JP4641209B2 - Method for producing porous metal body - Google Patents

Method for producing porous metal body Download PDF

Info

Publication number
JP4641209B2
JP4641209B2 JP2005104019A JP2005104019A JP4641209B2 JP 4641209 B2 JP4641209 B2 JP 4641209B2 JP 2005104019 A JP2005104019 A JP 2005104019A JP 2005104019 A JP2005104019 A JP 2005104019A JP 4641209 B2 JP4641209 B2 JP 4641209B2
Authority
JP
Japan
Prior art keywords
particle size
porous body
powder
porosity
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005104019A
Other languages
Japanese (ja)
Other versions
JP2006283104A (en
Inventor
俊太郎 寺内
常雄 寺岡
寿 北垣
研児 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Yakin Kogyo Co Ltd
Original Assignee
Osaka Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Yakin Kogyo Co Ltd filed Critical Osaka Yakin Kogyo Co Ltd
Priority to JP2005104019A priority Critical patent/JP4641209B2/en
Publication of JP2006283104A publication Critical patent/JP2006283104A/en
Application granted granted Critical
Publication of JP4641209B2 publication Critical patent/JP4641209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

この発明は、金属多孔体の製造方法に関する。この方法で製造される金属多孔体は、気孔同士が互いに連通していて且つ高い機械的強度を有し、フィルタ、触媒、吸音材、断熱材、熱交換器などに好適に利用されうる。   The present invention relates to a method for producing a metal porous body. The porous metal body produced by this method has pores communicating with each other and high mechanical strength, and can be suitably used for filters, catalysts, sound absorbing materials, heat insulating materials, heat exchangers, and the like.

従来、金属多孔体を製造する方法として、大小種々の粒径の金属粉末と有機バインダーとからなる混練物を成形後に焼成する周知技術の他、金属粉末、有機バインダー及び必要により気孔形成材を含む混練物を20〜400μmに造粒し、成形後に焼成する技術(特許文献1&4)、金属粉末等を有機物多孔体に付着もしくは含浸させ、焼成して当該有機物多孔体を焼失させる技術(特許文献2&3)等が提案されている。   Conventionally, as a method for producing a metal porous body, a metal powder, an organic binder, and, if necessary, a pore forming material are included in addition to a well-known technique in which a kneaded material composed of metal powders of various sizes and sizes and an organic binder is fired after molding. A technique of granulating the kneaded material to 20 to 400 μm and baking it after molding (Patent Documents 1 and 4), a technique of attaching or impregnating a metal powder or the like to an organic porous material, and baking to burn the organic porous material (Patent Documents 2 and 3) ) Etc. have been proposed.

特開平4−136102JP-A-4-136102 特開平7−118706JP 7-118706 A 特開平10−287903JP 10-287903 A 特開2004−349683JP2004-349683A

しかし、上記従来の技術で製造された金属多孔体は、気孔同士が連通してはいるが金属粒子同士の結合強度が弱くて脆いか、機械的強度は高いが気孔が閉塞しているかのいずれかであり、フィルタ、触媒、熱交換器などの用途に適していなかった。
それ故、この発明の課題は、気孔同士が互いに連通していて且つ高い機械的強度を有する金属多孔体を提供することにある。
However, in the metal porous body manufactured by the above-described conventional technique, the pores communicate with each other, but the bonding strength between the metal particles is weak and brittle, or the mechanical strength is high but the pores are blocked. However, it was not suitable for applications such as filters, catalysts, and heat exchangers.
Therefore, an object of the present invention is to provide a porous metal body having pores communicating with each other and having high mechanical strength.

その課題を解決するために、この発明の金属多孔体の製造方法は、
最大粒径180μm以下の金属粉末と、有機バインダーとからなり、それらの体積比が65:35〜70:30である混練物を粉砕して得られた粒径0.3〜1.8mmの範囲の顆粒を、加圧成形した後、焼成することを特徴とする。
この方法によれば、金属粉末と有機バインダーとからなる顆粒が加圧成形されているので、成形体は最大粒径180μm以下の一次粒子の群と有機バインダーからなる多数の顆粒が圧縮されたものである。即ち、図1に示すように、隣り合う顆粒1同士は多数の一次粒子2同士の接点を有するとともに、顆粒間には顆粒の直径と成形条件に対応する大きな気孔3が形成されている。従って、これを焼成すると、従来周知の金属多孔体製造技術において図2に示すように大小種々の一次粒子2同士が少ない接点で結合するのと異なり、顆粒1内の一次粒子2同士だけでなく顆粒1間の多数の一次粒子2同士が互いに結合する。その結果、焼結体の機械的強度が高く且つ気孔同士も連通する。
In order to solve the problem, the method for producing a porous metal body of the present invention includes:
It is composed of a metal powder having a maximum particle size of 180 μm or less and an organic binder, and a kneaded product having a volume ratio of 65:35 to 70:30 and having a particle size of 0.3 to 1.8 mm. A range of granules is characterized in that it is pressed and then fired.
According to this method, since the granule composed of the metal powder and the organic binder is pressure-molded, the compact is a compact of a large number of granules composed of a group of primary particles and an organic binder having a maximum particle size of 180 μm or less. It is. That is, as shown in FIG. 1, adjacent granules 1 have a large number of primary particle 2 contacts, and large pores 3 corresponding to the diameter of the granules and molding conditions are formed between the granules. Therefore, when this is fired, not only the primary particles 2 in the granule 1 but also the primary particles 2 in the granule 1 are bonded to each other at a small number of contacts as shown in FIG. A number of primary particles 2 between the granules 1 are bonded to each other. As a result, the sintered body has high mechanical strength and the pores communicate with each other.

この発明では、上記のように高い強度の多孔質体が得られるので、金属粉末として180μm程度のサイズのものも含まれていてよい。従って、金属粉末の収率が向上し、低コスト化を実現できる。但し、180μmを超える一次粒子が含まれていると多孔質体の強度が低下するので、最大粒径を180μmとした。また、顆粒の直径が0.1mm未満であったり、2.0mmを超えていたりすると、加圧成形条件を調整するだけでは所定の気孔率の多孔質焼結体を得ることが困難であるから、確実性を期すため顆粒の直径を0.3〜1.8mmとした。特に好ましいのは0.6〜1.5mmである。また、焼成後の気孔率が40%に満たないと連通気孔が少なくなって多孔体の各種用途に適さなくなる。他方、70%を超えると機械的強度が著しく低下する。 In the present invention, since a porous body having a high strength is obtained as described above, a metal powder having a size of about 180 μm may be included. Therefore, the yield of metal powder can be improved and cost reduction can be realized. However, when the primary particles exceeding 180 μm are contained, the strength of the porous body is lowered, so the maximum particle size was set to 180 μm. Further, if the diameter of the granule is less than 0.1 mm or exceeds 2.0 mm, it is difficult to obtain a porous sintered body having a predetermined porosity only by adjusting the pressure molding conditions. In order to ensure certainty, the diameter of the granules was set to 0.3 to 1.8 mm. Particularly preferred is 0.6 to 1.5 mm. Further, if the porosity after firing is less than 40%, the continuous air holes are reduced and the porous body becomes unsuitable for various uses. On the other hand, if it exceeds 70%, the mechanical strength is remarkably lowered.

前記金属粉末としては、その酸素含有量が0.30重量%以下であるものが好ましい。このような金属粉末は、粒子表面の酸素が少ないので活性であり、焼成工程で一次粒子間の結合が進みやすい。従って、一層高い機械的強度が得られる。
前記顆粒は当該金属粉末と有機バインダーとの混練物を粉砕して得られるものであるから、バインダーが水溶性に限定されない。このため、対象とする金属粉末が限定されない点で優れる。
前記顆粒は、単独ではなく気孔形成材と混合することができる。気孔形成材と混合すると、焼成後に気孔となる部分が気孔形成材により確保されるので、高い圧力で成形することが可能となる。従って、気孔形成材の抜けた跡が連通気孔となるとともに、顆粒間がより密に接触し、焼成工程で顆粒間の結合が進みやすくなり、一層高い機械的強度が得られる。
The metal powder preferably has an oxygen content of 0.30% by weight or less. Such a metal powder is active because there is little oxygen on the particle surface, and the bonding between the primary particles tends to proceed in the firing step. Therefore, higher mechanical strength can be obtained.
Since the granule is obtained by pulverizing a kneaded product of the metal powder and an organic binder , the binder is not limited to being water-soluble . For this reason, it is excellent in that the target metal powder is not limited.
The granules can be mixed with the pore former rather than alone. When mixed with the pore-forming material, portions that become pores after firing are secured by the pore-forming material, so that molding can be performed at a high pressure. Therefore, the traces of the pore-forming material being removed become the continuous air holes, and the granules are in closer contact with each other, and the bonding between the granules is facilitated in the firing step, so that higher mechanical strength can be obtained.

尚、所定の気孔率を得るための成形条件及び焼成条件については、成形条件を一定にして焼成条件を種々変更し、気孔率と例えば焼成温度との関係を示す検量線を作成しておくか、又は焼成条件を一定にして成形条件を種々変更し、気孔率と例えば圧縮率もしくは圧力との関係を示す検量線を作成しておくことにより、設定することが可能である。   As for the molding conditions and firing conditions for obtaining a predetermined porosity, whether the calibration conditions are variously changed while keeping the molding conditions constant, and a calibration curve showing the relationship between the porosity and, for example, the firing temperature is prepared. Alternatively, it is possible to set the firing conditions by changing the molding conditions variously and preparing a calibration curve indicating the relationship between the porosity and, for example, the compression rate or pressure.

この発明の製造方法で得られる金属多孔体は、連通気孔を有していながら高い機械的強度を有するので、気孔内に流体を通過させる必要のある種々の用途に長期間安定して利用することができる。   Since the metal porous body obtained by the production method of the present invention has high mechanical strength while having continuous air holes, it should be used stably for a long period of time in various applications that require fluid to pass through the pores. Can do.

金属粉末としては、チタン、ニッケル、タンタル、コバルト、鉄、貴金属及びこれらの合金など種々のものが適用可能である。有機バインダーも特に限定されず、ポリアセタール、ポリプロピレン、ポリエチレンなどであってよい。酸素含有量0.30重量%以下の金属粉末を得る手段としては、不活性ガス雰囲気中で金属を粉砕するか又は金属の溶湯を噴霧する、所謂ガスアトマイズ方が挙げられる。気孔形成材としては、常温で固体であって200℃以下で昇華もしくは分解する化合物(例えば炭酸水素アンモニウム、シュウ酸無水物、シュウ酸二水和物)や、これらのいずれかとワックス類との混合物が挙げられる。   Various metal powders such as titanium, nickel, tantalum, cobalt, iron, noble metals, and alloys thereof can be applied. The organic binder is not particularly limited, and may be polyacetal, polypropylene, polyethylene or the like. As a means for obtaining a metal powder having an oxygen content of 0.30% by weight or less, a so-called gas atomization method in which a metal is pulverized or sprayed with a molten metal in an inert gas atmosphere can be mentioned. As the pore-forming material, a compound that is solid at room temperature and sublimes or decomposes at 200 ° C. or lower (for example, ammonium hydrogen carbonate, oxalic acid anhydride, oxalic acid dihydrate), or a mixture of any of these with waxes. Is mentioned.

−実施例1−
ガスアトマイズ法により製造した酸素含有量0.12重量%、最大粒径45μmのチタン粉末とポリアセタール(株式会社ポリプラスチック製ジュラコンM270)を65:35の体積比で混練した。体積比は各々の真密度と重量から算出した。混練して得られた塊を粉砕し、篩いにかけて0.6〜1.5mmの粒径の顆粒を得た。顆粒を金型に充填し、130℃に加熱すると共に加圧前に対して加圧後の体積が43%となるようにプレス機のストローク量を調整して圧力を加えることにより、成形した。成形体を真空炉内に置き、脱脂後、1200℃で2時間保持することにより、直径22mm×高さ18mmの円柱状のチタン多孔体を製造した。
Example 1
Titanium powder having an oxygen content of 0.12% by weight and a maximum particle size of 45 μm produced by a gas atomizing method and polyacetal (Duracon M270 manufactured by Polyplastics Co., Ltd.) were kneaded at a volume ratio of 65:35. The volume ratio was calculated from each true density and weight. The lump obtained by kneading was pulverized and sieved to obtain granules having a particle size of 0.6 to 1.5 mm. The granules were filled in a mold, heated to 130 ° C., and molded by applying pressure by adjusting the stroke amount of the press so that the volume after pressing was 43% of that before pressing. The molded body was placed in a vacuum furnace, degreased and held at 1200 ° C. for 2 hours to produce a cylindrical titanium porous body having a diameter of 22 mm and a height of 18 mm.

この多孔体の気孔率を、多孔体の重量とチタンの真密度とから算出したところ、40%であった。また、多孔体の酸素含有量を非分散型赤外吸収法により分析したところ、0.21重量%であった。多孔体から直径6mm×高さ10mmの試験片を切り出し、圧縮速度1mm/分で圧縮したところ、圧縮強度は185MPaであり、粒子の脱落は無い状態で変形した。   The porosity of the porous body was calculated from the weight of the porous body and the true density of titanium, and was 40%. Moreover, it was 0.21 weight% when the oxygen content of the porous body was analyzed by the non-dispersion type infrared absorption method. When a test piece having a diameter of 6 mm and a height of 10 mm was cut out from the porous body and compressed at a compression speed of 1 mm / min, the compressive strength was 185 MPa, and the sample was deformed without any dropout.

−比較例1−
実施例1において加圧前に対して加圧後の体積が32%となるように圧力を加えることにより成形したこと以外は、実施例1と同一条件でチタン多孔体を製造した。気孔率は35%であった。このチタン多孔体及び実施例1のチタン多孔体をCT検査したところ、本例のチタン多孔体は実施例1のものに比べて独立気孔が多かった。
-Comparative Example 1-
A porous titanium body was produced under the same conditions as in Example 1, except that in Example 1, the pressure was applied so that the volume after pressurization was 32% of that before pressurization. The porosity was 35%. When this titanium porous body and the titanium porous body of Example 1 were subjected to CT examination, the titanium porous body of this example had more independent pores than that of Example 1.

−実施例2及び3−
実施例1において加圧前に対して加圧後の体積が64%(実施例2)又は71%(実施例3)となるように圧力を加えることにより成形したこと以外は、実施例1と同一条件でチタン多孔体を製造した。気孔率はそれぞれ49%及び55%であった。実施例2及び実施例3の多孔体の圧縮強度はそれぞれ148MPa及び125MPaであり、粒子の脱落は無い状態で変形した。
-Examples 2 and 3-
In Example 1, except that it was molded by applying pressure so that the volume after pressurization was 64% (Example 2) or 71% (Example 3) with respect to before pressurization. A porous titanium body was produced under the same conditions. The porosity was 49% and 55%, respectively. The compressive strengths of the porous bodies of Example 2 and Example 3 were 148 MPa and 125 MPa, respectively, and were deformed without any dropout of particles.

−比較例2及び3−
実施例1において加圧前に対して加圧後の体積が74%(比較例2)又は76%(比較例3)となるように圧力を加えることにより成形したこと以外は、実施例1と同一条件でチタン多孔体を製造した。気孔率はそれぞれ60%及び65%であった。これらの多孔体の圧縮強度はそれぞれ92MPa及び60MPaで粒子の脱落が認められた。
-Comparative Examples 2 and 3-
Example 1 is the same as Example 1 except that it was molded by applying pressure so that the volume after pressurization was 74% (Comparative Example 2) or 76% (Comparative Example 3). A porous titanium body was produced under the same conditions. The porosity was 60% and 65%, respectively. These porous bodies had a compressive strength of 92 MPa and 60 MPa, respectively.

−実施例4−
実施例1においてチタン粉末の最大粒径が180μmであることと、加圧前に対して加圧後の体積が64%となるように圧力を加えることにより成形したこと以外は、実施例1と同一条件で直径22mm×高さ21mmの円柱状のチタン多孔体を製造した。気孔率は51%であった。また、圧縮強度は130MPaであり、粒子の脱落は無い状態で変形した。
Example 4
In Example 1, except that the maximum particle size of the titanium powder is 180 μm and that it is molded by applying pressure so that the volume after pressurization is 64% with respect to that before pressurization. A cylindrical titanium porous body having a diameter of 22 mm and a height of 21 mm was manufactured under the same conditions. The porosity was 51%. Further, the compressive strength was 130 MPa, and the particles were deformed without any particles falling off.

−実施例5−
ガスアトマイズ法により製造した酸素含有量0.18重量%、最大粒径180μmのチタン合金(Ti−6Al−4V)粉末とポリアセタール(株式会社ポリプラスチック製ジュラコンM270)を65:35の体積比で混練した。体積比は各々の真密度と重量から算出した。混練して得られた塊を粉砕し、篩いにかけて0.6〜1.5mmの粒径の顆粒を得た。顆粒を金型に充填し、130℃に加熱すると共に加圧前に対して加圧後の体積が64%となるようにプレス機のストローク量を調整して圧力を加えることにより、成形した。成形体を真空炉内に置き、脱脂後、1250℃で2時間保持することにより、直径22mm×高さ21mmの円柱状のチタン多孔体を製造した。重量と真密度とから算出した気孔率は52%であった。また、圧縮強度は206MPaであり、粒子の脱落は無い状態で変形した。
-Example 5
A titanium alloy (Ti-6Al-4V) powder having an oxygen content of 0.18% by weight and a maximum particle size of 180 μm produced by a gas atomization method and polyacetal (Duracon M270 manufactured by Polyplastics Co., Ltd.) were kneaded at a volume ratio of 65:35. . The volume ratio was calculated from each true density and weight. The lump obtained by kneading was pulverized and sieved to obtain granules having a particle size of 0.6 to 1.5 mm. The granules were filled in a mold, heated to 130 ° C., and molded by applying pressure by adjusting the stroke amount of the press so that the volume after pressing was 64% of that before pressing. The molded body was placed in a vacuum furnace, degreased, and held at 1250 ° C. for 2 hours to produce a cylindrical titanium porous body having a diameter of 22 mm and a height of 21 mm. The porosity calculated from the weight and the true density was 52%. Moreover, the compressive strength was 206 MPa, and it was deformed in a state where no particles were dropped.

−実施例6−
ガスアトマイズ法により製造した酸素含有量0.18重量%、最大粒径180μmのチタン合金(Ti−6Al−4V)粉末とポリアセタール(株式会社ポリプラスチック製ジュラコンM270)を70:30の体積比で混練した。体積比は各々の真密度と重量から算出した。混練して得られた塊を粉砕し、篩いにかけて0.6〜1.5mmの粒径の顆粒を得た。また別途、炭酸水素アンモニウム粉末を250〜500μmに粒度調整した。
-Example 6
A titanium alloy (Ti-6Al-4V) powder having an oxygen content of 0.18% by weight and a maximum particle size of 180 μm produced by a gas atomization method and polyacetal (Duracon M270 manufactured by Polyplastics Co., Ltd.) were kneaded at a volume ratio of 70:30. . The volume ratio was calculated from each true density and weight. The lump obtained by kneading was pulverized and sieved to obtain granules having a particle size of 0.6 to 1.5 mm. Separately, the particle size of ammonium hydrogen carbonate powder was adjusted to 250 to 500 μm.

そして、前記顆粒を粒度調整した炭酸水素アンモニウム粉末と58:42の体積比で混合し、この混合粉末を金型に充填し、70℃に加熱すると共に80MPaの圧力を加えることにより、成形した。成形体を真空炉内に置き、脱脂後、1250℃で2時間保持することにより、直径22mm×高さ19mmの円柱状のチタン合金多孔体を製造した。気孔率を水銀ポロシメータで測定すると72%であり、気孔径範囲は3〜400μm、平均気孔径は112μmであった。また、圧縮強度は100MPaであり、粒子の脱落は無い状態で変形した。   Then, the granules were mixed with an ammonium hydrogen carbonate powder whose particle size was adjusted at a volume ratio of 58:42, this mixed powder was filled in a mold, heated to 70 ° C., and a pressure of 80 MPa was applied to form. The formed body was placed in a vacuum furnace, degreased and held at 1250 ° C. for 2 hours to produce a cylindrical titanium alloy porous body having a diameter of 22 mm and a height of 19 mm. When the porosity was measured with a mercury porosimeter, it was 72%, the pore diameter range was 3 to 400 μm, and the average pore diameter was 112 μm. Moreover, the compressive strength was 100 MPa, and it was deformed in a state in which no particles dropped out.

−実施例7−
実施例6において炭酸水素アンモニウム粉末に代えて粒度調整した炭酸水素アンモニウム粉末88体積%にパラフィンワックス12体積%をコーティングしたものを用いたこと以外は、実施例6と同一条件でチタン合金多孔体を製造した。気孔率を水銀ポロシメータで測定すると72%であり、気孔径範囲は3〜400μm、平均気孔径は95μmであった。また、圧縮強度は100MPaであり、粒子の脱落は無い状態で変形した。
-Example 7-
A porous titanium alloy was prepared under the same conditions as in Example 6 except that 88% by volume of ammonium bicarbonate powder whose particle size was adjusted instead of ammonium bicarbonate powder in Example 6 and 12% by volume of paraffin wax were coated. Manufactured. When the porosity was measured with a mercury porosimeter, it was 72%, the pore diameter range was 3 to 400 μm, and the average pore diameter was 95 μm. Moreover, the compressive strength was 100 MPa, and it was deformed in a state in which no particles dropped out.

−実施例8−
実施例6において炭酸水素アンモニウム粉末として粒度500〜1500μmの範囲に調整したものを用いたこと以外は、実施例6と同一条件でチタン合金多孔体を製造した。気孔率を水銀ポロシメータで測定すると67%であり、気孔径範囲は3〜400μm、平均気孔径は145μmであった。また、圧縮強度は114MPaであり、粒子の脱落は無い状態で変形した。
-Example 8-
A titanium alloy porous body was produced under the same conditions as in Example 6 except that the ammonium hydrogen carbonate powder adjusted to a particle size in the range of 500 to 1500 μm was used in Example 6. The porosity was 67% as measured with a mercury porosimeter, the pore diameter range was 3 to 400 μm, and the average pore diameter was 145 μm. Moreover, the compressive strength was 114 MPa, and it was deformed in a state where no particles were dropped.

−実施例9−
ガスアトマイズ法により製造した酸素含有量0.21重量%、最大粒径45μmのチタン合金(Ti−6Al−4V)粉末とポリアセタール(株式会社ポリプラスチック製ジュラコンM270)を70:30の体積比で混練した。体積比は各々の真密度と重量から算出した。混練して得られた塊を粉砕し、篩いにかけて0.3〜0.65mmの粒径の顆粒を得た。また別途、炭酸水素アンモニウム粉末を100〜200μmに粒度調整した。
-Example 9-
A titanium alloy (Ti-6Al-4V) powder having an oxygen content of 0.21% by weight and a maximum particle size of 45 μm produced by a gas atomization method and polyacetal (Duracon M270 manufactured by Polyplastics Co., Ltd.) were kneaded at a volume ratio of 70:30. . The volume ratio was calculated from each true density and weight. The lump obtained by kneading was pulverized and sieved to obtain granules having a particle size of 0.3 to 0.65 mm. Separately, the particle size of ammonium hydrogen carbonate powder was adjusted to 100 to 200 μm.

そして、前記顆粒を粒度調整した炭酸水素アンモニウム粉末88体積%にパラフィンワックス12体積%をコーティングしたものと58:42の体積比で混合し、この混合粉末を金型に充填し、130℃に加熱すると共に80MPaの圧力を加えることにより、成形した。成形体を真空炉内に置き、脱脂後、1250℃で2時間保持することにより、直径22mm×高さ20mmの円柱状のチタン合金多孔体を製造した。気孔率を水銀ポロシメータで測定すると69%であり、気孔径範囲は3〜210μm、平均気孔径は94μmであった。また、圧縮強度は107MPaであり、粒子の脱落は無い状態で変形した。   Then, 88% by volume of the ammonium hydrogen carbonate powder whose particle size is adjusted and 12% by volume of paraffin wax coated are mixed in a 58:42 volume ratio, and this mixed powder is filled in a mold and heated to 130 ° C. And molding was performed by applying a pressure of 80 MPa. The compact was placed in a vacuum furnace, degreased, and held at 1250 ° C. for 2 hours to produce a cylindrical titanium alloy porous body having a diameter of 22 mm and a height of 20 mm. When the porosity was measured with a mercury porosimeter, it was 69%, the pore diameter range was 3 to 210 μm, and the average pore diameter was 94 μm. Moreover, the compressive strength was 107 MPa, and it was deformed in a state where no particles were dropped.

−実施例10−
実施例9において炭酸水素アンモニウム粉末として粒度30〜100μmの範囲に調整したものを用いたこと以外は、実施例9と同一条件でチタン合金多孔体を製造した。気孔率を水銀ポロシメータで測定すると68%であり、気孔径範囲は3〜98μm、平均気孔径は50μmであった。また、圧縮強度は108MPaであり、粒子の脱落は無い状態で変形した。
-Example 10-
A titanium alloy porous body was produced under the same conditions as in Example 9, except that the ammonium hydrogen carbonate powder adjusted to a particle size of 30 to 100 μm was used in Example 9. When the porosity was measured with a mercury porosimeter, it was 68%, the pore diameter range was 3 to 98 μm, and the average pore diameter was 50 μm. Moreover, the compressive strength was 108 MPa, and it was deformed in a state where no particles were dropped.

−実施例11−
実施例9において炭酸水素アンモニウム粉末に代えて粒度250〜500μmの範囲に調整したシュウ酸無水物88体積%を用いたことと、焼成温度を1380℃に変えて1250℃としたこと以外は、実施例9と同一条件でチタン合金多孔体を製造した。気孔率を水銀ポロシメータで測定すると70%であり、気孔径範囲は3〜400μm、平均気孔径は75μmであった。また、圧縮強度は105MPaであり、粒子の脱落は無い状態で変形した。
-Example 11-
In Example 9, except that 88 volume% of oxalic anhydride adjusted to a particle size range of 250 to 500 μm was used instead of ammonium hydrogen carbonate powder, and that the firing temperature was changed to 1380 ° C. to 1250 ° C. A titanium alloy porous body was produced under the same conditions as in Example 9. When the porosity was measured with a mercury porosimeter, it was 70%, the pore diameter range was 3 to 400 μm, and the average pore diameter was 75 μm. Moreover, the compressive strength was 105 MPa, and it was deformed in a state where no particles were dropped.

上記実施例1〜11及び比較例1〜3の気孔率と圧縮強度との関係を図3にグラフとして示す。   The relationship between the porosity of Examples 1 to 11 and Comparative Examples 1 to 3 and the compressive strength is shown as a graph in FIG.

この発明の作用を説明する模式図である。It is a schematic diagram explaining the effect | action of this invention. 従来の多孔体製造方法の現象を説明する模式図である。It is a schematic diagram explaining the phenomenon of the conventional porous body manufacturing method. 金属多孔体の気孔率と圧縮強度との関係を示すグラフである。It is a graph which shows the relationship between the porosity of a metal porous body, and compressive strength.

Claims (2)

最大粒径180μm以下の金属粉末と、有機バインダーとからなり、それらの体積比が65:35〜70:30である混練物を粉砕して得られた粒径0.3〜1.8mmの範囲の顆粒を、加圧成形した後、焼成することを特徴とする金属多孔体の製造方法。 It is composed of a metal powder having a maximum particle size of 180 μm or less and an organic binder, and a kneaded product having a volume ratio of 65:35 to 70:30 and having a particle size of 0.3 to 1.8 mm. A method for producing a porous metal body, comprising: granulating a range of granules, followed by firing. 前記顆粒を常温で固体であって200℃以下で昇華もしくは分解する気孔形成材と混合し、この混合粉末を前記加圧成形する請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the granule is mixed with a pore forming material that is solid at normal temperature and sublimates or decomposes at 200 ° C. or less, and the mixed powder is pressure-molded .
JP2005104019A 2005-03-31 2005-03-31 Method for producing porous metal body Active JP4641209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104019A JP4641209B2 (en) 2005-03-31 2005-03-31 Method for producing porous metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104019A JP4641209B2 (en) 2005-03-31 2005-03-31 Method for producing porous metal body

Publications (2)

Publication Number Publication Date
JP2006283104A JP2006283104A (en) 2006-10-19
JP4641209B2 true JP4641209B2 (en) 2011-03-02

Family

ID=37405314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104019A Active JP4641209B2 (en) 2005-03-31 2005-03-31 Method for producing porous metal body

Country Status (1)

Country Link
JP (1) JP4641209B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173129B2 (en) * 2013-08-29 2017-08-02 東邦チタニウム株式会社 Sheet-like titanium porous body and method for producing the same
CN104451344B (en) * 2014-11-20 2016-08-31 西安建筑科技大学 A kind of large aperture high porosity porous iron and preparation method thereof
CN106994512B (en) * 2017-04-18 2019-03-15 中南大学 A kind of composite bore diameter copper sintered porous material and its preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270496A (en) * 1975-12-08 1977-06-11 Ekusuperimentarunui Nii Metaro Porous materials for use in tool electrode and method of manufacturing thereof
JPH04308048A (en) * 1991-04-04 1992-10-30 Tokyo Tungsten Co Ltd Production of porous tungsten material
JP2002047501A (en) * 1996-07-30 2002-02-15 Toho Titanium Co Ltd Titanium base powder
JP2004349683A (en) * 2003-04-28 2004-12-09 Showa Denko Kk Valve action metallic sintered body, manufacturing method therefor and solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270496A (en) * 1975-12-08 1977-06-11 Ekusuperimentarunui Nii Metaro Porous materials for use in tool electrode and method of manufacturing thereof
JPH04308048A (en) * 1991-04-04 1992-10-30 Tokyo Tungsten Co Ltd Production of porous tungsten material
JP2002047501A (en) * 1996-07-30 2002-02-15 Toho Titanium Co Ltd Titanium base powder
JP2004349683A (en) * 2003-04-28 2004-12-09 Showa Denko Kk Valve action metallic sintered body, manufacturing method therefor and solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2006283104A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US6334882B1 (en) Dense parts produced by uniaxial compressing an agglomerated spherical metal powder
JP5052336B2 (en) Artificial bone and method for producing the same
US4109060A (en) Porous electrode for a chemo-electric cell and a method of preparing the same
JP2015505909A5 (en)
JP4641209B2 (en) Method for producing porous metal body
KR20140113913A (en) Process for manufacturing a porous body by powder metallurgy and metallurgic composition of particulate materials
KR20070115720A (en) Method of making cemented carbide or cermet agglomerated powder mixtures
CN103290248A (en) Preparation method of particle-reinforced wearable porous titanium
JP3566637B2 (en) Manufacturing method of sintered titanium filter
WO1993005190A1 (en) Process for producing porous metallic body
JP3761551B2 (en) Sintered titanium filter
JP2009155702A (en) Method for manufacturing titanium powder sintered compact
KR102640073B1 (en) Porous titanium-based sintered body, its manufacturing method and electrode
JP3481962B2 (en) Method for manufacturing porous metal filter
JP2002239321A (en) Highly corrosion-resistant metal sintered filter
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
US20220387918A1 (en) Refractory filter
JP2002322505A (en) Cylindrical porous body
JP6809373B2 (en) Microcapsules and ceramics manufacturing methods using them
JP6770369B2 (en) Microcapsules and ceramics manufacturing methods using them
JP4182392B2 (en) Iron-based alloy compact for obtaining low-density sintered compacts
CN115740431A (en) Compound copper powder and preparation method and application thereof
JPH03226534A (en) Metallic porous body and its manufacture
CN117961082A (en) Porous metal material formed based on droplet jetting bonding, preparation method and application
JP2002234772A (en) Porous glassy carbon having large specific surface area and method for, producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

R150 Certificate of patent or registration of utility model

Ref document number: 4641209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250