JP4640674B2 - Tunnel excavation method - Google Patents

Tunnel excavation method Download PDF

Info

Publication number
JP4640674B2
JP4640674B2 JP2006154587A JP2006154587A JP4640674B2 JP 4640674 B2 JP4640674 B2 JP 4640674B2 JP 2006154587 A JP2006154587 A JP 2006154587A JP 2006154587 A JP2006154587 A JP 2006154587A JP 4640674 B2 JP4640674 B2 JP 4640674B2
Authority
JP
Japan
Prior art keywords
excavation
section
tunnel
entire cross
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006154587A
Other languages
Japanese (ja)
Other versions
JP2007321490A (en
Inventor
太 楠本
勝也 楠木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2006154587A priority Critical patent/JP4640674B2/en
Publication of JP2007321490A publication Critical patent/JP2007321490A/en
Application granted granted Critical
Publication of JP4640674B2 publication Critical patent/JP4640674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

本発明は、脆弱な地質におけるトンネル掘削方法に関する。   The present invention relates to a tunnel excavation method in fragile geology.

従来、トンネル掘削工事では、掘削によって周辺地山への影響を少なくするため、切羽に段差を設けて一度に掘削する断面積を小さくして掘削するベンチカット工法などが採用されている(例えば、特許文献1参照)。とくに、地山強度比(地山の一軸圧縮強度を(土被り高さ×単位体積重量)で除したもの)が例えば0.5以下となるような軟弱質で低強度の地山では、掘削後に大変形が発生し、必要とされるトンネル内空断面が侵され、支保構造体が不安定な状態となるうえ、時にはトンネルが破壊されて押し潰されることになり得る。このような脆弱な地山の場合には、ミニベンチ方式全断面掘削工法による掘削が行われている。
このミニベンチ方式全断面掘削工法によるトンネル施工は、図6(a)及び(b)に示すように、トンネル10の断面を上半断面部31、下半断面部32とインバート33に三分割して段階掘削している。ここで、下半断面部32の切羽は上半31の切羽より3〜4m程度(これをベンチ長L2とする)離れた位置となる。そして、トンネル掘削では、図6(a)に示すように、上下半断面部31,32を同時に掘削し、トンネル周方向に吹き付けコンクリートや鋼製支保工などの支保を設置し、続いて図6(b)に示すように、インバート33を下半断面部32の切羽と同位置まで掘削する。そして、掘削したインバート33に支保を設置することによりトンネル断面を閉合(トンネル10全周にわたって支保などが施されている状態)させながら掘進するトンネル掘削方法である。
特開平11−303592号公報
Conventionally, in tunnel excavation work, in order to reduce the influence on the surrounding natural ground by excavation, a bench cut method for excavating by reducing the cross-sectional area to be excavated at once by providing a step in the face is adopted (for example, Patent Document 1). In particular, excavation in soft and low-strength grounds where the ground strength ratio (the uniaxial compressive strength of ground ground divided by (soil cover height x unit volume weight)) is 0.5 or less, for example. Later, a large deformation occurs, the required cross-section in the tunnel is eroded, the support structure becomes unstable, and sometimes the tunnel is broken and crushed. In the case of such a fragile ground, excavation by a mini-bench type full-section excavation method is performed.
As shown in FIGS. 6A and 6B, tunnel construction by this mini-bench type full-section excavation method is performed by dividing the section of the tunnel 10 into an upper half section 31, a lower half section 32, and an invert 33. Stage drilling. Here, the face of the lower half section 32 is a position away from the face of the upper half 31 by about 3 to 4 m (this is referred to as a bench length L2). In tunnel excavation, as shown in FIG. 6 (a), the upper and lower half sections 31, 32 are excavated at the same time, and supports such as spray concrete and steel support are installed in the circumferential direction of the tunnel. As shown in (b), the invert 33 is excavated to the same position as the face of the lower half section 32. And it is a tunnel excavation method in which excavation is carried out by closing the tunnel cross section (in a state where support is applied over the entire circumference of the tunnel 10) by installing a support on the excavated invert 33.
Japanese Patent Laid-Open No. 11-303592

しかしながら、従来のミニベンチ方式全断面掘削工法によるトンネル掘削方法では、インバート掘削の終了時点でトンネルは開放支保構造、即ちトンネル全周に支保が設置されていない状態となる。このときの上半断面部の切羽からインバートによる断面閉合までの距離L3(図6(b)参照)が例えば6〜7m程度に離れることになる。すなわち、この6〜7mの間は断面閉合がなされず、この間の上下半断面部の周辺地山は、掘進による切羽進行の影響を受け易いことから破壊が進行し、その結果、トンネルの内空変位が増大すると共に、トンネルの脚部(下半断面部とインバートの境界付近であってトンネル断面の斜め下部)が沈下し、トンネル支保構造が力学的に不安定になるといった問題があった。   However, in the conventional tunnel excavation method using the mini-bench type full-section excavation method, the tunnel is in an open support structure at the end of invert excavation, that is, no support is installed around the entire tunnel. At this time, a distance L3 (see FIG. 6B) from the face of the upper half cross section to the cross-section closing by invert is about 6 to 7 m, for example. In other words, the section between 6 and 7m is not closed, and the surrounding ground in the upper and lower half sections is easily affected by the progress of the face due to the excavation, so that the destruction progresses. As the displacement increases, the leg of the tunnel (near the boundary between the lower half section and the invert and the diagonally lower part of the tunnel section) sinks, and the tunnel support structure becomes mechanically unstable.

本発明は、上述する問題点に鑑みてなされたもので、早期にトンネル断面を閉合させることで、トンネル支保構造の力学的安定性を確保できるようにしたトンネル掘削方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a tunnel excavation method capable of ensuring the mechanical stability of the tunnel support structure by closing the tunnel cross section at an early stage. To do.

上記目的を達成するため、本発明に係るトンネル掘削方法では、インバートと、該インバートを除く全断面掘削領域とを交互に掘削するトンネル掘削方法であって、全断面掘削領域を所定長掘削した後、掘削区間において全断面掘削領域の内周に第一支保を設けると共に、トンネル天端部より下方のトンネル両側の側壁部にロックボルトを配設し、掘削からロックボルトまでの施工サイクルを複数回繰り返して全断面掘削領域を施工して全断面領域掘進区画とし、その後、全断面領域掘進区画の下方に位置するインバートを掘削した後、インバートに第二支保を設けることでトンネル断面を閉合させるようにし、以降、全断面領域掘進区画とインバートを交互に施工することを特徴としている。
本発明では、長尺先受工を設けることで、掘削する全断面掘削領域の切羽を安定させ、全断面掘削領域の掘削後に第一支保を設置すると共に、トンネル側壁部にロックボルトを例えば高密度で配設して打設することでその周囲地山の破壊進行を抑制した補強ができ、トンネルの脚部の沈下を防止できる。そのため、ロックボルト設置後にインバートの掘削が可能となり、そのインバート掘削後に第二支保を設置することで全断面掘削領域を掘削した切羽直近で早期にトンネル断面を閉合させることができ、トンネル支保構造の力学的安定性を確保することができる。
To achieve the above object, the tunnel excavation method according to the present invention is a tunnel excavation method for excavating alternately invert and an entire cross-section excavation area excluding the invert, after excavating the entire cross-section excavation area for a predetermined length. In the excavation section, the first support is provided on the inner periphery of the entire cross-section excavation area, and lock bolts are arranged on the side walls on both sides of the tunnel below the tunnel top end, and the construction cycle from excavation to the lock bolt is performed multiple times. Repeatedly constructing the entire section excavation area to make the entire section area excavation section, then excavating the invert located below the entire section area excavation section, and then closing the tunnel section by providing a second support in the invert From then on, the entire section area excavation section and the invert are constructed alternately.
In the present invention, by providing a long tip receiving work, the face of the entire cross-section excavation area to be excavated is stabilized, the first support is installed after excavation of the entire cross-section excavation area, and a lock bolt is provided on the tunnel side wall, for example. By arranging and driving at a density, reinforcement can be performed while suppressing the progress of destruction of the surrounding ground, and settlement of the legs of the tunnel can be prevented. Therefore, invert excavation is possible after installing the rock bolt, and by installing the second support after the invert excavation, the tunnel cross section can be closed at an early stage close to the face where the entire cross section excavation area is excavated. Mechanical stability can be ensured.

また、本発明に係るトンネル掘削方法では、全断面掘削領域の掘削における切羽は、トンネル天端部から下方に向かってトンネル掘削方向に凸曲面が形成されてなる曲面切羽であることが好ましい。
本発明では、曲面切羽とすることでアーチ構造が形成されることになり、切羽の崩落や破壊を抑制する効果が得られ、垂直面をなす切羽に比べて自立度の向上が図れ、切羽を安定させることができる。
In the tunnel excavation method according to the present invention, it is preferable that the face in excavation in the entire cross-section excavation area is a curved face in which a convex curved surface is formed in the tunnel excavation direction downward from the top of the tunnel.
In the present invention, an arch structure is formed by using a curved face, an effect of suppressing the collapse and destruction of the face is obtained, and the degree of independence can be improved compared to a face having a vertical surface. It can be stabilized.

また、本発明に係るトンネル掘削方法では、全断面掘削領域の掘削に先立って、トンネル天端部の周壁から前方に向けてトンネル外方に放射状に長尺先受工を設けることが好ましい。
本発明では、全断面掘削領域の掘削前に予め長尺先受工を施工しておくことで、長尺先受工より下方の地山が安定し、天端崩落或いは切羽崩壊などが防止されると共に掘削面が自立することから、安全に掘削することができる。
Moreover, in the tunnel excavation method according to the present invention, it is preferable to provide a long tip receiving structure radially outward from the peripheral wall of the tunnel top end toward the front prior to excavation of the entire section excavation region.
In the present invention, by performing a long tip receiving work in advance before excavation of the entire cross section excavation area, the natural ground below the long tip receiving work is stabilized, and the fall of the top or the face is prevented. Since the excavation surface is self-supporting, it is possible to excavate safely.

また、本発明に係るトンネル掘削方法では、全断面掘削領域の掘削に先立って、全断面掘削領域の切羽から前方に向けて長尺鏡ボルトを設けることが好ましい。
本発明では、長尺鏡ボルトの周囲地山の弛みを抑制して切羽の安定を図ることができる。
In the tunnel excavation method according to the present invention, it is preferable to provide a long mirror bolt from the face of the entire cross-section excavation area to the front prior to excavation of the entire cross-section excavation area.
In the present invention, it is possible to stabilize the face by suppressing the slack in the surrounding ground of the long mirror bolt.

また、本発明に係るトンネル掘削方法では、全断面掘削領域の掘削に先立って、全断面掘削領域より断面の小さな導坑を、トンネル軸方向前方に全断面掘削領域の掘削に先行させて掘削することが好ましい。
本発明では、全断面掘削領域の切羽より小さな断面積の中央導坑を利用し、全断面掘削領域の掘削を行う前に、中央導坑の内側より適宜な補強工事を実施することで、切羽の安定を図ることができる。
Further, in the tunnel excavation method according to the present invention, prior to excavation of the entire cross-section excavation area, a shaft having a smaller cross section than the entire cross-section excavation area is excavated ahead of the excavation of the entire cross-section excavation area in the forward direction of the tunnel axis. It is preferable.
In the present invention, using the central shaft having a smaller cross-sectional area than the face of the entire cross-section excavation area, before excavating the entire cross-section excavation area, by performing appropriate reinforcement work from the inner side of the central shaft, Can be stabilized.

本発明のトンネル掘削方法によれば、全断面掘削した切羽直近で早期にトンネル断面を閉合させることで、トンネル支保構造の力学的安定性を確保することができる。そのため、例えば地山強度比が0.5以下となるような脆弱地質の地山であっても、掘削後のトンネル支保構造に変形が発生して必要なトンネル内空断面が侵され、支保構造体が不安定な状態となることを防止することができる。したがって、危険作業を伴う変状対策工が不要となる。   According to the tunnel excavation method of the present invention, the mechanical stability of the tunnel support structure can be ensured by closing the tunnel cross section at an early stage immediately near the face where the entire cross section has been excavated. For this reason, for example, even in the case of fragile geological grounds where the ground strength ratio is 0.5 or less, the tunnel support structure after excavation is deformed and the necessary air section in the tunnel is eroded, and the support structure It is possible to prevent the body from becoming unstable. Therefore, the deformation countermeasure work accompanied with dangerous work becomes unnecessary.

以下、本発明の実施の形態によるトンネル掘削方法について、図1乃至図3に基づいて説明する。
図1は本発明の実施の形態によるトンネル支保構造を示す側面図、図2は図1に示すトンネル支保構造のA−A線断面図、図3(a)〜(c)はトンネル掘削を示す工程説明図である。
Hereinafter, a tunnel excavation method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
1 is a side view showing a tunnel support structure according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA of the tunnel support structure shown in FIG. 1, and FIGS. 3A to 3C show tunnel excavation. It is process explanatory drawing.

図1及び図2に示すように、本実施の形態によるトンネル支保構造1は、地山強度比が0.5を下回るような脆弱地質の地山をトンネル掘削する際に適用されるものである。そして、本トンネル支保構造1によるトンネル施工方法では、トンネル10の断面を、インバート12とインバート12を除いた全断面掘削領域11とに二分割して交互に掘削するものである。その全断面掘削領域11とインバート12との境界Sを図中の二点鎖線に示す。   As shown in FIGS. 1 and 2, the tunnel support structure 1 according to the present embodiment is applied when tunnel excavating a weak ground having a ground strength ratio of less than 0.5. . And in the tunnel construction method by this tunnel support structure 1, the cross section of the tunnel 10 is excavated by dividing into two parts into the whole cross-section excavation area | region 11 except the invert 12 and the invert 12. FIG. A boundary S between the entire section excavation region 11 and the invert 12 is shown by a two-dot chain line in the figure.

そして、図1に示すように、全断面掘削領域11の切羽は、トンネル天端部10aから下方に向かってトンネル掘削方向に凸曲面が形成された曲面切羽11aをなしている。このように、曲面切羽11aとすることでアーチ構造が形成されることになり、切羽付近の天端崩落や切羽の破壊を抑制する効果が得られ、垂直面をなす切羽に比べて自立度の向上が図れ、切羽を安定させることができる。
なお、以下の説明では、必要に応じて曲面切羽11aを単に切羽11aと呼ぶものとする。
As shown in FIG. 1, the face of the entire section excavation region 11 forms a curved face 11a in which a convex curved surface is formed in the tunnel excavation direction downward from the tunnel top end 10a. Thus, the curved face 11a is used to form an arch structure, and the effect of suppressing the collapse of the top edge near the face and the destruction of the face is obtained. Improvement can be achieved and the face can be stabilized.
In the following description, the curved face 11a is simply referred to as the face 11a as necessary.

また、図1に示すように、全断面掘削領域11の切羽11aとインバート12の掘削前面12aとの距離L1は、例えば2〜3mとされる。この距離L1は、詳細は後述するトンネル掘削方法で説明するが、掘進サイクルの区間長(例えば図3に示す第一掘進区画R1)をなしている。   Moreover, as shown in FIG. 1, the distance L1 between the face 11a of the entire section excavation region 11 and the excavation front surface 12a of the invert 12 is set to 2 to 3 m, for example. The distance L1 will be described in detail in a tunnel excavation method to be described later, but forms the section length of the excavation cycle (for example, the first excavation section R1 shown in FIG. 3).

図1及び図2に示すように、トンネル支保構造1は、全断面掘削領域11の掘削前にトンネル天端部10a(トンネル10断面の頂点部から両側の側肩部までのアーチ部)の周壁から前方に向けてトンネル外方に放射状に施工された注入式長尺先受工2(長尺先受工)と、全断面掘削領域11の内周に設置された第一支保3と、トンネル天端部10aの下方のトンネル両側の側壁部10b、10cに密(後述する)に配設されたロックボルト4と、インバート12の内周に設置された第二支保5とから構成されている。   As shown in FIGS. 1 and 2, the tunnel support structure 1 has a peripheral wall of a tunnel top end portion 10 a (an arch portion from the apex portion of the tunnel 10 cross section to both side shoulder portions) before excavation of the entire cross section excavation region 11. An injection-type long tip receiving work 2 (long tip receiving work) that is radiated outwardly from the tunnel toward the front, a first support 3 installed on the inner periphery of the entire section excavation region 11, and a tunnel It is composed of a lock bolt 4 disposed densely (to be described later) on the side wall portions 10b and 10c on both sides of the tunnel below the top end portion 10a, and a second support 5 installed on the inner periphery of the invert 12. .

注入式長尺先受工2は、全断面掘削領域11の掘削に先行し、例えば長さ12.5〜22.0m程度の鋼管を削孔・打設した後、その鋼管内部およびその周囲地山にシリカレジンなどの岩盤固結材などを注入することにより改良域を形成し、地山を補強するものである。そして、注入式長尺先受工2の打設範囲(図2に示す符号θ)は、例えばトンネル天端部10aの略90度の範囲とされる。
注入式長尺先受工2は、主に切羽天端部の先抜け防止や掘削面の自立を目的として施工され、全断面掘削領域11の掘削を可能とするものである。
The injection-type long tip receiving work 2 precedes the excavation of the entire cross-section excavation region 11, for example, after drilling and placing a steel pipe having a length of about 12.5 to 22.0 m, and then the inside of the steel pipe and its surrounding area An improved zone is formed by injecting rock solidification material such as silica resin into the mountain, and the natural mountain is reinforced. And the casting range (symbol (theta) shown in FIG. 2) of the injection | pouring type elongate front receiving work 2 is made into the range of about 90 degree | times of the tunnel top end 10a, for example.
The injection-type long tip receiving work 2 is constructed mainly for the purpose of preventing the leading edge of the face top end and the self-supporting of the excavation surface, and enables excavation of the entire cross-section excavation region 11.

第一支保3は、従来のトンネル支保構造と同様に吹付けコンクリート3aと鋼製支保工3bとからなり、掘削から覆工コンクリート7(後述)の打設完了までの間、地山からの荷重に十分対抗し、地山の崩落、肌落ち等を防止して、所定の掘削断面を維持し、かつ能率的に坑内作業が行われるようにトンネル10内に設けたものである。すなわち、第一支保3の吹付けコンクリート3aは、掘削後すぐに地山にコンクリートを吹き付け、地山に密着するように施工される。また、鋼製支保工3bは、H形鋼などを曲げ加工して主要部材とし、吹付コンクリート3bの支保機能発現までの支保や補強のために施工される。
そして、第二支保5は、吹付けコンクリート5aと鋼製支保工5bとからなり、これらの構成などは第一支保3と同様であることから説明は省略する。
これら第一支保3と第二支保5とを設置することによって、トンネル10の全周に支保が配置された状態をなす閉合支保構造が構築されることになる。
The first support 3 is composed of shotcrete 3a and steel support 3b in the same manner as the conventional tunnel support structure. The load from the ground is from the excavation to the completion of placing the lining concrete 7 (described later). The tunnel 10 is provided in the tunnel 10 to prevent the collapse of the natural ground, the skin fall, and the like, maintain a predetermined excavation cross section, and efficiently perform the underground work. That is, the shot concrete 3a of the first support 3 is constructed so that the concrete is sprayed onto the natural ground immediately after excavation and is in close contact with the natural ground. In addition, the steel support 3b is bent for H-shaped steel or the like to be a main member, and is constructed for support and reinforcement until the support function of the shotcrete 3b is developed.
And the 2nd support 5 consists of shotcrete 5a and the steel support 5b, and since these structures are the same as that of the 1st support 3, description is abbreviate | omitted.
By installing the first support 3 and the second support 5, a closed support structure in which the support is arranged on the entire circumference of the tunnel 10 is constructed.

ロックボルト4は、トンネル両側の側壁部10b、10c(図2参照)からトンネル軸に直交する方向に放射状に配設され、ねじり棒鋼、異形棒鋼、全ネジ棒鋼あるいは高耐力ボルトなどの材質のものが使用される。
そして、このロックボルト4は、第一支保3の施工後に打設され、例えばトンネル10の周方向に0.5〜0.6mの離間間隔で、且つ、トンネル10の軸方向に0.75〜1.0mの離間間隔で配置されることから、一般的なロックボルトの配置と比較して高密度な状態で配設されている。このようにロックボルト4によって密に補強することにより、その周囲地山の破壊の進行を抑制した補強ができると共に、トンネル10断面の脚部の沈下を防止でき、全断面掘削領域11における支保構造の力学的安定性を確保することができる。
The lock bolts 4 are radially arranged from the side wall portions 10b and 10c (see FIG. 2) on both sides of the tunnel in a direction perpendicular to the tunnel axis, and are made of a material such as a torsion bar steel, a deformed bar steel, a full screw bar steel or a high strength bolt. Is used.
And this lock bolt 4 is driven after construction of the 1st support 3, For example, it is 0.5 to 0.6 m apart in the circumferential direction of the tunnel 10 and 0.75 in the axial direction of the tunnel 10. Since they are arranged at a spacing of 1.0 m, they are arranged in a higher density state than a general arrangement of lock bolts. Thus, by strengthening closely with the lock bolt 4, the reinforcement which suppressed the progress of the destruction of the surrounding natural ground can be suppressed, and subsidence of the leg part of the tunnel 10 cross section can be prevented, and the support structure in the entire cross section excavation area 11 The mechanical stability of can be ensured.

また、インバート12の所定高さには、埋め戻し材6が設置される。そして、第一支保3の内周面には変形余裕量9を有した所定の厚さで覆工コンクリート7が打設され、インバート12の内周面にはインバートコンクリート8が打設されている。覆工コンクリート7は、トンネル10を長期にわたって地山の変形や崩落の抑制・防止など地山安定の確保のためにトンネル10の掘削面を覆工するコンクリート構造体であり、作業手順は後述するが第一支保3により地山を支持した後に施工される。
ここで、変形余裕量9とは、仮に第一支保3がトンネル内空側に変形したときに、トンネル10の建築限界を侵すことがないように、覆工コンクリート7の厚さ(トンネル軸に直交する方向の長さ寸法)に余裕をもたせた余裕代に相当するものである。
Further, the backfill material 6 is installed at a predetermined height of the invert 12. Then, the lining concrete 7 is cast on the inner peripheral surface of the first support 3 with a predetermined thickness having a deformation allowance 9, and the invert concrete 8 is cast on the inner peripheral surface of the invert 12. . The lining concrete 7 is a concrete structure that covers the excavation surface of the tunnel 10 in order to ensure the stability of the natural ground such as the suppression and prevention of deformation and collapse of the natural ground over a long period of time, and the work procedure will be described later. Is constructed after supporting the natural ground by the first support 3.
Here, the deformation allowance 9 is the thickness of the lining concrete 7 (on the tunnel axis) so that the construction limit of the tunnel 10 is not violated if the first support 3 is deformed to the inner side of the tunnel. This is equivalent to a margin of allowance in the length dimension in the orthogonal direction).

次に、このような構成からなるトンネル支保構造1によるトンネル施工方法について図面に基づいて説明する。
本トンネル掘削方法は、図3に示すように、全断面掘削領域11とインバート12における断面閉合を2〜3mの掘進長で交互に施工するものである。
具体的には、予め、所定のトンネル天端部10aに注入式長尺先受工2を施工しておく(図3(a)参照)。
次いで、図3(b)に示すように、1m程度(鋼製支保工3aの施工スパンをなす)を一つの施工サイクルとし、上述した曲面切羽11aを形成して1m程度掘削したら、一次吹付けコンクリート3aを厚さ5cm程度吹き付け、次に鋼製支保工3bを設置し、その後、二次吹付けコンクリート3a´を15cm程度吹き付け、そして、その二次吹付けコンクリート3a´の上から両側の側壁部に所定の打設間隔でロックボルト4を打設する。この施工サイクルを2〜3回繰り返すことで施工される領域が、2〜3m程度の長さを有する第一掘進区画R1(全断面領域掘進区画)とされる。
このときの第一掘進区画R1では、予め施工した注入式長尺先受工2がその下方の地山を安定させる効果を果たし、天端崩落或いは切羽崩壊などが防止され、安全に掘削することができる。
Next, a tunnel construction method using the tunnel support structure 1 having such a configuration will be described with reference to the drawings.
In this tunnel excavation method, as shown in FIG. 3, the cross-section closure in the entire cross-section excavation region 11 and the invert 12 is alternately performed with an excavation length of 2 to 3 m.
Specifically, the injection-type long tip receiving work 2 is constructed in advance at a predetermined tunnel top end portion 10a (see FIG. 3A).
Next, as shown in FIG. 3 (b), about 1 m (which forms the construction span of the steel support 3a) is taken as one construction cycle, and the curved face 11a described above is formed and excavated about 1 m, then primary spraying Concrete 3a is sprayed about 5cm thick, then steel support 3b is installed, then secondary sprayed concrete 3a 'is sprayed about 15cm, and the side walls on both sides from the top of the secondary sprayed concrete 3a' The lock bolt 4 is driven at a predetermined driving interval in the part. The area constructed by repeating this construction cycle 2 to 3 times is defined as a first excavation section R1 (entire cross-section area excavation section) having a length of about 2 to 3 m.
In the first excavation section R1 at this time, the injection-type long tip receiving work 2 that has been constructed in advance has the effect of stabilizing the ground below it, and the fall of the top or the face is prevented, so that excavation is safe. Can do.

なお、この第一支保工3における鋼製支保工3bの種類、建て込み間隔、および吹付けコンクリート3aの厚さ、吹付け範囲などは地山条件やトンネル断面の大きさによって適宜設定され、変更可能とされる。   In addition, the kind of steel support 3b in this first support 3 and the interval between installations, the thickness of the shotcrete 3a, the spray range, etc. are appropriately set and changed according to the ground conditions and the size of the tunnel cross section. It is possible.

また、ロックボルト4の打設によって、このトンネル側壁部10b、10cの周囲地山の破壊の進行を抑制できると共に、トンネル10断面の脚部の沈下を防止することができる。そのため、ロックボルト4の施工後に、第一掘進区画R1で次の工程となるインバート12の施工が可能となる。   Further, by driving the lock bolt 4, it is possible to suppress the progress of the destruction of the surrounding ground mountain around the tunnel side wall portions 10b and 10c, and to prevent the leg portion of the tunnel 10 cross section from sinking. Therefore, after the construction of the lock bolt 4, it is possible to construct the invert 12 which is the next process in the first excavation section R <b> 1.

次に、図3(c)に示すように、第一掘進区画R1の下部のインバート12部分を一度に掘削する。そして、掘削したインバート12のトンネル内面に一次吹付けコンクリート5aを厚さ5cm程度吹き付け、次に鋼製支保工5bを設置し、その後、二次吹付けコンクリート5a´を厚さ15cm程度吹き付けて第二支保工5を構築する。第二支保工5の構築後、インバート上を作業盤にするためインバート上に埋め戻し材6を用いて所定高さまで埋め戻す。
これにより、全断面掘削領域11を掘削した切羽11aの直近で早期にトンネル10断面を閉合させることができ、トンネル支保構造1の力学的安定性を確保することができる。
Next, as shown in FIG.3 (c), the invert 12 part of the lower part of 1st excavation division R1 is excavated at once. Then, the primary sprayed concrete 5a is sprayed to the tunnel inner surface of the excavated invert 12 to a thickness of about 5 cm, then the steel support 5b is installed, and then the secondary sprayed concrete 5a 'is sprayed to the thickness of about 15 cm. Construct two support work 5. After the construction of the second support 5, the invert is backfilled to a predetermined height by using the backfilling material 6 on the invert to make a work board.
Thereby, the tunnel 10 cross section can be closed immediately in the immediate vicinity of the face 11 a excavating the entire cross section excavation region 11, and the mechanical stability of the tunnel support structure 1 can be ensured.

そして、インバート12の施工工程が終了した時点で、次に掘削される第二掘進区画R2の掘削工程に移り、上述した手順が繰り返される。なお、注入式長尺先受工2は、その施工長さが上述したように12.5〜22.0m程度と長尺となることから、複数の掘進区画に1度の頻度で施工すればよいことになる。
また、第一掘進区画R1の後方(切羽11aと反対方向)の適宜な位置で埋め戻し材6を撤去してインバートコンクリート8、覆工コンクリート7(図1参照)を打設する。
And when the construction process of invert 12 is completed, it moves to the excavation process of the 2nd excavation section R2 excavated next, and the above-mentioned procedure is repeated. In addition, since the construction length of the injection-type long tip receiver 2 is as long as about 12.5 to 22.0 m as described above, if it is constructed at a frequency of once in a plurality of excavation sections. It will be good.
Further, the backfill material 6 is removed at an appropriate position behind the first excavation section R1 (in the direction opposite to the face 11a), and invert concrete 8 and lining concrete 7 (see FIG. 1) are placed.

上述のように本実施の形態によるトンネル掘削方法では、全断面掘削した切羽直近で早期にトンネル断面を閉合させることで、トンネル支保構造1の力学的安定性を確保することができる。そのため、例えば地山強度比が0.5以下となるような脆弱地質の地山であっても、掘削後のトンネル支保構造に変形が発生して必要なトンネル内空断面が侵され、支保構造体が不安定な状態となることを防止することができる。したがって、危険作業を伴う変状対策工が不要となる。
なお、本実施の形態において、注入式長尺先受工2や曲面切羽11aを行っているが、地山の性状やトンネル断面の大きさによっては、これらの工法の一方又は双方を用いなくてもよい。
As described above, in the tunnel excavation method according to the present embodiment, the mechanical stability of the tunnel support structure 1 can be ensured by closing the tunnel cross section at an early stage immediately near the face where the entire cross section has been excavated. For this reason, for example, even in the case of fragile geological grounds where the ground strength ratio is 0.5 or less, the tunnel support structure after excavation is deformed and the necessary air section in the tunnel is eroded, and the support structure It is possible to prevent the body from becoming unstable. Therefore, the deformation countermeasure work accompanied with dangerous work becomes unnecessary.
In addition, in this Embodiment, although the injection type | mold long tip receiving work 2 and the curved face 11a are performed, depending on the property of a natural mountain and the magnitude | size of a tunnel cross section, one or both of these construction methods may not be used. Also good.

次に、本発明の実施の形態の第一及び第二変形例について、図4及び図5に基づいて説明するが、上述の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、実施の形態と異なる構成について説明する。
図4は実施の形態の第一変形例によるトンネル掘削状態を示し、図1に対応する図である。
図4に示すように、第一変形例によるトンネル掘削方法では、曲面切羽11aに加え、切羽の自立度に応じてその曲面切羽11aから前方に向けて注入式の長尺鏡ボルト20、20、…を施工することで、その長尺鏡ボルト20の周囲地山の弛みを抑制し、さらなる切羽の安定を図るものである。これら長尺鏡ボルト20は、例えば施工長さが9〜12mで、1m当りに0.5〜1本の割合で配置されて施工される。
なお、この長尺鏡ボルト20の施工のタイミングは、注入式長尺先受工2と同様に、複数の掘進区画ごとに1回の割合で施工することが好ましい。
Next, the first and second modifications of the embodiment of the present invention will be described with reference to FIGS. 4 and 5, but the same or similar members and parts as those of the above-described embodiment are denoted by the same reference numerals. The description is omitted, and a configuration different from that of the embodiment will be described.
FIG. 4 shows a tunnel excavation state according to a first modification of the embodiment, and corresponds to FIG.
As shown in FIG. 4, in the tunnel excavation method according to the first modified example, in addition to the curved face 11a, injecting long mirror bolts 20, 20, from the curved face 11a to the front according to the degree of independence of the face, By constructing ..., the slack in the surrounding ground of the long mirror bolt 20 is suppressed, and the face is further stabilized. These long mirror bolts 20 have a construction length of 9 to 12 m, for example, and are placed and constructed at a rate of 0.5 to 1 per 1 m 2 .
In addition, it is preferable that the construction timing of the long mirror bolt 20 is constructed at a rate of once for each of the plurality of excavation sections, as in the case of the injection-type long leading construction 2.

また、図5は実施の形態の第二変形例によるトンネル掘削状態を示し、図1に対応する図である。
図5に示すように、第二変形例によるトンネル掘削方法は、曲面切羽11aの略中央に、全断面掘削領域11より断面の小さな中央導坑21(本発明の「導坑」に相当する)をトンネル軸方向前方に全断面掘削領域11の掘削に先行して施工させておくものである。そして、全断面掘削領域11の曲面切羽11aより小さな断面積の中央導坑21を利用し、全断面掘削領域11の掘削を行う前に、中央導坑21の内側より適宜な補強工事を実施することで、切羽の安定を図ることができる。なお、中央導坑21の長さや断面の大きさは、任意であり地質条件などに応じて設定すればよいが、その長さについては本坑掘削幅の5倍程度とすることが考えられる。
FIG. 5 shows a tunnel excavation state according to a second modification of the embodiment, and corresponds to FIG.
As shown in FIG. 5, the tunnel excavation method according to the second modified example has a central shaft 21 having a smaller cross section than the entire cross-section excavation region 11 (corresponding to the “guide shaft” of the present invention) at the approximate center of the curved face 11a. Is constructed ahead of the excavation of the entire cross-section excavation region 11 in the forward direction of the tunnel axis. Then, using the central shaft 21 having a smaller cross-sectional area than the curved face 11a of the entire cross-section excavation area 11, before excavating the entire cross-section excavation area 11, appropriate reinforcement work is performed from the inside of the central excavation area 21. Thus, the face can be stabilized. In addition, although the length of the center guide shaft 21 and the size of the cross section are arbitrary and may be set according to the geological conditions, the length is considered to be about 5 times the main excavation width.

以上、本発明によるトンネル掘削方法の実施の形態、第一及び第二変形例について説明したが、本発明は上記の実施の形態、第一及び第二変形例に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、本実施の形態、第一及び第二変形例では全断面掘削領域11とインバート12の1つの掘進区画長を2〜3mとしているが、これに限定されることはなく、トンネル断面の大きさや地質条件などに応じて適宜設定すればよい。また、注入式長尺先受工2、ロックボルト4の範囲や打設長、支保の材質や厚さ(トンネル軸に対して直交する長さ寸法)なども実施の形態に限定されず、適宜設定することができる。
さらに、第一及び第二変形例では、全断面掘削領域11の切羽を安定させるために、曲面切羽11aを形成させているが、これに限定されず、切羽の自立が確認できる場合には曲面切羽11aを形成しなくてもかまわないし、長尺先受工を施工しなくてもよい。
As mentioned above, although embodiment of the tunnel excavation method by the present invention, the 1st and 2nd modification were explained, the present invention is not limited to the above-mentioned embodiment, the 1st and 2nd modification, Changes can be made as appropriate without departing from the spirit of the invention.
For example, in the present embodiment, the first and second modifications, one excavation section length of the entire cross-section excavation region 11 and the invert 12 is set to 2 to 3 m, but the present invention is not limited to this, and the size of the tunnel cross-section What is necessary is just to set suitably according to a soil geological condition. Further, the range of the injection-type long tip 2, the lock bolt 4, the placement length, the material and thickness of the support (the length dimension orthogonal to the tunnel axis) are not limited to the embodiment, and are appropriately Can be set.
Furthermore, in the first and second modified examples, the curved face 11a is formed in order to stabilize the face of the entire cross-section excavation region 11. However, the present invention is not limited to this. The cut face 11a may not be formed, and a long tip receiving work may not be performed.

本発明の実施の形態によるトンネル支保構造を示す側面図である。It is a side view which shows the tunnel support structure by embodiment of this invention. 図1に示すトンネル支保構造のA−A線断面図である。FIG. 2 is a cross-sectional view of the tunnel supporting structure shown in FIG. (a)〜(c)はトンネル掘削を示す工程説明図である。(A)-(c) is process explanatory drawing which shows tunnel excavation. 実施の形態の第一変形例によるトンネル掘削状態を示し、図1に対応する図である。It is a figure corresponding to Drawing 1 showing the tunnel excavation state by the 1st modification of an embodiment. 実施の形態の第二変形例によるトンネル掘削状態を示し、図1に対応する図である。It is a figure which shows the tunnel excavation state by the 2nd modification of embodiment, and respond | corresponds to FIG. 従来のトンネル支保構造を示すトンネル断面図である。It is tunnel sectional drawing which shows the conventional tunnel support structure.

符号の説明Explanation of symbols

1 トンネル支保構造
2 注入式長尺先受工(長尺先受工)
3 第一支保
4 ロックボルト
5 第二支保
6 埋め戻し材
10 トンネル
11 全断面掘削領域
11a 曲面切羽
12 インバート
20 長尺鏡ボルト
21 中央導坑
R1 第一掘進区画(全断面領域掘進区画)

1 Tunnel support structure 2 Injection-type long tip construction (long tip construction)
3 First support 4 Rock bolt 5 Second support 6 Backfill material 10 Tunnel 11 Full section excavation area 11a Curved face 12 Invert 20 Long mirror bolt 21 Central tunnel R1 First excavation section (full section area excavation section)

Claims (5)

インバートと、該インバートを除く全断面掘削領域とを交互に掘削するトンネル掘削方法であって、
前記全断面掘削領域を所定長掘削した後、前記掘削区間において前記全断面掘削領域の内周に第一支保を設けると共に、前記トンネル天端部より下方のトンネル両側の側壁部にロックボルトを配設し、
前記掘削から前記ロックボルトまでの施工サイクルを複数回繰り返して全断面掘削領域を施工して全断面領域掘進区画とし、
その後、前記全断面領域掘進区画の下方に位置する前記インバートを掘削した後、該インバートに第二支保を設けることでトンネル断面を閉合させるようにし、以降、前記全断面領域掘進区画と前記インバートを交互に施工することを特徴とするトンネル掘削方法。
A tunnel excavation method for excavating invert and an entire cross-section excavation area excluding the invert,
After excavating the entire cross-section excavation area for a predetermined length, a first support is provided on the inner periphery of the entire cross-section excavation area in the excavation section, and lock bolts are arranged on the side walls on both sides of the tunnel below the tunnel top end. Set up
The construction cycle from the excavation to the rock bolt is repeated a plurality of times to construct the entire cross-section excavation area and the entire cross-section area excavation section,
Then, after excavating the invert located below the entire cross section area excavation section, a tunnel support is closed by providing a second support to the invert, and thereafter, the entire cross section area excavation section and the invert are Tunnel excavation method characterized in that it is constructed alternately.
前記全断面掘削領域の掘削における切羽は、トンネル天端部から下方に向かってトンネル掘削方向に凸曲面が形成されてなる曲面切羽であることを特徴とする請求項1に記載のトンネル掘削方法。   2. The tunnel excavation method according to claim 1, wherein the face in excavation in the entire cross-section excavation area is a curved face in which a convex curved surface is formed in a tunnel excavation direction downward from the top of the tunnel. 前記全断面掘削領域の掘削に先立って、トンネル天端部の周壁から前方に向けてトンネル外方に放射状に長尺先受工を設けることを特徴とする請求項1又は2に記載のトンネル掘削方法。   3. The tunnel excavation according to claim 1, wherein, prior to excavation of the entire cross-section excavation region, a long tip receiving structure is provided radially outward from the peripheral wall of the tunnel top end toward the front. Method. 前記全断面掘削領域の掘削に先立って、前記全断面掘削領域の前記切羽から前方に向けて長尺鏡ボルトを設けるようにしたことを特徴とする請求項1又は2に記載のトンネル掘削方法。   3. The tunnel excavation method according to claim 1, wherein a long mirror bolt is provided forward from the face of the entire cross-section excavation area prior to excavation of the entire cross-section excavation area. 前記全断面掘削領域の掘削に先立って、前記全断面掘削領域より断面の小さな導坑を、トンネル軸方向前方に前記全断面掘削領域の掘削に先行させて掘削するようにしたことを特徴とする請求項1又は2に記載のトンネル掘削方法。   Prior to excavation of the entire cross-section excavation area, a shaft having a smaller cross section than the entire cross-section excavation area is excavated ahead of the excavation of the entire cross-section excavation area forward in the tunnel axial direction. The tunnel excavation method according to claim 1 or 2.
JP2006154587A 2006-06-02 2006-06-02 Tunnel excavation method Active JP4640674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006154587A JP4640674B2 (en) 2006-06-02 2006-06-02 Tunnel excavation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154587A JP4640674B2 (en) 2006-06-02 2006-06-02 Tunnel excavation method

Publications (2)

Publication Number Publication Date
JP2007321490A JP2007321490A (en) 2007-12-13
JP4640674B2 true JP4640674B2 (en) 2011-03-02

Family

ID=38854545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154587A Active JP4640674B2 (en) 2006-06-02 2006-06-02 Tunnel excavation method

Country Status (1)

Country Link
JP (1) JP4640674B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476170B2 (en) * 2010-03-16 2014-04-23 株式会社フジタ Tunnel construction method for soft ground
CN102400694A (en) * 2011-10-28 2012-04-04 上海市第一市政工程有限公司 Reinforcement method for combined part of shield tunnel and mining-method tunnel
JP2013160029A (en) * 2012-02-08 2013-08-19 Shimizu Corp Tunnel structure and method for constructing the same
JP6150096B2 (en) * 2012-12-27 2017-06-21 株木建設株式会社 Tunnel excavation method
CN107044290A (en) * 2017-06-22 2017-08-15 张玉芳 The vertical slip casting steel floral tube in tunnel top props up the integral reinforcing method being combined at the beginning of tunnel
CN108104821B (en) * 2017-11-22 2019-12-03 平顶山天安煤业股份有限公司十一矿 Large-section hole cutting construction and supporting method thereof
CN109882186A (en) * 2019-03-25 2019-06-14 长安大学 A kind of structure of the window of vcehicular tunnel and the method for unidirectionally appearing in tunnel
CN112610219B (en) * 2020-12-11 2022-12-06 中交二公局第六工程有限公司 Minimum total volume control method for over-under-excavation amount of three-arm rock drilling jumbo in tunnel engineering
CN113090284B (en) * 2021-04-14 2022-08-16 中钢集团马鞍山矿山研究总院股份有限公司 Roadway support method for soft and broken rock mass of underground mine
CN112901208B (en) * 2021-05-06 2021-07-30 中铁九局集团第七工程有限公司 Comprehensive construction method for shallow buried section of urban railway mining method tunnel
CN113464171A (en) * 2021-06-10 2021-10-01 西华大学 Water-rich freeze-thaw crushing surrounding rock tunnel supporting method
CN114151091B (en) * 2021-12-17 2023-10-31 中铁二院昆明勘察设计研究院有限责任公司 CRD construction method and structure suitable for blasting excavation of upper soft and lower hard stratum
CN114575856A (en) * 2022-03-08 2022-06-03 新疆北方建设集团有限公司 Forepoling shed pre-supporting method in slope building drainage steep slope tunnel project
CN115495826B (en) * 2022-10-13 2023-06-06 西安理工大学 Active guiding type ground crack disaster reduction method based on partition wall

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303592A (en) * 1998-04-17 1999-11-02 Shimizu Corp Multiple timbering construction method
JP2000120369A (en) * 1998-10-16 2000-04-25 Ohbayashi Corp Tunnel work execution method at inferior natural ground
JP2001003680A (en) * 1999-06-23 2001-01-09 Shimizu Corp Method for constructing tunnel
JP2001323773A (en) * 2000-05-18 2001-11-22 Sato Kogyo Co Ltd Tunnel excavation method utilizing advancing drift
JP2003035086A (en) * 2001-07-25 2003-02-07 Kajima Corp Construction method for tunnel and tunnel
JP2005029964A (en) * 2003-07-07 2005-02-03 St Engineering Kk Work execution method for long face bolt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303592A (en) * 1998-04-17 1999-11-02 Shimizu Corp Multiple timbering construction method
JP2000120369A (en) * 1998-10-16 2000-04-25 Ohbayashi Corp Tunnel work execution method at inferior natural ground
JP2001003680A (en) * 1999-06-23 2001-01-09 Shimizu Corp Method for constructing tunnel
JP2001323773A (en) * 2000-05-18 2001-11-22 Sato Kogyo Co Ltd Tunnel excavation method utilizing advancing drift
JP2003035086A (en) * 2001-07-25 2003-02-07 Kajima Corp Construction method for tunnel and tunnel
JP2005029964A (en) * 2003-07-07 2005-02-03 St Engineering Kk Work execution method for long face bolt

Also Published As

Publication number Publication date
JP2007321490A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4640674B2 (en) Tunnel excavation method
JP6252842B2 (en) Construction method of outer shield tunnel
JP5584542B2 (en) Ground deformation prevention method and underground structure construction method using the same
JP5055249B2 (en) Multiple tunnel construction method and multiple tunnel structure
KR101877369B1 (en) Structure and method of constructing turnel
JP2012036624A (en) Tunnel construction method
JP6189597B2 (en) Columnar structure reinforcement structure and columnar structure reinforcement method
JP2010255237A (en) Method and structure for tunnel reinforcement
JP6232743B2 (en) Tunnel construction method and tunnel
JP5382432B2 (en) Excavation method of adjacent twin tunnel
JP5976373B2 (en) Pile foundation reinforcement structure and reinforcement method
KR20110070188A (en) Construction method for underground watertight wall
JP5777435B2 (en) Reinforcement method for foundations for small buildings
JP2007046343A (en) Liquefaction preventive construction method of ground just under existing building
JP2004353264A (en) Construction method of tunnel confluence section and tunnel confluence section
KR101864857B1 (en) Construction method of foundation pile with reinforced casing structure
KR101213454B1 (en) Construction method and support device for extracting h-pile
JP5476170B2 (en) Tunnel construction method for soft ground
JP6636774B2 (en) Integrated structure of pipe roof material
JP4092647B2 (en) Tunnel support structure
JP6019690B2 (en) Tunnel widening method
JP2017197910A (en) Construction method of earth retaining wall structure, and earth retaining wall structure
KR101649210B1 (en) Steel pipe wall temporary construction
JP2013245533A (en) Reinforcing method for proximity mountain tunnel
JP6470648B2 (en) Structure of composite underground continuous wall and construction method of composite underground continuous wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101119

R150 Certificate of patent or registration of utility model

Ref document number: 4640674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141210

Year of fee payment: 4