JP4092647B2 - Tunnel support structure - Google Patents

Tunnel support structure Download PDF

Info

Publication number
JP4092647B2
JP4092647B2 JP2003174933A JP2003174933A JP4092647B2 JP 4092647 B2 JP4092647 B2 JP 4092647B2 JP 2003174933 A JP2003174933 A JP 2003174933A JP 2003174933 A JP2003174933 A JP 2003174933A JP 4092647 B2 JP4092647 B2 JP 4092647B2
Authority
JP
Japan
Prior art keywords
tunnel
support structure
arc
circumferential direction
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003174933A
Other languages
Japanese (ja)
Other versions
JP2005009182A (en
Inventor
太 楠本
厚之 木村
聰 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2003174933A priority Critical patent/JP4092647B2/en
Publication of JP2005009182A publication Critical patent/JP2005009182A/en
Application granted granted Critical
Publication of JP4092647B2 publication Critical patent/JP4092647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、扁平大断面トンネルのトンネル支保構造に関する。
【0002】
【従来の技術】
従来、大断面トンネルの掘削は、図2に示すように、トンネル10断面を上半1、下半2、インバート3に三分割して段階掘削している。この上半先進工法によって軟弱地山Gのトンネル10掘削を行う場合、上半1掘削時に上半支保工9が開構造となり、力学的に不安定な構造となる。そのため、上半仮インバート4によって断面閉合を行うことにより、上半支保工9の安定を確保している。また、トンネル10断面の上下半1、2外周に長尺先受工5を配設することにより、切羽の安定を確保している(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2001−3680号公報(第2−3頁、第1図)
【0004】
【発明が解決しようとする課題】
しかしながら、従来のトンネル支保構造では、トンネルの力学的安定性を確保しながら、上半仮インバートの撤去作業と下半の掘削作業を並行して行わなければならない。その結果、下半の掘削作業に制約が生じるとともに、上半の掘削作業にも悪影響が及ぶこととなる。また、従来のトンネル支保構造では、地下深部の粘土化した断層破砕帯地山などに対してトンネル支保構造の長期安定性を確保することは難しい。
本発明は、上述する問題点に鑑みてなされたもので、上半仮インバートによる上半断面の仮閉合無しに、上半開支保構造の力学的安定性を確保できるトンネル支保構造を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るトンネル支保構造では、トンネル周方向について異なる曲率を有する複数の円弧から形成されるトンネルの外周部に長尺先受工が施されたトンネル支保構造であって、前記トンネルアーチ部を形成する前記トンネル周方向第一円弧の両端からそれぞれ前記第一円弧中央側に、前記第一円弧の曲率中心を軸とする所定角度の第一範囲と、前記第一円弧両端からそれぞれ前記第一円弧に連なる前記トンネル周方向第二円弧側に、前記各第二円弧の曲率中心を軸とする所定角度の第二範囲とに配設されるロックボルトが、前記トンネル周方向他の範囲に配設されるロックボルトに比して密に配設されていることを特徴とする。
この際、前記第一範囲の所定角度を15度とし、前記第二範囲の所定角度を20度とするとともに、前記第一範囲および前記第二範囲に配設されるロックボルトの離間間隔を、前記トンネル周方向に0.5〜0.6m、且つ、前記トンネル軸方向に0.75〜1mとすることが好適である。
ここで、ロックボルトは、トンネル壁面に打設し、周辺地山と一体化することにより、吹付けコンクリートとあわせてトンネル周辺地山の安定を図るものである。また、長尺先受工は、掘削に先行して切羽から前方に向けてトンネル外周部にアーチ状に、長さ10〜25m程度の鋼管を削孔・打設した後、鋼管内部およびその周囲に注入材を充填することにより、地山を補強するものである。
【0006】
トンネル周方向円弧の曲率が変化する部分、言い換えれば、トンネル断面形状が変化する部分に応力集中が起こりやすい。そのため、本発明では、トンネル周方向円弧の曲率が変化する前記第一範囲および前記第二範囲をロックボルトによって密に補強することにより、上半仮インバートによる上半断面の仮閉合無しに、上半開支保構造の力学的安定性を確保するものである。
【0007】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。
図1は、トンネル周方向について異なる曲率を有する複数の円弧から形成される扁平大断面トンネルを、本発明に係るトンネル支保構造によって形成する一例を示したものである。この図に示すように、本実施形態によるトンネル支保構造では、従来のトンネル支保構造と同様に、上半1および下半2内周に、吹付けコンクリートと鋼アーチ支保工からなる上半支保工9が設置され、上半支保工9の外周部には長尺先受工5がトンネル周方向に所定の離間間隔をおいてトンネル軸方向と平行に配設されている。下半2外周部にはロックボルト6がトンネル軸直交方向に放射状に配設されている。また、上半支保工9の内側には覆工コンクリート8が設置され、インバート3内周にはインバートコンクリート14が設置されている。
【0008】
本実施形態によるトンネル支保構造では、従来のトンネル支保構造に加えて、トンネル11アーチ部を形成するトンネル11周方向第一円弧の両端からそれぞれ前記第一円弧中央側に、前記第一円弧の曲率中心を軸とする15度の第一範囲12と、前記第一円弧両端からそれぞれ前記第一円弧に連なるトンネル11周方向第二円弧側に、前記各第二円弧の曲率中心を軸とする20度の第二範囲13とに、トンネル11周方向に0.5〜0.6mの離間間隔(ロックボルト6の略1/2の離間間隔)で、且つ、トンネル11軸方向に0.75〜1mの離間間隔で、破壊抑制ロックボルト7がトンネル軸直交方向に放射状に配設されている。以下、第一範囲12および第二範囲13に配設されるロックボルトを、トンネル11周方向他の範囲に配設されるロックボルトと区別するために破壊抑制ロックボルトと呼ぶ。
破壊抑制ロックボルト7の材質には、ねじり棒鋼、異形棒鋼、全ネジ棒鋼あるいは高耐力ボルトなどを使用する。本実施形態における破壊抑制ロックボルト7の直径は30mm程度、長さはトンネル11掘削幅の0.3〜0.5倍である。また、孔に定着材を充填した後、ボルトを挿入する充填式の破壊抑制ロックボルト7を使用するが、破砕質の地山Gに対しては、ボルトを挿入した後、定着材を注入する注入式の破壊抑制ロックボルト7が有効である。
【0009】
また、本実施形態によるトンネル支保構造では、破壊抑制ロックボルト7と長尺先受工5が交錯する第一範囲12について、長尺先受工5には鋼管ではなく塩ビ管などの樹脂管を使用し、破壊抑制ロックボルト7の削孔が可能となるようにする。
【0010】
扁平大断面トンネルにおいては、トンネル11周方向円弧の曲率が変化する部分、言い換えれば、トンネル11断面形状が変化する部分に応力集中が起こりやすい。そこで、本実施形態によるトンネル支保構造では、トンネル11周方向円弧の曲率が変化する第一範囲12および第二範囲13を破壊抑制ロックボルト7によって密に補強することにより、上半仮インバート4による上半1断面の仮閉合無しに、上半開支保構造の力学的安定性を確保することができる。
また、上半仮インバート4がないため、掘削時間を20%程度短縮することができる。さらに、上半仮インバート4撤去作業に伴って生じる建設廃材の処分が不要となる。
【0011】
【発明の効果】
以上説明したように、本発明に係るトンネル支保構造によれば、上半仮インバートによる上半断面の仮閉合無しに、上半開支保構造の力学的安定性を確保することができる。
【図面の簡単な説明】
【図1】 本発明に係るトンネル支保構造の実施形態の一例を示すトンネル断面図である。
【図2】 従来のトンネル支保構造を示すトンネル断面図である。
【符号の説明】
1……上半
2……下半
3……インバート
4……上半仮インバート
5……長尺先受工
6……ロックボルト
7……破壊抑制ロックボルト
8……覆工コンクリート
9……上半支保工
12……第一範囲
13……第二範囲
14……インバートコンクリート
G……地山
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tunnel support structure for a flat large-section tunnel.
[0002]
[Prior art]
Conventionally, in the excavation of a large section tunnel, as shown in FIG. 2, the tunnel 10 cross section is divided into an upper half 1, a lower half 2, and an invert 3 in stages. When excavating the tunnel 10 in the soft ground G by this upper half advanced method, the upper half support 9 becomes an open structure when the upper half 1 is excavated, resulting in a mechanically unstable structure. Therefore, the upper half support 9 is stable by closing the cross section with the upper half temporary invert 4. Moreover, the stability of a face is ensured by arrange | positioning the long tip receiving work 5 in the upper-lower half 1 and 2 outer periphery of the tunnel 10 cross section (for example, refer patent document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-3680 (page 2-3, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, in the conventional tunnel support structure, the removal work of the upper half temporary invert and the excavation work of the lower half must be performed in parallel while ensuring the mechanical stability of the tunnel. As a result, the lower half of the excavation work is restricted, and the upper half of the excavation work is adversely affected. In addition, with the conventional tunnel support structure, it is difficult to ensure the long-term stability of the tunnel support structure against a clay-fractured fault fracture zone in the deep underground.
The present invention has been made in view of the above-mentioned problems, and provides a tunnel support structure that can ensure the mechanical stability of the upper half support structure without temporary closing of the upper half section by the upper half temporary invert. With the goal.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the tunnel support structure according to the present invention is a tunnel support structure in which a long tip receiving work is applied to the outer periphery of a tunnel formed by a plurality of arcs having different curvatures in the tunnel circumferential direction. Te, and the tunnel circumferential first arcuate center of each of the first arc from both ends of the first range of predetermined angle to the axis of the first circular arc center of curvature that forms an arch portion of said tunnel, the second circular arc side of the tunnel circumferential direction respectively from said first arcuate ends connected to the first circular arc, the lock disposed the respective second circular arc center of curvature and a second range of predetermined angle to the axis The bolts are arranged more densely than the lock bolts arranged in other ranges in the circumferential direction of the tunnel.
At this time, the predetermined angle of the first range is 15 degrees, the predetermined angle of the second range is 20 degrees, and the spacing between the lock bolts disposed in the first range and the second range is It is preferable that the distance is 0.5 to 0.6 m in the tunnel circumferential direction and 0.75 to 1 m in the tunnel axis direction.
Here, the rock bolt is placed on the tunnel wall surface and integrated with the surrounding natural ground, thereby stabilizing the ground surrounding the tunnel together with the shotcrete. In addition, long tip receiving work is performed in the surroundings of the steel pipe after drilling and placing a steel pipe with a length of about 10 to 25 m in an arch shape on the outer periphery of the tunnel from the face to the front prior to excavation. The ground is reinforced by filling the material with an injection material.
[0006]
Stress concentration tends to occur at a portion where the curvature of the arc in the tunnel circumferential direction changes, in other words, at a portion where the tunnel cross-sectional shape changes. Therefore, in the present invention, the first range and the second range in which the curvature of the tunnel circumferential arc is changed are closely reinforced by a lock bolt, so that the upper half cross section is not temporarily closed by the upper half temporary invert. This ensures mechanical stability of the half-open support structure.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example in which a flat large-section tunnel formed from a plurality of arcs having different curvatures in the tunnel circumferential direction is formed by the tunnel support structure according to the present invention. As shown in this figure, in the tunnel support structure according to the present embodiment, the upper half support work composed of shotcrete and steel arch support work is provided on the inner periphery of the upper half 1 and the lower half 2 similarly to the conventional tunnel support structure. 9 is installed, and a long tip receiving work 5 is arranged on the outer peripheral portion of the upper half supporting work 9 in parallel with the tunnel axis direction at a predetermined spacing in the tunnel circumferential direction. Lock bolts 6 are radially arranged on the outer periphery of the lower half 2 in the direction perpendicular to the tunnel axis. In addition, lining concrete 8 is installed inside the upper half supporting work 9, and invert concrete 14 is installed on the inner periphery of the invert 3.
[0008]
In the tunnel support structure according to the present embodiment, in addition to the conventional tunnel support structure, the first arc extends from both ends of the first arc in the circumferential direction of the tunnel 11 forming the arch portion of the tunnel 11 to the center side of the first arc. The first range 12 of 15 degrees with the center of curvature of the arc as the axis, and the center of curvature of each second arc from the both ends of the first arc to the second arc side in the circumferential direction of the tunnel 11 connected to the first arc. And a second range 13 of 20 degrees around the axis, with a spacing of 0.5 to 0.6 m in the circumferential direction of the tunnel 11 (a spacing of about a half of the locking bolt 6) and in the axial direction of the tunnel 11 The breakage-inhibiting lock bolts 7 are radially arranged in the direction perpendicular to the tunnel axis at intervals of 0.75 to 1 m. Hereinafter, the lock bolts disposed in the first range 12 and the second range 13 are referred to as breakage suppression lock bolts in order to distinguish them from the lock bolts disposed in other ranges in the circumferential direction of the tunnel 11.
As the material of the fracture inhibiting lock bolt 7, a torsion bar, a deformed bar, a full thread bar, a high strength bolt, or the like is used. The diameter of the fracture inhibiting lock bolt 7 in this embodiment is about 30 mm, and the length is 0.3 to 0.5 times the tunnel 11 excavation width. In addition, a filling type fracture prevention lock bolt 7 in which a bolt is inserted after the hole is filled with a fixing material is used, but for the ground material G of crushed material, the fixing material is injected after the bolt is inserted. An injection type breakage suppression lock bolt 7 is effective.
[0009]
In the tunnel support structure according to the present embodiment, for the first range 12 where the fracture-suppressing lock bolt 7 and the long tip receiver 5 cross each other, the long tip receiver 5 is not a steel pipe but a resin pipe such as a vinyl chloride pipe. Used so that the fracture-suppressing lock bolt 7 can be drilled.
[0010]
In a flat large-section tunnel, stress concentration tends to occur in a portion where the curvature of the circular arc in the circumferential direction of the tunnel 11 changes, in other words, in a portion where the cross-sectional shape of the tunnel 11 changes. Therefore, in the tunnel support structure according to the present embodiment, the first range 12 and the second range 13 in which the curvature of the circular arc of the tunnel 11 changes are closely reinforced by the fracture suppression lock bolt 7, thereby The mechanical stability of the upper half support structure can be secured without temporary closing of the upper half cross section.
Moreover, since there is no upper half temporary invert 4, excavation time can be reduced by about 20%. Furthermore, it is not necessary to dispose of the construction waste material that accompanies the work for removing the upper half temporary invert 4.
[0011]
【The invention's effect】
As described above, according to the tunnel support structure of the present invention, it is possible to ensure the mechanical stability of the upper half open support structure without temporary closing of the upper half section by the upper half temporary invert.
[Brief description of the drawings]
FIG. 1 is a sectional view of a tunnel showing an example of an embodiment of a tunnel support structure according to the present invention.
FIG. 2 is a tunnel cross-sectional view showing a conventional tunnel support structure.
[Explanation of symbols]
1 …… Upper half 2 …… Lower half 3 …… Invert 4 …… Upper half temporary invert 5 …… Long tip receiving work 6 …… Lock bolt 7 …… Destruction suppression lock bolt 8 …… Cover concrete 9 …… Upper half support 12 …… First range 13 …… Second range 14 …… Invert concrete G …… Mt.

Claims (3)

トンネル周方向について異なる曲率を有する複数の円弧から形成されるトンネルの外周部に長尺先受工が施されたトンネル支保構造であって、
前記トンネルアーチ部を形成する前記トンネル周方向第一円弧の両端からそれぞれ前記第一円弧中央側に、前記第一円弧の曲率中心を軸とする所定角度の第一範囲と、前記第一円弧両端からそれぞれ前記第一円弧に連なる前記トンネル周方向第二円弧側に、前記各第二円弧の曲率中心を軸とする所定角度の第二範囲とに配設されるロックボルトが、前記トンネル周方向他の範囲に配設されるロックボルトに比して密に配設されていることを特徴とするトンネル支保構造。
A tunnel support structure in which a long tip receiving work is applied to the outer periphery of a tunnel formed from a plurality of arcs having different curvatures in the tunnel circumferential direction,
A first range having a predetermined angle with the center of curvature of the first arc as an axis from both ends of the first arc in the circumferential direction of the tunnel forming the arch portion of the tunnel to the center side of the first arc; the second circular arc side of the tunnel circumferential direction respectively connected to the first circular arc from a circular arc at both ends, the lock bolt is arranged each of said second arc of curvature centered on a second range of predetermined angle to axis A tunnel support structure characterized in that the tunnel support structure is arranged denser than the lock bolts arranged in other ranges in the circumferential direction of the tunnel.
前記第一範囲の所定角度を15度とし、前記第二範囲の所定角度を20度とすることを特徴とする請求項1に記載のトンネル支保構造。  The tunnel support structure according to claim 1, wherein the predetermined angle of the first range is 15 degrees, and the predetermined angle of the second range is 20 degrees. トンネル周方向について異なる曲率を有する複数の円弧から形成されるトンネルの外周部に長尺先受工が施されたトンネル支保構造であって、
前記トンネルアーチ部を形成する前記トンネル周方向第一円弧の両端からそれぞれ前記第一円弧中央側に、前記第一円弧の曲率中心を軸とする15度の第一範囲と、前記第一円弧両端からそれぞれ前記第一円弧に連なる前記トンネル周方向第二円弧側に、前記各第二円弧の曲率中心を軸とする20度の第二範囲とに配設されるロックボルトの離間間隔が、前記トンネル周方向に0.5〜0.6m、且つ、前記トンネル軸方向に0.75〜1mであることを特徴とするトンネル支保構造。
A tunnel support structure in which a long tip receiving work is applied to the outer periphery of a tunnel formed from a plurality of arcs having different curvatures in the tunnel circumferential direction,
A first range of 15 degrees with the center of curvature of the first arc as an axis from both ends of the first arc in the circumferential direction of the tunnel forming the arch portion of the tunnel to the center side of the first arc; the second circular arc side of the tunnel circumferential direction respectively connected to the first circular arc from a circular arc at both ends of the lock bolt disposed the respective second circular arc center of curvature and a second range of 20 degrees to the axis A tunnel support structure characterized in that a separation interval is 0.5 to 0.6 m in the tunnel circumferential direction and 0.75 to 1 m in the tunnel axis direction.
JP2003174933A 2003-06-19 2003-06-19 Tunnel support structure Expired - Lifetime JP4092647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174933A JP4092647B2 (en) 2003-06-19 2003-06-19 Tunnel support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174933A JP4092647B2 (en) 2003-06-19 2003-06-19 Tunnel support structure

Publications (2)

Publication Number Publication Date
JP2005009182A JP2005009182A (en) 2005-01-13
JP4092647B2 true JP4092647B2 (en) 2008-05-28

Family

ID=34098275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174933A Expired - Lifetime JP4092647B2 (en) 2003-06-19 2003-06-19 Tunnel support structure

Country Status (1)

Country Link
JP (1) JP4092647B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813434B2 (en) * 2007-09-03 2011-11-09 株式会社奥村組 Tunnel excavation method
JP4714928B2 (en) * 2007-09-03 2011-07-06 株式会社奥村組 Tunnel excavation method
CN107100655A (en) * 2017-05-31 2017-08-29 中铁二十局集团第六工程有限公司 Weak surrounding rock locally changes the simple temporary support system of arch and its applies method
JP7010312B2 (en) * 2020-01-14 2022-01-26 株式会社カテックス Ground reinforcement method
CN113006827B (en) * 2021-02-23 2023-06-13 中铁十九局集团第三工程有限公司 Rigid lock leg supporting structure of soft rock tunnel steel frame
CN112901208B (en) * 2021-05-06 2021-07-30 中铁九局集团第七工程有限公司 Comprehensive construction method for shallow buried section of urban railway mining method tunnel

Also Published As

Publication number Publication date
JP2005009182A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP4640674B2 (en) Tunnel excavation method
KR100653268B1 (en) Method for Constructing Rock Shed Tunnel Using Anchor
JP4092647B2 (en) Tunnel support structure
CN110145329A (en) A kind of deep soft rock circular tunnel method for protecting support
JP2012036624A (en) Tunnel construction method
JP2010255237A (en) Method and structure for tunnel reinforcement
JP3793955B2 (en) Multiple support construction method
JP2010116739A (en) Tunnel supporting method and tunnel supporting structure
JP2874561B2 (en) Fore piling method with stiffening of the leading leg using a shaft
JPH0462298A (en) Construction of tunnel structure body
JP5806576B2 (en) Pipe roof and pipe roof construction method
JP4037124B2 (en) Tunnel structure and tunnel construction method
KR100551507B1 (en) Jacket tube for a drilling and anchoring device
JP2002302939A (en) Spacer for joint part in continuous underground wall
JP2013245533A (en) Reinforcing method for proximity mountain tunnel
JPH04350290A (en) Tunnel construction method, pillar part reinforcing method, and spread diameter pipe for reinforcing pillar part
JPH10331567A (en) Excavating jig for sunk well
JP4962089B2 (en) Support member and support structure
JP2001003680A (en) Method for constructing tunnel
JPS5894598A (en) Level drilling method and drill guide used therein
JP4145738B2 (en) Tunnel support method
KR200241046Y1 (en) rib structure for tunnel
Goel Use of Pipe-Roof Umbrella Supports for Tunnelling in Difficult Grounds–A Review
JPH0462297A (en) Larger section tunnel
WO1999050531A1 (en) A friction rock stabilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4092647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

EXPY Cancellation because of completion of term