JP4635667B2 - 車輪浮き上がり状態判定装置、車両転覆回避装置、車両耐転覆性評価装置、車輪浮き上がり状態判定方法、車両転覆回避方法、および車両耐転覆性評価方法 - Google Patents

車輪浮き上がり状態判定装置、車両転覆回避装置、車両耐転覆性評価装置、車輪浮き上がり状態判定方法、車両転覆回避方法、および車両耐転覆性評価方法 Download PDF

Info

Publication number
JP4635667B2
JP4635667B2 JP2005077590A JP2005077590A JP4635667B2 JP 4635667 B2 JP4635667 B2 JP 4635667B2 JP 2005077590 A JP2005077590 A JP 2005077590A JP 2005077590 A JP2005077590 A JP 2005077590A JP 4635667 B2 JP4635667 B2 JP 4635667B2
Authority
JP
Japan
Prior art keywords
vehicle
tire
wheel
acceleration
evaluation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005077590A
Other languages
English (en)
Other versions
JP2006256503A (ja
Inventor
紀貴 高口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005077590A priority Critical patent/JP4635667B2/ja
Publication of JP2006256503A publication Critical patent/JP2006256503A/ja
Application granted granted Critical
Publication of JP4635667B2 publication Critical patent/JP4635667B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、車両が路面を走行する際の、路面からの車輪浮き上がり状態を判定する、車輪浮き上がり状態判定装置および車輪浮き上がり状態判定方法、路面からの車輪浮き上がりによる車両の転覆を回避する、車両転覆回避装置および車両転覆回避方法、車両の耐転覆性能を評価する、車両耐転覆性評価装置および車両耐転覆性評価方法に関する。
現在、車両の耐転覆性が重要視されてきており、このためタイヤ性能としても高い耐転覆性(車両がなるべく転覆しない性能)が要求されてきている。車両の耐転覆性は、車体の重量やタイヤ性能に加え、例えばサスペンションなどの性能などが複雑に影響している。個々の車両の耐転覆性を精度良く評価するには、実際に車両を特定走行条件で走行させ、この際に得られた個々の車両の実際の挙動のデータを用いる必要がある。このような、実際に車両を走行させて車両の耐転覆性能を評価する方法として、Fishhook試験法や、エルクテスト(ダブルレーンチェンジ)等が知られている。このような公知の耐転覆性能試験方法では、一般的に、各車両を規格化された同一走行条件で旋回走行させた際の旋回内輪の車輪浮きを計測し、この旋回内輪が2輪同時に浮く(車輪が浮き上がる)走行速度を、各車両の耐転覆性能を表す指標としている。このような車両耐転覆性評価方法では、例えば、車両にアウトリガと呼ばれる転覆防止装置を装着した状態で、比較的高い速度で車両を旋回走行させて、例えば目視などで確認できる程度に車両の旋回内輪を浮き上がらせて、旋回内輪の車輪浮きを計測している。
しかし、このような転覆防止装置は高価であり、また、実際に、例えば目視などで確認できる程度に車両の旋回内輪を浮き上がらせるので、転覆防止装置を装着していたとしても、試験において車両が転覆してしまう危険もあった。また、目視などによる確認のみでは、車両の旋回内輪の浮き上がりの程度を高精度に知ることはできなかったし、また、車輪が浮き上がる直前や直後の車輪の状態や、車両が浮き上がる実際の速度などを高精度に知ることもできなかった。車両の耐転覆性能を高精度に評価するためには、車両の旋回内輪の浮き上がりの程度を高精度に検出することが望まれている。このような車両旋回内輪の浮き上がりを検出する手段としては、例えば下記特許文献1記載の、間隔測定センサ装置が挙げられる。下記特許文献1では、タイヤにかかる荷重を測定するために、車輪が装着される車軸にレーザー変位計等を設置し、この車軸と路面との距離を測定している。この車軸と路面との距離に基づき、車輪のタイヤが路面から浮き上がった状態を検出することもできる。
しかし、上記特許文献1記載の発明は、実際には車軸と路面との距離を測定するものである。このような車軸と路面との距離は、例えばタイヤのラジアスや、車体のロール方向の挙動によっても変わるものであり、実際に車輪が路面から浮き上がった状態を高精度に検知することはできない。そこで、本発明は、車輪が浮き上がる直前や直後の車輪の状態を知ることができ、車両が路面を走行する際の車輪の浮き上がりを高精度に検知することが可能な車輪浮き上がり状態判定装置および車輪浮き上がり状態判定方法、路面からの車輪浮き上がりによる車両の転覆を回避する、車両転覆回避装置および車両転覆回避方法、車両の耐転覆性能を評価する、車両耐転覆性評価装置および車両耐転覆性評価方法を提供することを目的とする
上記課題を解決するために、本発明は、タイヤが装着された車輪を備える車両について、この車両が路面を走行する際の車輪浮き上がり状態を判定する車輪浮き上がり状態判定装置であって、前記タイヤの所定部位に配置されて、前記車両が路面を走行する際、転動中のタイヤが前記路面から外力を受けることで発生する、前記所定部位の加速度を計測する加速度センサと、前記加速度センサで計測された、前記所定部位の加速度データを用いて、前記車輪の前記路面への接地状態を表す接地量評価値を算出する評価値算出部と、前記接地量評価値に基づき、前記車輪の路面からの浮き上がり状態を判定する判定手段とを有し、前記評価値算出部は、前記タイヤの変形に基づく時系列の加速度データを用いて、前記タイヤの変形に基づく加速度の時系列データに対して2階の時間積分を行って変位データを求めることにより、タイヤの所定部位における変形量を算出して、このタイヤの所定部位における変形量を用いて前記接地量評価値を算出することを特徴とする車輪浮き上がり状態判定装置を提供する。
なお、前記加速度センサは、前記タイヤの赤道面よりも車両内側領域に配置されていることが好ましい。また、前記加速度センサは、前記車両の停止状態での前記タイヤの接地幅をWとした際、前記赤道面から0.2Wだけ車両の内側方向に離間した地点を通る前記赤道面に平行な第1の平面から、前記赤道面から0.5Wだけ車両の内側方向に離間した地点を通る前記赤道面に平行な第2の平面に至る範囲内に配置されていることがより好ましい。なお、前記タイヤの接地幅Wとしては、例えば、2004年度版JATMA記載の最大荷重の70%、標準空気圧状態での、タイヤの接地幅を用いればよい。
また、前記加速度センサは、前記所定部位の前記加速度を時系列に連続して計測し、前記評価値算出部は、この時系列の加速度の計測データから、タイヤの変形に基づく時系列の加速度データを抽出して、このタイヤの変形に基づく時系列の加速度データを用いて前記接地量評価値を算出することが好ましい。
なお、前記加速度の計測データは、タイヤの周方向に対して直交するラジアル方向の加速度のデータ及びタイヤの周方向の加速度のデータの少なくとも一方のデータであり、さらに、前記タイヤの所定部位の変形量は、タイヤのラジアル方向及び周方向の変形量、若しくはラジアル方向の変形量であり、前記評価値算出部は、さらに、前記接地量評価値として、この変形量から前記タイヤの転動中の接地長を算出することが好ましい。
また、前記判定手段は、前記接地量評価値と予め定められた判定基準値とを比較することで、前記車輪の路面からの浮き上がり状態を判定することが好ましい。この場合、前記判定手段は、現在の前記接地量評価値と予め定められた判定基準値とを比較することで、前記車輪が現在、前記路面から浮き上がっているか否かを判定することが好ましい。また、前記判定手段は、前記接地量評価値の変化率を算出し、この接地量評価値の変化率と予め定められた判定基準値とを比較することで、現在の車両走行条件下での、前記車輪の前記路面からの浮き上がりの発生の可能性の有無を判定することもまた好ましい。
さらに、前記判定手段による判定結果を、車両を運転するドライバに報知する報知手段を備えることが好ましい。
また、前記車両は、少なくとも4輪以上の車輪が設けられた自動車車両であり、前記加速度センサは、前記自動車車両の少なくとも1つの車軸線上に備えられた左右の車輪それぞれのタイヤに配置されて、転動中のタイヤの所定部位の加速度を計測し、前記判定手段は、前記左右の車輪それぞれについて算出された前記接地量評価値それぞれを用い、前記左右の車輪それぞれについて、前記車輪の路面からの浮き上がり状態を判定することが好ましい。
本発明は、また、上記車輪浮き上がり状態判定装置を備えて構成される、車両転覆回避装置であって、前記車両に配備された、前記左右の車輪それぞれの転動状態または転動方向を調整する調整手段と、前記調整手段の動作を制御する制御手段とを備え、前記制御手段は、前記調整手段の動作を制御することで、前記車輪浮き上がり状態判定装置による判定結果に応じて、前記左右の車輪のうち、少なくとも前記車輪の路面からの浮き上がりが小さい方の車輪について、前記転動状態または転動方向のいずれか一方を調整し、前記車両の転覆を回避することを特徴とする車両転覆回避装置を併せて提供する。
本発明は、さらに、路面を走行する少なくとも4輪以上の車輪が設けられた自動車車両について、この車両にロール共振を生じさせる特定走行条件で旋回走行させた際の、前記車両の耐転覆性を評価する装置であって、前記自動車車両の複数の車輪のうち、少なくとも、前記ロール共振が生じた状態での旋回内輪側に対応する複数の車輪について、これら旋回内輪側の車輪それぞれを構成する各タイヤの所定部位に配置されて、前記車両が旋回走行する際、転動中のタイヤが前記路面から外力を受けることで発生する、前記所定部位の加速度を計測する加速度センサと、前記加速度の計測データを用いて、前記旋回走行中の、前記旋回内輪側の各車輪の前記路面への接地状態を表す接地量評価値をそれぞれ算出する評価値算出部と、前記接地量評価値に基づき、前記車両が特定走行条件で旋回走行する際の、前記車両の耐転覆性を評価する評価部とを有し、前記加速度センサは、前記所定部位の前記加速度を時系列に連続して取得し、前記評価値算出部は、時系列の加速度の計測データから、タイヤの変形に基づく時系列の加速度データを抽出し、このタイヤの変形に基づく加速度の時系列データに対して2階の時間積分を行って変位データを求めることにより、タイヤの所定部位における変形量を算出して、さらに、この変形量から、前記接地量評価値として前記タイヤの転動中の接地長を算出することを特徴とする車両耐転覆性評価装置も併せて提供する。
さらに、それぞれ異なる車両走行速度で、前記車両が特定走路を旋回走行した際それぞれの前記タイヤの転動中の接地長を記憶する記憶手段を備え、前記評価部は、前記記憶手段に記憶された、各車両走行速度での前記タイヤの転動中の接地長を呼び出し、前記タイヤの転動中の接地長の前記車両走行速度への回帰式を求め、この回帰式に基づき、前記タイヤの転動中の接地長がゼロとなる際の前記車両走行速度を求めることで、前記車両の耐転覆性を評価することが好ましい。
本発明は、また、タイヤが装着された車輪を備える車両について、この車両が路面を走行する際の車輪浮き上がり状態を判定する車輪浮き上がり状態判定方法であって、データ取得手段が、前記車両が路面を走行する際、転動中のタイヤが前記路面から外力を受けることで発生する、前記タイヤの所定部位の加速度データを取得するデータ取得ステップと、評価値算出手段が、前記所定部位の加速度データを用いて、前記車輪の前記路面への接地状態を表す接地量評価値を算出する評価値算出ステップと、判定手段が、前記接地量評価値に基づき、前記車輪の路面からの浮き上がり状態を判定する判定ステップとを有し、前記評価値算出ステップでは、前記評価値算出手段が、前記タイヤの変形に基づく時系列の加速度データを用いて、前記タイヤの変形に基づく加速度の時系列データに対して2階の時間積分を行って変位データを求めることにより、タイヤの所定部位における変形量を算出して、このタイヤの所定部位における変形量を用いて前記接地量評価値を算出することを特徴とする車輪浮き上がり状態判定方法も提供する。
また、路面を走行する少なくとも4輪以上の車輪が設けられた、自動車車両の転覆を回避する方法であって、データ取得手段が、走行中の前記自動車車両の、少なくとも1つの車軸線上に備えられた左右の車輪それぞれについて、転動中のタイヤの所定部位の加速度の計測データを取得するデータ取得ステップと、評価値算出手段が、前記加速度の計測データを用いて、前記左右の車輪それぞれの、前記路面への接地状態を表す接地量評価値を算出する評価値算出ステップと、判定手段が、前記接地量評価値に基づき、前記左右の車輪それぞれの、前記路面からの浮き上がり状態を判定する判定ステップと、調整手段が、前記判定結果に応じて、前記左右の車輪それぞれの転動状態または転動方向を調整する調整ステップとを有し、前記調整ステップは、前記調整手段が、前記判定結果に応じて、前記左右の車輪の前記転動状態または転動方向のいずれか一方を調整することで、前記車両の転覆を回避し、前記評価値算出ステップでは、前記評価値算出手段が、時系列の加速度の計測データから、タイヤの変形に基づく時系列の加速度データを抽出し、このタイヤの変形に基づく加速度の時系列データに対して2階の時間積分を行って変位データを求めることにより、タイヤの所定部位における変形量を算出して、さらに、この変形量から、前記接地量評価値として前記タイヤの転動中の接地長を算出することを特徴とする車両転覆回避方法も提供する。
さらに、路面を走行する少なくとも4輪以上の車輪が設けられた自動車車両について、この車両にロール共振を生じさせる特定走行条件で旋回走行させた際の、前記車両の耐転覆性を評価する方法であって、データ取得手段が、前記自動車車両の複数の車輪のうち、少なくとも、前記ロール共振が生じた状態での旋回内輪側に対応する複数の車輪について、これら旋回内輪側の車輪それぞれを構成する各タイヤの所定部位に配置されて、前記車両が旋回走行する際、転動中のタイヤが前記路面から外力を受けることで発生する、前記所定部位の加速度の計測データを取得するデータ取得ステップと、評価値算出手段が、前記加速度の計測データを用いて、前記旋回走行中の、前記旋回内輪側の各車輪の前記路面への接地状態を表す接地量評価値をそれぞれ算出する評価値算出ステップと、評価手段が、前記接地量評価値に基づき、前記車両が特定走行条件で旋回走行する際の、前記車両の耐転覆性を評価する評価ステップとを有し、前記評価値算出ステップでは、前記評価値算出手段が、時系列の加速度の計測データから、タイヤの変形に基づく時系列の加速度データを抽出し、このタイヤの変形に基づく加速度の時系列データに対して2階の時間積分を行って変位データを求めることにより、タイヤの所定部位における変形量を算出して、さらに、この変形量から、前記接地量評価値として前記タイヤの転動中の接地長を算出することを特徴とする車両耐転覆性評価方法も提供する。
本発明の車輪浮き上がり状態判定装置および車輪浮き上がり状態判定方法によれば、車輪が浮き上がる直前や直後の車輪の状態を知ることができ、車両が路面を走行する際の車輪の浮き上がりを高精度に検知することができる。また、本発明の車輪浮き上がり状態判定装置を有して構成される車両転覆回避装置および車両転覆回避方法によれば、路面からの車輪浮き上がりによる車両の転覆を回避することができる。また、本発明の車両耐転覆性評価装置および車両耐転覆性評価方法によれば、安全かつ高精度に車両の耐転覆性能を評価することができる。本発明によれば、路面を転動する際のタイヤの所定の部位、例えばトレッド部における加速度の計測データを用いて、路面を転動する際のタイヤの変形量を求めることができる。そして、この変形量からさらに、路面を転動するタイヤの実際の接地長を正確に算出することができる。この接地長に基づいて、車輪浮き上がり状態判定、車両転覆回避、および車両耐転覆性評価を高精度に実施することができる。
以下、本発明の車輪浮き上がり状態判定装置、車両転覆回避装置、車両耐転覆性評価装置、車浮き上がり状態判定方法、車両転覆回避方法、および車両転覆性評価方法について、添付の図面に示される好適実施例を基に詳細に説明する。
まず、本発明の車輪浮き上がり状態判定装置、車両転覆回避装置、車浮き上がり状態判定方法、および車両転覆回避方法について詳細に説明する。
図1は、本発明の車輪浮き上がり状態判定装置および車両転覆回避装置の一例である、車両転覆回避システム10(システム10)について説明する概略構成図である。システム10は、4つの車輪14a〜14dが配備された車両12に備えられている。システム10は、4つの車輪14a〜14dにそれぞれ備えられた、車両12が路面を走行する際に、各車輪のタイヤ1(図2参照)が路面から外力を受けることで発生する、このタイヤ1の所定部位の加速度情報を取得して無線信号で送信するセンサユニット16a〜16dと、センサユニット16a〜16dから送信された無線信号を受信して、各車輪の変形加速度情報から各車輪の接地長を算出して、この接地長に基づき各車輪の車輪浮き状態を判定する判定手段20と、この判定手段20における判定結果に応じて、各車輪14a〜14dそれぞれの転動状態や転動方向を制御するための制御信号を出力する制御手段30と、制御手段30に接続された各車輪14a〜14dそれぞれの転動状態または転動方向を調整する、各車輪14a〜14dそれぞれに対応して設けられた調整手段32a〜32dと、判定手段20の判定結果を報知するとともに、判定手段20における判定結果に応じて、車両12の運転者に警告を発する警報装置34とを有して構成されている。システム10は、センサユニット16a〜16d、判定手段20、および警報装置34とによって本発明の車輪浮き上がり状態判定装置として機能するとともに、センサユニット16a〜16d、判定手段20、制御手段30、および調整手段32とによって本発明の車両転覆回避装置としても機能する。
例えば、車両12が一方向に旋回走行している最中に、急激に、車両12をこの旋回方向と逆向きに旋回させるよう、車両12の図示しない転舵装置によって車輪14を転舵させた場合など、いわゆるロールの共振が誘発されて車両12の左右いずれかの車輪14(上述の逆向きの旋回の旋回内輪側の車輪)が路面から浮き上がることがある。本発明の車輪浮き上がり状態判定装置は、車両12のこのような車輪浮き上がり状態を、車輪14(車輪14a〜車輪14dのいずれか)の浮き上がりの発生とともに検知する装置である。また、本発明の車両転覆回避装置は、車輪浮き上がり状態判定装置によって検知した、車両12のこのような車輪浮き上がり状態に応じて、車両12の車輪14の転舵状態や転舵方向を制御して、車両12の転覆を回避するためのシステムである。
図2は、本発明の車輪浮き上がり状態判定装置および車両転覆回避装置における判定手段の一例である、システム10に備えられた判定手段20の構成を示すブロック図である。図2に示す判定手段20は、受信機3と、増幅器(AMP)4と、接地長算出手段21と、浮き上がり判定部25と、CPU23と、メモリ27とを有する。判定手段20は、接地長算出手段21の各手段(後述する各部)と、浮き上がり判定部25とが、メモリ27に記憶されたプログラムをCPU23が実行することで機能する、受信機3と増幅器(AMP)4が備えられたコンピュータである。判定手段20は、車輪14(車輪14a〜車輪14dのいずれか)を構成するタイヤ1のトレッド部における加速度の計測データを用いて、転動中のタイヤ1の路面への接地長を算出し、この接地長に基づき車輪14の路面からの浮き上がり状態を判定する。ここで用いられる加速度の計測データは、車輪14に設けられた、送信ユニット16の、タイヤの空洞領域の内周面に固定した加速度センサ2で検知され、車輪14に設けられた送信ユニット16の送信機15から受信機3へ送信されて増幅器(AMP)4で増幅されたデータである。なお、送信機15を設けず、例えば、加速度センサ2に別途送信機能を持たせ、加速度センサ2から受信機3へ送信するように構成してもよい。なお、車輪14a〜14dに設けられた各送信機15は、それぞれを識別可能とする識別情報(ID)をそれぞれ保有しており、送信機15は、対応する加速度センサで計測された加速度の計測データとともにIDを送信する。
加速度センサ2は、例えば、本願出願人が先に出願した特願2003−134727号に開示された半導体加速度センサが例示される。半導体加速度センサは、具体的には、Siウエハ外周枠部内にダイアフラムが形成されたSiウエハと、このウエハ外周枠部を固定する台座とを有し、ダイアフラムの一方の面の中央部に重錘が設けられ、ダイアフラムには複数のピエゾ抵抗体が形成されている。この半導体加速度センサに加速度が作用した場合、ダイアフラムは変形し、この変形によりピエゾ抵抗体の抵抗値は変化する。この変化を加速度の情報として検出できるようにブリッジ回路が形成されている。
この加速度センサをタイヤ内周面に固定することにより、タイヤ回転中のトレッド部に作用する加速度を計測することができる。
加速度センサ2は、この他にピエゾ圧電素子を用いた加速度ピックアップを用いてもよいし、歪みゲージを組み合わせた歪みゲージタイプの加速度ピックアップを用いてもよい。
図3(a)および(b)は、本実施形態における加速度センサ2のタイヤ1への設置位置について説明する図であり、(a)は、車両12の車輪14が路面から浮き上がっている状態を示す概略図であり、(b)は、(a)に示す状態でのタイヤ1の概略断面図を示している。車輪14の路面からの浮き上がりは、上述したように、車両12にロール共振が誘発されることで生じる場合がほとんどである。車輪14が浮き上がる際の車両12のロール挙動時には、旋回内輪(上述の逆旋回における旋回内輪)の車輪14の対地キャンバ角は、大きなネガティブ対地キャンバ角となる。このため、旋回内輪の車輪14のタイヤ1は、路面から浮き上がる際、車両12の外側から徐々に浮き上がり、車両12の内側のショルダー部付近が最後に浮き上がる。後述する接地長を算出することで、車輪14が路面から離れてしまったことを確認するには、タイヤ1の接地領域における車両12のなるべく内側の部分に加速度センサを設けておき、この車両12のなるべく内側の部分の加速度(転動中のタイヤ1が路面から外力を受けることで発生する加速度)を計測することが好ましい。このため、加速度センサ2の配置位置は、タイヤ1の赤道面(図3(b)中Eで示す)よりも車両12の内側であることが好ましい。また、車両12が停止した状態でのタイヤ1の接地幅をWとすると、加速度センサ2の配置位置は、上記赤道面(接地幅Wにおける中心位置を通る)から0.2Wだけ車両の内側方向に離間した地点を通る前記赤道面に平行な第1の平面(図3(b)中Fで示す)から、前記赤道面から0.Wだけ車両の内側方向に離間した地点を通る前記赤道面に平行な第2の平面(図3(b)中Gで示す)に至る範囲内(図3(b)中の斜線で示す範囲)に配置されていることがより好ましい。
なお、本実施形態では、1つの加速度センサ2をタイヤ内周面に固定したが、本発明では、図4(a)〜図4(d)に示すように、加速度センサ2は、タイヤ断面の様々な部分に配置してもよく、また加速度センサ2の個数も限定されない。例えば、図4(a)に示すように、タイヤのインナーライナーの部分に配置してもよいし、また図3(b)に示すように、タイヤのベルトプライ層の上部に配置してもよいし、また、図3(c)に示すように、タイヤのキャップトレッドの内部に配置してもよい。また、図3(d)に示すように、加速度センサ2を、上述のタイヤの接地幅Wに対応する領域全体に渡って、タイヤの幅方向に複数個配置してもよい。図3(d)に示すように、加速度センサ2をタイヤの幅方向に複数個配置することで、車両12の外側から車両12の内側のショルダー部付近に向かって徐々に浮き上がる、車輪の浮き上がり挙動の情報を、タイヤ幅方向に渡って時系列に取得することができる。
増幅器(AMP)4で増幅された加速度の計測データが供給される接地長算出手段21は、データ取得部22、信号処理部24、変形量算出部26及び接地長算出部28を有する。データ取得部22は、増幅器(AMP)4で増幅された少なくともタイヤ1回転分の加速度の計測データを入力データとして取得する部分である。増幅器(AMP)4から供給されるデータは、アナログデータであり、このデータを所定のサンプリング周波数でサンプリングしてデジタルデータに変換する。なお、データ取得部22は、各送信機15から送信された上述のIDに基づき、各車輪から送信される加速度の計測データが、どの車輪のタイヤの加速度の計測データであるか(車輪14a〜車輪14dのいずれの車輪であるか)を判定する。以降、信号処理部24、変形量算出部26、接地長算出部28、および浮き上がり判定部25で行なわれる各処理は、各車輪のタイヤの計測データそれぞれについて、並列に行なわれる。
信号処理部24は、デジタル化された加速度の計測データから、タイヤの変形に基づく加速度の時系列データを抽出する部位である。信号処理部24では、加速度の計測データに対して平滑化処理を行い、この平滑化された信号に対して近似曲線を算出して背景成分1を求め、この背景成分1を平滑化処理された加速度の計測データから除去することにより、タイヤの変形に基づく加速度の時系列データを抽出する。具体的な処理は後述する。
変形量算出部26は、抽出されたタイヤの変形に基づく加速度の時系列データに対して2階の時間積分を行って変位データを求めることにより、タイヤの変形量を算出する部位である。タイヤの変形に基づく加速度の時系列データに対して時間に関する2階積分を行い、この後、2階積分して得られたデータに対して近似曲線を算出して背景成分2を求め、この背景成分2を、2階積分して得られた変位データから除去することにより、タイヤの変形量を算出する。さらに、この後、算出されたタイヤの変形量のデータに対して時間に関する2階微分を行ってタイヤの変形量に対応した加速度のデータ、すなわち、ノイズ成分を含まないタイヤの変形に基づく加速度の時系列データを算出する。具体的な処理は後述する。
接地長算出部28は、算出されたタイヤの変形量及びタイヤの変形に基づく加速度の時系列データから、各車輪14a〜14dの各タイヤの接地長を算出する部分である。算出された各タイヤの接地長の情報は、浮き上がり判定部25に出力される。
浮き上がり判定部25(判定部25)は、接地長算出部28において算出された各タイヤの接地長と、予め定められた判定基準値とを比較して、各車輪のタイヤが、現在、路面から浮き上がっているか否かを判定する。浮き上がり判定部25は、各車輪14a〜14dのタイヤのうち、1つの車輪でも浮き上がっていると判定した場合、制御手段30および警報装置34に、車輪の浮き上がりが発生していることを示す判定結果の情報、およびどの車輪に車輪浮き上がりが発生しているかを知らせるための情報を送る。なお、判定部25による判定は、接地長算出部28において算出された各タイヤの接地長と、予め定められた判定基準値とを比較して、各車輪のタイヤが、現在、路面から浮き上がっているか否かを判定することに限定されない。判定部25では、時系列に算出される接地長の情報から、各タイヤの接地長の変化率を算出し、この接地の変化率と予め定められた判定基準値とを比較することで、現在の車両走行条件下での、車輪の路面からの浮き上がりの発生の可能性を判定してもよい。浮き上がり判定部25における判定については、後に詳述する。
警報装置34は、例えば、図示しないディスプレイやスピーカなどからなり、判定部25から送られた、車輪の浮き上がりが発生していることを示す判定結果の情報を受けて、車両12の運転者に対し警報を発する。警報装置34は、これにより、車両12の運転者に対し、どの車輪において、車輪の浮き上がりが発生しているかを報知する。例えば、スピーカから警告音を発生したり、ディスプレイに警告を伝える画像を表示することで、警報を発すればよい。
制御手段30は、判定部25から送られた、車輪の浮き上がりが発生していることを示す判定結果の情報、および、どの車輪に車輪浮き上がりが発生しているかを知らせるための情報を受けて、制御手段30に接続された、各車輪14a〜14dそれぞれの転動状態または転動方向を調整する調整手段32a〜32dそれぞれの動作を制御する。制御手段30は、車輪浮き上がりが発生している車輪が接地するよう、調整手段32a〜32dそれぞれの動作を制御して、各車輪の転動状態(転動速度など)や転動方向(舵角)を調整する。制御手段30は、このように車両12の転覆を防止するべく、調整手段32a〜32dそれぞれの動作を制御する。例えば、右前輪(図1に示す14b)が路面から浮き上がっていることを示す情報を受けた場合、各車輪14a〜14dの転動速度を低下させて車両12の走行速度を低下させるとともに、各車輪14a〜14dの方向を制御して、現在の右旋回方向のへの舵角(右前輪が浮き上がる場合、右旋回を行なう側へ舵角が向いている)の大きさを低減させる。調整手段32a〜32dは、各車輪の転動速度を低減させるブレーキシステムや、各車輪の転動方向を変更させる転舵システムで構成されている。
図5は、このようなシステム10にて行われる車輪浮き上がり状態判定方法、および車両転覆回避方法を示すフローチャートである。図6〜図9は、システム10における各処理で得られる結果の一例を示している。これらの結果は、いずれも加速度センサ2のうち、タイヤのラジアル方向(半径方向)の加速度の計測データから、ラジアル方向のタイヤのトレッド部の変形量を算出する場合の結果である。
本発明は、タイヤのラジアル方向の加速度の計測データを用いてタイヤのトレッド部のラジアル方向の変形量を算出する場合に限らず、タイヤの周方向又は幅方向の加速度の計測データから、周方向又は幅方向の変形量を算出することもできる。さらに、タイヤの周方向及び幅方向の加速度の計測データを同時に取得してこの2つのデータから、周方向及び幅方向の変形量を同時に算出することもできる。本発明は、上述のタイヤ幅方向の接地長によって、車輪の浮き上がりを判定することに限らず、加速度の計測データそのものや、周方向や幅方向の変形量など、この加速度の計測データから算出される種々の情報(各車輪の路面からの浮き上がり状態を、直接または間接的に表す情報)を用いて、各車輪の浮き上がりを判定してもよい。以降、上述のタイヤ幅方向の接地長によって、車輪の浮き上がりを判定する場合について、本発明の車輪浮き上がり状態判定方法、および車両転覆回避方法を説明する。
まず、増幅器(AMP)4で増幅された、各車輪の加速度の計測データがデータ取得部22に供給され、所定のサンプリング周波数にてサンプリングされて、デジタル化した計測データが取得される(ステップS100)。この際、データ取得部22は、上述のように、各送信機15から送信された上述のIDに基づき、各車輪から送信される加速度の計測データが、どの車輪のタイヤの加速度の計測データであるか(車輪14a〜車輪14dのいずれの車輪であるか)を判定する。以降の各処理は、各車輪のタイヤの計測データそれぞれについて、並列に行なわれる。
次に、取得された計測データは、信号処理部24に供給され、まず、フィルタによる平滑化処理が行われる(ステップS102)。図6(a)に示すように、信号処理部24に供給された計測データはノイズ成分が多く含まれるため、平滑化処理により、図6(b)に示すように滑らかなデータとされる。フィルタは、例えば、所定の周波数をカットオフ周波数とするデジタルフィルタが用いられる。カットオフ周波数は、転動速度やノイズ成分によって変化するが、例えば転動速度が60(km/時)の場合、カットオフ周波数は、0.5〜2(kHz)とされる。この他に、デジタルフィルタの替わりに、移動平均処理やトレンドモデル等を用いて平滑化処理を行ってもよい。
図6(b)に示す時系列のグラフでは横軸に時間軸をとるとともに、同時にタイヤの周上位置をθ(度)で表している。タイヤの周上位置θ(度)は、図2に示すようなタイヤの接地面の中心位置(θ=180度)に対して対向する点O(図2参照)を基準とする角度である。このような周上位置θ(度)は、例えば、タイヤに記されたマークを図示されないマーク検知手段で検知することにより、マークの周上の位置と加速度センサ2の周上位置との相対位置関係から、転動中のタイヤの周上位置θ(度)を定めることができる。また、時系列のグラフにおいて、極小値の位置を基準として、この位置を接地面の中心位置(θ=180度)として転動中のタイヤの周上位置θ(度)を定めてもよい。
図6(b)において接地面の中心位置はθ=180度、540度及び900度に該当し、図6(b)ではタイヤの略3周分の加速度の計測データが示されている。
次に、平滑処理された加速度の計測データから背景成分1が算出される(ステップS104)。
ラジアル方向の加速度の背景成分1は、タイヤの転動中の遠心力(向心力)の加速度成分及び重力加速度成分を含む(なお、周方向の加速度の背景成分においても、これらの成分を含む)。図6(c)では背景成分1の波形が点線で示されている。この背景成分1は、接地面の中心位置θ=180度、540度及び900度のそれぞれを中心として、絶対値で0以上90度未満の角度の範囲を除いた周上の領域(第2の領域)で加速度の計測データに近似するように求められる。
具体的に説明すると、タイヤの周上の領域を、路面接地領域を含む第1の領域とこれ以外の第2の領域とに分け、第1の領域として、θ=90度より大きく270度未満、450度より大きく630度未満、810度より大きく990度未満の領域を定め、第2の領域として、θ=0以上90度以下及び270度以上360度以下、360度以上450度以下及び630度以上720度以下、720度以上810度以下及び990度以上1080度以下の領域を定める。背景成分1は、上記第2の領域中の複数の周上位置(θ又はθに対応する時間)を節点として用いて、予め定められた関数群、例えば3次のスプライン関数を用いて、第1の領域及び第2の領域のデータに対して最小二乗法により第1の近似曲線を算出することによって求める。節点は、スプライン関数の局所的な曲率(屈曲性)を規定する横軸上の拘束条件を意味する。図6()の例では、図6()中の「△」で示される位置、すなわちθ=10,30,50,70,90,270,290,310,330,350,370,390,410,430,450,630,650,670,690,710,730,750,770,790,810,990,1010,1030,1050,1070度における時間を節点としている。
図6(b)に示すデータに対して、上記節点を有する3次のスプライン関数で関数近似を行うことにより、図6(c)において点線で示される近似曲線が算出される。関数近似する際、第1の領域には節点はなく、第2の領域の複数の節点のみを用いて関数近似を行い、かつ関数近似に際して行う最小二乗法では重み係数を用いる。この重み係数は、第2の領域の重み係数を1とすると、第1の領域の重み係数は0.01に設定されて処理が行われる。このように背景成分1を算出する際、第1の重み係数を第2の重み係数に対して小さくし、かつ第1の領域に節点を定めないのは、第1の近似曲線を、主に第2の領域における加速度の計測データから算出するためである。第2の領域では、トレッド部の接地による変形が小さくかつその変形は周上で滑らかに変化するため、タイヤの転動中の加速度は遠心力(向心力)の加速度成分及び重力加速度成分が支配的である。これに対し、第1の領域では、タイヤのトレッド部は接地変形に基づいて大きくかつ急激に変化する。このため接地変形に基づく加速度成分の変化が、タイヤの回転に基づく遠心力(向心力)の加速度成分及び重力加速度成分の変化に比べて大きくなる。すなわち、第2の領域の加速度の計測データは、概略、タイヤの転動中の遠心力(向心力)の加速度成分及び重力加速度成分であり、第2の領域の加速度の計測データを主に用いて第1の近似曲線を算出することで、第2の領域のみならず、第1の領域におけるタイヤの転動中の遠心力(向心力)の加速度成分及び重力加速度成分を精度よく推定することができる。
なお、図6(c)では、接地中心位置(θ=180,540,900度)を中心として絶対値で0以上90度未満の角度の範囲を第1の領域としたが、本発明における第1の領域は、接地中心位置から少なくとも絶対値で0以上60度未満の角度の範囲であればよい。
次に、算出された背景成分1を表す第1の近似曲線を、ステップS102で処理された加速度の計測データから差し引くことで、計測データからタイヤの回転に基づく加速度成分及び重力加速度成分が除去される(ステップS106)。図6(d)には、除去後の加速度の時系列データが示されている。これにより、タイヤのトレッド部の接地変形に基づく加速度の成分を抽出することができる。
次に、算出された、接地変形に基づく加速度の時系列データは、変形量算出部26において2階の時間積分が施され、変位データが生成される(ステップS108)。
なお、積分の対象となる加速度のデータには通常ノイズ成分を含むので、2階積分を行うとノイズ成分も同時に積分され、精度の高い変位データを求めることはできない。図7(a)は、図6(d)の加速度の時系列データを時間に関して2階積分した結果である。図7(a)に示されるように、時間と共に変位が増大していることが見られる。これは、積分の対象となる加速度の時系列データにノイズ成分を含み、積分により積算されていくからである。一般に、定常状態で転動するタイヤのトレッド部の注目する一点の変形量又は変位を観察した場合、タイヤの回転周期を単位として周期的な変化を示す。したがって、時間と共に変位が増大することは通常ありえない。
そこで、2階の時間積分が施されて得られた変位データが、タイヤの回転周期を単位として周期的な変化を示すように、この変位データに対して以下の処理が行われる。
すなわち、ステップS104において、背景成分1を算出した方法と同様に、変位データに含まれるノイズ成分を背景成分2として算出する(ステップS110)。
具体的に説明すると、タイヤの周上の領域を、路面との接地領域を含む第3の領域とこれ以外の第4の領域とに分け、第3の領域として、θ=90度より大きく270度未満、450度より大きく630度未満、810度より大きく990度未満の領域を定め、第4の領域として、θ=0以上90度以下及び270度以上360度以下、360度以上450度以下及び630度以上720度以下、720度以上810度以下及び990度以上1080度以下の領域を定める。背景成分2は、上記第4の領域中の複数の周上位置(θ又はθに対応する時間)を節点として用いて、予め定められた関数群を用いて、第3の領域及び第4の領域のデータに対して最小二乗法により第2の近似曲線を算出することによって求める。なお、第3の領域は、上述した第1の領域と一致する領域であってもよいし、異なる領域であってもよい。また、第4の領域は、上述した第2の領域と一致する領域であってもよいし、異なる領域であってもよい。節点は、上述したように、スプライン関数の局所的な曲率(屈曲性)を規定する横軸上の拘束条件を意味する。図7(b)には、背景成分2を表す第2の近似曲線が点線で示されている。図7(b)の例では、図7(b)中の「△」で示される位置、すなわちθ=10,30,50,70,90,270,290,310,330,350,370,390,410,430,450,630,650,670,690,710,730,750,770,790,810,990,1010,1030,1050,1070度における時間を節点としている。
図7(a)に示す変位データに対して、上記節点のデータ点を通る3次のスプライン関数で関数近似を行うことにより、図7(b)において点線で示される第2の近似曲線が算出される。関数近似する際、第3の領域には節点はなく、第4の領域の複数の節点のみを用いて関数近似を行い、かつ関数近似に際して行う最小二乗法で用いる第4の領域の重み係数を1とし、第3の領域の重み係数を0.01として処理が行われる。このように背景成分2を算出する際、第1の重み係数を小さくし、かつ第3の領域に節点を定めないのは、第4の領域における変位データを主に用いて背景成分2を算出するためである。第4の領域では、トレッド部の接地による変形は小さくかつその変形は周上で滑らかに変化するため、タイヤの変形量は周上で小さく、その変化も極めて小さい。これに対して、第3の領域では、タイヤのトレッド部は接地変形に基づいて大きく変位しかつ急激に変化する。このため接地変形に基づく変形量は周上で大きくかつ急激に変化する。すなわち、第4の領域におけるトレッド部の変形量は第3の変形量と対比して概略一定を示す。これより、第4の領域の2階積分により得られた変位データを主に用いて第2の近似曲線を算出することで、第4の領域のみならず、路面との接地領域を含む第3の領域におけるタイヤの転動中の変形量を精度よく求めることができる。
図7(b)には、第4の領域の変位データを主に用いて算出された第2の近似曲線が点線で示されている。第4の領域では、第2の近似曲線は変位データ(実線)と略一致している。
そして、背景成分2として算出された第2の近似曲線を、ステップS110で算出された変位データから差し引き、トレッド部の接地変形に基づく変形量の周上の分布が算出される(ステップS112)。
図7(c)は、図7(b)に示す変位信号(実線)から第2の近似曲線(点線)を差し引くことにより算出される、トレッド部の接地変形に基づく変形量の分布を示している。図7(c)は、トレッド部上の所定の測定位置が周上を回転して変位するときの3回転分の変形量の分布(3回の接地)を示している。接地のたびに変形量が変化していることが見られる。このような方法により算出される変形量は、タイヤの有限要素モデルを用いてシミュレーションを行ったときの変形量と精度良く一致する。
そして、図7(c)に示すトレッド部における変形量の時系列データについて時間に関して2階微分を行うことにより、図6(d)に示す加速度からノイズ成分が除去された、トレッド部の変形量に対応した加速度の時系列データ、すなわち、トレッド部の接地変形に基づく、ノイズ成分を含まない加速度の時系列データ(後述する図8(a)参照)が算出される(ステップS114)。
そして、接地長算出部28において接地長が算出される(ステップS116)。図8(a)は、接地領域及び接地長を求める方法を示している。まず、ステップS114によって抽出されたタイヤのトレッド部の接地変形に基づく、ノイズ成分を含まない加速度の時系列データにおいて、加速度が急激に変化して0を横切る点が2つ求められる。次に、求められた2つの点に対応する変位データ中の位置が求められ、この位置を図8(a)に示すように接地前端及び接地後端の位置とする。このように加速度の時系列データが急激に大きく変化する部分を、接地前端及び接地後端と定めることができるのは、トレッド部が回転して接地領域に来るとき、または接地領域から出るとき、タイヤが急激に変形するからである。また、加速度の時系列データが0を横切る位置を明確に定めることができる。
なお、図8(a)中の下のグラフは、タイヤのラジアル方向及び周方向で表される極座標系から、タイヤの上下方向、前後方向で表される直交座標系に変えて書き表したグラフであり、接地により変形したタイヤの変形形状を示すグラフである。このグラフ上において、接地前端と接地後端の位置を定めることにより接地長を評価することができる。
このような方法により算出される接地長は、タイヤの有限要素モデルを用いてシミュレーションを行ったときの接地長と精度良く一致する。
また、図8(a)に示す方法に変えて、図8(b)に示す方法により接地領域及び接地長を求めることもできる。具体的には、図8(b)は、タイヤの接地中心位置を原点としたときの、タイヤの前後方向の位置をタイヤのトレッド部の外径Rで除算して規格化するとともに、タイヤの上下方向の位置を外径Rで除算して規格化して、タイヤの変形形状を表したグラフである。図8(b)に示されるようにタイヤの変形形状における、上下方向の最下点から上方向に一定距離δ離れた直線を横切る位置を接地前端に対応する規格化位置及び接地後端に対応する規格化位置とする。この規格化位置をそれぞれ求め外径Rを乗算することにより接地前端及び接地後端の位置を求めることができ、これによりタイヤの接地領域及び接地長を求めることができる。前端位置及び後端位置を定めるために用いる一定距離δは、例えば0.001〜0.005の範囲にあることが好ましい。また、最下点から上方向にトレッド部が離れたときの距離の自乗値が所定の値を横切る位置を接地前端及び接地後端とすることもできる。例えば、上記所定の値は、0.00002(cm2)〜0.00005(cm2)の範囲の値であり、好適には0.00004(cm2)が用いられる。静止したタイヤに負荷する荷重を変えて接地長を種々調べた測定結果と、上記方法により求めた接地長の結果は極めて高い相関性を示すことが確認されている。
図9は、上記方法により求められた接地領域及び接地長の例を示している。図9中の太線の部分が接地領域を示している。
このように、タイヤのトレッド部の変形量を、ラジアル方向、周方向及び幅方向のいずれの方向においても算出することができ、転動中のタイヤの変形形状や軌跡を得ることができる。また、トレッド部の内周面に複数の加速度センサを周上に設けることで、トレッド部の周上の測定点を同時に取得することもできる。さらに、タイヤの幅方向に複数の加速度センサを設け、幅方向の接地長や接地領域の分布を求めることで、転動中のタイヤの接地形状を取得することもできる。
図10は、上記図8(a)に示す方法で算出された、走行中の車両12がダブルレーンチェンジ走行を行なった際の、タイヤ接地長の時間変化を、車両12に異なる種類のタイヤA、タイヤBを装着させた場合それぞれについて示すグラフである。ここでのダブルレーンチェンジ走行とは、いわゆるエルクテストといわれるテスト方法と同様、所定の速度で直進中に、順方向に車両12を旋回(順旋回)させて障害物を回避した後、逆方向に車両12を旋回(逆旋回)させて再びもとのレーンに戻るといった走行である。すなわち、車両12の運転者は、車両12を所定の条件(例えば、いわゆるVDA−ELK試験や、「ISO−3888−2」に規定される車両)にのっとり、所定の速度で直進走行させ、一定時間だけ一方向(順方向)に所定角だけステアリングを回した後、短時間で逆方向に所定角だけステアリングを戻している。図8(a)は、車両12をダブルレーンチェンジ走行させた際の、上記逆旋回における内輪側の一方の車輪(前輪)のタイヤ(測定対象タイヤ)について、このタイヤの加速度から算出したタイヤ1回転毎の接地長を時系列で示している。
図10に示すように、タイヤAとタイヤBのいずれのタイヤを装着した場合についても、測定対象タイヤの接地長は同様な変化の形態を示している。すなわち、まず順方向旋回した際には、遠心力による車両12の重心移動の影響で、この順方向旋回の旋回外輪に対応する測定対象タイヤの接地長は増加する。この状態で急に逆旋回を行なうと、車両12にロール共振が誘発され、車両12の重心が一気に逆方向旋回の外側へ移動する。この影響で、逆旋回の旋回内輪に対応する測定対象タイヤにかかる荷重は減少し、さらには、この測定対象タイヤを備える車輪を支軸する車軸に持ち上げられて、測定対象タイヤは路面から浮き上がる。図10に示す例では、タイヤAを装着した場合、車両12の測定対象タイヤ(が装着された車輪)について、車輪の浮き上がりが生じている。本発明の車輪浮き上がり判定装置によれば、同一車両に異なるタイヤを装着した場合それぞれについて、同一走行条件で旋回走行することで、異なるタイヤそれぞれの耐転覆性能を比較評価することもできる。接地長算出部28では、このようなタイヤ1回転毎の接地長を、各車輪14a〜14dそれぞれのタイヤについて、車両12の走行中に連続して算出する。
このような接地長の情報は、浮き上がり判定部25に順次送られる。浮き上がり判定部25では、順次送られる各車輪14a〜14dそれぞれの車輪接地長(タイヤ接地長)と、予め記憶された基準判定値とを比較することで、各車輪14a〜14dそれぞれについて、車輪浮き上がりが発生しているか否かを判定する(ステップS118)。例えば、基準判定値を10mmとした場合(図10に一点鎖線で示す)、図10に示す例においては、タイヤAを装着した場合において、図中矢印で示す時点(詳しくは、図中矢印で示す接地長の情報が算出されて、浮き上がり判定部25による判定が行なわれた時点)で、車輪浮きが発生していると判定される。このような判定は、タイヤ1回転毎の接地長が算出されるたびに行なわれる。浮き上がり判定部25における判定は、タイヤ1回転毎の接地長が算出されるたびに行なわれることに限定されず、例えば、所定時間間隔でタイヤ1回転あたりの接地長を算出して、この所定時間間隔で判定してもよい。また、所定時間単位で連続して接地長を算出して、この所定時間単位で取得されたタイヤ接地長について平均値を求め、この平均値を用いて所定時間単位毎に車輪浮き上がりを判定してもよい。
また、所定時間単位で連続して接地長を算出して、この所定時間あたりの接地長の変化率を算出し、この変化率と予め定められた基準変化率とを比較することで、車輪の浮き上がりの発生を判定してもよい。この変化率は、現在の車輪の浮き上がり挙動の程度を表しており、この変化率を用いて判定することで、現在の車両走行条件下での車輪の路面からの浮き上がりの発生の可能性を判定することができる。例えば、図10に示す範囲Dでは、タイヤA、タイヤBを装着した場合双方において、接地長は急減に減少しており、接地長が減少する方向に変化率は大きくなっている。このような接地長が減少する方向の変化率の大きさは、車輪が浮き上がっていく方向への挙動の大きさを表している。例えば、図10に示すような時系列の接地長の情報において、接地長が減少する方向の変化率(負の方向の傾きの大きさ)を用い、この接地長が減少する方向の変化率の大きさが、所定の値よりも大きい場合(負の方向により傾いている場合)は、現在の車両走行条件下において、車輪が路面から浮き上がろうとしていると判定できる。本発明における判定方法や判定基準は特に限定されない。
浮き上がり判定部25において、車輪の浮き上がりが発生していると判定された場合(ステップS118において、YESと判定された場合)、浮き上がり判定部25から、この判定結果が警報装置34に送られるとともに、この判定結果と現在の接地長の情報とが制御手段30に送られる。警報装置34は、この判定結果を受けて、上述のように車両12の運転者に警報を発生する(ステップS120)。これとともに、制御手段30は、判定部25から送られた、車輪の浮き上がりが発生していることを示す判定結果の情報、および、どの車輪に車輪浮き上がりが発生しているかを知らせるための情報、さらに現在の車輪の接地長の情報(どの程度車輪が浮き上がっているか、または浮き上がりそうかの情報)を受けて、調整手段32a〜32dそれぞれの動作を制御する(ステップS122)。制御手段30は、各車輪の転動状態(転動速度など)や転動方向(舵角)を調整し、車両12の車輪の浮き上がりを抑制して車両12の転覆を防止する。警報装置34による警報の発生、および制御手段30および調整手段32による車両制御は、車輪浮き上がりの発生が解消されるまで(すなわち、ステップS118における判定がNOとなるまで、連続して行なわれる。浮き上がり判定部25において、車輪の浮き上がりが発生していないと判定された場合(ステップS118において、NOと判定された場合)、必要に応じて例えば警報装置34のディスプレイに、現在の各車輪の接地長の情報を表示するなどの処理を行うことができるが、基本的には、警報装置34や制御手段30に判定結果を送る必要はない。上記ステップS100〜ステップS122までの各処理は、車両12の走行が終了するまで(ステップS124における判定結果がYESとなるまで、)繰り返し行なわれる。
本発明の車輪浮き上がり状態判定方法、および車両転覆回避方法は以上のように行なわれる。
次に、本発明の車両耐転覆性評価装置、および車両耐転覆性評価方法について詳細に説明する。
図11は、本発明の車両耐転覆性評価装置の一例である、車両耐転覆性評価装置システム50(システム50)について説明する概略構成図である。図11は、システム50によって、図1に示す車両12を測定対象車両として、この車両12の耐転覆性を測定する場合の例を示す。システム50は、システム10と同様、4つの車輪14a〜14dにそれぞれ備えられた、センサユニット16a〜16dを備えている。システム50は、このセンサユニットに加え、センサユニット16a〜16dから送信された無線信号を受信して、各車輪の変形加速度情報から各車輪の接地長を算出して、この接地長に基づき測定対象車両の耐転覆性を評価する評価手段60と、評価手段60における計算結果や評価結果を表示出力するディスプレイ36とを備えている。システム50(センサユニット16、評価手段60、およびディスプレイ36)は、車両12から取り外して種々の車両に設置可能となっている。システム50は、測定対象車両に設置されることで、この測定対象車両に対して例えば上述のエルクテストを実施した際の、測定対象車両の各車輪の路面への接地状態を表す評価値を算出し、この評価値に基づき、測定対象車両の耐転覆性能を評価するシステムである。
図12は、システム50の評価手段60の構成を示すブロック図である。図12に示す評価手段60は、受信機3と、増幅器(AMP)4と、接地長算出手段21と、評価部70と、CPU23と、メモリ27とを有する。評価手段60のうち、受信機3、増幅器(AMP)4、接地長算出手段21、CPU23、メモリ27については、図2に示すシステム10の判定手段20と同様の構成および機能を有する。これらの部位については、説明を省略し、以降、評価部70について説明する。評価部70は、接地長算出手段21において算出された、各車輪の接地長に基づき、車両12の耐転覆性能を評価する。具体的には、車両12を走行させて、車両走行速度を変更して上述のエルクテストを繰り返し実施した際の、各車両走行速度における上記逆旋回内輪側の車輪の接地長を算出する。そして、逆旋回内輪側の車輪の接地長の車両速度への回帰式を求め、この回帰式から逆旋回内輪側の車輪双方の接地長がゼロとなる(車輪が浮き上がる)最低速度(耐転覆限界速度)を算出して出力する。各車輪に設けられるセンサユニットは、実施するテストにおける走行条件が既知の場合は、この走行条件における逆旋回内輪側の前後輪にさえ設けていればよい。なお、車両の耐転覆性を示す評価は、このような評価に限定されない。例えば、特定の1つの走行条件における、逆旋回内輪側の車輪の接地長の情報を評価値とし、この評価値を評価結果として出力してもよい。評価部70による評価結果は、例えばディスプレイ36に表示出力される。
図13は、このようなシステム50にて行われる車両の耐転覆性評価方法を示すフローチャートである。図13に示す例では、上述の、車両走行速度を変更して上述のエルクテストを繰り返し実施し、各車両走行速度における逆旋回内輪側の車輪の接地長を算出することで、逆旋回内輪側の車輪双方の接地長がゼロとなる(車輪が浮き上がる)最低速度(耐転覆限界速度)を算出して出力する場合について説明する。まず、走行条件の設定が行なわれる(ステップS200)。走行条件としては、走行コース、走行時に運転者が車両に対して行なう運転操作の内容などの変更されない特定条件を設定するとともに、変更する車両速度の条件を種々設定する。走行条件としては、上述のエルクテストや公知のFishhook試験法などを適用すればよい。そして、ステップS200で設定された種々の車両走行速度のうち1つの走行速度が選択して設定され(ステップS202)、設定した走行速度で車両12を走行させる(ステップS204)。この際、上述の車浮き上がり状態の判定、および車両転覆回避と同様、車両走行中の各車輪14(少なくとも上記逆旋回内輪側の前後の車輪)について、時系列の車輪(タイヤ)の接地長を算出する。この接地長の算出(ステップS206〜ステップS220)は、図5に示す車浮き上がり状態の判定方法および車両転覆回避方法のステップS100〜S116と同様に行なわれる。ステップS206〜ステップS220については、説明を省略する。
次に、評価部70が、算出された時系列の接地長から、走行中の最低接地長を抽出し、この最低接地長の値とステップS202において設定された車両走行速度とを対応付けて、メモリ23に記憶する。図10で説明したように、逆旋回によって車両12の重心が大きく外側に移動したタイミングで、逆旋回内輪側の接地長は最低となる。評価部70は、このようなタイミングでの逆旋回内輪側の前後の車輪それぞれにおける接地長を車両走行速度と対応づけてメモリ27に記憶する。これら走行条件の設定(ステップS202)から接地長の記憶(ステップS222)までの一連の処理は、ステップS200において定められた走行速度条件での車両走行が全て終了するまで(ステップS224における判定結果がYESになるまで)繰り返し行なわれ、メモリ23には、複数の走行速度条件下での最低接地長と、それぞれの最低接地長が算出された際の車両12の走行速度が記憶される。図14は、このようにして算出した、車両走行速度と逆旋回内輪側のうち前輪における最低接地長との対応関係を示すグラフである。評価部70では、このようなグラフを作成してディスプレイ36に表示することもできる。図14に示すように、車両走行速度の増加とともに、逆旋回内輪側の最低接地長が短くなっており、車両走行速度の増加とともに、逆旋回内輪側の車輪はより浮き上がりやすくなっていることがわかる。このような測定結果は、実際の車両における挙動と一致する。
評価部70では、メモリ32に記憶された、複数の最低接地長とそれぞれの最低接地長が算出された際の車両12の走行速度との対応関係から、逆旋回内輪側の車輪の最低接地長の車両走行速度への回帰式(図14に破線で示す回帰曲線を表す回帰式)を求める。評価部70は、車両12の逆旋回内輪側の前後の車輪それぞれについて、この回帰式を求める(ステップS226)。そして、この回帰式から、車両12の逆旋回内輪側の前後の車輪双方が、最低接地長が0(ゼロ)となる際の車両走行速度を導出する(ステップS228)。例えば、図14に示す前輪のみの場合、図中の矢印の位置に示す速度(約56km/h)が、この走行条件下での、車両12の逆旋回内輪側の前輪の最低車輪浮き速度となっている。このような最低車輪浮き速度を、逆旋回内輪側の前後双方の車輪について算出し、前後双方の車輪が浮き上がる際の速度を耐転覆限界速度として導出する。評価部70は、このように導出した耐転覆限界速度を、ディスプレイ36に表示出力する(ステップS230)。この際、必要に応じて、図14に示すようなグラフも出力すればよい。
本発明の耐転覆性評価方法によれば、このように、測定対象車両の車輪を実際に浮き上がらせることなく、逆旋回内輪側の車輪の浮き上がり挙動を表す接地長を高精度に算出することができる。そして、このような情報に基づき、測定対象車両の車輪を実際に浮き上がらせることなく、各走行速度条件下での逆旋回内輪側の車輪の浮き上がり挙動を精度良く把握することができる。これにより、測定対象車両の耐転覆性能を定量的に表す、特定条件下での転覆限界速度を、安全かつ高精度に導出することができる。
本発明の耐転覆性評価方法は以上のように行なわれる。
以上、本発明の車輪浮き上がり状態判定装置、車両転覆回避装置、車両耐転覆性評価装置、車浮き上がり状態判定方法、車両転覆回避方法、および車両耐転覆性評価方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
本発明の車輪浮き上がり状態判定装置および車両転覆回避装置の一例である、車両転覆回避システムについて説明する概略構成図である。 図1に示す車両転覆回避システムに備えられた判定手段の構成を示すブロック図である。 (a)および(b)は、本発明における、加速度センサのタイヤへの設置位置の一例について説明する図である。 (a)〜(d)は、本発明における、加速度センサのタイヤへの設置位置の他の例についてそれぞれ説明する図である。 本発明の車輪浮き上がり状態判定方法、および車両転覆回避方法の一例を示すフローチャートである。 (a)〜(d)は、本発明の車輪浮き上がり状態判定方法、および車両転覆回避方法で得られる信号波形を示すグラフである。 (a)〜(c)は、本発明の車輪浮き上がり状態判定方法、および車両転覆回避方法で得られる信号波形を示すグラフである。 (a)及び(b)は、本発明の車輪浮き上がり状態判定方法、および車両転覆回避方法で行われる接地長の算出方法を説明する図である。 本発明の車輪浮き上がり状態判定方法、および車両転覆回避方法で算出される接地長の一例を示す図である。 図8(a)に示す方法で算出された、特定走行条件におけるタイヤ接地長の時間変化の一例を示すグラフである。 本発明の車両耐転覆性評価装置の一例である、車両耐転覆性評価システムについて説明する概略構成図である。 図11に示す車両耐転覆性評価システムに備えられた評価手段の構成を示すブロック図である。 本発明の車両耐転覆性評価方法の一例を示すフローチャートである。 本発明の車両耐転覆性評価方法において生成された、車両走行速度とタイヤの最低接地長との対応関係を示すグラフである。
符号の説明
2 加速度センサ
3 受信機
4 増幅器(AMP)
10 車両転覆回避システム
12 車両
14a〜14d 車輪
15 送信機
16a〜16d センサユニット
20 判定手段
21 接地長算出手段
22 データ取得部
23 CPU
24 信号処理部
26 変形量算出部
25 浮き上がり判定部
27 メモリ
28 接地長算出部
32 調整手段
34 警報装置
36 ディスプレイ
50 車両耐転覆性評価装置システム
60 評価手段

Claims (16)

  1. タイヤが装着された車輪を備える車両について、この車両が路面を走行する際の車輪浮き上がり状態を判定する車輪浮き上がり状態判定装置であって、
    前記タイヤの所定部位に配置されて、前記車両が路面を走行する際、転動中のタイヤが前記路面から外力を受けることで発生する、前記所定部位の加速度を計測する加速度センサと、
    前記加速度センサで計測された、前記所定部位の加速度データを用いて、前記車輪の前記路面への接地状態を表す接地量評価値を算出する評価値算出部と、
    前記接地量評価値に基づき、前記車輪の路面からの浮き上がり状態を判定する判定手段とを有し、
    前記評価値算出部は、前記タイヤの変形に基づく時系列の加速度データを用いて、前記タイヤの変形に基づく加速度の時系列データに対して2階の時間積分を行って変位データを求めることにより、タイヤの所定部位における変形量を算出して、このタイヤの所定部位における変形量を用いて前記接地量評価値を算出することを特徴とする車輪浮き上がり状態判定装置。
  2. 前記加速度センサは、前記タイヤの赤道面よりも車両内側領域に配置されていることを特徴とする請求項1に記載の車輪浮き上がり状態判定装置。
  3. 前記加速度センサは、前記車両の停止状態での前記タイヤの接地幅をWとした際、前記赤道面から0.2Wだけ車両の内側方向に離間した地点を通る前記赤道面に平行な第1の平面から、前記赤道面から0.5Wだけ車両の内側方向に離間した地点を通る前記赤道面に平行な第2の平面に至る範囲内に配置されていることを特徴とする請求項2に記載の車輪浮き上がり状態判定装置。
  4. 前記加速度センサは、前記所定部位の前記加速度を時系列に連続して計測し、
    前記評価値算出部は、この時系列の加速度の計測データから、タイヤの変形に基づく時系列の加速度データを抽出して、このタイヤの変形に基づく時系列の加速度データを用いて前記接地量評価値を算出することを特徴とする請求項1〜3のいずれか一項に記載の車輪浮き上がり状態判定装置。
  5. 前記加速度の計測データは、タイヤの周方向に対して直交するラジアル方向の加速度のデータ及びタイヤの周方向の加速度のデータの少なくとも一方のデータであり、さらに、前記タイヤの所定部位の変形量は、タイヤのラジアル方向及び周方向の変形量、若しくはラジアル方向の変形量であり、
    前記評価値算出部は、さらに、前記接地量評価値として、この変形量から前記タイヤの転動中の接地長を算出することを特徴とする請求項1〜4のいずれか一項に記載の車輪浮き上がり状態判定装置。
  6. 前記判定手段は、前記接地量評価値と予め定められた判定基準値とを比較することで、前記車輪の路面からの浮き上がり状態を判定することを特徴とする請求項1〜5のいずれか一項に記載の車輪浮き上がり状態判定装置。
  7. 前記判定手段は、現在の前記接地量評価値と予め定められた判定基準値とを比較することで、前記車輪が現在、前記路面から浮き上がっているか否かを判定することを特徴とする請求項6に記載の車輪浮き上がり状態判定装置。
  8. 前記判定手段は、前記接地量評価値の変化率を算出し、この接地量評価値の変化率と予め定められた判定基準値とを比較することで、現在の車両走行条件下での、前記車輪の前記路面からの浮き上がりの発生の可能性の有無を判定することを特徴とする請求項6に記載の車輪浮き上がり状態判定装置。
  9. さらに、前記判定手段による判定結果を、車両を運転するドライバに報知する報知手段を備えることを特徴とする請求項1〜8のいずれか一項に記載の車輪浮き上がり状態判定装置。
  10. 前記車両は、少なくとも4輪以上の車輪が設けられた自動車車両であり、
    前記加速度センサは、前記自動車車両の少なくとも1つの車軸線上に備えられた左右の車輪それぞれのタイヤに配置されて、転動中のタイヤの所定部位の加速度を計測し、
    前記判定手段は、前記左右の車輪それぞれについて算出された前記接地量評価値それぞれを用い、前記左右の車輪それぞれについて、前記車輪の路面からの浮き上がり状態を判定することを特徴とする請求項1〜9のいずれか一項に記載の車輪浮き上がり状態判定装置。
  11. 請求項10に記載の車輪浮き上がり状態判定装置を備えて構成される、車両転覆回避装置であって、
    前記車両に配備された、前記左右の車輪それぞれの転動状態または転動方向を調整する調整手段と、
    前記調整手段の動作を制御する制御手段とを備え、
    前記制御手段は、前記調整手段の動作を制御することで、前記車輪浮き上がり状態判定装置による判定結果に応じて、前記左右の車輪のうち、少なくとも前記車輪の路面からの浮き上がりが小さい方の車輪について、前記転動状態または転動方向のいずれか一方を調整し、前記車両の転覆を回避することを特徴とする車両転覆回避装置。
  12. 路面を走行する少なくとも4輪以上の車輪が設けられた自動車車両について、この車両にロール共振を生じさせる特定走行条件で旋回走行させた際の、前記車両の耐転覆性を評価する装置であって、
    前記自動車車両の複数の車輪のうち、少なくとも、前記ロール共振が生じた状態での旋回内輪側に対応する複数の車輪について、これら旋回内輪側の車輪それぞれを構成する各タイヤの所定部位に配置されて、前記車両が旋回走行する際、転動中のタイヤが前記路面から外力を受けることで発生する、前記所定部位の加速度を計測する加速度センサと、
    前記加速度の計測データを用いて、前記旋回走行中の、前記旋回内輪側の各車輪の前記路面への接地状態を表す接地量評価値をそれぞれ算出する評価値算出部と、
    前記接地量評価値に基づき、前記車両が特定走行条件で旋回走行する際の、前記車両の耐転覆性を評価する評価部とを有し、
    前記加速度センサは、前記所定部位の前記加速度を時系列に連続して取得し、
    前記評価値算出部は、時系列の加速度の計測データから、タイヤの変形に基づく時系列の加速度データを抽出し、このタイヤの変形に基づく加速度の時系列データに対して2階の時間積分を行って変位データを求めることにより、タイヤの所定部位における変形量を算出して、さらに、この変形量から、前記接地量評価値として前記タイヤの転動中の接地長を算出することを特徴とする車両耐転覆性評価装置。
  13. さらに、それぞれ異なる車両走行速度で、前記車両が特定走路を旋回走行した際それぞれの前記タイヤの転動中の接地長を記憶する記憶手段を備え、
    前記評価部は、前記記憶手段に記憶された、各車両走行速度での前記タイヤの転動中の接地長を呼び出し、前記タイヤの転動中の接地長の前記車両走行速度への回帰式を求め、この回帰式に基づき、前記タイヤの転動中の接地長がゼロとなる際の前記車両走行速度を求めることで、前記車両の耐転覆性を評価することを特徴とする請求項12に記載の車両耐転覆性評価装置。
  14. タイヤが装着された車輪を備える車両について、この車両が路面を走行する際の車輪浮き上がり状態を判定する車輪浮き上がり状態判定方法であって、
    データ取得手段が、前記車両が路面を走行する際、転動中のタイヤが前記路面から外力を受けることで発生する、前記タイヤの所定部位の加速度データを取得するデータ取得ステップと、
    評価値算出手段が、前記所定部位の加速度データを用いて、前記車輪の前記路面への接地状態を表す接地量評価値を算出する評価値算出ステップと、
    判定手段が、前記接地量評価値に基づき、前記車輪の路面からの浮き上がり状態を判定する判定ステップとを有し、
    前記評価値算出ステップでは、前記評価値算出手段が、前記タイヤの変形に基づく時系列の加速度データを用いて、前記タイヤの変形に基づく加速度の時系列データに対して2階の時間積分を行って変位データを求めることにより、タイヤの所定部位における変形量を算出して、このタイヤの所定部位における変形量を用いて前記接地量評価値を算出することを特徴とする車輪浮き上がり状態判定方法。
  15. 路面を走行する少なくとも4輪以上の車輪が設けられた、自動車車両の転覆を回避する方法であって、
    データ取得手段が、走行中の前記自動車車両の、少なくとも1つの車軸線上に備えられた左右の車輪それぞれについて、転動中のタイヤの所定部位の加速度の計測データを取得するデータ取得ステップと、
    評価値算出手段が、前記加速度の計測データを用いて、前記左右の車輪それぞれの、前記路面への接地状態を表す接地量評価値を算出する評価値算出ステップと、
    判定手段が、前記接地量評価値に基づき、前記左右の車輪それぞれの、前記路面からの浮き上がり状態を判定する判定ステップと、
    調整手段が、前記判定結果に応じて、前記左右の車輪それぞれの転動状態または転動方向を調整する調整ステップとを有し、
    前記調整ステップでは、前記調整手段が、前記判定結果に応じて、前記左右の車輪の前記転動状態または転動方向のいずれか一方を調整することで、前記車両の転覆を回避し、
    前記評価値算出ステップでは、前記評価値算出手段が、時系列の加速度の計測データから、タイヤの変形に基づく時系列の加速度データを抽出し、このタイヤの変形に基づく加速度の時系列データに対して2階の時間積分を行って変位データを求めることにより、タイヤの所定部位における変形量を算出して、さらに、この変形量から、前記接地量評価値として前記タイヤの転動中の接地長を算出することを特徴とする車両転覆回避方法。
  16. 路面を走行する少なくとも4輪以上の車輪が設けられた自動車車両について、この車両にロール共振を生じさせる特定走行条件で旋回走行させた際の、前記車両の耐転覆性を評価する方法であって、
    データ取得手段が、前記自動車車両の複数の車輪のうち、少なくとも、前記ロール共振が生じた状態での旋回内輪側に対応する複数の車輪について、これら旋回内輪側の車輪それぞれを構成する各タイヤの所定部位に配置されて、前記車両が旋回走行する際、転動中のタイヤが前記路面から外力を受けることで発生する、前記所定部位の加速度の計測データを取得するデータ取得ステップと、
    評価値算出手段が、前記加速度の計測データを用いて、前記旋回走行中の、前記旋回内輪側の各車輪の前記路面への接地状態を表す接地量評価値をそれぞれ算出する評価値算出ステップと、
    評価手段が、前記接地量評価値に基づき、前記車両が特定走行条件で旋回走行する際の、前記車両の耐転覆性を評価する評価ステップとを有し、
    前記評価値算出ステップでは、前記評価値算出手段が、時系列の加速度の計測データから、タイヤの変形に基づく時系列の加速度データを抽出し、このタイヤの変形に基づく加速度の時系列データに対して2階の時間積分を行って変位データを求めることにより、タイヤの所定部位における変形量を算出して、さらに、この変形量から、前記接地量評価値として前記タイヤの転動中の接地長を算出することを特徴とする車両耐転覆性評価方法。
JP2005077590A 2005-03-17 2005-03-17 車輪浮き上がり状態判定装置、車両転覆回避装置、車両耐転覆性評価装置、車輪浮き上がり状態判定方法、車両転覆回避方法、および車両耐転覆性評価方法 Expired - Fee Related JP4635667B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005077590A JP4635667B2 (ja) 2005-03-17 2005-03-17 車輪浮き上がり状態判定装置、車両転覆回避装置、車両耐転覆性評価装置、車輪浮き上がり状態判定方法、車両転覆回避方法、および車両耐転覆性評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005077590A JP4635667B2 (ja) 2005-03-17 2005-03-17 車輪浮き上がり状態判定装置、車両転覆回避装置、車両耐転覆性評価装置、車輪浮き上がり状態判定方法、車両転覆回避方法、および車両耐転覆性評価方法

Publications (2)

Publication Number Publication Date
JP2006256503A JP2006256503A (ja) 2006-09-28
JP4635667B2 true JP4635667B2 (ja) 2011-02-23

Family

ID=37096190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005077590A Expired - Fee Related JP4635667B2 (ja) 2005-03-17 2005-03-17 車輪浮き上がり状態判定装置、車両転覆回避装置、車両耐転覆性評価装置、車輪浮き上がり状態判定方法、車両転覆回避方法、および車両耐転覆性評価方法

Country Status (1)

Country Link
JP (1) JP4635667B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759416B1 (en) 2017-10-18 2020-09-01 Zoox, Inc. Independent control of vehicle wheels
US10821981B1 (en) 2017-10-18 2020-11-03 Zoox, Inc. Independent control of vehicle wheels
US11136021B1 (en) * 2017-10-18 2021-10-05 Zoox, Inc. Independent control of vehicle wheels

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4195054B2 (ja) 2006-11-24 2008-12-10 横浜ゴム株式会社 ブレーキ制御方法およびブレーキ制御装置
JP4453755B2 (ja) 2007-12-26 2010-04-21 横浜ゴム株式会社 車輪の姿勢制御方法及び車輪の姿勢制御装置
KR101674211B1 (ko) * 2010-06-24 2016-11-08 현대모비스 주식회사 차량의 롤오버 판단 방법
JP6561744B2 (ja) * 2015-10-02 2019-08-21 セイコーエプソン株式会社 演算装置、演算方法、演算システム、プログラム、および計測装置
CN114001703B (zh) * 2021-10-09 2023-07-28 四川轻化工大学 一种滑坡变形数据实时过滤方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340863A (ja) * 2001-05-15 2002-11-27 Toyota Central Res & Dev Lab Inc 路面判定装置及びシステム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340863A (ja) * 2001-05-15 2002-11-27 Toyota Central Res & Dev Lab Inc 路面判定装置及びシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759416B1 (en) 2017-10-18 2020-09-01 Zoox, Inc. Independent control of vehicle wheels
US10821981B1 (en) 2017-10-18 2020-11-03 Zoox, Inc. Independent control of vehicle wheels
US11136021B1 (en) * 2017-10-18 2021-10-05 Zoox, Inc. Independent control of vehicle wheels
US20210402984A1 (en) * 2017-10-18 2021-12-30 Zoox, Inc. Independent control of vehicle wheels

Also Published As

Publication number Publication date
JP2006256503A (ja) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4635667B2 (ja) 車輪浮き上がり状態判定装置、車両転覆回避装置、車両耐転覆性評価装置、車輪浮き上がり状態判定方法、車両転覆回避方法、および車両耐転覆性評価方法
US10744827B2 (en) Tire pressure monitoring systems and methods
JP4091083B2 (ja) タイヤ内部故障検知装置およびタイヤ内部故障検知方法
EP3659831B1 (en) Tire load estimation system and method
JP4055658B2 (ja) 車両状態監視装置および接地面状態量取得装置
JP4108740B2 (ja) 車輪に発生するコーナリングフォースの大きさを算出する方法および装置
US7707876B2 (en) Method for estimating tire force acting on rolling tire
CN101281096B (zh) 用于估算作用在滚动轮胎上的轮胎受力的方法
JP2007153034A (ja) タイヤ摩耗状態判定装置
JPH08164720A (ja) タイヤ空気圧低下検出方法およびタイヤ空気圧低下検出装置
JP2009292283A (ja) タイヤの姿勢制御装置および方法
JP5023188B2 (ja) タイヤ内圧低下検出方法及び装置、並びにタイヤ内圧低下検出プログラム
JP3948678B2 (ja) 車輪の旋回安定性評価方法および車輪の旋回安定性評価装置
JPH10297228A (ja) タイヤ空気圧警報装置
JP4030572B2 (ja) 車両制動距離予測装置および車両制動距離予測方法
JP2001524049A (ja) 横断方向振動信号を発生する安全インサートおよび安全インサート上でのタイヤの支持を検出する装置
JP4487130B2 (ja) 車輪横力算出方法および車輪横力算出装置
JP7133458B2 (ja) 音源探査方法
JP5265145B2 (ja) タイヤ内圧低下検出方法及び装置、並びにタイヤ内圧低下検出プログラム
JP2003146037A (ja) タイヤ空気圧低下検出方法および装置、ならびにタイヤ減圧判定のプログラム
US20220024266A1 (en) Tire deflection sensing system
JP4317837B2 (ja) 車両耐転覆性能評価方法および車両耐転覆性能評価装置
JPWO2019107297A1 (ja) タイヤ組み立て体及びタイヤ変形状態判定システム
JP5555486B2 (ja) タイヤ内圧低下検出方法及び装置、並びにタイヤ内圧低下検出プログラム
JP3980835B2 (ja) タイヤ識別装置およびその方法、ならびに該装置を用いたタイヤ空気圧低下警報装置およびその方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4635667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees