JP4632017B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4632017B2
JP4632017B2 JP2003348133A JP2003348133A JP4632017B2 JP 4632017 B2 JP4632017 B2 JP 4632017B2 JP 2003348133 A JP2003348133 A JP 2003348133A JP 2003348133 A JP2003348133 A JP 2003348133A JP 4632017 B2 JP4632017 B2 JP 4632017B2
Authority
JP
Japan
Prior art keywords
battery
lithium
electrolyte secondary
examples
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003348133A
Other languages
Japanese (ja)
Other versions
JP2005116306A (en
Inventor
小東  朋子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2003348133A priority Critical patent/JP4632017B2/en
Publication of JP2005116306A publication Critical patent/JP2005116306A/en
Application granted granted Critical
Publication of JP4632017B2 publication Critical patent/JP4632017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極活物質がリチウム・ニッケル・マンガン複合酸化物である非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery in which a positive electrode active material is a lithium / nickel / manganese composite oxide.

近年、電気機器の携帯化・小型化が進むに伴い、内蔵される電池として、高エネルギー密度でかつ軽量である非水電解質二次電池が適用されるようになった。現在、市販されている非水電解質二次電池の正極活物質としては、主にリチウムコバルト酸化物(LiCoO)が用いられている。しかしながら、今後、さらなる生産量の増加や、電池の大型化にともなって、材料コスト、コバルトの埋蔵量、および環境規制の問題が深刻になる恐れがある。 In recent years, as electric devices have become more portable and smaller, non-aqueous electrolyte secondary batteries having high energy density and light weight have been applied as built-in batteries. At present, lithium cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material for non-aqueous electrolyte secondary batteries that are commercially available. However, in the future, with further increase in production and battery size, material cost, cobalt reserves and environmental regulations may become serious.

そこでリチウムコバルト酸化物に置き換わる正極活物質として、リチウムニッケル酸化物(LiNiO)やリチウムマンガン酸化物(LiMn)などが提案されている。その中でも、リチウムマンガン酸化物は低コストおよび低公害性の面で期待されている。 Accordingly, lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), and the like have been proposed as positive electrode active materials that replace lithium cobalt oxide. Among them, lithium manganese oxide is expected in terms of low cost and low pollution.

最近、特許文献1で報告されているように、リチウムマンガン酸化物のMnの一部をNiで置換したリチウム・ニッケル・マンガン複合酸化物(LiNi0.5Mn1.5)が見出された。このリチウム・ニッケル・マンガン複合酸化物を正極に備えた非水電解質二次電池は5V級の高電圧電池となることから、ポータブルコンピュータ・電動工具・HEVおよびEVなどの組電池としての用途において、直列に接続するセル数を少なくできるという利点がある。 Recently, as reported in Patent Document 1, a lithium-nickel-manganese composite oxide (LiNi 0.5 Mn 1.5 O 4 ) in which a part of Mn of lithium manganese oxide is replaced with Ni was found. It was done. Since the non-aqueous electrolyte secondary battery equipped with the lithium / nickel / manganese composite oxide on the positive electrode is a 5V class high voltage battery, it can be used as a battery pack for portable computers, power tools, HEVs, EVs, etc. There is an advantage that the number of cells connected in series can be reduced.

リチウム・ニッケル・マンガン複合酸化物であるLiMn1.5Ni0.5の充放電曲線は、非特許文献1に示されている。 A charge / discharge curve of LiMn 1.5 Ni 0.5 O 4 , which is a lithium / nickel / manganese composite oxide, is shown in Non-Patent Document 1.

また特許文献2では、LiCoOやLiMn等の4V級正極活物質を用いた非水電解質二次電池において、電解液溶媒として環状カーボネートと鎖状カーボネートを混合して用い、電解液にホスファゼン誘導体を20〜90vol%加えることにより、自己消化性あるいは難燃性の電解液とし、電池の安全性を高める技術が開示されている。 Further, in Patent Document 2, in a non-aqueous electrolyte secondary battery using a 4V class positive electrode active material such as LiCoO 2 or LiMn 2 O 4 , a cyclic carbonate and a chain carbonate are mixed and used as an electrolyte solvent. A technique is disclosed in which a phosphazene derivative is added in an amount of 20 to 90% by volume to obtain a self-digestible or flame-retardant electrolyte and to increase the safety of the battery.

特表2000−515672号公報JP 2000-515672 A 特開2001−217001号公報JP 2001-217011 A 太田ら、第41回電池討論会講演要旨集、2D16、P452(2000)Ota et al., 41st Battery Discussion Meeting, 2D16, P452 (2000)

ところが、このリチウム・ニッケル・マンガン複合酸化物を含む正極を備えた5V級非水電解質二次電池は、リチウムコバルト酸化物やリチウムマンガン酸化物を用いた正極を備えた非水電解質二次電池とは異なり、作動電圧が高いために、高温だけでなく室温状態においても電池の充電時に電解質に含まれる非水溶媒が酸化分解されて、それに伴いガスが発生し、電池が膨れるといった問題があり、実用化が困難になっている。   However, a 5V class non-aqueous electrolyte secondary battery provided with a positive electrode containing this lithium / nickel / manganese composite oxide is a non-aqueous electrolyte secondary battery provided with a positive electrode using lithium cobalt oxide or lithium manganese oxide. In contrast, since the operating voltage is high, the nonaqueous solvent contained in the electrolyte is oxidized and decomposed at the time of charging the battery not only at a high temperature but also at room temperature. Practical application has become difficult.

本発明は、この5V級非水電解質二次電池の実用化を阻む問題点を、系統的に多くの実験によって解決したもので、その目的は、正極にリチウム・ニッケル・マンガン複合酸化物を備えた非水電解質二次電池の電解質組成を最適化することにより、高電圧非水電解質二次電池の膨張率を5%以下に抑制することにある。ここで述べる膨張率とは、電池の厚さ変化を示しており、初期電池厚さをTs、試験後の電池厚さをTeとした時、次式で求められる。   The present invention has solved the problem that hinders the practical application of this 5V class non-aqueous electrolyte secondary battery by systematic many experiments, and its purpose is to provide a lithium / nickel / manganese composite oxide on the positive electrode. In addition, by optimizing the electrolyte composition of the non-aqueous electrolyte secondary battery, the expansion coefficient of the high-voltage non-aqueous electrolyte secondary battery is suppressed to 5% or less. The expansion coefficient described here indicates a change in the thickness of the battery. When the initial battery thickness is Ts and the battery thickness after the test is Te, it is obtained by the following equation.

膨張率(%)=((Te−Ts)/Ts)×100   Expansion rate (%) = ((Te−Ts) / Ts) × 100

請求項1の発明は、正極活物質が一般式LiNiMn2−y4−δ(但し、0<x<1.1、0.45<y<0.55、0≦δ<0.4)で表されるリチウム・ニッケル・マンガン複合酸化物である非水電解質二次電池において、非水電解質が化1で示される一般式(1):

又は化2で示される一般式(2):

(ここで、R 1 およびR 2 はフッ素およびエトキシ基、nは3〜10の整数)
で表されるホスファゼン誘導体を0.1〜20質量%含むことを特徴とする非水電解質二次電池。
According to the first aspect of the present invention, the positive electrode active material has the general formula Li x Ni y Mn 2-y O 4-δ (where 0 <x <1.1, 0.45 <y <0.55, 0 ≦ δ < In the non-aqueous electrolyte secondary battery that is a lithium-nickel-manganese composite oxide represented by 0.4), the non-aqueous electrolyte is represented by the general formula (1):

Or the general formula (2) shown in Chemical Formula 2:

(Where R 1 and R 2 are fluorine and ethoxy groups, n is an integer of 3 to 10)
The non-aqueous electrolyte secondary battery characterized by including 0.1-20 mass% of phosphazene derivatives represented by these.

本発明の構成によっては、ホスファゼン誘導体によって負極表面に安定な被膜状の物質が形成される。
Depending on the configuration of the present invention, a stable film-like substance is formed on the negative electrode surface by the phosphazene derivative.

その結果、5V級電池に特有の、正極における高電圧下での溶媒の酸化分解生成物が負極に移動し、負極上で還元反応し、ガスが発生するという現象を抑制することができ、電池の膨張率を5%以下に抑えた高電圧非水電解質二次電池を得ることができる。したがって、本発明の工業的価値は極めて大きい。   As a result, the phenomenon that the oxidative decomposition product of the solvent under the high voltage at the positive electrode moves to the negative electrode and undergoes a reduction reaction on the negative electrode, which is characteristic of the 5V class battery, can be suppressed, and the battery can be suppressed. A high-voltage nonaqueous electrolyte secondary battery in which the expansion rate of the battery is suppressed to 5% or less can be obtained. Therefore, the industrial value of the present invention is extremely large.

発明者は、5V級電池における、充放電サイクル後の電池膨れの問題を解決するため、正極にリチウム・ニッケル・マンガン複合酸化物を備えた電池を作製し、電池膨れのメカニズムを調査した。   In order to solve the problem of battery swelling after a charge / discharge cycle in a 5V class battery, the inventor fabricated a battery including a lithium / nickel / manganese composite oxide on the positive electrode and investigated the mechanism of battery swelling.

その結果、サイクル初期に、正極で溶媒が酸化分解されて生じた生成物が、負極上で還元されてガスを発生するために電池厚さが著しく増加することがわかった。また電池内でガスが存在する状態で充放電を繰り返すと、電流分布が不均一なために、極板の劣化が進行して、さらに電池厚さが増加することがわかった。ガス発生が主にサイクル初期に起こる理由は明らかになっていないが、正極での酸化分解反応により、充放電サイクルの進行にともない正極上に皮膜状の物質が形成されて、電解質との反応が抑制されたことが原因と考えられる。   As a result, it was found that the battery thickness was remarkably increased because the product produced by oxidative decomposition of the solvent at the positive electrode was reduced on the negative electrode to generate gas at the beginning of the cycle. It was also found that when charging and discharging were repeated in the presence of gas in the battery, the current distribution was non-uniform, so that the electrode plate deteriorated and the battery thickness further increased. The reason why gas generation occurs mainly at the beginning of the cycle is not clear, but due to the oxidative decomposition reaction at the positive electrode, a film-like substance is formed on the positive electrode as the charge / discharge cycle proceeds, and the reaction with the electrolyte does not occur. The cause is thought to be suppressed.

そこで、発明者は電池膨れの問題を解決すべく、電池膨れの原因となっているサイクル初期のガス発生を抑制することを目的に、電解質組成や電解質中への添加材の種類など鋭意検討をおこなった結果、非水電解質二次電池の電解質が、0.1〜20質量%のホスファゼン誘導体を含む場合に、電池膨れが著しく減少することがわかった。この原因は、完全に解明されていないが、次のように推測される。電解質にホスファゼン誘導体を0.1〜20質量%添加することで、電解質の耐酸化性が向上するとともに、負極表面に安定な被膜状の物質を形成し、正極で溶媒が酸化分解されて生じた生成物と負極との反応が抑制されたことが考えられる。   Therefore, in order to solve the problem of battery swelling, the inventor has intensively studied the electrolyte composition and the types of additives in the electrolyte with the aim of suppressing the gas generation at the beginning of the cycle that causes the battery swelling. As a result, it was found that when the electrolyte of the nonaqueous electrolyte secondary battery contains 0.1 to 20% by mass of a phosphazene derivative, battery swelling is significantly reduced. The cause of this is not completely elucidated, but is presumed as follows. The addition of 0.1 to 20% by mass of a phosphazene derivative to the electrolyte improved the oxidation resistance of the electrolyte, formed a stable film-like substance on the negative electrode surface, and was generated by oxidative decomposition of the solvent at the positive electrode. It is considered that the reaction between the product and the negative electrode was suppressed.

非水電解質中のホスファゼン誘導体の含有量を0.1〜20質量%とした理由としては、含有量が0.1%未満の場合、含有量が少ないために上記の効果が十分得られなかったこと、また、含有量が20%を超える場合、充放電サイクル後の電池厚さが著しく増加することが挙げられる。これは、ホスファゼン誘導体の含有量が20%を超えると、負極上に被膜状の物質が過剰に形成されて、負極の抵抗が大きくなり、リチウム電析を生じたことが原因と考えられる。したがって、非水電解質中のホスファゼン誘導体の含有量としては、0.1〜20質量%であることが望ましい。   The reason why the content of the phosphazene derivative in the nonaqueous electrolyte was 0.1 to 20% by mass was that the above effect was not sufficiently obtained when the content was less than 0.1% because the content was small. In addition, when the content exceeds 20%, the battery thickness after the charge / discharge cycle is remarkably increased. This is considered to be because when the content of the phosphazene derivative exceeds 20%, a film-like substance is excessively formed on the negative electrode, the resistance of the negative electrode is increased, and lithium electrodeposition is caused. Therefore, the content of the phosphazene derivative in the nonaqueous electrolyte is desirably 0.1 to 20% by mass.

本発明で用いるホスファゼン誘導体の種類としては、置換基としてフッ素およびアルコキシ基を有する以外には特に制限は無く、種々のホスファゼン誘導体を適宜使用できる。ホスファゼン誘導体としては、例えば、化1で示される一般式(1)で表される鎖状ホスファゼン誘導体、または化2で示される一般式(2)で表される環状ホスファゼン誘導体から選択される少なくとも1種を使用することができる。 The type of phosphazene derivative used in the present invention is not particularly limited except that it has fluorine and alkoxy groups as substituents , and various phosphazene derivatives can be used as appropriate. Examples of the phosphazene derivative include at least one selected from a chain phosphazene derivative represented by the general formula (1) represented by the chemical formula 1 or a cyclic phosphazene derivative represented by the general formula (2) represented by the chemical formula 2. Seeds can be used.

ただし、一般式(1)および(2)において、RおよびRは、一価の置換基またはハロゲン族元素を表す。nは、3〜10の整数を表す。ハロゲン族元素としては、フッ素、塩素、臭素などが挙げられる。なかでもフッ素が好ましく、本発明においてはRおよびRとしてフッ素を少なくとも1つ有するものとする。一価の置換基としては、水素原子、アルコキシ基、アルキル基、カルボキシル基、アシル基、アリール基などが挙げられる。なかでも、アルコキシ基が好ましい。前記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などや、メトキシエトキシ基などのアルコキシ置換アルコキシ基などが挙げられる。これらのなかでも、RおよびRとしてはメトキシ基、エトキシ基、メトキシエトキシ基が好ましい。本発明においては、R およびR としてエトキシ基を少なくともひとつ有するものとする。さらに上記の一価の置換基中の水素がフッ素などのハロゲン元素で置換されていることが好ましい。前記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などが挙げられる。前記アシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基などが挙げられる。前記アリール基としては、フェニル基、トリル基、ナフチル基などが挙げられる。 However, in General Formula (1) and (2), R 1 and R 2 represent a monovalent substituent or a halogen group element. n represents an integer of 3 to 10. Examples of the halogen group element include fluorine, chlorine, bromine and the like. Of these, fluorine is preferable, and in the present invention, R 1 and R 2 have at least one fluorine. Examples of the monovalent substituent include a hydrogen atom, an alkoxy group, an alkyl group, a carboxyl group, an acyl group, and an aryl group. Among them, the alkoxy group is not preferable. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group. Of these, R 1 and R 2 are preferably a methoxy group, an ethoxy group, or a methoxyethoxy group. In the present invention, R 1 and R 2 have at least one ethoxy group. Furthermore, it is preferable that hydrogen in the monovalent substituent is substituted with a halogen element such as fluorine. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, and valeryl group. Examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group.

本発明の非水電解質二次電池に用いる正極活物質が一般式LiNiMn2−y4−δ(但し、0<x<1.1、0.45<y<0.55、0≦δ<0.4)で表されるリチウム・ニッケル・マンガン複合酸化物は、4.5〜4.9V vs.Li/Liの範囲に放電電位平坦部をもつ。ここで「放電電位平坦部」とは、図1に示した、非特許文献1の453ページの図1に示されたLiMn1.5Ni0.5の充放電曲線の、放電曲線に見られる、約4.7V vs.Li/Liの電圧プラトーのように、放電容量(定電流放電の場合は時間)に対して放電電圧がほとんど変化しない部分を示す。 The positive electrode active material used for the non-aqueous electrolyte secondary battery of the present invention is represented by the general formula Li x Ni y Mn 2 -y O 4 -δ (where 0 <x <1.1, 0.45 <y <0.55, The lithium / nickel / manganese composite oxide represented by 0 ≦ δ <0.4) is 4.5 to 4.9 V vs. It has a discharge potential flat part in the range of Li / Li + . Here, the “discharge potential flat portion” refers to the discharge curve of the charge / discharge curve of LiMn 1.5 Ni 0.5 O 4 shown in FIG. 1 on page 453 of Non-Patent Document 1 shown in FIG. As seen, about 4.7V vs. A portion where the discharge voltage hardly changes with respect to the discharge capacity (time in the case of constant current discharge) like a voltage plateau of Li / Li + is shown.

本発明のリチウム・ニッケル・マンガン複合酸化物は、一般的には、例えば、リチウム源、マンガン源、ニッケル源となる化合物同士を混合して、焼成する固相法により合成することができるが、特許文献1に示されるようなゾルゲル法によっても合成することができる。   The lithium / nickel / manganese composite oxide of the present invention can be synthesized by, for example, a solid phase method in which, for example, a lithium source, a manganese source, and a nickel source are mixed and fired. It can also be synthesized by a sol-gel method as disclosed in Patent Document 1.

リチウム源としては、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウムなどが挙げられる。また、マンガン源としては、例えば、二酸化マンガン、酸化マンガン、水酸化マンガン、炭酸マンガン、硝酸マンガン、硫酸マンガン、シュウ酸マンガンなどが挙げられ、それらの中でも二酸化マンガンが特に好ましい。さらに、ニッケル源としては、例えば硝酸ニッケル、炭酸ニッケル、酸化ニッケルなどを挙げることができる。   Examples of the lithium source include lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, and lithium oxalate. Lithium phosphate, lithium pyruvate, lithium sulfate, lithium oxide and the like. Examples of the manganese source include manganese dioxide, manganese oxide, manganese hydroxide, manganese carbonate, manganese nitrate, manganese sulfate, and manganese oxalate. Among these, manganese dioxide is particularly preferable. Furthermore, examples of the nickel source include nickel nitrate, nickel carbonate, and nickel oxide.

また、本発明の正極活物質は、Ni、Mnの2つの遷移金属元素から構成されるが、発明の意図するところを変えずに、正極活物質が、Al、Ti、Fe、Nb、MoやW等の他の金属元素を含んで構成されてもよい。   Further, the positive electrode active material of the present invention is composed of two transition metal elements, Ni and Mn, but without changing the intention of the invention, the positive electrode active material is made of Al, Ti, Fe, Nb, Mo or the like. Other metal elements such as W may be included.

本発明の非水電解質二次電池に用いる負極材料としては、リチウムイオンを挿入・脱離することが可能な物質が用いられる。リチウムイオンを挿入・脱離することが可能な物質としては、黒鉛、非晶質炭素等の炭素材料、酸化物、窒化物、およびリチウム合金が例示される。リチウム合金としては例えばリチウムとアルミニウム、亜鉛、ビスマス、カドミウム、アンチモン、シリコン、鉛、錫等との合金を用いることができる。また、酸化物、窒化物およびリチウム合金は、種々の炭素材料と混合あるいは坦持させて用いることができる。   As the negative electrode material used in the nonaqueous electrolyte secondary battery of the present invention, a substance capable of inserting / extracting lithium ions is used. Examples of the substance capable of inserting / extracting lithium ions include carbon materials such as graphite and amorphous carbon, oxides, nitrides, and lithium alloys. As the lithium alloy, for example, an alloy of lithium and aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, or the like can be used. In addition, oxides, nitrides, and lithium alloys can be used by being mixed with or supported on various carbon materials.

本発明の非水電解質電池に用いるセパレータとしては、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリフッ化ビニリデンなどからなる微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものであっても良い。   As the separator used in the nonaqueous electrolyte battery of the present invention, a microporous membrane made of a polyolefin resin such as polyethylene or polypropylene, polyvinylidene fluoride, or the like is used, and a plurality of microporous membranes having different materials, weight average molecular weights and porosity May be laminated, or those microporous membranes may contain appropriate amounts of various plasticizers, antioxidants, flame retardants and other additives.

本発明の非水電解質電池に用いる電解液の有機溶媒には、特に制限はなく、例えばエーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物、ハロゲン化炭化水素類、エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系炭化水素類等を用いることができるが、これらのうちでもエーテル類、ケトン類、エステル類、ラクトン類、ハロゲン化炭化水素類、カーボネート類、スルホラン系炭化水素類が好ましい。   There are no particular limitations on the organic solvent of the electrolytic solution used in the nonaqueous electrolyte battery of the present invention. For example, ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, halogenated hydrocarbons, Esters, carbonates, nitro compounds, phosphate ester compounds, sulfolane hydrocarbons, etc. can be used, but among these ethers, ketones, esters, lactones, halogenated hydrocarbons, Carbonates and sulfolane hydrocarbons are preferred.

これらの例としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサン、アニソール、モノグライム、4−メチル−2−ペンタノン、酢酸エチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、1,2−ジクロロエタン、γ−ブチロラクトン、γ−バレロラクトン、ジメトキシエタン、ジエトキシエタン、メチルフォルメイト、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルチオホルムアミド、スルホラン、3−メチル−スルホラン、リン酸トリメチル、リン酸トリエチル、およびこれらの混合溶媒等を挙げることができるが、必ずしもこれらに限定されるものではない。好ましくはエチレンカーボネート、プロピレンカーボネート、メチルエチルカーボネート、およびジエチルカーボネート、ジメチルカーボネートのうち、1種または2種以上選択した混合物の有機溶媒である。   Examples of these include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,4-dioxane, anisole, monoglyme, 4-methyl-2-pentanone, ethyl acetate, methyl acetate, methyl propionate, ethyl propionate, 1, 2-dichloroethane, γ-butyrolactone, γ-valerolactone, dimethoxyethane, diethoxyethane, methyl formate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate, butylene carbonate, dimethylformamide, dimethyl Sulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, triethyl phosphate, and mixtures thereof Although a solvent etc. can be mentioned, it is not necessarily limited to these. Preferably, the organic solvent is selected from ethylene carbonate, propylene carbonate, methyl ethyl carbonate, diethyl carbonate, and dimethyl carbonate.

また、本発明に用いる電解質の溶質としては、特に制限はなく、種々の溶質を適宜使用できる。例えば、LiClO、LiBF、LiAsF、LiPF、LiCF(CF、LiCF(CF、LiCF(CF、LiCF(CF、LiCF(CF)、LiCF(C、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CCO)、LiI、LiAlCl、LiBCなどを単独でまたは2種以上を混合して使用することができる。なかでも、LiPFを使用することが好ましい。さらに、これらのリチウム塩濃度は、0.5〜2.0mol/dmとするのが好ましい。 Moreover, there is no restriction | limiting in particular as a solute of the electrolyte used for this invention, A various solute can be used suitably. For example, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF (CF 3 ) 5 , LiCF 2 (CF 3 ) 4 , LiCF 3 (CF 3 ) 3 , LiCF 4 (CF 3 ) 2 , LiCF 5 (CF 3 ), LiCF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (C 2 F 5 CO) 2 , LiI, LiAlCl 4 , LiBC 4 O 8 or the like can be used alone or in admixture of two or more. Of these, LiPF 6 is preferably used. Furthermore, the lithium salt concentration is preferably 0.5 to 2.0 mol / dm 3 .

また、上記電解質には固体またはゲル状のイオン伝導性電解質を用いることもできる。この場合、非水電解質電池の構成としては、正極、負極およびセパレータと有機または無機の固体電解質と上記非水電解液との組み合わせ、または正極、負極およびセパレータとしての有機または無機の固体電解質膜と上記非水電解液との組み合わせがあげられる。イオン伝導性電解質としては、ポリエチレンオキシド、ポリプロピレンオキサイド、ポリアクリロニトリルまたはポリエチレングリコールおよびこれらの誘導体などが挙げられる。   In addition, a solid or gel ion conductive electrolyte may be used as the electrolyte. In this case, the configuration of the nonaqueous electrolyte battery includes a combination of a positive electrode, a negative electrode, and a separator, an organic or inorganic solid electrolyte and the above nonaqueous electrolyte, or an organic or inorganic solid electrolyte membrane as the positive electrode, the negative electrode, and the separator. A combination with the non-aqueous electrolytic solution is mentioned. Examples of the ion conductive electrolyte include polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyethylene glycol, and derivatives thereof.

以下に本発明の実施例を示すが、これに限定されるものではない。   Although the Example of this invention is shown below, it is not limited to this.

はじめに、5V級正極活物質であるリチウム・ニッケル・マンガン複合酸化物を固相法により合成した。出発物質には水酸化リチウム一水和物、種々の性状の電解二酸化マンガン、硝酸ニッケルを用いた。これらの出発物質をそれぞれモル比でLi:Mn:Ni=1:1.5:0.5になるように秤量し、混合した後、空気中500℃で仮焼した。その後、酸素中700℃で20時間焼成することで本発明の活物質を得た。   First, a lithium / nickel / manganese composite oxide, which is a 5V class positive electrode active material, was synthesized by a solid phase method. As starting materials, lithium hydroxide monohydrate, various types of electrolytic manganese dioxide, and nickel nitrate were used. These starting materials were weighed so as to have a molar ratio of Li: Mn: Ni = 1: 1.5: 0.5, mixed, and calcined at 500 ° C. in air. Then, the active material of this invention was obtained by baking at 700 degreeC in oxygen for 20 hours.

試料の同定には、粉末X線回折測定、イオンクロマトグラフおよび原子吸光分析を用いた。その結果、得られた試料はすべてLiNi0.5Mn1.5を基本組成とするリチウム・ニッケル・マンガン複合酸化物であることを確認した。 For sample identification, powder X-ray diffraction measurement, ion chromatography and atomic absorption analysis were used. As a result, it was confirmed that all the obtained samples were lithium / nickel / manganese composite oxides having a basic composition of LiNi 0.5 Mn 1.5 O 4 .

つぎに、リチウム・ニッケル・マンガン複合酸化物を正極活物質に用いた正極板を作製した。リチウム・ニッケル・マンガン複合酸化物90質量%に、導電剤としてアセチレンブラック4質量%と、結着剤としてポリフッ化ビニリデン(PVdF)6質量%、さらに溶剤であるN−メチル−2ピロリドンを加えて湿式混合してスラリー状にした。このスラリー状の塗液を、厚さ15μmのアルミニウム箔両面に塗布し、120℃で乾燥後、プレスして正極板を得た。   Next, a positive electrode plate using a lithium / nickel / manganese composite oxide as a positive electrode active material was produced. To 90% by mass of lithium / nickel / manganese composite oxide, 4% by mass of acetylene black as a conductive agent, 6% by mass of polyvinylidene fluoride (PVdF) as a binder, and N-methyl-2-pyrrolidone as a solvent were added. Wet mixed to form a slurry. This slurry-like coating solution was applied to both sides of an aluminum foil having a thickness of 15 μm, dried at 120 ° C., and pressed to obtain a positive electrode plate.

つぎに負極板を作製した。黒鉛50wt%、PVdF5wt%、NMP45wt%を混合してペーストとし、このペーストを集電体としての厚さ10μmの銅箔に塗布し、130℃で乾燥後、プレスして負極板を得た。   Next, a negative electrode plate was produced. Graphite 50 wt%, PVdF 5 wt%, and NMP 45 wt% were mixed to form a paste. This paste was applied to a 10 μm thick copper foil as a current collector, dried at 130 ° C., and pressed to obtain a negative electrode plate.

つぎに、これらの正・負極板と厚さ25μmのポリプロピレン微多孔質セパレータとを用いて、巻回型発電要素とし、この巻回型発電要素を角型電池ケースに入れ、高さ48mm、幅30mm、厚さが4.2mm、公称容量600mAhの角型非水電解質二次電池を作製した。   Next, using these positive and negative electrode plates and a polypropylene microporous separator having a thickness of 25 μm, a wound type power generation element is formed. The wound type power generation element is placed in a rectangular battery case, and has a height of 48 mm, a width of A square nonaqueous electrolyte secondary battery having a thickness of 30 mm, a thickness of 4.2 mm, and a nominal capacity of 600 mAh was produced.

作製した角型電池を用いて、ホスファゼン誘導体の添加量の検討をおこなった。基本電解液としては次の6種類を用いた。なお、溶媒の混合比はすべて体積比を示す。   The amount of the phosphazene derivative added was examined using the produced square battery. The following six types of basic electrolytes were used. In addition, all the mixing ratio of a solvent shows a volume ratio.

E1:EC:DEC(3:7)/LiPF(1.0mol/dm
E2:EC:EMC(2:8)/LiPF(1.0mol/dm
E3:EC:DMC:DEC(5:3:2)/LiPF(1.0mol/dm
E4:EC:γ−BL:DEC(3:3:4)/LiPF(1.0mol/dm
E5:EC:PC:DEC(1:2:7)/LiPF(1.0mol/dm
E6:EC:DEC(3:7)/LiBF(1.0mol/dm
ホスファゼン誘導体としては、化3で表される鎖状ホスファゼン誘導体[P1]または化4で表される環状ホスファゼン誘導体[P2]を使用した。
E1: EC: DEC (3: 7) / LiPF 6 (1.0 mol / dm 3 )
E2: EC: EMC (2: 8) / LiPF 6 (1.0 mol / dm 3 )
E3: EC: DMC: DEC (5: 3: 2) / LiPF 6 (1.0 mol / dm 3 )
E4: EC: γ-BL: DEC (3: 3: 4) / LiPF 6 (1.0 mol / dm 3 )
E5: EC: PC: DEC (1: 2: 7) / LiPF 6 (1.0 mol / dm 3 )
E6: EC: DEC (3: 7) / LiBF 4 (1.0 mol / dm 3 )
As the phosphazene derivative, a chain phosphazene derivative [P1] represented by Chemical formula 3 or a cyclic phosphazene derivative [P2] represented by Chemical formula 4 was used.

具体的には、溶質となるLiPFを1.0mol/dm溶解させた混合溶媒に、所定量のホスファゼン誘導体[P1]、[P2]を添加して試験に用いる基本電解液を調整する。そして、基本電解液の質量%とホスファゼン誘導体の質量%が、合計で100%となるように混合し、調整済み非水電解液とする。つぎに、角型電池に調整済み非水電解液を2.17g注液したのち、注液口を封じて、試験用角型非水電解質二次電池を作製した。 Specifically, a predetermined amount of phosphazene derivatives [P1] and [P2] are added to a mixed solvent in which 1.0 mol / dm 3 of LiPF 6 as a solute is dissolved to prepare a basic electrolytic solution used for the test. And it mixes so that the mass% of a basic electrolyte solution and the mass% of a phosphazene derivative may become 100% in total, and it is set as the adjusted non-aqueous electrolyte. Next, 2.17 g of the adjusted non-aqueous electrolyte was injected into the prismatic battery, and then the inlet was sealed to prepare a test rectangular non-aqueous electrolyte secondary battery.

これらの非水電解質二次電池について、25℃において、充放電サイクル試験を行った。充電条件は次のとおりである。1CmA(=600mA)の定電流で4.8Vまで充電し、さらに4.8Vで定電圧充電をおこない、総充電時間が3時間になったところで充電を終了した。放電条件は、1CmAの定電流で3.4Vまでの放電をおこなった。   About these nonaqueous electrolyte secondary batteries, the charge / discharge cycle test was done at 25 degreeC. The charging conditions are as follows. The battery was charged to 4.8 V with a constant current of 1 CmA (= 600 mA), further charged at a constant voltage of 4.8 V, and the charging was terminated when the total charging time was 3 hours. The discharge condition was a discharge of up to 3.4 V with a constant current of 1 CmA.

それぞれの電池について、初期電池厚さ(Ts)、10サイクル後の電池厚さ(Te(10))および100サイクル後の電池厚さ(Te(100))を測定した。なお、すべての電池において、Ts=4.2mmであった。   For each battery, the initial battery thickness (Ts), the battery thickness after 10 cycles (Te (10)), and the battery thickness after 100 cycles (Te (100)) were measured. In all the batteries, Ts = 4.2 mm.

[実施例1〜6および比較例1〜3]
非水電解液として、基本電解液E1とホスファゼン誘導体P1との混合電解液を用いた実施例1〜6および比較例1〜3の角型非水電解質二次電池を作製した。但し、比較例1はホスファゼン誘導体P1を含まないものとする。作製した電池の非水電解質に含まれるホスファゼン誘導体の量、10サイクル後の電池厚さ(Te(10))、100サイクル後の電池厚さ(Te(100))、100サイクル後の電池膨張率を表1に示した。なお、以下の表においては、ホスファゼン誘導体を「PD」で表す。
[Examples 1-6 and Comparative Examples 1-3]
As the non-aqueous electrolyte, prismatic non-aqueous electrolyte secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 3 using a mixed electrolyte of the basic electrolyte E1 and the phosphazene derivative P1 were produced. However, Comparative Example 1 does not include the phosphazene derivative P1. The amount of phosphazene derivative contained in the nonaqueous electrolyte of the produced battery, the battery thickness after 10 cycles (Te (10)), the battery thickness after 100 cycles (Te (100)), and the battery expansion coefficient after 100 cycles Is shown in Table 1. In the following table, the phosphazene derivative is represented by “PD”.

[実施例7〜12および比較例4〜6]
非水電解液として、基本電解液E1とホスファゼン誘導体P2との混合電解液を用いた以外は実施例1と同様にして、実施例7〜12および比較例4、5の角型非水電解質二次電池を作製した。作製した電池の非水電解質に含まれるホスファゼン誘導体の量、10サイクル後の電池厚さ(Te(10))、100サイクル後の電池厚さ(Te(100))、100サイクル後の電池膨張率を表2に示した。
[Examples 7 to 12 and Comparative Examples 4 to 6]
As the non-aqueous electrolyte, the rectangular non-aqueous electrolytes 2 of Examples 7 to 12 and Comparative Examples 4 and 5 were used in the same manner as Example 1, except that a mixed electrolyte of basic electrolyte E1 and phosphazene derivative P2 was used. A secondary battery was produced. The amount of phosphazene derivative contained in the nonaqueous electrolyte of the produced battery, the battery thickness after 10 cycles (Te (10)), the battery thickness after 100 cycles (Te (100)), and the battery expansion coefficient after 100 cycles Are shown in Table 2.

表1および表2からつぎのことがわかった。ホスファゼン誘導体を添加していない(0wt%添加)比較例1および比較例4の電池において、初期の電池厚さ4.2mmであったのが、100サイクル後では電池厚さが5mm以上にまで膨張していた。   From Tables 1 and 2, the following was found. In the batteries of Comparative Example 1 and Comparative Example 4 with no phosphazene derivative added (0 wt% added), the initial battery thickness was 4.2 mm, but after 100 cycles, the battery thickness expanded to 5 mm or more. Was.

ホスファゼン誘導体を0.1〜20質量%含む実施例1〜6および実施例7〜12の電池において、電池膨れが4.41mm以下、膨張率で5%以下に抑制できた。   In the batteries of Examples 1 to 6 and Examples 7 to 12 containing 0.1 to 20% by mass of the phosphazene derivative, the battery swelling was suppressed to 4.41 mm or less and the expansion rate to 5% or less.

しかしながら、ホスファゼン誘導体の添加量が0.05質量%である比較例2および比較例4の電池、および添加量が25質量%である比較例3および比較例5の電池の場合には、電池の膨張率が5%より大きくなった。   However, in the case of the batteries of Comparative Example 2 and Comparative Example 4 in which the addition amount of the phosphazene derivative is 0.05% by mass, and the batteries of Comparative Example 3 and Comparative Example 5 in which the addition amount is 25% by mass, The expansion rate was greater than 5%.

この原因はまだはっきりしていないが、電解質がホスファゼン誘導体を0.1〜20質量%含む場合は、負極表面に薄い安定な被膜状の物質を形成し、ガス発生による電池厚さの膨張が抑制される。しかしながら、ホスファゼン誘導体の含有量が0.1質量%よりも少ない場合には被膜形成が不十分であること、また、含有量が20質量%を超えると、被膜が厚くなって抵抗が大きくなり、リチウム電析等による負極劣化が促進されて、負極板の膨張により電池厚さが膨張したと考えられる。   The cause of this is not clear yet, but when the electrolyte contains a phosphazene derivative of 0.1 to 20% by mass, a thin, stable film-like substance is formed on the negative electrode surface to suppress the expansion of the battery thickness due to gas generation. Is done. However, when the content of the phosphazene derivative is less than 0.1% by mass, the film formation is insufficient, and when the content exceeds 20% by mass, the film becomes thick and the resistance increases. It is considered that the negative electrode deterioration due to lithium electrodeposition or the like was promoted, and the battery thickness expanded due to the expansion of the negative electrode plate.

[実施例13〜18および比較例7〜10]
非水電解液として、基本電解液E2と、ホスファゼン誘導体P1またはP2との混合電解液を用いた以外は実施例1と同様にして、実施例13〜18および比較例7〜10の角型非水電解質二次電池を作製した。作製した電池の非水電解質に含まれるホスファゼン誘導体の種類、含有量、10サイクル後の電池厚さ(Te(10))、100サイクル後の電池厚さ(Te(100))、100サイクル後の電池膨張率を表3に示した。
[Examples 13 to 18 and Comparative Examples 7 to 10]
In the same manner as in Example 1 except that a mixed electrolytic solution of the basic electrolytic solution E2 and the phosphazene derivative P1 or P2 was used as the nonaqueous electrolytic solution, the non-square electrolytic solutions of Examples 13 to 18 and Comparative Examples 7 to 10 were used. A water electrolyte secondary battery was produced. The type and content of the phosphazene derivative contained in the non-aqueous electrolyte of the produced battery, battery thickness after 10 cycles (Te (10)), battery thickness after 100 cycles (Te (100)), and after 100 cycles The battery expansion rate is shown in Table 3.

[実施例19〜24および比較例11〜14]
非水電解液として、基本電解液E3とホスファゼン誘導体P1またはP2との混合電解液を用いた以外は実施例1と同様にして、実施例19〜24および比較例10、11の角型非水電解質二次電池を作製した。作製した電池の非水電解質に含まれるホスファゼン誘導体の種類、含有量、10サイクル後の電池厚さ(Te(10))、100サイクル後の電池厚さ(Te(100))、100サイクル後の電池膨張率を表4に示した。
[Examples 19 to 24 and Comparative Examples 11 to 14]
In the same manner as in Example 1, except that a mixed electrolytic solution of the basic electrolytic solution E3 and the phosphazene derivative P1 or P2 was used as the nonaqueous electrolytic solution, the square nonaqueous solutions of Examples 19 to 24 and Comparative Examples 10 and 11 were used. An electrolyte secondary battery was produced. Types and contents of phosphazene derivatives contained in the non-aqueous electrolyte of the produced battery, battery thickness after 10 cycles (Te (10)), battery thickness after 100 cycles (Te (100)), and after 100 cycles The battery expansion rate is shown in Table 4.

[実施例25〜30および比較例15〜18]
非水電解液として、基本電解液E4とホスファゼン誘導体P1またはP2との混合電解液を用いた以外は実施例1と同様にして、実施例25〜30および比較例15〜18の角型非水電解質二次電池を作製した。作製した電池の非水電解質に含まれるホスファゼン誘導体の種類、含有量、10サイクル後の電池厚さ(Te(10))、100サイクル後の電池厚さ(Te(100))、100サイクル後の電池膨張率を表5に示した。
[Examples 25-30 and Comparative Examples 15-18]
In the same manner as in Example 1 except that a mixed electrolyte of basic electrolyte E4 and phosphazene derivative P1 or P2 was used as the nonaqueous electrolyte, the square nonaqueous solutions of Examples 25-30 and Comparative Examples 15-18 were used. An electrolyte secondary battery was produced. Types and contents of phosphazene derivatives contained in the non-aqueous electrolyte of the produced battery, battery thickness after 10 cycles (Te (10)), battery thickness after 100 cycles (Te (100)), and after 100 cycles The battery expansion rate is shown in Table 5.

[実施例31〜36および比較例19〜22]
非水電解液として、基本電解液E5とホスファゼン誘導体P1またはP2との混合電解液を用いた以外は実施例1と同様にして、実施例31〜36および比較例19〜22の角型非水電解質二次電池を作製した。作製した電池の非水電解質に含まれるホスファゼン誘導体の種類、含有量、10サイクル後の電池厚さ(Te(10))、100サイクル後の電池厚さ(Te(100))、100サイクル後の電池膨張率を表6に示した。
[Examples 31 to 36 and Comparative Examples 19 to 22]
As the nonaqueous electrolyte, the rectangular nonaqueous solutions of Examples 31 to 36 and Comparative Examples 19 to 22 were used in the same manner as in Example 1 except that a mixed electrolyte of the basic electrolyte E5 and the phosphazene derivative P1 or P2 was used. An electrolyte secondary battery was produced. Types and contents of phosphazene derivatives contained in the non-aqueous electrolyte of the produced battery, battery thickness after 10 cycles (Te (10)), battery thickness after 100 cycles (Te (100)), and after 100 cycles The battery expansion rate is shown in Table 6.

[実施例37〜42および比較例23〜26]
非水電解液として、基本電解液E6とホスファゼン誘導体P1またはP2との混合電解液を用いた以外は実施例1と同様にして、実施例37〜42および比較例23〜26の角型非水電解質二次電池を作製した。作製した電池の非水電解質に含まれるホスファゼン誘導体の種類、含有量、10サイクル後の電池厚さ(Te(10))、100サイクル後の電池厚さ(Te(100))、100サイクル後の電池膨張率を表7に示した。
[Examples 37 to 42 and Comparative Examples 23 to 26]
In the same manner as in Example 1, except that a mixed electrolytic solution of the basic electrolytic solution E6 and the phosphazene derivative P1 or P2 was used as the nonaqueous electrolytic solution, the square nonaqueous solutions of Examples 37 to 42 and Comparative Examples 23 to 26 were used. An electrolyte secondary battery was produced. The type and content of the phosphazene derivative contained in the non-aqueous electrolyte of the produced battery, battery thickness after 10 cycles (Te (10)), battery thickness after 100 cycles (Te (100)), and after 100 cycles The battery expansion rate is shown in Table 7.

表3〜7に示すように、ホスファゼン誘導体を0.1〜20質量%含む場合に、電池膨れが4.41mm以下、膨張率で5%以下に抑制できたが、ホスファゼン誘導体の含有量が0.1質量%よりも小さいか、20質量%を超える場合には、電池の膨れを5%以下とすることはできなかった。   As shown in Tables 3 to 7, when 0.1 to 20% by mass of the phosphazene derivative was contained, the battery swelling was suppressed to 4.41 mm or less and the expansion rate was 5% or less, but the content of the phosphazene derivative was 0. When the amount is less than 1% by mass or exceeds 20% by mass, the swelling of the battery cannot be reduced to 5% or less.

LiMn1.5Ni0.5の充放電を示す図。Shows the charge and discharge of LiMn 1.5 Ni 0.5 O 4.

Claims (1)

正極活物質が一般式LiNiMn2−y4−δ(但し、0<x<1.1、0.45<y<0.55、0≦δ<0.4)で表されるリチウム・ニッケル・マンガン複合酸化物である非水電解質二次電池において、非水電解質が化1で示される一般式(1):
又は化2で示される一般式(2):
(ここで、R 1 およびR 2 はフッ素およびエトキシ基、nは3〜10の整数)
で表されるホスファゼン誘導体を0.1〜20質量%含むことを特徴とする非水電解質二次電池。
The positive electrode active material is represented by the general formula Li x Ni y Mn 2-y O 4-δ (where 0 <x <1.1, 0.45 <y <0.55, 0 ≦ δ <0.4). In a non-aqueous electrolyte secondary battery that is a lithium-nickel-manganese composite oxide, the non-aqueous electrolyte is represented by the general formula (1):
Or the general formula (2) shown in Chemical Formula 2:
(Where R 1 and R 2 are fluorine and ethoxy groups, n is an integer of 3 to 10)
The non-aqueous electrolyte secondary battery characterized by including 0.1-20 mass% of phosphazene derivatives represented by these.
JP2003348133A 2003-10-07 2003-10-07 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4632017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003348133A JP4632017B2 (en) 2003-10-07 2003-10-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003348133A JP4632017B2 (en) 2003-10-07 2003-10-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005116306A JP2005116306A (en) 2005-04-28
JP4632017B2 true JP4632017B2 (en) 2011-02-16

Family

ID=34540419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348133A Expired - Fee Related JP4632017B2 (en) 2003-10-07 2003-10-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4632017B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070183954A1 (en) * 2004-03-23 2007-08-09 Masashi Ohtsuki Additive for non-aqueous electrolyte in battery, non-aqueous electrolyte for battery and non-aqueos electrolyte battery
JP4558362B2 (en) * 2004-03-23 2010-10-06 株式会社ブリヂストン Non-aqueous electrolyte additive for primary battery, non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery
JP2005310479A (en) * 2004-04-20 2005-11-04 Bridgestone Corp Nonaqueous electrolyte secondary battery
JP5403845B2 (en) * 2004-07-06 2014-01-29 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP2006059682A (en) * 2004-08-20 2006-03-02 Bridgestone Corp Additive for electrolyte of nonaqueous electrolyte battery, nonaqueous electrolyte for battery, and nonaqueous electrolyte battery
US20060088767A1 (en) * 2004-09-01 2006-04-27 Wen Li Battery with molten salt electrolyte and high voltage positive active material
JP5157062B2 (en) * 2005-12-07 2013-03-06 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP5314885B2 (en) * 2007-12-13 2013-10-16 株式会社ブリヂストン Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same
KR101075319B1 (en) 2008-05-21 2011-10-19 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
US20120088162A1 (en) * 2008-08-07 2012-04-12 Harrup Mason K Safe Battery Solvents
JP5509192B2 (en) * 2009-03-03 2014-06-04 株式会社Nttファシリティーズ Non-aqueous electrolyte battery
JP6377992B2 (en) * 2014-08-01 2018-08-22 株式会社Nttファシリティーズ Lithium ion battery and manufacturing method thereof
JP6377991B2 (en) * 2014-08-01 2018-08-22 株式会社Nttファシリティーズ Non-aqueous electrolyte and non-aqueous electrolyte battery
WO2016171276A1 (en) * 2015-04-24 2016-10-27 日立化成株式会社 Lithium ion cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08216744A (en) * 1995-02-16 1996-08-27 Kanto Auto Works Ltd Clearance cover for rear seat
JP2000100434A (en) * 1998-09-21 2000-04-07 Sanyo Electric Co Ltd Lithium secondary battery
JP2000515672A (en) * 1996-07-22 2000-11-21 日本電池株式会社 Positive electrode for lithium battery
JP2001338682A (en) * 2000-05-26 2001-12-07 Sony Corp Nonaqueous electrolyte cell
JP2001338683A (en) * 2000-05-26 2001-12-07 Nippon Chem Ind Co Ltd Nonaqueous electrolyte cell
JP2002083628A (en) * 2000-09-07 2002-03-22 Bridgestone Corp Additive for nonaqueous electrolytic solution secondary battery and the nonaqueous electrolytic solution secondary battery
JP2003077532A (en) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08216744A (en) * 1995-02-16 1996-08-27 Kanto Auto Works Ltd Clearance cover for rear seat
JP2000515672A (en) * 1996-07-22 2000-11-21 日本電池株式会社 Positive electrode for lithium battery
JP2000100434A (en) * 1998-09-21 2000-04-07 Sanyo Electric Co Ltd Lithium secondary battery
JP2001338682A (en) * 2000-05-26 2001-12-07 Sony Corp Nonaqueous electrolyte cell
JP2001338683A (en) * 2000-05-26 2001-12-07 Nippon Chem Ind Co Ltd Nonaqueous electrolyte cell
JP2002083628A (en) * 2000-09-07 2002-03-22 Bridgestone Corp Additive for nonaqueous electrolytic solution secondary battery and the nonaqueous electrolytic solution secondary battery
JP2003077532A (en) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP2005116306A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
US10069165B2 (en) Electrolyte composition for a lithium-ion battery
JP6178316B2 (en) Fluorinated electrolyte composition
KR101938921B1 (en) Lithium ion battery
JP4779651B2 (en) Non-aqueous electrolyte and lithium secondary battery
EP1443586B1 (en) Lithium ion secondary battery
JP2005078820A (en) Non-aqueous electrolyte secondary battery
EP3512026B1 (en) Electrolyte additive composition, as well as electrolyte and lithium secondary battery comprising the same
US20080038644A1 (en) Nonaques Electrolyte Solution And Lithium Secondary Battery Using Same
EP2907183B1 (en) Electrochemical cells
EP2876723A1 (en) Lithium secondary battery
US20110050178A1 (en) Electrolytic solution for lithium battery, lithium battery employing the same and method for operating the lithium battery
JP6068789B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
KR20140129312A (en) Non-aqueous electrolyte secondary cell and method for manufacturing same
JP2019164879A (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
CN112074986A (en) Non-aqueous liquid electrolyte composition
JP4632017B2 (en) Nonaqueous electrolyte secondary battery
KR101683211B1 (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
KR100984134B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2007173014A (en) Nonaqueous electrolyte secondary battery
KR100371403B1 (en) New electrolytes and lithium ion battery using the same
CN111048831B (en) Electrolyte for secondary battery and lithium secondary battery comprising same
KR101521646B1 (en) Secondary battery with high capacity and longevity comprising silazane-based compound
JP4573098B2 (en) Nonaqueous electrolyte secondary battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
CN112886054A (en) Lithium-rich manganese-based lithium ion battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees