JP3566637B2 - Manufacturing method of sintered titanium filter - Google Patents
Manufacturing method of sintered titanium filter Download PDFInfo
- Publication number
- JP3566637B2 JP3566637B2 JP2000254861A JP2000254861A JP3566637B2 JP 3566637 B2 JP3566637 B2 JP 3566637B2 JP 2000254861 A JP2000254861 A JP 2000254861A JP 2000254861 A JP2000254861 A JP 2000254861A JP 3566637 B2 JP3566637 B2 JP 3566637B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- powder
- sintered
- filter
- spherical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Filtering Materials (AREA)
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、優れた耐食性を有し、かつ流体通過時の圧力損失の小さい高性能の焼結チタンフィルタの製造方法に関する。
【0002】
【従来の技術】
焼結フィルタとして、従来から黄銅系、ステンレス鋼系、セラミックス系及びチタン系の種々のものが、各方面で使用されている。
【0003】
例えば、ガスクロマトグラフィー装置のキャリアガス導入部用フィルタには、ステンレス鋼粉末の焼結体が用いられていた。ステンレス鋼は比較的耐食性が良いといわれている。しかし、ガスクロマトグラフィー装置は極微量の元素分析を行うものであるため、ステンレス鋼の耐食性では不十分であると指摘されていた。そこで一部では、耐食性に優れたチタン又はチタン合金の焼結フィルタが使用されるようになった。
【0004】
又、液体調味料などの食品製造用や液体顔料用としても、耐食性の高いフィルタが求められるようになり、一部ではチタン又はチタン合金の焼結フィルタが使用されている。
【0005】
更に、燃料電池の電極基材と呼ばれる触媒層支持及びガス流通の機能を有する多孔質体層は、水素、酸素及び水を良く通す性質のあることが要求される。その上、陽極側電極基材は耐酸化性に優れていることが必要である。そのため、チタン又はチタン合金の焼結フィルタの使用が望まれている。
【0006】
従来の改良された焼結フィルタの一例をあげれば、特公昭62−42001号公報には、Mg、Ti、Si、Mn、Znやステンレス鋼のうち1種の金属粉を、無加圧で、その金属粉の融点近傍の温度に一定時間保持するとともに、非酸化若しくは真空に保ち、かつ露点を−20℃以下に制御して焼結する焼結方法が記載されいてる。この方法によるチタン焼結フィルタは、耐食性には優れているが、焼結温度が高いため球状粒子の外面形状が崩れ流体通過時の圧力損失(以下圧損と略称する)が大きい。
【0007】
又、特開平7−238302号公報には、実施例1にスポンジチタンの粉末をプレス加工により圧縮成形し、温度1400℃、保持時間30分の焼結を施して、焼結フィルタを作ったことが記載されている。この方法は、上記特公昭62−42001号公報に記載のものと同様に高い温度で焼結を行っており、又プレス成形しているため、球状粒子の外面形状が崩れ圧損が大きい。
【0008】
【発明が解決しようとする課題】
上記のごとく、フィルタは各分野で多用されているが、それぞれ目的によって所定の極大細孔径のものが要求される。極大細孔径は、フィルタとして除去できる粒子の大きさを表す目安であり、細孔の形状が異なっても極大細孔径が同じなら、同じ径の粒子を除去できると考えてよい。又、同じ極大細孔径のフィルタなら、圧損がより小さいフィルタが要求される。例えば、ガスクロマトグラフィー装置のキャリアガス導入部用フィルタとしては、耐食性に優れ、特に極大細孔径が70μm以下で、圧損の小さいフィルタが望まれていた。
【0009】
本願は、上記の現状に鑑み、フィルタとして要望されている、優れた耐食性を有し、かつ圧損の小さい高性能の焼結チタンフィルタ及びその製造方法を提供するものである。
【0010】
【課題を解決するための手段】
本発明者らは、優れた耐食性を有し、極大細孔径が小さく、かつ圧損の小さいフィルタを得るため種々実験を重ねた結果、以下の発明を完成するに至った。
【0011】
本発明の焼結チタンフィルタは、ガスアトマイズ法により作られたチタン又はチタン合金の球状粉粒体を焼結した空隙率が35〜55%で極大細孔径が3〜70μmの焼結体からなり、前記焼結体を通過する流体流量が1リットル/min/cm 2 のときの該流体の圧力損失が0.16kg/cm 2 以下であることを特徴とする。
【0012】
また、この発明の焼結チタンフィルタは、上記焼結チタンフィルタにおいて、フィルタを構成する球状粉粒体の平均粒径が10〜150μmの範囲にあることを特徴とする。
【0013】
更に、この発明の焼結チタンフィルタは、ガスアトマイズ法による平均粒径が10〜150μmであるチタン又はチタン合金の球状粉粒体を容器内に無加圧で充填保持し、不活性ガス雰囲気又は真空で無加圧、850〜1200℃で焼結した極大細孔径が3〜70μmの焼結体からなり、前記焼結体を通過する流体流量が1リットル/min/cm 2 のときの該流体の圧力損失が0.16kgf/cm 2 以下であることを特徴とする。
【0014】
この発明による焼結チタンフィルタの製造方法は、ガスアトマイズ法による平均粒径が10〜150μmであるチタン又はチタン合金の球状粉粒体を容器内に無加圧で充填保持し、不活性ガス雰囲気又は真空において無加圧、850〜1200℃で焼結することを特徴とする。
【0015】
【発明の実施の形態】
本発明の実施におけるチタン又はチタン合金の粉末原料は、スポンジチタンをガスアトマイズ法により平均粒径200μm以下の球状粒子としたものを使用する(以下球状チタン粉末と略称する)。このガスアトマイズ法により得られる球状粒子は、チタンの溶融飛沫が飛散中に凝固した粉末であるから、スポンジチタンの粉砕粉末や水素化脱水素粉末の不定形粉末に比べ、粉末の表面が極めて滑らかである。
【0016】
上記球状チタン粉末を使ってフィルタを製造する場合には、所望のフィルタ性能を得るため、ふるいにかけて粉末粒径を揃えておくことが望ましい。そして、粉末粒径を揃えた球状チタン粉末を無加圧で焼結容器に充填する。この無加圧で充填された焼結原料の空隙率は粒度分布の調整により35〜55%の範囲内に調整可能である。この焼結前の球状チタン粉末に振動を与えると、空隙率は35〜55%の範囲内で小さくなる。しかし、35%以下になることはない。なお、加圧充填した場合には、一般に空隙率は35%以下になる。
【0017】
上記の無加圧で焼結容器に充填した球状チタン粉末を焼結すると、球状粒子の接触部だけが融解して結合するが、フィルタに要求される機械的強度は十分に確保できる。又、チタンの融点より、はるかに低い温度域で焼結すれば、焼結前の球状粒子の形状を保ったまま焼結するから、焼結体の空隙率は焼結前の空隙率と変わりなく、焼結後の空隙率は35〜55%の範囲内にある。なお、低い温度域で焼結する限り、若干加圧しても空隙率が35〜55%の範囲内にある焼結体を得ることができる。
【0018】
ガスアトマイズ法による球状チタン粉末は平均粒径が10〜150μmの小さい粉末として工業的に製造できるので、この球状チタン粉末を使えば、極大細孔径が3〜70μmの球状チタンフィルタを製造することができる。すなわち、目のこまかい圧損の小さいフィルタを高い生産性で製造することができる。なお、球状チタン粉末は平均粒径が10〜150μmの範囲を外れて、10μm未満又は150μmを超えている場合には、極大細孔径が3〜70μmの範囲内にある焼結体を得ることはできない。
【0019】
一方、回転電極法によっても球状粉末を製造することは可能であるが、得られる球状粉末の平均粒度は一般に400μm以上であり、平均粒径150μm以下、ましてや30μm以下の球状粉末を歩留良く工業的に生産することは困難である。
【0020】
前記極大細孔径は、水銀圧入法により測定する。この水銀圧入法とは水銀中に試料を入れ、水銀の圧力を次第に高めていく。すると、加圧されるほど径の小さい孔に水銀が入り込むため、多孔質の孔の大きさを判別する値が得られる。すなわち、極大細孔径が小さいものは、孔が小さい多孔質体であり、小さい異物まで除去できる性能の優れたフィルタを得ることができる。
【0021】
本発明の実施においては、焼結時に球状チタン粉末原料の空隙率を減少させることなく、焼結体の空隙率を球状チタン粉末原料の空隙率と同等に維持するため、筒状容器に詰めた球状チタン粉末原料は、加圧することなく焼結温度850〜1200℃のチタン融点より、はるかに低い温度域で焼結することが望ましい。焼結温度が850℃未満では、十分な焼結が行われず、又1200℃を超えて焼結すると、無加圧でも焼結部分が粒子同士の接触部だけにとどまらず粒子同士が溶け合う結果、球状粒子の形状が保てず変形・収縮するため、空隙率が低下し圧損が大きくなる。
【0022】
又、本発明の実施においては、粉末が変形を起こすようなプレスなどの成形を行わないことを特徴としているので、ドクターブレード法や押出し法のように球状チタン粉末を適当なバインダと混合することによって得られたグリーン体を使用してバインダの脱脂及び真空焼結をして焼結タチンフィルタを得ることもできる。
【0023】
【実施例】
実施例1
スポンジチタン原料からビレットを作成し、これをArガス雰囲気中で電磁誘導溶解しながらガスアトマイズした。得られたチタン粉末を、振動ふるいにかけて分級し平均粒径10μmの球状粉末を得た。この粉末を、内寸が一辺100mmの正方形で、高さが3mmの高密度アルミナ製容器に無加圧で充填し、真空度7×10−3Paで1000℃に15分間保持して無加圧焼結し、チタン焼結フィルタを作製した。
【0024】
実施例2
実施例1と同じ方法でチタン焼結フィルタを作製する際、ガスアトマイズした粉末を、振動ふるいにかけて分級し平均粒径29μmの球状粉末を得た。この粉末を上記と同じ条件で焼結し、チタン焼結フィルタを作製した。
【0025】
実施例3
実施例1と同じ方法でチタン焼結フィルタを作製する際、ガスアトマイズした粉末を、振動ふるいにかけて分級し平均粒径124μmの球状粉末を得た。この粉末を上記と同じ条件で焼結し、チタン焼結フィルタを作製した。そのチタン焼結フィルタの電子顕微鏡写真を図1に示す。写真からチタン焼結フィルタの粒子は球状粒子のままであり、空隙が多いことがわかる。
【0026】
実施例4
実施例1と同じ方法でチタン焼結フィルタを作製する際、ガスアトマイズした粉末を、振動ふるいにかけて分級し平均粒径140μmの球状粉末を得た。この粉末を実施例1と同じ容器に無加圧で充填した後、振動装置を使って容器に100回の振動を与えた。この際、容器内の粉末高さが3mmになるように予め粉末を余分に充填しておいた。そして、実施例1と同じ条件で焼結し、チタン焼結フィルタを作製した。
【0027】
実施例5
実施例1と同じ方法でチタン焼結フィルタを作製する際、ガスアトマイズした粉末を、振動ふるいにかけて分級し平均粒径148μmの球状粉末を得た。この粉末を実施例1と同じ容器に無加圧で充填した後、振動装置を使って容器に100回の振動を与えた。この際、容器内の粉末高さが3mmになるように予め粉末を余分に充填しておいた。そして、実施例1と同じ条件で焼結し、チタン焼結フィルタを作製した。
【0028】
上記実施例3、4及び5は焼結して得られる焼結フィルタの極大細孔径が47〜68μmとなるように、原料の平均粒径及び加圧の場合はその圧力を調整した。このように焼結フィルタの極大細孔径を47〜68μmとしたのは、ガスクロマトグラフィー装置に使用する焼結フィルタとして要求される極大細孔径が70μm以下の条件を満たすためである。同一の極大細孔径の焼結フィルタであれば、より耐食性に優れ、より圧損の小さいフィルタが望まれるため、以下に記載する比較例1、2、4〜6ともども同じ形状のフィルタを作製して、流量1リットル/min/cm2の条件で圧損を比較した。
【0029】
比較例1
スポンジチタン原料からビレットを作成し、これをArガス雰囲気中で電磁誘導溶解しながらガスアトマイズした。得られたチタン粉を振動ふるいにかけて分級し平均粒径212μmの球状粉末を得た。この粉末を、内寸が一辺100mmの正方形の高密度グラファイト製容器に充填した後、800kg/cm2の圧力をかけながら真空度7×10−3Paで1660℃に15分間保持して加圧焼結し、厚み3mmのチタン焼結フィルタを作製した。
【0030】
比較例2
比較例1と同じ方法でチタン焼結フィルタを作製する際、ガスアトマイズした粉末を、振動ふるいにかけて分級し平均粒径246μmの球状粉末を得た。この粉末を、内寸が一辺100mmの正方形の高密度グラファイト製容器に充填した後、1200kg/cm2の圧力をかけながら真空度7×10−3Paで1660℃に15分間保持して加圧焼結し、厚み3mmのチタン焼結フィルタを作製した。
【0031】
比較例3
円柱状チタンインゴットをプラズマ回転電極法により粉末化したものを、振動ふるいにかけて分級し平均粒径450μmの球状粉末を得た。この粉末を、実施例1と同様に、内寸が一辺100mmの正方形で、高さが3mmの高密度アルミナ製容器に無加圧で充填した後、真空度7×10−3Paで1000℃に15分間保持して無加圧焼結し、チタン焼結フィルタを作製した。
【0032】
比較例4
市販の水アトマイズ法によるステンレス鋼粉末を、振動ふるいにかけて分級し平均粒径147μmの不定形粉末を得た。この粉末を、比較例3と同じ条件で焼結し、焼結フィルタを作製した。
【0033】
比較例5
スポンジチタンを水素化脱水素法により粉砕した粉末を、振動ふるいにかけて分級し平均粒径102μmの不定形粉末を得た。この粉末を、比較例3と同じ条件で焼結し、チタン焼結フィルタを作製した。そのチタン焼結フィルタの電子顕微鏡写真を図2に示す。焼結体は不定形粒子からなる。
【0034】
比較例6
スポンジチタンを機械破砕により粉砕した粉末を、振動ふるいにかけて分級し平均粒径103μmの不定形粉末を得た。この粉末を、比較例3と同じ条件で焼結し、チタン焼結フィルタを作製した。
【0035】
上記実施例1〜5及び比較例1〜6の原料粉末の性状を表1に比較して示した。又、焼結して得られた焼結フィルタの性状(空隙率、極大細孔径、粒径、圧損)を表2に示した。なお、焼結フィルタの粒径は、焼結後も球状粒子の形状を維持している本発明の実施例1〜4及び比較例3のみを測定して示した。また、圧損は、流通流体が流量1リットル/min/cm2のときの流体の圧力損失を比較して示した。
【0036】
なお、チタン焼結フィルタを構成する球状粒子の平均粒径は、次のようにして測定できる。先ず、顕微鏡で観察したときの長方形の視野に対角線を引き、その対角線上にある球状粒子の内、輪郭の50%以上が見えている粒子の全てを選択して直径を測定する。その測定した直径の内大きい順に10個を選び平均値を算出する。この測定を異なる位置で10回繰り返し、算出された10個の平均値を、更に平均して球状粒子の平均粒径を求める。表1と表2より、この方法で求めたチタン焼結フィルタの球状粒径は、原料粉末の平均粒径とほぼ同じであることがわかる。
【0037】
上記実施例は、スポンジチタンを原料としているが、チタンスクラップやチタンインゴットを原料とすることができる。又、チタン合金の焼結フィルタを製造する場合は、粉末原料に所望のチタン合金インゴツトを使用する。
【0038】
【表1】
【0039】
【表2】
【0040】
上記表1、表2に示す実施例3、4及び比較例1、2、4、5、6は、いずれも焼結フィルタの極大細孔径が(48±1)μmとなるように、原料粒径、焼結圧力を調整して焼結したものである。この比較試験の結果より、同じガスアトマイズ法による球状チタン粉末を原料としても、粉末の平均粒径が181μm以下で無加圧で焼結した実施例2、3と粉末の平均粒径が200μm以上で加圧して焼結した比較例1、2とでは、圧損に著しい差異があり、本発明の実施による焼結フィルタは圧損が小さいことがわかる。
【0041】
又、比較例4〜6のガスアトマイズ法以外の水アトマイズ法、水素化脱水素法及び機械破砕による不定形粉末を無加圧で焼結した焼結フィルタは、いずれも圧損が大きいことがわかる。更に、比較例4のステンレス鋼製焼結フィルタでは、耐食性に問題がある。なお、実施例3と比較例4、5、6について流通流体の流量と流体圧力損失との関係を図3に示す。いずれも流量の増加に比例して圧力損失も大きくなるが、本発明の実施による実施例3の圧力損失が最も小さい。
【0042】
【発明の効果】
本発明によれば、原料の球状粉末の平均粒径及び空隙率をそのまま維持して極大細孔径が70μm以下の小さいチタン焼結フィルタを作ることができ、圧損が小さくフィルタ性能の優れたチタン焼結フィルタが得られる。
【図面の簡単な説明】
【図1】本発明の一実施例によりスポンジチタンをガスアトマイズ法で製造した球状粉粒体を原料として無加圧焼結したチタン焼結フィルタの電子顕微鏡写真である。
【図2】スポンジチタンを水素化脱水素法により粉砕した不定形粉末を原料として無加圧焼結したチタン焼結フィルタの電子顕微鏡写真である。
【図3】本発明の実施例3と比較例4〜6における流通流体の流量と圧力損失との関係を比較して示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has an excellent corrosion resistance, and high-performance method for producing a sintered titanium filtering small pressure loss during fluid flow.
[0002]
[Prior art]
Conventionally, various types of sintered filters of brass, stainless steel, ceramics, and titanium have been used in various fields.
[0003]
For example, a sintered body of stainless steel powder has been used for a filter for a carrier gas introduction section of a gas chromatography device. Stainless steel is said to have relatively good corrosion resistance. However, it has been pointed out that the corrosion resistance of stainless steel is not sufficient because the gas chromatography apparatus performs elemental analysis of a trace amount. Therefore, in some cases, titanium or titanium alloy sintered filters having excellent corrosion resistance have been used.
[0004]
In addition, a filter having high corrosion resistance has been demanded for producing foods such as liquid seasonings and liquid pigments, and a sintered filter of titanium or a titanium alloy has been used in some cases.
[0005]
Further, a porous body layer having a function of supporting a catalyst layer and flowing gas, which is called an electrode substrate of a fuel cell, is required to have a property of passing hydrogen, oxygen and water well. In addition, the anode-side electrode base material needs to have excellent oxidation resistance. Therefore, use of a sintered filter of titanium or a titanium alloy is desired.
[0006]
As an example of a conventional improved sintered filter, Japanese Patent Publication No. 62-42001 discloses that one kind of metal powder among Mg, Ti, Si, Mn, Zn and stainless steel is applied without pressure. A sintering method is described in which the metal powder is maintained at a temperature near the melting point of the metal powder for a certain period of time, is kept in a non-oxidized or vacuum state, and is sintered while controlling the dew point to -20 ° C or less. Although the titanium sintered filter obtained by this method is excellent in corrosion resistance, since the sintering temperature is high, the outer shape of the spherical particles collapses, and the pressure loss during passage of the fluid (hereinafter, abbreviated as pressure loss) is large.
[0007]
Japanese Patent Application Laid-Open No. Hei 7-238302 discloses that a sintered filter was produced by compressing titanium sponge powder by pressing in Example 1 and sintering at a temperature of 1400 ° C. for a holding time of 30 minutes. Is described. In this method, sintering is performed at a high temperature as in the above-mentioned Japanese Patent Publication No. 62-42001, and press molding is performed, so that the outer shape of the spherical particles collapses and the pressure loss is large.
[0008]
[Problems to be solved by the invention]
As described above, filters are widely used in various fields, but a filter having a predetermined maximum pore diameter is required for each purpose. The maximum pore size is a measure of the size of particles that can be removed as a filter, and it can be considered that particles having the same size can be removed if the maximum pore size is the same even if the pore shapes are different. Further, if the filters have the same maximum pore diameter, a filter having a smaller pressure loss is required. For example, as a filter for a carrier gas introduction portion of a gas chromatography device, a filter having excellent corrosion resistance, particularly having a maximum pore diameter of 70 μm or less and having a small pressure loss has been desired.
[0009]
The present application provides a high performance sintered titanium filter having excellent corrosion resistance and small pressure loss, which is demanded as a filter in view of the above situation, and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
The present inventors have conducted various experiments to obtain a filter having excellent corrosion resistance, a small maximum pore diameter, and a small pressure loss, and as a result, have completed the following invention.
[0011]
The sintered titanium filter of the present invention is made of a sintered body having a porosity of 35 to 55% and a maximum pore diameter of 3 to 70 μm obtained by sintering a spherical powder of titanium or a titanium alloy produced by a gas atomization method , When the flow rate of the fluid passing through the sintered body is 1 liter / min / cm 2 , the pressure loss of the fluid is 0.16 kg / cm 2 or less .
[0012]
Also, sintered titanium filter of the invention, in the sintered titanium filter, the average particle diameter of the spherical powder particles constituting the filter is characterized in that in the range of 10 to 150 m.
[0013]
Further, the sintered titanium filter of the present invention fills and holds a spherical powder of titanium or a titanium alloy having an average particle diameter of 10 to 150 μm by a gas atomization method without pressurization, and the inert gas atmosphere or the vacuum And a sintered body having a maximum pore diameter of 3 to 70 μm sintered at 850 to 1200 ° C. without pressurization at a flow rate of 1 liter / min / cm 2 through the sintered body. The pressure loss is 0.16 kgf / cm 2 or less .
[0014]
Method for producing a sintered titanium filter according to the present invention, the spherical powder granules of titanium or titanium alloy average particle size by the gas atomizing method is 10~150μm filled held no pressure in the container, an inert gas atmosphere Alternatively, it is characterized by sintering at 850 to 1200 ° C. under no pressure in a vacuum.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
As a powder material of titanium or a titanium alloy in the practice of the present invention, sponge titanium is formed into spherical particles having an average particle diameter of 200 μm or less by a gas atomization method (hereinafter, abbreviated as spherical titanium powder). Since the spherical particles obtained by this gas atomization method are powders in which molten droplets of titanium are solidified during scattering, the surface of the powder is extremely smooth as compared with pulverized powder of titanium sponge or amorphous powder of hydrodehydrogenated powder. is there.
[0016]
When a filter is manufactured using the above-mentioned spherical titanium powder, it is desirable that the powder has a uniform particle size through a sieve in order to obtain a desired filter performance. Then, the sintering container is filled with spherical titanium powder having a uniform particle size without pressure. The porosity of the sintering raw material charged under no pressure can be adjusted within the range of 35 to 55% by adjusting the particle size distribution. When vibration is applied to the spherical titanium powder before sintering, the porosity is reduced within the range of 35 to 55%. However, it does not fall below 35%. In addition, when pressure-filled, the porosity is generally 35% or less.
[0017]
When the spherical titanium powder filled in the sintering container is sintered without pressure, only the contact portions of the spherical particles are melted and bonded, but the mechanical strength required for the filter can be sufficiently secured. If sintering is performed at a temperature much lower than the melting point of titanium, sintering is performed while maintaining the shape of the spherical particles before sintering. Instead, the porosity after sintering is in the range of 35 to 55%. As long as the sintering is performed in a low temperature range, a sintered body having a porosity in the range of 35 to 55% can be obtained even if the pressure is slightly increased.
[0018]
Since the spherical titanium powder obtained by the gas atomization method can be industrially produced as a small powder having an average particle diameter of 10 to 150 μm, a spherical titanium filter having a maximum pore diameter of 3 to 70 μm can be produced by using this spherical titanium powder. . That is, it is possible to manufacture a filter having a small pressure drop with high productivity. In addition, when the average particle diameter of the spherical titanium powder is out of the range of 10 to 150 μm and is less than 10 μm or exceeds 150 μm, it is possible to obtain a sintered body having the maximum pore diameter in the range of 3 to 70 μm. Can not.
[0019]
On the other hand, it is possible to produce a spherical powder by a rotating electrode method, but the average particle size of the obtained spherical powder is generally 400 μm or more, and an average particle diameter of 150 μm or less, and even more preferably 30 μm or less, is obtained with good yield. Production is difficult.
[0020]
The maximum pore diameter is measured by a mercury intrusion method. The mercury intrusion method involves placing a sample in mercury and gradually increasing the pressure of mercury. Then, since the mercury penetrates into the pores having a smaller diameter as the pressure is increased, a value for determining the size of the porous pores is obtained. In other words, a filter having a small maximum pore diameter is a porous body having small pores, and a filter excellent in performance capable of removing even small foreign substances can be obtained.
[0021]
In the practice of the present invention, without decreasing the porosity of the spherical titanium powder raw material during sintering, in order to maintain the porosity of the sintered body equal to the porosity of the spherical titanium powder raw material, packed in a cylindrical container It is desirable that the spherical titanium powder raw material be sintered in a temperature range much lower than the titanium melting point at a sintering temperature of 850 to 1200 ° C. without pressing. If the sintering temperature is lower than 850 ° C., sufficient sintering is not performed, and if the sintering temperature exceeds 1200 ° C., even if no pressure is applied, the sintered portion is not limited to the contact portion between the particles, and the particles are fused with each other. Since the shape of the spherical particles cannot be maintained and deforms / shrinks, the porosity decreases and the pressure loss increases.
[0022]
Further, in the practice of the present invention, since molding such as pressing which causes deformation of the powder is not performed, the spherical titanium powder is mixed with an appropriate binder as in a doctor blade method or an extrusion method. The binder can be degreased and vacuum-sintered using the green body obtained by the above method to obtain a sintered statin filter.
[0023]
【Example】
Example 1
A billet was prepared from a titanium sponge material, and this was gas-atomized while being electromagnetically melted in an Ar gas atmosphere. The obtained titanium powder was classified through a vibration sieve to obtain a spherical powder having an average particle diameter of 10 μm. This powder was filled in a high-density alumina container having a square of 100 mm on a side and a height of 3 mm without pressure, and kept at 1000 ° C. for 15 minutes at a degree of vacuum of 7 × 10 −3 Pa. Pressure sintering was performed to produce a titanium sintered filter.
[0024]
Example 2
When producing a titanium sintered filter in the same manner as in Example 1, the gas-atomized powder was classified through a vibration sieve to obtain a spherical powder having an average particle size of 29 μm. This powder was sintered under the same conditions as above to produce a titanium sintered filter.
[0025]
Example 3
When producing a titanium sintered filter in the same manner as in Example 1, the gas-atomized powder was classified through a vibration sieve to obtain a spherical powder having an average particle diameter of 124 μm. This powder was sintered under the same conditions as above to produce a titanium sintered filter. An electron micrograph of the titanium sintered filter is shown in FIG. From the photograph, it can be seen that the particles of the titanium sintered filter remain spherical particles and have many voids.
[0026]
Example 4
When producing a titanium sintered filter in the same manner as in Example 1, the gas-atomized powder was classified through a vibration sieve to obtain a spherical powder having an average particle diameter of 140 μm. After the powder was filled in the same container as in Example 1 without pressure, the container was vibrated 100 times using a vibration device. At this time, extra powder was previously filled so that the height of the powder in the container was 3 mm. And it sintered on the same conditions as Example 1, and produced the titanium sintered filter.
[0027]
Example 5
When producing a titanium sintered filter in the same manner as in Example 1, the gas-atomized powder was classified through a vibration sieve to obtain a spherical powder having an average particle size of 148 μm. After the powder was filled in the same container as in Example 1 without pressure, the container was vibrated 100 times using a vibration device. At this time, extra powder was previously filled so that the height of the powder in the container was 3 mm. And it sintered on the same conditions as Example 1, and produced the titanium sintered filter.
[0028]
In Examples 3, 4 and 5, the average particle size of the raw materials and the pressure in the case of pressurization were adjusted so that the maximum pore diameter of the sintered filter obtained by sintering was 47 to 68 µm. The reason why the maximum pore diameter of the sintered filter is set to 47 to 68 μm is to satisfy the condition that the maximum pore diameter required for the sintered filter used in the gas chromatography device is 70 μm or less. If a sintered filter having the same maximum pore diameter is used, a filter having more excellent corrosion resistance and a smaller pressure loss is desired. Therefore, filters having the same shape are produced in Comparative Examples 1, 2, 4 to 6 described below. The pressure loss was compared under the conditions of a flow rate of 1 liter / min / cm 2 .
[0029]
Comparative Example 1
A billet was prepared from a titanium sponge material, and this was gas-atomized while being electromagnetically melted in an Ar gas atmosphere. The obtained titanium powder was classified through a vibration sieve to obtain a spherical powder having an average particle size of 212 μm. After filling this powder into a high-density graphite container having a square of 100 mm on a side, the pressure is maintained at 1660 ° C. for 15 minutes at a degree of vacuum of 7 × 10 −3 Pa while applying a pressure of 800 kg / cm 2. After sintering, a titanium sintered filter having a thickness of 3 mm was produced.
[0030]
Comparative Example 2
When producing a titanium sintered filter in the same manner as in Comparative Example 1, the gas-atomized powder was classified through a vibration sieve to obtain a spherical powder having an average particle size of 246 μm. This powder is filled in a high-density graphite container having a square of 100 mm on a side and having a vacuum of 7 × 10 −3 Pa at 1660 ° C. for 15 minutes while applying a pressure of 1200 kg / cm 2. After sintering, a titanium sintered filter having a thickness of 3 mm was produced.
[0031]
Comparative Example 3
The cylindrical titanium ingot powdered by the plasma rotating electrode method was classified by passing through a vibration sieve to obtain a spherical powder having an average particle diameter of 450 μm. As in Example 1, this powder was filled in a high-density alumina container having a square shape with a side of 100 mm on a side and a height of 3 mm without pressure, and then 1000 ° C. at a degree of vacuum of 7 × 10 −3 Pa. For 15 minutes and sintered without pressure to produce a titanium sintered filter.
[0032]
Comparative Example 4
A commercially available stainless steel powder obtained by a water atomizing method was classified through a vibrating sieve to obtain an amorphous powder having an average particle size of 147 μm. This powder was sintered under the same conditions as in Comparative Example 3 to produce a sintered filter.
[0033]
Comparative Example 5
Powder obtained by pulverizing titanium sponge by a hydrodehydrogenation method was classified through a vibration sieve to obtain an irregular-shaped powder having an average particle diameter of 102 μm. This powder was sintered under the same conditions as in Comparative Example 3 to produce a titanium sintered filter. FIG. 2 shows an electron micrograph of the titanium sintered filter. The sintered body is composed of irregular shaped particles.
[0034]
Comparative Example 6
Powder obtained by pulverizing titanium sponge by mechanical crushing was classified through a vibration sieve to obtain an irregular-shaped powder having an average particle diameter of 103 μm. This powder was sintered under the same conditions as in Comparative Example 3 to produce a titanium sintered filter.
[0035]
Table 1 shows the properties of the raw material powders of Examples 1 to 5 and Comparative Examples 1 to 6 in comparison. Table 2 shows the properties (porosity, maximum pore size, particle size, pressure loss) of the sintered filter obtained by sintering. In addition, the particle diameter of the sintered filter was measured and shown only in Examples 1 to 4 and Comparative Example 3 of the present invention in which the shape of the spherical particles was maintained after sintering. The pressure loss was shown by comparing the pressure loss of the fluid when the flow rate of the fluid was 1 liter / min / cm 2 .
[0036]
The average particle diameter of the spherical particles constituting the titanium sintered filter can be measured as follows. First, a diagonal line is drawn in a rectangular visual field observed by a microscope, and among the spherical particles on the diagonal line, all the particles in which 50% or more of the outline is visible are selected, and the diameter is measured. An average value is calculated by selecting ten pieces from the measured diameter in descending order. This measurement is repeated ten times at different positions, and the average value of the ten calculated values is further averaged to determine the average particle size of the spherical particles. Tables 1 and 2 show that the spherical particle size of the titanium sintered filter obtained by this method is almost the same as the average particle size of the raw material powder.
[0037]
In the above embodiment, titanium sponge is used as a raw material, but titanium scrap or titanium ingot can be used as a raw material. When a sintered filter of a titanium alloy is manufactured, a desired titanium alloy ingot is used as a powder raw material.
[0038]
[Table 1]
[0039]
[Table 2]
[0040]
In Examples 3 and 4 and Comparative Examples 1, 2, 4, 5 and 6 shown in Tables 1 and 2 above, the raw material particles were so selected that the maximum pore diameter of the sintered filter was (48 ± 1) μm. It is sintered by adjusting the diameter and sintering pressure. From the results of this comparative test, even when spherical titanium powder obtained by the same gas atomization method was used as a raw material, the average particle diameter of the powder was 181 μm or less, and Examples 2 and 3 were sintered without pressure. There is a remarkable difference in pressure loss between Comparative Examples 1 and 2, which were sintered under pressure, and it can be seen that the sintered filter according to the present invention has a small pressure loss.
[0041]
In addition, it can be seen that the sintered filters obtained by sintering non-pressurized amorphous powders by water atomizing method, hydrodehydrogenating method and mechanical crushing other than the gas atomizing method of Comparative Examples 4 to 6 have large pressure loss. Further, the stainless steel sintered filter of Comparative Example 4 has a problem in corrosion resistance. FIG. 3 shows the relationship between the flow rate of the flowing fluid and the fluid pressure loss for Example 3 and Comparative Examples 4, 5, and 6. In any case, the pressure loss increases in proportion to the increase in the flow rate, but the pressure loss in the third embodiment according to the embodiment of the present invention is the smallest.
[0042]
【The invention's effect】
According to the present invention, a titanium sintered filter having a maximum pore diameter of 70 μm or less can be produced while maintaining the average particle diameter and porosity of the raw material spherical powder as they are, and a titanium sintered filter having a small pressure loss and excellent filter performance can be obtained. A tie filter is obtained.
[Brief description of the drawings]
FIG. 1 is an electron micrograph of a titanium sintered filter obtained by pressureless sintering a spherical powder obtained by manufacturing a titanium sponge by a gas atomization method according to an embodiment of the present invention.
FIG. 2 is an electron micrograph of a titanium sintered filter obtained by sintering titanium sponge by pressureless sintering using amorphous powder obtained by pulverizing titanium sponge by a hydrodehydrogenation method.
FIG. 3 is a graph showing a comparison between a flow rate of a flowing fluid and a pressure loss in Example 3 of the present invention and Comparative Examples 4 to 6.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000254861A JP3566637B2 (en) | 2000-08-25 | 2000-08-25 | Manufacturing method of sintered titanium filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000254861A JP3566637B2 (en) | 2000-08-25 | 2000-08-25 | Manufacturing method of sintered titanium filter |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004032386A Division JP3761551B2 (en) | 2004-02-09 | 2004-02-09 | Sintered titanium filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002066229A JP2002066229A (en) | 2002-03-05 |
JP3566637B2 true JP3566637B2 (en) | 2004-09-15 |
Family
ID=18743738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000254861A Expired - Fee Related JP3566637B2 (en) | 2000-08-25 | 2000-08-25 | Manufacturing method of sintered titanium filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3566637B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE369223T1 (en) * | 2001-02-16 | 2007-08-15 | Sumitomo Titanium Corp | SINTERED PRESSURE MADE OF TITANIUM POWDER |
NL1020534C2 (en) * | 2002-05-03 | 2003-11-14 | Stichting Energie | Method for manufacturing a porous object from titanium material. |
DE10224671C1 (en) * | 2002-06-03 | 2003-10-16 | Forschungszentrum Juelich Gmbh | Making high porosity sintered moldings, mixes metal powder with place holder, presses and processes blank, then removes place holder before sintering |
JP5573110B2 (en) * | 2009-11-06 | 2014-08-20 | 三菱マテリアル株式会社 | Sintered metal sheet material for electrochemical member and method for producing sintered metal sheet material for electrochemical member |
JP2011177661A (en) * | 2010-03-02 | 2011-09-15 | Seiko Epson Corp | Filter made of metal, and method for manufacturing the same |
JP7077085B2 (en) | 2018-03-19 | 2022-05-30 | 東邦チタニウム株式会社 | Porous titanium-based sintered body, its manufacturing method, and electrodes |
EP3778074A4 (en) | 2018-03-29 | 2021-12-22 | Toho Titanium Co., Ltd. | Porous titanium-based sintered compact, method for manufacturing same, and electrode |
KR102020331B1 (en) * | 2018-08-13 | 2019-10-28 | (주)하나테크 | Titanum filter for syringe and its manufacturing method |
JP2020026561A (en) * | 2018-08-14 | 2020-02-20 | 東邦チタニウム株式会社 | Method for manufacturing porous titanium sintered plate |
AU2021350813B2 (en) * | 2020-09-28 | 2024-02-22 | Toho Titanium Co.,Ltd. | Titanium-based porous body and method for producing titanium-based porous body |
-
2000
- 2000-08-25 JP JP2000254861A patent/JP3566637B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002066229A (en) | 2002-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2437914C (en) | Titanium powder sintered compact | |
US10035190B2 (en) | Multilevel parts from agglomerated spherical metal powder | |
JP3566637B2 (en) | Manufacturing method of sintered titanium filter | |
AU2021350813B2 (en) | Titanium-based porous body and method for producing titanium-based porous body | |
WO2014058901A1 (en) | System and method for fabrication of 3-d parts | |
JP3761551B2 (en) | Sintered titanium filter | |
JP3569682B2 (en) | High corrosion resistance metal sintered filter | |
CN111886091A (en) | Porous titanium-based sintered body, method for producing same, and electrode | |
JP5544930B2 (en) | Granulated powder, porous sintered body and metal filter | |
JP4641209B2 (en) | Method for producing porous metal body | |
JP2004149842A (en) | Method for manufacturing titanium sintered compact | |
JP4116263B2 (en) | Titanium powder sintered body | |
JP2995661B2 (en) | Manufacturing method of porous cemented carbide | |
JP4374149B2 (en) | High corrosion resistance perforated plate | |
JP2002322505A (en) | Cylindrical porous body | |
JPH07238302A (en) | Sintered titanium filter and production thereof | |
US20240123500A1 (en) | Porous sintered bodies and methods of preparing porous sintered bodies | |
JP2006218443A (en) | Method for producing titanium or titanium-based alloy filter | |
TW202428336A (en) | Sintered porous body with multiple layers | |
JP2002038202A (en) | Porous sintered compact, method for production thereof, and suction-fixing tool | |
JP2000169921A (en) | Hydrogen storage material and its production | |
JPH05271826A (en) | Production of high density p/m sintered titanium alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040209 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040519 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040610 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060726 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A072 Effective date: 20061114 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |