JP4116263B2 - Titanium powder sintered body - Google Patents
Titanium powder sintered body Download PDFInfo
- Publication number
- JP4116263B2 JP4116263B2 JP2001121356A JP2001121356A JP4116263B2 JP 4116263 B2 JP4116263 B2 JP 4116263B2 JP 2001121356 A JP2001121356 A JP 2001121356A JP 2001121356 A JP2001121356 A JP 2001121356A JP 4116263 B2 JP4116263 B2 JP 4116263B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium powder
- sintered body
- bending
- titanium
- powder sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims description 63
- 239000002245 particle Substances 0.000 claims description 29
- 238000005452 bending Methods 0.000 claims description 22
- 238000005245 sintering Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 2
- 239000000843 powder Substances 0.000 description 10
- 239000010936 titanium Substances 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- 238000000465 moulding Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000011362 coarse particle Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012798 spherical particle Substances 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Filtering Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、フィルタや分散板等に使用されるチタン粉末からなる多孔質のチタン粉末焼結体に関する。
【0002】
【従来の技術】
化学工業、高分子工業、薬品工業等で使用されるフィルタの一つとして金属粉末焼結フィルタがある。ここにおける金属としては、黄銅系、ステンレス鋼系が一般的であり、最近ではチタン系も用いられている。
【0003】
チタンは、ステンレス鋼に比べ、耐食性及び耐酸性等に著しく優れるが、その反面、成形性が極端に悪い。このため、チタン系の焼結フィルタは、比較的成形性が良好とされる水素化脱水素チタン粉末を金型プレスで成形し、その後焼結するのが一般的な製法とされており、水素化脱水素チタン粉末と同様に成形性が比較的良好なスポンジチタンの粉末を使用する製法も特開平7−238302号公報に記載されている。
【0004】
【発明が解決しようとする課題】
しかしながら、水素化脱水素チタン粉末やスポンジチタン粉末を使用したチタン焼結フィルタは、非常に硬くて脆く、弾性を有しないため、薄いと割れやすく、大面積のものを製作することが困難である。また、室温での曲げ加工が困難であるため、曲げ加工による製品形成ができず、平板以外の製品については製作コストが嵩む問題がある。
【0005】
例えば、チタン焼結フィルタとして直径40mm(曲率半径20mm)程度の円筒形状のものが要求されることがあるが、平板状のチタン焼結体を室温で円筒状に曲げ加工することが不可能であるため、特許第2791737号公報に記載のように、CIPと呼ばれる冷間静水圧プレスによる成形が必要となり、製造コストが嵩むのを避け得ない。
【0006】
本発明の目的は、曲げ加工性に優れたチタン粉末焼結体を提供することにある。
【0007】
【課題を解決するための手段】
従来のチタン粉末焼結フィルタでは、そのチタン粉末として水素化脱水素チタン粉末やスポンジチタン粉末が使用されている。これは、粉末を構成する粒子が不定形であるため、プレス成形性に優れることが主な理由である。また、粒子が不定形の場合、成形型に粉末を充填しただけでは気孔径がばらつくため、プレス成形により気孔径を均一化する必要があり、この点からもプレス成形が不可欠となる。
【0008】
しかし、このようなチタン粉末焼結体は、曲げ加工性が甚だ劣ることは前述したとおりである。
【0009】
この問題を解消するために、本発明者らは球状ガスアトマイズチタン粉末に着目した。球状ガスアトマイズチタン粉末とは、ガスアトマイズ法により製造されたチタン又はチタン合金の粉末であり、個々の粒子は、チタン又はチタン合金の溶融飛沫が飛散中に凝固してできたものであるから、表面が滑らかな球形をしている。また、粒径は例えば平均で100μm以下と非常に微細にでき、篩分けにより粒度による区分も容易である。
【0010】
このような球状ガスアトマイズチタン粉末は、流動性に非常に優れており、粒子同士の接触性が良いため、焼結容器に充填することより、加圧なしで均一かつ十分な充填密度が得られる。そして、これを焼結することにより、プレス成形なしで機械的強度の高い多孔質体が製造され、しかも、製造された多孔質体では、隣接する球状粒子同士が点状に融合し、その融合点が均一に分布することから、多孔質体の板厚が比較的薄い場合には、優れた曲げ特性が得られることが判明した。また、多孔質体の空隙率としてはフィルタに適した35〜55%が無加圧で得られる。
【0011】
本発明のチタン粉末焼結体は、かかる知見に基づいて完成されたもので、球状ガスアトマイズチタン粉末を焼結して形成された板状の多孔質体からなり、前記球状ガスアトマイズチタン粉末の平均粒径が150μm以下であり、該多孔質体の空隙率が35〜55%であり、且つ該多孔質体の板厚が500μm以下である曲げ加工用チタン粉末焼結体である。
【0012】
前記多孔質体の板厚が500μmを超える場合は、室温での曲げ加工ができない。また、球状ガスアトマイズチタン粉末を使用せず、水素化脱水素チタン粉末やスポンジチタン粉末等の不定形粉末を使用した場合は、仮に板厚が500μm以下であっても、無加圧成形では気孔径の均一化が図れない。更に、粒子同士の融合点が不均一に分散するため、部分的に強度が不足し、室温での曲げ加工が不可能となる。
【0013】
球状ガスアトマイズチタン粉末としては、例えば粒径範囲によって区分された次の3種類が市販されている。即ち、45μm以下の細粒、45〜150μmの粗粒、更に粗い150μm以上の3種類であり、平均粒径は細粒で約25μm、粗粒で約80μmである。
【0014】
球状ガスアトマイズチタン粉末の平均粒径としては150μm以下の範囲内で選択する。この平均粒径が150μmを超える場合には、粒子同士の融合点の間隔が広くなりすぎるため、曲げ加工時に割れる可能性が高くなる。また、例えば板厚が500μm近傍のチタン粉末焼結体を成形した際の空隙率が、金属粉末焼結フィルタとして好ましい35〜55%の範囲より大きくなる。板厚と粒子同士の融合点の関係は、板厚範囲内に2点以上が望ましい。平均粒径の下限については、粒径が小さくなるほど加工性が向上する傾向があるので、その下限は特に規定しない。
【0015】
多孔質体の板厚、即ち本発明のチタン粉末焼結体の厚みは前述したとおり500μm以下であり、室温での曲げ加工性の観点からは100μm以下が特に好ましい。板厚の下限については、室温での曲げ加工性の観点からは薄いほど好ましいが、例えば粒子一層では金属粉末焼結フィルタとして好ましい35〜55%の範囲より空隙率が大きくなる。板厚は使用する粉末の平均粒径の3倍以上が好ましい。
【0016】
チタン粉末焼結体の形状は平板を基本とするが、これ以外の例えば湾曲板等に成形してもよく、また平板に形成されたものを半円形状やU字状、波形等に曲げ加工して使用したり、円筒形状に湾曲させて使用することも当然可能であり、成形段階や使用段階における形状を限定するものではない。
【0017】
空隙率については、球状ガスアトマイズチタン粉末として市販品を使用し、かつ充填時や焼結時に加圧を行わずとも、35〜55%の空隙率が得られる。本発明者らによる調査によれば、この空隙率は金属粉末焼結フィルタとして好ましい値である。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明する。図1は本発明の1実施形態を示すチタン粉末焼結体の模式断面図である。
【0019】
所定の平均粒径をもつ球状ガスアトマイズチタン粉末11を、高密度アルミナからなる皿状の焼結容器内に無加圧で充填した後、その球状ガスアトマイズチタン粉末11を無加圧で真空焼結することにより、薄板状の多孔質焼結体10を製造する。
【0020】
ここで、焼結体10の板厚Tは、500μm以下である。隣接する球状粒子同士は点状に接触して融合しており、板厚が500μm以下の条件下で優れた曲げ特性を発揮する。即ち、球状ガスアトマイズ粉末を使用したチタン粉末焼結体は、隣接する球状粒子同士が点状に接触して融合した箇所が、焼結体全体に均一に分布することにより、曲げ応力の局部的な集中がなく、曲げ特性に優れる。
【0021】
焼結温度は、チタンの融点よりはるかに低温の850〜1200℃の範囲内で選択するのが好ましい。焼結温度が850℃より低い場合は、十分な焼結が行われない。1200℃を超えると、無加圧の場合でも焼結部分が個々の粒子同士の接触部にとどまらず、粒子同士が溶け合うため、適正な空隙率及び気孔径を確保できなくなる危険がある。この温度範囲内で焼結温度を変更することにより、空隙率及び気孔径が制御される。また、曲げ特性も制御される。
【0022】
本発明の実施例及び比較例として、前述した球状ガスアトマイズチタン粉末の市販品、即ち粒径範囲が45μm以下の細粒(平均粒径25μm)と、45〜150μmの粗粒(平均粒径80μm)とを使用して、150mm角で各種板厚の薄板状チタン粉末焼結体を製造した。
【0023】
また、従来例として、水素化脱水素チタン粉末の市販品(平均粒径25μm)を使用し、成形にプレスを用いて、同様寸法の薄板状チタン粉末焼結体を製造した。
【0024】
製造された薄板状チタン粉末焼結体を外径40mm(曲率半径20mm)の円柱体に巻き付けたときの焼結体の破損状況を調査することにより、曲げ特性の比較を行った。結果を表1に示す。
【0025】
【表1】
【0026】
表1から分かるように、チタン粉末として球状ガスアトマイズチタン粉末を使用し、且つ板厚が500μm以下の場合、粒径に関係なく(細粒の場合も粗粒の場合も)優れた曲げ特性が得られる。
【0027】
【発明の効果】
以上に説明したとおり、本発明の曲げ加工用チタン粉末焼結体は、平均粒径が150μm以下の球状ガスアトマイズチタン粉末を使用し、空隙率を35〜55%に制限すると共に、板厚を500μm以下に制限することにより、高い曲げ特性を付与することができるので、例えば円筒形状や波形といった立体形状のフィルタエレメント、分散エレメント等を、CIPを用いずに非常に安価に製作することができる。
【図面の簡単な説明】
【図1】本発明のチタン粉末焼結体の構造を示すイメージ図である。
【符号の説明】
10 チタン粉末焼結体
11 球状ガスアトマイズチタン粉末[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous titanium powder sintered body made of titanium powder used for a filter, a dispersion plate and the like.
[0002]
[Prior art]
One of the filters used in the chemical industry, polymer industry, pharmaceutical industry, etc. is a metal powder sintered filter. As the metal here, brass and stainless steel are common, and recently titanium is also used.
[0003]
Titanium is remarkably superior in corrosion resistance and acid resistance compared to stainless steel, but on the other hand, formability is extremely poor. For this reason, titanium-based sintered filters are generally manufactured by molding hydrodehydrogenated titanium powder, which has relatively good moldability, with a mold press and then sintering. A manufacturing method using a sponge titanium powder having relatively good moldability as in the case of hydrodehydrogenated titanium powder is described in JP-A-7-238302.
[0004]
[Problems to be solved by the invention]
However, a titanium sintered filter using hydrodehydrogenated titanium powder or sponge titanium powder is very hard and brittle and does not have elasticity. Therefore, it is easy to break when it is thin, and it is difficult to manufacture a large area filter. . Further, since it is difficult to perform bending at room temperature, it is impossible to form a product by bending, and there is a problem that production costs increase for products other than flat plates.
[0005]
For example, a titanium sintered filter having a cylindrical shape with a diameter of about 40 mm (curvature radius of 20 mm) may be required, but it is impossible to bend a flat titanium sintered body into a cylindrical shape at room temperature. For this reason, as described in Japanese Patent No. 279737, it is necessary to form by a cold isostatic press called CIP, and it is inevitable that the manufacturing cost increases.
[0006]
An object of the present invention is to provide a titanium powder sintered body excellent in bending workability.
[0007]
[Means for Solving the Problems]
In conventional titanium powder sintered filters, hydrodehydrogenated titanium powder and sponge titanium powder are used as the titanium powder. This is mainly because the particles constituting the powder are indefinite and have excellent press formability. Further, when the particles are indefinite, the pore diameter varies only by filling the molding die with powder. Therefore, it is necessary to make the pore diameter uniform by press molding. From this point, press molding is indispensable.
[0008]
However, as described above, such a titanium powder sintered body is extremely inferior in bending workability.
[0009]
In order to solve this problem, the present inventors paid attention to spherical gas atomized titanium powder. Spherical gas atomized titanium powder is a titanium or titanium alloy powder produced by the gas atomizing method, and the individual particles are formed by solidification of molten droplets of titanium or titanium alloy during scattering, so the surface is It has a smooth spherical shape. Moreover, the particle size can be made very fine, for example, 100 μm or less on average, and classification by particle size is easy by sieving.
[0010]
Such a spherical gas atomized titanium powder is very excellent in fluidity and has good contact property between particles. Therefore, a uniform and sufficient filling density can be obtained without applying pressure by filling the sintered container. Then, by sintering this, a porous body having high mechanical strength is produced without press molding, and in the produced porous body, adjacent spherical particles are fused in a dotted manner, and the fusion is performed. Since the points are uniformly distributed, it has been found that excellent bending characteristics can be obtained when the plate thickness of the porous body is relatively thin. Moreover, 35-55% suitable for a filter as a porosity of the porous body can be obtained without pressure.
[0011]
The titanium powder sintered body of the present invention has been completed based on such knowledge, and is composed of a plate-like porous body formed by sintering spherical gas atomized titanium powder. The average particle size of the spherical gas atomized titanium powder is as follows. A titanium powder sintered body for bending work having a diameter of 150 μm or less, a porosity of the porous body of 35 to 55%, and a plate thickness of the porous body of 500 μm or less.
[0012]
When the plate thickness of the porous body exceeds 500 μm, it cannot be bent at room temperature. In addition, when spherical gas atomized titanium powder is not used and amorphous powder such as hydrodehydrogenated titanium powder or sponge titanium powder is used, even if the plate thickness is 500 μm or less, the pore size is not used in pressureless molding. Cannot be made uniform. Furthermore, since the fusion points of the particles are dispersed unevenly, the strength is partially insufficient, and bending at room temperature becomes impossible.
[0013]
As the spherical gas atomized titanium powder, for example, the following three types classified by the particle size range are commercially available. That is, there are three types of fine particles of 45 μm or less, coarse particles of 45 to 150 μm, and coarser of 150 μm or more, and the average particle size is about 25 μm for fine particles and about 80 μm for coarse particles.
[0014]
The average particle diameter of the spherical gas atomized titanium powder is selected within a range of 150 μm or less. When the average particle diameter exceeds 150 μm, the interval between the fusion points of the particles becomes too wide, so that the possibility of cracking during bending is increased. Moreover, for example, the porosity when a titanium powder sintered body having a plate thickness in the vicinity of 500 μm is formed is larger than the preferable range of 35 to 55% as a metal powder sintered filter. The relationship between the plate thickness and the fusion point of the particles is preferably at least two points within the plate thickness range. As for the lower limit of the average particle diameter, workability tends to improve as the particle diameter becomes smaller, so the lower limit is not particularly specified.
[0015]
The plate thickness of the porous body, that is, the thickness of the titanium powder sintered body of the present invention is 500 μm or less as described above, and is preferably 100 μm or less from the viewpoint of bending workability at room temperature. The lower limit of the plate thickness is preferably as thin as possible from the viewpoint of bending workability at room temperature. However, for example, in a single particle layer, the porosity is larger than the range of 35 to 55% which is preferable as a metal powder sintered filter. The plate thickness is preferably at least 3 times the average particle size of the powder used.
[0016]
The shape of the titanium powder sintered body is basically a flat plate, but other than this, for example, it may be formed into a curved plate, etc., and the one formed on the flat plate is bent into a semicircular shape, U-shape, corrugated shape, etc. Of course, it is also possible to use it by curving it into a cylindrical shape, and it does not limit the shape in the molding stage or use stage.
[0017]
As for the porosity, a commercially available product is used as the spherical gas atomized titanium powder, and a porosity of 35 to 55% can be obtained without applying pressure during filling or sintering. According to an investigation by the present inventors, this porosity is a preferable value for a sintered metal powder filter.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a titanium powder sintered body showing one embodiment of the present invention.
[0019]
The spherical gas atomized
[0020]
Here, the plate thickness T of the
[0021]
The sintering temperature is preferably selected within the range of 850 to 1200 ° C., which is much lower than the melting point of titanium. When the sintering temperature is lower than 850 ° C., sufficient sintering is not performed. If the temperature exceeds 1200 ° C., the sintered portion does not stay at the contact portion between the individual particles even when there is no pressure applied, and the particles are melted together, so that there is a risk that an appropriate porosity and pore diameter cannot be secured. By changing the sintering temperature within this temperature range, the porosity and the pore diameter are controlled. Also bending properties are controlled.
[0022]
As examples and comparative examples of the present invention, commercial products of the above-described spherical gas atomized titanium powder, that is, fine particles having a particle size range of 45 μm or less (average particle size 25 μm) and coarse particles having an average particle size of 45 to 150 μm (average particle size 80 μm) Were used to produce thin plate-like titanium powder sintered bodies of 150 mm square and various plate thicknesses.
[0023]
In addition, as a conventional example, a commercially available product of hydrodehydrogenated titanium powder (average particle size 25 μm) was used, and a thin plate-like titanium powder sintered body having the same dimensions was manufactured using a press for molding.
[0024]
Bending characteristics were compared by investigating the damage state of the sintered body when the manufactured thin plate-like titanium powder sintered body was wound around a cylindrical body having an outer diameter of 40 mm (curvature radius: 20 mm). The results are shown in Table 1.
[0025]
[Table 1]
[0026]
As can be seen from Table 1, when a spherical gas atomized titanium powder is used as the titanium powder and the plate thickness is 500 μm or less, excellent bending characteristics can be obtained regardless of the particle size (both fine and coarse particles). It is done.
[0027]
【The invention's effect】
As described above, the titanium powder sintered body for bending according to the present invention uses a spherical gas atomized titanium powder having an average particle size of 150 μm or less , limits the porosity to 35 to 55%, and has a plate thickness of 500 μm. By limiting to the following, it is possible to impart high bending characteristics, and thus, for example, a three-dimensional filter element such as a cylindrical shape or a waveform, a dispersion element, and the like can be manufactured at a very low cost without using CIP.
[Brief description of the drawings]
FIG. 1 is an image view showing a structure of a titanium powder sintered body of the present invention.
[Explanation of symbols]
10 Titanium powder sintered
Claims (3)
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001121356A JP4116263B2 (en) | 2001-04-19 | 2001-04-19 | Titanium powder sintered body |
PCT/JP2002/001332 WO2002064293A1 (en) | 2001-02-16 | 2002-02-15 | Titanium powder sintered compact |
EP02701558A EP1361010B1 (en) | 2001-02-16 | 2002-02-15 | Titanium powder sintered compact |
CNA2006100764877A CN1846835A (en) | 2001-02-16 | 2002-02-15 | Titanium powder sintered compact |
DE60233983T DE60233983D1 (en) | 2001-02-16 | 2002-02-15 | Use of sintered compact of titanium powder |
CNB028050355A CN100439013C (en) | 2001-02-16 | 2002-02-15 | Titanium powder sintered compact |
CA002608033A CA2608033A1 (en) | 2001-02-16 | 2002-02-15 | Titanium powder sintered compact |
AT06006787T ATE444824T1 (en) | 2001-02-16 | 2002-02-15 | USE OF SINTERED PRESSURE MADE OF TITANIUM POWDER |
CA002608110A CA2608110A1 (en) | 2001-02-16 | 2002-02-15 | Titanium powder sintered compact |
AT02701558T ATE369223T1 (en) | 2001-02-16 | 2002-02-15 | SINTERED PRESSURE MADE OF TITANIUM POWDER |
EP06006787A EP1683594B1 (en) | 2001-02-16 | 2002-02-15 | Use of titanium powder sintered compact |
CN2006100764881A CN1846907B (en) | 2001-02-16 | 2002-02-15 | Porous current conducting plate |
US10/468,058 US20040110059A1 (en) | 2001-02-16 | 2002-02-15 | Titanium powder sintered compact |
EP06006788A EP1674178A3 (en) | 2001-02-16 | 2002-02-15 | Titanium powder sintered compact |
DE60221643T DE60221643T2 (en) | 2001-02-16 | 2002-02-15 | SINTERED PRESSURE BODY OF TITANIUM POWDER |
CA002437914A CA2437914C (en) | 2001-02-16 | 2002-02-15 | Titanium powder sintered compact |
US11/501,734 US20060266699A1 (en) | 2001-02-16 | 2006-08-10 | Titanium powder sintered compact |
US11/501,725 US20060266697A1 (en) | 2001-02-16 | 2006-08-10 | Titanium powder sintered compact |
US11/501,733 US7297271B2 (en) | 2001-02-16 | 2006-08-10 | Titanium powder sintered compact |
US11/878,578 US20080038139A1 (en) | 2001-02-16 | 2007-07-25 | Titanium powder sintered compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001121356A JP4116263B2 (en) | 2001-04-19 | 2001-04-19 | Titanium powder sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002317207A JP2002317207A (en) | 2002-10-31 |
JP4116263B2 true JP4116263B2 (en) | 2008-07-09 |
Family
ID=18971248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001121356A Expired - Fee Related JP4116263B2 (en) | 2001-02-16 | 2001-04-19 | Titanium powder sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4116263B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3778074A4 (en) * | 2018-03-29 | 2021-12-22 | Toho Titanium Co., Ltd. | Porous titanium-based sintered compact, method for manufacturing same, and electrode |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6693028B2 (en) * | 2016-07-04 | 2020-05-13 | 技研パーツ株式会社 | Filters for chromatography columns |
JP6897052B2 (en) * | 2016-10-07 | 2021-06-30 | 東ソー株式会社 | Column filter |
JP6485967B2 (en) * | 2016-11-04 | 2019-03-20 | 東邦チタニウム株式会社 | Titanium-based porous body and method for producing the same |
AU2021350813B2 (en) * | 2020-09-28 | 2024-02-22 | Toho Titanium Co.,Ltd. | Titanium-based porous body and method for producing titanium-based porous body |
-
2001
- 2001-04-19 JP JP2001121356A patent/JP4116263B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3778074A4 (en) * | 2018-03-29 | 2021-12-22 | Toho Titanium Co., Ltd. | Porous titanium-based sintered compact, method for manufacturing same, and electrode |
Also Published As
Publication number | Publication date |
---|---|
JP2002317207A (en) | 2002-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002064293A1 (en) | Titanium powder sintered compact | |
KR20090087869A (en) | Sinter bonded porous metallic coatings | |
US20150239045A1 (en) | Multilevel parts from agglomerated spherical metal powder | |
EP1667808B1 (en) | Method for manufacturing components with a nickel base alloy as well as components manufactured therewith | |
JP4116263B2 (en) | Titanium powder sintered body | |
KR100526098B1 (en) | Filters with a graduated structure and a method for producing the same | |
JP3566637B2 (en) | Manufacturing method of sintered titanium filter | |
WO2014058901A1 (en) | System and method for fabrication of 3-d parts | |
JP3569682B2 (en) | High corrosion resistance metal sintered filter | |
WO2019188480A1 (en) | Porous titanium-based sintered compact, method for manufacturing same, and electrode | |
JP2009155702A (en) | Method for manufacturing titanium powder sintered compact | |
JP4374149B2 (en) | High corrosion resistance perforated plate | |
JP2002322505A (en) | Cylindrical porous body | |
JP4460355B2 (en) | Titanium sintered filter and manufacturing method thereof | |
JP3761551B2 (en) | Sintered titanium filter | |
JP2004149842A (en) | Method for manufacturing titanium sintered compact | |
JPH0760035A (en) | Metal filter and production thereof | |
JP6559925B1 (en) | Porous titanium-based sintered body, method for producing the same, and electrode | |
JPH0889731A (en) | Filter made of metal powder and its production | |
JP3559529B2 (en) | Stainless steel short fiber and sintered porous body using the same | |
JPH01138095A (en) | Wire rod of small diameter having superior bendability | |
JP2002126426A (en) | Extrusion molded sintered compact filter | |
JPH0873975A (en) | Sintered compact of aluminum alloy powder having low coefficient of friction and its production | |
JPH0220683B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071218 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20071227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080417 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |