inside the foamed aluminum, and the strength of the molded body (that is, the crush box) varies greatly. Therefore, the effect of absorbing the impact is not stable.
A crush box made of a hollow metal body is obtained by press-molding a metal body having a hollow interior into a predetermined shape and sintering it. Therefore, if a hollow metal body having a certain size is selected and used, fluctuations in strength can be suppressed as compared with foamed aluminum, and it can be formed into a complicated shape. However, since the hollow metal body is manufactured by sintering metal powder in a hydrogen atmosphere, the outer surface is activated with hydrogen, and the hollow metal bodies tend to aggregate. When the hollow metal body is pressure-molded, the aggregated hollow metal body must be peeled off, and there is a problem that wrinkles are generated on the outer surface in the process and the strength of the hollow metal body is reduced. In addition, since iron powder is generally used as the metal powder used as the material of the hollow metal body, there is a problem in that the crash box is corroded depending on the environment in which the automobile travels.
JP-A 64-56137 Special Table 2003-531287

本発明は、上記のような問題を解消し、強度が高くかつ耐食性に優れた中空金属体を提供することを目的とする。   An object of the present invention is to provide a hollow metal body that solves the above problems and has high strength and excellent corrosion resistance.

本発明は、内部に空孔を有しかつ焼結体からなる金属体の外表面に、Al23,CaO,MgO,ZrO2,SiCおよびSiO2から選ばれる1種または2種以上のセラミックスが付着している中空金属体である。 The present invention, on the outer surface of the metal body pores ing from chromatic vital sintered body therein, Al 2 O 3, CaO, MgO, ZrO 2, 1 or more species selected from among SiC and SiO 2 This is a hollow metal body to which ceramics are adhered.

本発明によれば、強度が高くかつ耐食性に優れた中空金属体が得られる。   According to the present invention, a hollow metal body having high strength and excellent corrosion resistance can be obtained.

本発明の中空金属体の外表面に付着させる粉状のセラミックスは、Al23,CaO,MgO,ZrO2,SiCおよびSiO2から選ばれる1種または2種以上とする。これらのセラミックスはいずれも化学的に安定であるから、中空金属体を製造する工程で行なう焼結(水素雰囲気,1000〜1300℃)や中空金属体をクラッシュボックスの形状に加圧成形した後で行なう焼結(水素雰囲気,1000℃以上)で還元されず、中空金属体の外表面に残留する。そのため、これらのセラミックスは、中空金属体の製造からクラッシュボックスの製造に到る工程で焼結を行なっても中空金属体中に拡散し難いという利点を有する。 The powdery ceramic adhered to the outer surface of the hollow metal body of the present invention is one or more selected from Al 2 O 3 , CaO, MgO, ZrO 2 , SiC and SiO 2 . Since all these ceramics are chemically stable, after sintering (hydrogen atmosphere, 1000-1300 ° C) in the process of manufacturing the hollow metal body or after pressing the hollow metal body into the shape of a crash box It is not reduced by the sintering (hydrogen atmosphere, 1000 ° C. or higher) and remains on the outer surface of the hollow metal body. Therefore, these ceramics have an advantage that even if sintering is performed in the process from the production of the hollow metal body to the production of the crash box, it is difficult to diffuse into the hollow metal body.

一般にセラミックスが付着した原料を焼結する場合には、セラミックスを構成する元素が母材に拡散すると、焼結体の強度が低下する。
これに対して本発明の中空金属体は、外表面に付着させる粉状のセラミックスの成分をAl23,CaO,MgO,ZrO2,SiC,SiO2に限定することによって、焼結によるセラミックスの拡散を防止し、中空金属体やクラッシュボックスの強度低下を防止する。また、セラミックスで中空金属体を被覆することによって、水分(たとえば雨水,露等)と中空金属体との接触が抑制され、中空金属体にて形成されるクラッシュボックスの耐食性が向上する。これらのセラミックスは、いずれか1種を単独で使用しても良いし、あるいは2種以上を併用しても良い。
In general, when a raw material to which ceramics are attached is sintered, the strength of the sintered body is reduced when the elements constituting the ceramics diffuse into the base material.
On the other hand, the hollow metal body of the present invention limits the powdered ceramic component to be adhered to the outer surface to Al 2 O 3 , CaO, MgO, ZrO 2 , SiC, and SiO 2 , thereby sintering ceramics. , And prevents the strength of hollow metal bodies and crash boxes from decreasing. Further, by coating the hollow metal body with ceramics, contact between moisture (for example, rainwater, dew, etc.) and the hollow metal body is suppressed, and the corrosion resistance of the crash box formed of the hollow metal body is improved. Any one of these ceramics may be used alone, or two or more thereof may be used in combination.

粉状のセラミックスの平均粒径が0.02μm未満では、中空金属体の外表面に均一に付着させることが困難である。一方、10μmを超えると、中空金属体の外表面から剥離し易くなる。したがって、粉状のセラミックスの平均粒径は0.02〜10μmの範囲内が好ましい。
粉状のセラミックスによる中空金属体の外表面被覆率が50%未満では、耐食性向上の効果が得られない。したがって、外表面被覆率は50%以上が好ましい。ここで外表面被覆率は、表面の写真を画像解析して得られたセラミックス面積率を指す。
When the average particle size of the powdered ceramic is less than 0.02 μm, it is difficult to uniformly adhere to the outer surface of the hollow metal body. On the other hand, when it exceeds 10 μm, it is easy to peel from the outer surface of the hollow metal body. Therefore, the average particle size of the powdered ceramic is preferably in the range of 0.02 to 10 μm.
When the outer surface coverage of the hollow metal body by the powdered ceramic is less than 50%, the effect of improving the corrosion resistance cannot be obtained. Therefore, the outer surface coverage is preferably 50% or more. Here, the outer surface coverage refers to the ceramic area ratio obtained by image analysis of a photograph of the surface.

中空金属体の外径は約3mmであり、内部に直径2.5mm程度の空孔を有する。中空金属体を製造するにあたって、たとえば
(1)水に約30質量%の酸化鉄と数質量%のポリビニルアルコール(いわゆるPVA)とを混合してスラリーとする、
(2)そのスラリーを流動化した平均粒径5mmの発泡スチロール球の表面にスプレー塗布,乾燥する(厚み約200μm)、
(3)酸化鉄が塗布された発泡スチロール球を約1000℃大気中で焼結する、
(4)その酸化鉄焼結体に粉状のセラミックスと水とのスラリーを塗布して乾燥する、
(5)セラミックスが付着した酸化鉄焼結体を水素雰囲気中(1000〜1300℃)で還元焼結する
という手順で製造できる。ただし、この手順は中空金属体の製造技術の一例であり、本発明はこの手順に限定するものではない。
The hollow metal body has an outer diameter of about 3 mm, and has a hole with a diameter of about 2.5 mm inside. In producing a hollow metal body, for example,
(1) About 30% by mass of iron oxide and several mass% of polyvinyl alcohol (so-called PVA) are mixed in water to form a slurry.
(2) Spraying and drying the slurry on the surface of foamed styrene spheres with an average particle diameter of 5 mm and fluidized (thickness about 200 μm),
(3) Sintered polystyrene spheres coated with iron oxide in the atmosphere at about 1000 ℃,
(4) Applying a slurry of powdered ceramics and water to the iron oxide sintered body and drying,
(5) The iron oxide sintered body with ceramics attached can be manufactured by the procedure of reduction sintering in a hydrogen atmosphere (1000-1300 ° C.). However, this procedure is an example of a manufacturing technique of a hollow metal body, and the present invention is not limited to this procedure.

中空金属体の組成はFeであることが好ましい。Feは安価で容易に入手でき、かつ上記の(1)〜(5)の手順を支障なく適用できるので、大量に製造されるクラッシュボックスの素材として好適である。Feからなる中空金属体の外表面に粉状のAl23,CaO,MgO,ZrO2,SiC,SiO2等を付着させることによって、中空金属体の強度と耐食性を高めることができる。その中空金属体を用いて製造したクラッシュボックスは、軽量化と同時に強度向上,耐食性向上を達成できる。 The composition of the hollow metal body is preferably Fe. Fe is suitable as a material for crash boxes manufactured in large quantities because Fe is inexpensive and easily available, and the above procedures (1) to (5) can be applied without hindrance. By attaching powdery Al 2 O 3 , CaO, MgO, ZrO 2 , SiC, SiO 2 or the like to the outer surface of the hollow metal body made of Fe, the strength and corrosion resistance of the hollow metal body can be improved. The crush box manufactured using the hollow metal body can achieve strength improvement and corrosion resistance improvement as well as weight reduction.

あるいは中空金属体の組成は、Mo:0.2〜10質量%,Cu:0.5〜5質量%,Ni:0.2〜10質量%およびP:0.01〜1質量%から選ばれる1種または2種以上を含有し、残部がFeであっても良い。Mo,Cu,Ni,Pは、いずれも焼結した成形体(すなわちクラッシュボックス)の密度を高めたり、粒成長を促進して強度を向上させる元素である。これらの元素の含有量が下限値に満たない場合は、中空金属体やクラッシュボックスの強度向上の効果が得られない。一方、上限値を超えると、中空金属体やクラッシュボックスが脆くなる。   Or the composition of a hollow metal body contains 1 type (s) or 2 or more types chosen from Mo: 0.2-10 mass%, Cu: 0.5-5 mass%, Ni: 0.2-10 mass%, and P: 0.01-1 mass% And the remainder may be Fe. Mo, Cu, Ni, and P are all elements that increase the density of the sintered compact (that is, the crush box) or promote grain growth to improve the strength. When the content of these elements is less than the lower limit, the effect of improving the strength of the hollow metal body or the crash box cannot be obtained. On the other hand, when the upper limit is exceeded, the hollow metal body and the crash box become brittle.

<実施例1>
平均粒子径0.7μmの酸化鉄(Fe23)30質量%,PVA2質量%を水に混合したスラリーを作製し、ミキサー中で平均粒径5mmの発泡スチロール球にそのスラリーを塗布した後、120℃で乾燥して、発泡スチロール球の表面に酸化鉄の皮膜(厚み200μm)を形成した後、大気中1000℃で焼結して中空の酸化鉄焼結体とした。
<Example 1>
A slurry was prepared by mixing 30% by mass of iron oxide (Fe 2 O 3 ) having an average particle size of 0.7 μm and 2 % by mass of PVA with water, and applying the slurry to a polystyrene foam sphere having an average particle size of 5 mm in a mixer. After drying at ℃ and forming a film of iron oxide (thickness 200 μm) on the surface of the polystyrene foam sphere, it was sintered at 1000 ℃ in the atmosphere to form a hollow iron oxide sintered body.

次いで、表1に示す粉状のセラミックスを水に分散させた液(すなわちスラリー)を作製し、流動化した酸化鉄焼結体の表面にスプレーで塗布し、さらに120℃で乾燥した。   Next, a liquid (that is, a slurry) in which powdered ceramics shown in Table 1 were dispersed in water was prepared, applied to the surface of the fluidized iron oxide sintered body by spraying, and further dried at 120 ° C.

Figure 0004641010
Figure 0004641010

粉状セラミックスのスラリーを乾燥した後、水素雰囲気中で還元焼結(1200℃,2時間)して中空金属体を製造した。
発明例2〜12は表1に示すセラミックスを用いて、発明例1と同様にして中空金属体を製造した。また比較例1では、発明例1と同様にして発泡スチロールの表面に酸化鉄の皮膜(厚み200μm)を形成した後、水素雰囲気中1200℃で還元焼結して中空金属体を製造した。
The powdered ceramic slurry was dried and then reduced and sintered (1200 ° C., 2 hours) in a hydrogen atmosphere to produce a hollow metal body.
Inventive Examples 2-12 used the ceramics shown in Table 1 to produce hollow metal bodies in the same manner as Inventive Example 1. In Comparative Example 1, an iron oxide film (thickness: 200 μm) was formed on the surface of the polystyrene foam in the same manner as in Invention Example 1, and then subjected to reduction sintering at 1200 ° C. in a hydrogen atmosphere to produce a hollow metal body.

こうして得られた中空金属体の圧縮試験と腐食試験を行なった。その結果を表1に併せて示す。表1中の圧縮強度は降伏点の荷重を示す。表1中の腐食性評価は、腐食試験(70℃,95%RH,1000時間)を行ない、外表面の発錆面積率が10%以下を良(○),10%超え20%以下を可(△),20%超えを不可(×)として示す。ここで発錆面積率は、表面写真を画像解析して算出された錆の面積率を指す。   The hollow metal body thus obtained was subjected to a compression test and a corrosion test. The results are also shown in Table 1. The compressive strength in Table 1 indicates the yield point load. Corrosion evaluation in Table 1 is conducted by a corrosion test (70 ℃, 95% RH, 1000 hours). (△), exceeding 20% is indicated as impossible (×). Here, the area ratio of rusting refers to the area ratio of rust calculated by image analysis of the surface photograph.

表1から明らかなように発明例1〜12は、比較例1に比べて、いずれも強度と耐食性に優れていることが分かる。しかも発明例1〜12では、中空金属体の製造工程にて焼結を行なう際に中空金属体の凝集は認められなかったが、比較例1では中空金属体の凝集が発生した。
<実施例2>
Fe−P粉,CuO粉,Ni粉,Fe−Mo粉を酸化鉄に添加して、実施例1と同様に中空金属体を製造した。得られた中空金属体のP,Cu,Ni,Mo含有量は表2に示す通りである。ただし、セラミックスとして平均粒径1μmのZrO2 を使用し、スラリー中のZrO2 濃度は10質量%とした。
As is apparent from Table 1, it can be seen that Invention Examples 1 to 12 are superior in strength and corrosion resistance compared to Comparative Example 1. Moreover, in Invention Examples 1 to 12, the hollow metal body was not aggregated during sintering in the hollow metal body production process, but in Comparative Example 1, the hollow metal body was aggregated.
<Example 2>
A hollow metal body was produced in the same manner as in Example 1 by adding Fe-P powder, CuO powder, Ni powder, and Fe-Mo powder to iron oxide. Table 2 shows the P, Cu, Ni, and Mo contents of the obtained hollow metal body. However, ZrO 2 having an average particle diameter of 1 μm was used as the ceramic, and the ZrO 2 concentration in the slurry was 10% by mass.

Figure 0004641010
Figure 0004641010

こうして得られた中空金属体の圧縮試験と腐食試験の結果を表2に併せて示す。本発明の好ましい範囲である発明例15,18,21,24は、発明例1〜13に比べて強度と耐食性が一層向上していることが分かる。なお発明例13〜25では、中空金属体の製造工程にて還元焼結を行なう際に中空金属体の凝集は認められなかった。   Table 2 shows the results of the compression test and the corrosion test of the hollow metal body thus obtained. It can be seen that Invention Examples 15, 18, 21, and 24, which are preferred ranges of the present invention, have further improved strength and corrosion resistance compared to Invention Examples 1 to 13. In Invention Examples 13 to 25, no aggregation of the hollow metal body was observed when performing reduction sintering in the manufacturing process of the hollow metal body.

Claims (3)

内部に空孔を有しかつ焼結体からなる金属体の外表面に、Al23、CaO、MgO、ZrO2、SiCおよびSiO2から選ばれる1種または2種以上のセラミックスが付着していることを特徴とする中空金属体。 The outer surface of the metal body ing pores from organic vital sintered body therein, Al 2 O 3, CaO, MgO, 1 or more kinds of ceramics selected from ZrO 2, SiC and SiO 2 is deposited A hollow metal body characterized by being made. 前記金属体がFeからなることを特徴とする請求項1に記載の中空金属体。   The hollow metal body according to claim 1, wherein the metal body is made of Fe. 前記金属体がMo:0.2〜10質量%、Cu:0.5〜5質量%、Ni:0.2〜10質量%およびP:0.01〜1質量%から選ばれる1種または2種以上を含有し、前記金属体の残部がFeからなることを特徴とする請求項1に記載の中空金属体。   The metal body contains one or more selected from Mo: 0.2 to 10% by mass, Cu: 0.5 to 5% by mass, Ni: 0.2 to 10% by mass and P: 0.01 to 1% by mass, and the metal The hollow metal body according to claim 1, wherein the remainder of the body is made of Fe.
JP2006202354A 2006-07-25 2006-07-25 Hollow metal body Expired - Fee Related JP4641010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202354A JP4641010B2 (en) 2006-07-25 2006-07-25 Hollow metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202354A JP4641010B2 (en) 2006-07-25 2006-07-25 Hollow metal body

Publications (2)

Publication Number Publication Date
JP2008025015A JP2008025015A (en) 2008-02-07
JP4641010B2 true JP4641010B2 (en) 2011-03-02

Family

ID=39115965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202354A Expired - Fee Related JP4641010B2 (en) 2006-07-25 2006-07-25 Hollow metal body

Country Status (1)

Country Link
JP (1) JP4641010B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149306A (en) * 1986-11-27 1988-06-22 ノルトドイッチェ・アフィネリー・アクチエンゲゼルシャフト Production of hollow sphere enhanced in its wall strength and composite thereof
JPH05507967A (en) * 1990-06-11 1993-11-11 ホガナス アクチボラゲット Iron-based powder, parts manufactured with it, and method for manufacturing this part
JP2003531287A (en) * 2000-04-14 2003-10-21 グラット システムテクニク ドレスデン ゲーエムベーハー Small hollow metal body and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3724156A1 (en) * 1987-07-22 1989-02-02 Norddeutsche Affinerie METHOD FOR PRODUCING METALLIC OR CERAMIC HOLLOW BALLS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149306A (en) * 1986-11-27 1988-06-22 ノルトドイッチェ・アフィネリー・アクチエンゲゼルシャフト Production of hollow sphere enhanced in its wall strength and composite thereof
JPH05507967A (en) * 1990-06-11 1993-11-11 ホガナス アクチボラゲット Iron-based powder, parts manufactured with it, and method for manufacturing this part
JP2003531287A (en) * 2000-04-14 2003-10-21 グラット システムテクニク ドレスデン ゲーエムベーハー Small hollow metal body and method of manufacturing the same

Also Published As

Publication number Publication date
JP2008025015A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US8932514B1 (en) Fracture toughness of glass
JP5113555B2 (en) Iron-based sintered alloy and method for producing the same
JP5604981B2 (en) Iron-based mixed powder for powder metallurgy
JP5663974B2 (en) Iron-based mixed powder for powder metallurgy
JP2017150090A (en) Cermet powder body and method of forming flame spray coating film
JP6766399B2 (en) Sintering powder and sintered body
JP2009203543A (en) Copper based metal powder
JPWO2016199576A1 (en) Granulated powder and method for producing granulated powder
SA109300725B1 (en) Catalyst Support, Process for its Preparation and Use
JP3981988B2 (en) Polished fired body and method for producing the same
WO2015046623A1 (en) Aluminum-based porous body and method for manufacturing same
JP4641010B2 (en) Hollow metal body
JP2010500477A (en) Mixed powder containing solid solution powder and sintered body using the same, mixed cermet powder containing solid solution powder, cermet using the same, and method for producing them
EP3321000B1 (en) Mixed powder for iron-based powder metallurgy, and method for producing same
CN109616273B (en) Method for coating and bonding metal magnetic powder core by inorganic gel
JP2018104768A (en) Aluminum alloy porous body and manufacturing method therefor
JP2007273929A (en) Insulation coating soft magnetic metallic powder, pressed powder core, and their manufacturing method
CN103223643A (en) Ultrathin blade
US20090048092A1 (en) Method for manufacturing adsorbent-containing compact and an adsorbent-containing compact
JP2000160203A (en) Alloy powder, alloy sintered body and production thereof
CN110871269B (en) Alloy powder composition
JP2004332016A (en) Granulated metal powder, manufacturing method therefor, and metal powder
JP2005060830A (en) Method for producing soft magnetic sintered member
JP4641209B2 (en) Method for producing porous metal body
JP2007169158A (en) Heat insulating material comprising silica formed body and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141210

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees