JP4558362B2 - Non-aqueous electrolyte additive for primary battery, non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery - Google Patents

Non-aqueous electrolyte additive for primary battery, non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery Download PDF

Info

Publication number
JP4558362B2
JP4558362B2 JP2004084881A JP2004084881A JP4558362B2 JP 4558362 B2 JP4558362 B2 JP 4558362B2 JP 2004084881 A JP2004084881 A JP 2004084881A JP 2004084881 A JP2004084881 A JP 2004084881A JP 4558362 B2 JP4558362 B2 JP 4558362B2
Authority
JP
Japan
Prior art keywords
primary battery
aqueous electrolyte
phosphazene compound
additive
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004084881A
Other languages
Japanese (ja)
Other versions
JP2005276492A (en
Inventor
正珠 大月
泰郎 堀川
眞一 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004084881A priority Critical patent/JP4558362B2/en
Priority to EP05719788A priority patent/EP1748511A4/en
Priority to US10/599,150 priority patent/US20070183954A1/en
Priority to PCT/JP2005/003473 priority patent/WO2005091421A1/en
Publication of JP2005276492A publication Critical patent/JP2005276492A/en
Application granted granted Critical
Publication of JP4558362B2 publication Critical patent/JP4558362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Description

本発明は、1次電池の非水電解液用添加剤、該添加剤を含む1次電池用非水電解液及びそれを備えた非水電解液1次電池に関し、特に安全性及び低温特性に優れた非水電解液1次電池に関するものである。   The present invention relates to an additive for a non-aqueous electrolyte of a primary battery, a non-aqueous electrolyte for a primary battery including the additive, and a non-aqueous electrolyte primary battery including the additive, and particularly to safety and low temperature characteristics. The present invention relates to an excellent non-aqueous electrolyte primary battery.

近年、エレクトロニクスの急速な進歩に伴い、特に小型電子機器の電源として、小型、軽量で、かつ長寿命、高エネルギー密度の電池が求められている。これに対し、例えば二酸化マンガン又はフッ化黒鉛を正極とし、リチウムを負極とする非水電解液1次電池は、リチウムの電極電位が金属中で最も低く、単位体積当りの電気容量が大きいために、高エネルギー密度を有する電池の一つとして知られており、カメラ、電子ウォッチ及び各種メモリーバックアップ用電源として用いられている。   In recent years, with rapid progress of electronics, a battery having a small size, a light weight, a long life, and a high energy density is demanded particularly as a power source for a small electronic device. On the other hand, for example, a non-aqueous electrolyte primary battery using manganese dioxide or graphite fluoride as a positive electrode and lithium as a negative electrode has the lowest lithium electrode potential among metals and a large electric capacity per unit volume. It is known as one of batteries having a high energy density, and is used as a power source for cameras, electronic watches, and various memory backups.

これらの非水電解液1次電池においては、負極活物質のリチウムが水及びアルコール等の活性プロトンを有する化合物と激しく反応するため、該電池に使用される電解液は、エステル化合物及びエーテル化合物等の非プロトン性有機溶媒に限られている。   In these non-aqueous electrolyte primary batteries, the negative electrode active material lithium reacts violently with a compound having active protons such as water and alcohol, so that the electrolyte used in the battery is an ester compound or an ether compound. It is limited to aprotic organic solvents.

しかしながら、上記非プロトン性有機溶媒は、負極活物質のリチウムとの反応性が低いものの、例えば、電池の短絡時等に大電流が急激に流れ、電池が異常に発熱した際に、気化・分解してガスを発生したり、発生したガス及び熱により電池の破裂・発火を引き起こしたり、短絡時に生じる火花が引火する等の危険性が高かった。   However, although the aprotic organic solvent has low reactivity with the lithium of the negative electrode active material, for example, when a battery is short-circuited, a large current flows suddenly, and when the battery abnormally generates heat, it is vaporized and decomposed. Thus, there is a high risk of generating gas, causing the battery to rupture or ignite due to the generated gas and heat, and sparks generated during a short circuit.

これに対して、非水電解液にホスファゼン化合物を添加して、非水電解液に不燃性、難燃性又は自己消火性を付与して、短絡等の非常時に電池が発火・引火する危険性を大幅に低減した非水電解液1次電池が開発されている。また、かかるホスファゼン化合物の中でも、環状で且つ分子中の各リン元素に2つのフッ素が結合したホスファゼン化合物は、リン元素に有機基が結合したホスファゼン化合物よりも非常に粘度が低いため、該ホスファゼン化合物を非水電解液に添加することで、非水電解液が低粘度化して、常温における1次電池の放電特性と共に、低温使用時の放電特性を改善できることが知られている(特許文献1参照)。   On the other hand, adding a phosphazene compound to the non-aqueous electrolyte to impart non-flammability, flame retardancy or self-extinguishing properties to the non-aqueous electrolyte may cause the battery to ignite or ignite in the event of an emergency such as a short circuit A non-aqueous electrolyte primary battery that significantly reduces the above has been developed. Among such phosphazene compounds, a phosphazene compound that is cyclic and has two fluorine atoms bonded to each phosphorus element in the molecule has a much lower viscosity than a phosphazene compound in which an organic group is bonded to a phosphorus element. Is added to the non-aqueous electrolyte so that the viscosity of the non-aqueous electrolyte is reduced and the discharge characteristics of the primary battery at room temperature and the discharge characteristics at low temperatures can be improved (see Patent Document 1). ).

国際公開第03/041197号パンフレットInternational Publication No. 03/041197 Pamphlet

しかしながら、環状で且つ分子中の各リン元素に2つのフッ素が結合したホスファゼン化合物は、沸点が低いため、高温使用時に該ホスファゼン化合物が気化する可能性があった。また、短絡等の非常時に電池の温度が上昇する際に、該ホスファゼン化合物は、非プロトン性有機溶媒よりも先に気化するため、残存する非プロトン性有機溶媒が単独で気化・分解してガスを発生したり、発生したガス及び熱により電池の破裂・発火が起こったり、短絡時に生じた火花が残存する非プロトン性有機溶媒に引火する等の危険性があった。   However, a phosphazene compound that is cyclic and has two fluorine atoms bonded to each phosphorus element in the molecule has a low boiling point, so that the phosphazene compound may vaporize when used at high temperatures. In addition, when the temperature of the battery rises in the event of an emergency such as a short circuit, the phosphazene compound is vaporized before the aprotic organic solvent. Therefore, the remaining aprotic organic solvent is vaporized and decomposed alone to form a gas. There is a risk that the battery may rupture or ignite due to the generated gas and heat, or the aprotic organic solvent in which the spark generated at the time of short-circuiting will remain ignited.

そこで、本発明の目的は、上記従来技術の問題を解決し、沸点が十分に高く、高温使用時に気化することなく、短絡等の非常時においても電解液の安全性を十分に確保でき、更には、優れた低温特性を付与することが可能な1次電池の非水電解液用添加剤を提供することにある。また、本発明の他の目的は、かかる添加剤を含む1次電池用非水電解液と、該非水電解液を備え、安全性及び低温特性に優れた非水電解液1次電池を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, the boiling point is sufficiently high, without being vaporized when used at high temperatures, it is possible to sufficiently ensure the safety of the electrolyte even in an emergency such as a short circuit, An object of the present invention is to provide a non-aqueous electrolyte additive for a primary battery capable of imparting excellent low temperature characteristics. Another object of the present invention is to provide a non-aqueous electrolyte for a primary battery containing such an additive, and a non-aqueous electrolyte primary battery that includes the non-aqueous electrolyte and is excellent in safety and low-temperature characteristics. There is.

本発明者らは、上記目的を達成するために鋭意検討した結果、特定構造の環状ホスファゼン化合物が、十分に高い沸点と、十分に低い凝固点と、非常に高い酸素指数とを有しており、該ホスファゼン化合物を非水電解液に添加することで、電池の高温使用時にホスファゼン化合物が気化することなく、短絡等の非常時においても非水電解液の安全性を十分に確保でき、更には、電池の低温特性が向上することを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a cyclic phosphazene compound having a specific structure has a sufficiently high boiling point, a sufficiently low freezing point, and a very high oxygen index, By adding the phosphazene compound to the non-aqueous electrolyte, the phosphazene compound does not vaporize when the battery is used at a high temperature, and the safety of the non-aqueous electrolyte can be sufficiently ensured even in an emergency such as a short circuit. The inventors have found that the low temperature characteristics of the battery are improved, and have completed the present invention.

即ち、本発明の1次電池の非水電解液用添加剤は、下記式(I):
(NPX2n ・・・ (I)
(式中、Xはそれぞれ独立してハロゲン元素であり、nは3〜15の整数である)で表され、且つ少なくとも2種のハロゲン元素を含むホスファゼン化合物からなることを特徴とする。
That is, the additive for non-aqueous electrolyte of the primary battery of the present invention is represented by the following formula (I):
(NPX 2 ) n ... (I)
(Wherein X is independently a halogen element, and n is an integer of 3 to 15), and is characterized by comprising a phosphazene compound containing at least two kinds of halogen elements.

本発明の1次電池の非水電解液用添加剤の好適例においては、前記ホスファゼン化合物がフッ素と塩素とを含む。ここで、該ホスファゼン化合物は、上記式(I)中のXがそれぞれ独立してフッ素又は塩素であるのが更に好ましい。   In a preferred example of the non-aqueous electrolyte additive for a primary battery of the present invention, the phosphazene compound contains fluorine and chlorine. Here, in the phosphazene compound, it is more preferable that each X in the formula (I) is independently fluorine or chlorine.

本発明の1次電池の非水電解液用添加剤の他の好適例においては、前記式(I)中のnが3〜5である。この場合、ホスファゼン化合物の粘度が十分に低いため、非水電解液の粘度を上昇させることが無く、1次電池の放電特性を十分に確保することができる。   In another preferable example of the additive for a non-aqueous electrolyte solution of the primary battery of the present invention, n in the formula (I) is 3 to 5. In this case, since the viscosity of the phosphazene compound is sufficiently low, the discharge characteristics of the primary battery can be sufficiently ensured without increasing the viscosity of the non-aqueous electrolyte.

本発明の1次電池の非水電解液用添加剤は、前記式(I)中のnが3で、6つのXのうち1〜3つが塩素で残りがフッ素であるホスファゼン化合物及び/又は前記式(I)中のnが4で、8つのXのうち1〜5つが塩素で残りがフッ素であるホスファゼン化合物からなるのが更に好ましい。また、該ホスファゼン化合物が分子中に2つ以上の塩素原子を含み、各塩素原子がそれぞれ異なるリン原子に結合しているのがより一層好ましい。この場合、ホスファゼン化合物の凝固点が特に低いので、1次電池の低温特性を大幅に改善することができる。   The additive for a non-aqueous electrolyte solution of the primary battery of the present invention is a phosphazene compound in which n in the formula (I) is 3, 1-3 of 6 X are chlorine, and the rest is fluorine and / or More preferably, it is composed of a phosphazene compound in which n in the formula (I) is 4, 1 to 5 of 8 Xs are chlorine, and the remainder is fluorine. More preferably, the phosphazene compound contains two or more chlorine atoms in the molecule, and each chlorine atom is bonded to a different phosphorus atom. In this case, since the freezing point of the phosphazene compound is particularly low, the low temperature characteristics of the primary battery can be greatly improved.

本発明の1次電池の非水電解液用添加剤の他の好適例においては、前記ホスファゼン化合物の凝固点が-5℃以下である。この場合も、ホスファゼン化合物の凝固点が十分に低いので、1次電池の低温特性を大幅に改善することができる。   In another preferred embodiment of the additive for a non-aqueous electrolyte of the primary battery of the present invention, the freezing point of the phosphazene compound is −5 ° C. or lower. Also in this case, since the freezing point of the phosphazene compound is sufficiently low, the low temperature characteristics of the primary battery can be greatly improved.

また、本発明の1次電池用非水電解液は、上記1次電池の非水電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とする。   Moreover, the non-aqueous electrolyte for primary batteries of the present invention is characterized by containing the additive for non-aqueous electrolyte of the primary battery, an aprotic organic solvent, and a supporting salt.

本発明の1次電池用非水電解液の好適例においては、前記非プロトン性有機溶媒と前記1次電池の非水電解液用添加剤との沸点の差が25℃以下である。この場合、非常時にける非水電解液の安全性を十分に改善することができる。   In a preferred example of the non-aqueous electrolyte for primary batteries of the present invention, the difference in boiling point between the aprotic organic solvent and the additive for non-aqueous electrolyte of the primary battery is 25 ° C. or less. In this case, the safety of the nonaqueous electrolytic solution in an emergency can be sufficiently improved.

更に、本発明の非水電解液1次電池は、上記1次電池用非水電解液と、正極と、負極とを備えることを特徴とし、安全性及び低温特性に特に優れる。   Furthermore, the non-aqueous electrolyte primary battery of the present invention comprises the non-aqueous electrolyte for primary battery, a positive electrode, and a negative electrode, and is particularly excellent in safety and low temperature characteristics.

本発明によれば、特定構造の環状ホスファゼン化合物からなり、高温使用時に気化することが無く、短絡等の非常時においても非水電解液の安全性を十分に確保でき、更には、1次電池の低温特性を大幅に改善できる1次電池の非水電解液用添加剤を提供することができる。また、かかる添加剤を含み、安全性が十分に高く、1次電池の低温特性を大幅に改善可能な1次電池用非水電解液を提供することができる。更に、該1次電池用非水電解液を備え、安全性及び低温特性に優れた非水電解液1次電池を提供することができる。   According to the present invention, it is composed of a cyclic phosphazene compound having a specific structure, does not vaporize when used at high temperatures, can sufficiently ensure the safety of a non-aqueous electrolyte even in an emergency such as a short circuit, and further, a primary battery. It is possible to provide an additive for a non-aqueous electrolyte of a primary battery that can significantly improve the low temperature characteristics of the battery. In addition, it is possible to provide a non-aqueous electrolyte for a primary battery that includes such an additive and has sufficiently high safety and can greatly improve the low-temperature characteristics of the primary battery. Furthermore, the nonaqueous electrolyte primary battery provided with the nonaqueous electrolyte for primary batteries and excellent in safety and low temperature characteristics can be provided.

以下に、本発明を詳細に説明する。
<1次電池の非水電解液用添加剤>
本発明の1次電池の非水電解液用添加剤は、上記式(I)で表され、且つ少なくとも2種のハロゲン元素を含む環状ホスファゼン化合物からなることを特徴とする。該ホスファゼン化合物は、十分に高い沸点を有するため、高温使用時において気化することが無く、本発明の添加剤を含む非水電解液を備えた1次電池は、高温使用時にも膨れる等の懸念がない。また、該ホスファゼン化合物は、十分に低い凝固点を有するため、低温においても液体として存在し、該ホスファゼンを1次電池の非水電解液に添加することで、1次電池の低温特性を改善することができる。更に、該ホスファゼン化合物は、非常に高い酸素指数を有し、電池の非常時に窒素ガス及び/又はリン酸エステル等を発生して、非水電解液を不燃性、難燃性又は自己消火性にし、1次電池の発火等の危険性を大幅に低減する作用を有する。
The present invention is described in detail below.
<Additive for non-aqueous electrolyte of primary battery>
The additive for non-aqueous electrolyte solution of the primary battery of the present invention is characterized by comprising a cyclic phosphazene compound represented by the above formula (I) and containing at least two kinds of halogen elements. Since the phosphazene compound has a sufficiently high boiling point, the phosphazene compound does not vaporize when used at high temperatures, and the primary battery including the non-aqueous electrolyte containing the additive of the present invention may swell even when used at high temperatures. There is no. In addition, since the phosphazene compound has a sufficiently low freezing point, it exists as a liquid even at a low temperature. By adding the phosphazene to the non-aqueous electrolyte of the primary battery, the low temperature characteristics of the primary battery can be improved. Can do. Furthermore, the phosphazene compound has a very high oxygen index, and generates nitrogen gas and / or phosphate ester in the emergency of the battery, making the non-aqueous electrolyte incombustible, flame retardant or self-extinguishing. It has the effect | action which reduces significantly dangers, such as ignition of a primary battery.

本発明の1次電池の非水電解液用添加剤を構成するホスファゼン化合物は、上記式(I)で表され、且つ少なくとも2種のハロゲン元素を含む。式(I)において、Xはそれぞれ独立してハロゲン元素であり、該ハロゲン元素としては、フッ素、塩素、臭素等が挙げられ、これらの中でも、フッ素及び塩素が好ましい。また、上記ホスファゼン化合物は、少なくともフッ素と塩素とを含み、且つ総てのXがフッ素又は塩素であるのが好ましい。なお、ハロゲン元素を含む化合物を用いると、ハロゲンラジカルの発生が問題となることがあるが、上記ホスファゼン化合物は、分子中のリン元素がハロゲンラジカルを捕捉してハロゲン化リンを形成するため、このような問題は発生しない。   The phosphazene compound constituting the additive for a non-aqueous electrolyte of the primary battery of the present invention is represented by the above formula (I) and contains at least two halogen elements. In the formula (I), X is independently a halogen element, and examples of the halogen element include fluorine, chlorine, bromine and the like. Among these, fluorine and chlorine are preferable. The phosphazene compound preferably contains at least fluorine and chlorine, and all X are preferably fluorine or chlorine. Note that when a compound containing a halogen element is used, the generation of a halogen radical may be a problem. However, since the phosphorus element in the molecule captures the halogen radical and forms phosphorus halide, Such a problem does not occur.

また、式(I)において、nは3〜15の整数であり、3〜5であるのが好ましい。nが5を超えると、ホスファゼン化合物の粘度が高くなるため、非水電解液の粘度が上昇し、1次電池の内部抵抗が上昇したり、電解液の導電率が低下して、電池の放電特性が低下する傾向がある。ここで、上記ホスファゼン化合物の25℃における粘度としては、電池の放電特性を十分に確保する観点から、10mPa・s以下が好ましく、5mPa・s以下が更に好ましい。なお、本発明において、粘度は、粘度測定計[R型粘度計Model RE500-SL、東機産業(株)製]を用い、1rpm、2rpm、3rpm、5rpm、7rpm、10rpm、20rpm及び50rpmの各回転速度で120秒間づつ測定し、指示値が50〜60%となった時の回転速度を分析条件とし、その際に測定した値である。   Moreover, in Formula (I), n is an integer of 3-15, and it is preferable that it is 3-5. When n exceeds 5, the viscosity of the phosphazene compound increases, so the viscosity of the non-aqueous electrolyte increases, the internal resistance of the primary battery increases, the conductivity of the electrolyte decreases, and the battery discharges. There is a tendency for characteristics to deteriorate. Here, the viscosity of the phosphazene compound at 25 ° C. is preferably 10 mPa · s or less, and more preferably 5 mPa · s or less, from the viewpoint of sufficiently securing the discharge characteristics of the battery. In the present invention, the viscosity is 1 rpm, 2 rpm, 3 rpm, 5 rpm, 7 rpm, 10 rpm, 20 rpm, and 50 rpm using a viscometer [R-type viscometer Model RE500-SL, manufactured by Toki Sangyo Co., Ltd.] It is a value measured at that time, measured at the rotational speed for 120 seconds, with the rotational speed when the indicated value is 50 to 60% as the analysis condition.

上記ホスファゼン化合物は、限界酸素指数が30体積%以上であるのが好ましく、40体積%以上であるのが更に好ましい。限界酸素指数が40体積%以上のホスファゼン化合物を非水電解液に添加することで、電解液の発火・引火の危険性を大幅に低減することができる。ここで、限界酸素指数とは、JIS K 7201に規定の所定の試験条件下において、材料が燃焼を持続するのに必要な体積%で表される最低酸素濃度の値をいい、限界酸素指数が高いことは発火・引火の危険性が低いことを意味する。   The phosphazene compound preferably has a limiting oxygen index of 30% by volume or more, and more preferably 40% by volume or more. By adding a phosphazene compound having a limiting oxygen index of 40% by volume or more to the non-aqueous electrolyte, the risk of ignition and ignition of the electrolyte can be greatly reduced. Here, the limiting oxygen index means a value of the minimum oxygen concentration expressed by volume% necessary for the material to continue to burn under a predetermined test condition specified in JIS K 7201. A high value means a low risk of ignition or ignition.

上記ホスファゼン化合物は、凝固点が-5℃以下であるのが好ましく、-20℃以下であるのが更に好ましく、-30℃以下であるのがより一層好ましい。凝固点が-5℃以下のホスファゼン化合物を非水電解液に添加することで、1次電池の低温特性を確実に向上させることができ、また、かかるホスファゼン化合物を非水電解液に添加してなる非水電解液1次電池は、低温特性が優れるため、移動用(HEV用)電池として特に好適である。   The phosphazene compound has a freezing point of preferably −5 ° C. or lower, more preferably −20 ° C. or lower, and still more preferably −30 ° C. or lower. By adding a phosphazene compound having a freezing point of −5 ° C. or lower to the non-aqueous electrolyte, the low-temperature characteristics of the primary battery can be reliably improved, and the phosphazene compound is added to the non-aqueous electrolyte. Nonaqueous electrolyte primary batteries are particularly suitable as mobile (HEV) batteries because of their excellent low-temperature characteristics.

上記ホスファゼン化合物の中でも、凝固点の低さの観点から、式(I)中のnが3で、6つのXのうち1〜3つが塩素で残りがフッ素であるもの、並びに式(I)中のnが4で、8つのXのうち1〜5つが塩素で残りがフッ素であるものが特に好ましい。なお、式(I)中のXがフッ素又は塩素であるホスファゼン化合物の凝固点を、沸点及び酸素指数と共に表1に示す。   Among the above phosphazene compounds, from the viewpoint of a low freezing point, n in the formula (I) is 3, 1 to 3 out of 6 Xs are chlorine and the rest are fluorines, and in the formula (I) It is particularly preferable that n is 4 and 1 to 5 of 8 Xs are chlorine and the rest is fluorine. The freezing points of phosphazene compounds in which X in the formula (I) is fluorine or chlorine are shown in Table 1 together with the boiling point and oxygen index.

Figure 0004558362
Figure 0004558362

表1からも明らかなように、式(I)中のXがフッ素又は塩素であるホスファゼン化合物においては、塩素数の増加(分子量の増加)に従って沸点が上昇するものの、凝固点は特定の塩素数範囲で最小となり、nが3の場合は、塩素数1〜3の範囲が特に好適で、nが4の場合は、塩素数1〜5の範囲が好適で、塩素数2〜4の範囲が特に好適である。   As is clear from Table 1, in the phosphazene compound in which X in the formula (I) is fluorine or chlorine, the boiling point rises as the chlorine number increases (increase in molecular weight), but the freezing point is in the specific chlorine number range. When n is 3, the range of 1 to 3 chlorine atoms is particularly preferable. When n is 4, the range of 1 to 5 chlorine atoms is preferable, and the range of 2 to 4 chlorine atoms is particularly preferable. Is preferred.

上記ホスファゼン化合物は、例えば、式(I)中のXが総て塩素である市販のホスファゼン化合物を出発物質として、総ての塩素をフッ素化剤によりフッ素化した後、目的とする塩素置換部位にアルコキシ基やアミン基等を導入した後、HClやホスゲン等の塩素化剤により再び塩素化を行う方法や、使用する式(I)中のXが総て塩素である市販のホスファゼン化合物に対して導入するフッ素の当量を計算した上で、必要量のフッ素化剤を添加する方法等で合成することができる。なお、上記ホスファゼン化合物は、1種単独で用いても、2種以上の混合物として用いてもよい。   The phosphazene compound is prepared by, for example, using commercially available phosphazene compounds in which X in the formula (I) is all chlorine as a starting material, fluorinating all chlorine with a fluorinating agent, and then at the target chlorine substitution site. After introducing an alkoxy group, an amine group, or the like, chlorinating again with a chlorinating agent such as HCl or phosgene, or a commercially available phosphazene compound in which X in the formula (I) is all chlorine After calculating the equivalent of fluorine to be introduced, it can be synthesized by a method of adding a necessary amount of a fluorinating agent. In addition, the said phosphazene compound may be used individually by 1 type, or may be used as a 2 or more types of mixture.

<1次電池用非水電解液>
本発明の1次電池用非水電解液は、上述した1次電池の非水電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とする。
<Nonaqueous electrolyte for primary battery>
The non-aqueous electrolyte for primary batteries of the present invention is characterized by containing the above-described additive for non-aqueous electrolyte for primary batteries, an aprotic organic solvent, and a supporting salt.

本発明の1次電池用非水電解液に用いる非プロトン性有機溶媒としては、特に制限はないが、電解液の粘度を低く抑える観点から、エーテル化合物やエステル化合物等が好ましい。具体的には、1,2-ジメトキシエタン、テトラヒドロフラン、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、エチルメチルカーボネート等が好適に挙げられる。これらの中でもプロピレンカーボネート、γ-ブチロラクトン等の環状エステル化合物、ジメチルカーボネート、エチルメチルカーボネート等の鎖状エステル化合物、1,2-ジメトキシエタン等の鎖状エーテル化合物等が更に好ましい。特に、環状のエステル化合物は、比誘電率が高くリチウム塩等の溶解性に優れる点で、鎖状のエステル化合物及びエーテル化合物は、低粘度であるため電解液の低粘度化の点で好適である。これらは1種単独で使用してもよく、2種以上を併用してもよいが、2種以上を併用するのが好適である。非プロトン性有機溶媒の25℃における粘度としては、特に制限はないが、10mPa・s(10cP)以下が好ましく、5mPa・s(5cP)以下が更に好ましい。   The aprotic organic solvent used in the non-aqueous electrolyte for primary batteries of the present invention is not particularly limited, but ether compounds and ester compounds are preferred from the viewpoint of keeping the viscosity of the electrolyte low. Specifically, 1,2-dimethoxyethane, tetrahydrofuran, dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate, propylene carbonate, γ-butyrolactone, γ-valerolactone, ethyl methyl carbonate and the like are preferable. Among these, cyclic ester compounds such as propylene carbonate and γ-butyrolactone, chain ester compounds such as dimethyl carbonate and ethyl methyl carbonate, and chain ether compounds such as 1,2-dimethoxyethane are more preferable. In particular, the cyclic ester compound has a high relative dielectric constant and is excellent in the solubility of lithium salts and the like, and the chain ester compound and the ether compound are suitable in terms of reducing the viscosity of the electrolytic solution because of low viscosity. is there. These may be used individually by 1 type, may use 2 or more types together, but it is suitable to use 2 or more types together. The viscosity of the aprotic organic solvent at 25 ° C. is not particularly limited, but is preferably 10 mPa · s (10 cP) or less, and more preferably 5 mPa · s (5 cP) or less.

本発明の1次電池用非水電解液においては、上記非プロトン性有機溶媒と上記1次電池の非水電解液用添加剤との沸点の差が25℃以下であるのが好ましい。より具体的には、本発明の1次電池用非水電解液は、一種以上の非プロトン性有機溶媒と支持塩とを含有し、更に、それぞれの前記非プロトン性有機溶媒に対して、該非プロトン性有機溶媒との沸点の差が25℃以下で且つ上記式(I)で表され少なくとも2種のハロゲン元素を含むホスファゼン化合物をそれぞれ含有するのが好ましい。   In the non-aqueous electrolyte for primary battery of the present invention, the difference in boiling point between the aprotic organic solvent and the additive for non-aqueous electrolyte of the primary battery is preferably 25 ° C. or less. More specifically, the nonaqueous electrolyte solution for primary batteries of the present invention contains one or more aprotic organic solvents and a supporting salt, and further, the non-aqueous electrolyte solution for each of the aprotic organic solvents. It is preferable to contain a phosphazene compound having a boiling point difference from that of the protic organic solvent of 25 ° C. or less and containing at least two halogen elements represented by the above formula (I).

上記ホスファゼン化合物は、上述のように、電池の発火等の危険性を低減する作用を有するが、非プロトン性有機溶媒を含む非水電解液が、該非プロトン性有機溶媒と沸点が近いホスファゼン化合物を含まない場合、気相及び液相のいずれかにおいて非プロトン性有機溶媒とホスファゼン化合物とが共存しない温度範囲が広いため、電池の温度が異常に上昇した際に、気化した非プロトン性有機溶媒又は電池内に残存した非プロトン性有機溶媒の発火・引火の危険性を低減することができない。これに対し、非水電解液が、非プロトン性有機溶媒と共に、該非プロトン性有機溶媒と沸点が近いホスファゼン化合物を含む場合、電池の温度が異常に上昇した際に、非プロトン性有機溶媒とホスファゼン化合物が近い温度で気化するため、非プロトン性有機溶媒が液体として存在する場合及び気体として存在する場合のいずれにおいても、非プロトン性有機溶媒とホスファゼン化合物が共存し、その結果、非水電解液の発火・引火の危険性が大幅に低減される。   As described above, the phosphazene compound has an effect of reducing the risk of battery ignition and the like, but the non-aqueous electrolyte containing the aprotic organic solvent is a phosphazene compound having a boiling point close to that of the aprotic organic solvent. When not included, the aprotic organic solvent and the phosphazene compound in either the gas phase or the liquid phase have a wide temperature range so that when the battery temperature rises abnormally, the vaporized aprotic organic solvent or The risk of ignition and ignition of the aprotic organic solvent remaining in the battery cannot be reduced. In contrast, when the non-aqueous electrolyte contains a phosphazene compound having a boiling point close to that of the aprotic organic solvent together with the aprotic organic solvent, when the battery temperature rises abnormally, the aprotic organic solvent and the phosphazene Since the compound is vaporized at a close temperature, the aprotic organic solvent and the phosphazene compound coexist in both the case where the aprotic organic solvent is present as a liquid and the case where it is present as a gas. The risk of ignition and ignition is greatly reduced.

また、例えば、非水電解液が、低沸点の非プロトン性有機溶媒と高沸点の非プロトン性有機溶媒とを含む場合、低沸点の非プロトン性有機溶媒が気化する温度の近傍で、それに対応するホスファゼン化合物が気化するため、気化した非プロトン性有機溶媒の発火・引火の危険性を低減することができる。また、低沸点の非プロトン性有機溶媒と該低沸点の非プロトン性有機溶媒と沸点が近いホスファゼン化合物が気化した後も、高沸点の非プロトン性有機溶媒と共に該高沸点の非プロトン性有機溶媒と沸点が近いホスファゼン化合物が電解液中に存在するため、残存する非水電解液の発火・引火の危険性を低減することもできる。   In addition, for example, when the non-aqueous electrolyte contains a low-boiling aprotic organic solvent and a high-boiling aprotic organic solvent, it is possible to cope with it near the temperature at which the low-boiling aprotic organic solvent vaporizes. Since the phosphazene compound is vaporized, the risk of ignition and ignition of the vaporized aprotic organic solvent can be reduced. In addition, after the low-boiling aprotic organic solvent and the phosphazene compound having a boiling point close to that of the low-boiling aprotic organic solvent are vaporized, the high-boiling aprotic organic solvent and the high-boiling aprotic organic solvent are used. Since the phosphazene compound having a boiling point close to that of the electrolyte is present in the electrolytic solution, the risk of ignition and ignition of the remaining nonaqueous electrolytic solution can be reduced.

本発明の1次電池用非水電解液においては、使用する非プロトン性有機溶媒に応じて、該非プロトン性有機溶媒と沸点が近いホスファゼン化合物(添加剤)を適宜選択して用いるのが好ましい。ここで、上記式(I)で表され少なくとも2種のハロゲン元素を含むホスファゼン化合物は、分子中の塩素数や、nの値によって、広範囲の沸点を採り得るため、ホスファゼン化合物の分子構造を適宜選択することで、非水電解液の短絡等の非常時における危険性を大幅に低減することができる。   In the nonaqueous electrolytic solution for a primary battery of the present invention, it is preferable to appropriately select and use a phosphazene compound (additive) having a boiling point close to that of the aprotic organic solvent according to the aprotic organic solvent to be used. Here, since the phosphazene compound represented by the above formula (I) and containing at least two kinds of halogen elements can take a wide range of boiling points depending on the number of chlorines in the molecule and the value of n, the molecular structure of the phosphazene compound is appropriately determined. By selecting, the danger in the event of an emergency such as a short circuit of the non-aqueous electrolyte can be greatly reduced.

本発明の1次電池用非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これら支持塩は、1種単独で使用してもよく、2種以上を併用してもよい。 As the supporting salt used in the nonaqueous electrolytic solution for a primary battery of the present invention, a supporting salt serving as an ion source of lithium ions is preferable. The supporting salt is not particularly limited, and for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N and Li ( Preferable examples include lithium salts such as C 2 F 5 SO 2 ) 2 N. These supporting salts may be used alone or in combination of two or more.

本発明の1次電池用非水電解液中の支持塩の濃度としては、0.2〜1.5mol/L(M)が好ましく、0.5〜1mol/L(M)が更に好ましい。支持塩の濃度が0.2mol/L(M)未満では、電解液の導電性を充分に確保することができず、電池の放電特性に支障をきたすことがあり、1.5mol/L(M)を超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性に支障をきたすことがある。   The concentration of the supporting salt in the non-aqueous electrolyte for primary batteries of the present invention is preferably 0.2 to 1.5 mol / L (M), more preferably 0.5 to 1 mol / L (M). If the concentration of the supporting salt is less than 0.2 mol / L (M), the conductivity of the electrolytic solution cannot be sufficiently secured, which may hinder the discharge characteristics of the battery, and 1.5 mol / L (M). If it exceeds, the viscosity of the electrolyte will increase and the mobility of lithium ions will not be sufficiently secured, so that the conductivity of the electrolyte will not be sufficiently secured in the same manner as described above, which may impair the discharge characteristics of the battery. .

本発明の1次電池用非水電解液における上記ホスファゼン化合物の含有量(即ち、添加剤の含有量)は、電解液の安全性を向上させる観点から、1体積%以上が好ましく、5体積%以上が更に好ましく、また、電池の低温特性を向上させる観点から、10体積%以上が好ましく、15体積%以上が更に好ましい。   The content of the phosphazene compound (that is, the content of the additive) in the nonaqueous electrolytic solution for a primary battery of the present invention is preferably 1% by volume or more, and 5% by volume from the viewpoint of improving the safety of the electrolytic solution. The above is more preferable, and from the viewpoint of improving the low-temperature characteristics of the battery, 10% by volume or more is preferable, and 15% by volume or more is more preferable.

<非水電解液1次電池>
本発明の非水電解液1次電池は、上述の1次電池用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液電池の技術分野で通常使用されている他の部材を備える。
<Nonaqueous electrolyte primary battery>
The non-aqueous electrolyte primary battery of the present invention includes the above-described non-aqueous electrolyte for a primary battery, a positive electrode, and a negative electrode, and is usually used in the technical field of a non-aqueous electrolyte battery such as a separator as necessary. It includes other members that are used.

本発明の非水電解液1次電池の正極に用いる正極活物質としては、フッ化黒鉛[(CFx)n]、MnO2(電気化学合成であっても化学合成であってもよい)、V25、MoO3、Ag2CrO4、CuO、CuS、FeS2、SO2、SOCl2、TiS2等が好適に挙げられ、これらの中でも、高容量で安全性が高く、更には放電電位が高く電解液の濡れ性に優れる点で、MnO2、フッ化黒鉛が好ましい。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the positive electrode active material used for the positive electrode of the non-aqueous electrolyte primary battery of the present invention, fluorinated graphite [(CF x ) n ], MnO 2 (which may be electrochemical synthesis or chemical synthesis), Preferred examples include V 2 O 5 , MoO 3 , Ag 2 CrO 4 , CuO, CuS, FeS 2 , SO 2 , SOCl 2 , TiS 2, etc. Among these, high capacity, high safety, and further discharge MnO 2 and fluorinated graphite are preferred because of their high potential and excellent wettability of the electrolyte. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

本発明の非水電解液1次電池の負極に用いる負極活物質としては、リチウム金属自体の他、リチウム合金等が挙げられる。リチウムと合金をつくる金属としては、Sn、Pb、Al、Au、Pt、In、Zn、Cd、Ag、Mg等が挙げられる。これらの中でも、埋蔵量の多さ、毒性の観点からAl、Zn、Mgが好ましい。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。   Examples of the negative electrode active material used for the negative electrode of the non-aqueous electrolyte primary battery of the present invention include lithium alloys as well as lithium metal itself. Examples of the metal that forms an alloy with lithium include Sn, Pb, Al, Au, Pt, In, Zn, Cd, Ag, and Mg. Among these, Al, Zn, and Mg are preferable from the viewpoints of rich reserves and toxicity. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。   The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples thereof include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.

また、上記正極及び負極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。   Moreover, there is no restriction | limiting in particular as a shape of the said positive electrode and a negative electrode, It can select suitably from well-known shapes as an electrode. For example, a sheet shape, a cylindrical shape, a plate shape, a spiral shape, and the like can be given.

本発明の非水電解液1次電池に使用する他の部材としては、非水電解液1次電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適に使用できる。   Another member used in the non-aqueous electrolyte primary battery of the present invention includes a separator interposed in the non-aqueous electrolyte primary battery so as to prevent a short circuit of current due to contact of both electrodes between the positive and negative electrodes. It is done. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in batteries can be suitably used.

以上に説明した本発明の非水電解液1次電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液1次電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これに、シート状の負極を重ね合わせて巻き上げる等して、非水電解液1次電池を作製することができる。   The form of the non-aqueous electrolyte primary battery of the present invention described above is not particularly limited, and there are various known forms such as a coin type, button type, paper type, square type or spiral type cylindrical battery. Preferably mentioned. In the case of the button type, a non-aqueous electrolyte primary battery can be manufactured by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of the spiral structure, for example, a non-aqueous electrolyte primary battery is manufactured by preparing a sheet-like positive electrode, sandwiching a current collector, and stacking and winding up the sheet-like negative electrode on the current collector. be able to.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<ホスファゼン化合物の合成>
(合成例1)
溶媒としてのニトロベンゼン中で(NPCl2)3 とフッ化ナトリウムとを混合し、減圧下(15kPa)で、室温から徐々に140℃まで約一時間かけて昇温し、揮発してくる留分を生成物として得た。
<Synthesis of phosphazene compounds>
(Synthesis Example 1)
(NPCl 2 ) 3 and sodium fluoride are mixed in nitrobenzene as a solvent and gradually heated from room temperature to 140 ° C. under reduced pressure (15 kPa) over about 1 hour. Obtained as product.

得られた生成物をGC-MSで分析したところ、式(I)中のnが3であって、6つのXの総てがフッ素の環状ホスファゼン化合物(沸点が52℃で、凝固点が28℃で、25℃における粘度が0.8mPa・s)と、式(I)中のnが3であって、6つのXのうち1つが塩素、5つがフッ素の環状ホスファゼン化合物(沸点が82℃で、凝固点が-30℃で、25℃における粘度が0.8mPa・s)と、式(I)中のnが3であって、6つのXのうち2つが塩素、4つがフッ素の環状ホスファゼン化合物(沸点が115℃で、凝固点が-46℃で、25℃における粘度が1.1mPa・s)と、式(I)中のnが3であって、6つのXのうち3つが塩素、3つがフッ素の環状ホスファゼン化合物(沸点が150℃で、凝固点が-35℃で、25℃における粘度が1.3mPa・s)との混合物であることを確認した。また、該混合物をそれぞれ蒸留により分離して、4種の純粋な環状ホスファゼン化合物を得た。   The obtained product was analyzed by GC-MS. As a result, n in the formula (I) was 3, and all six Xs were fluorine. A cyclic phosphazene compound having a boiling point of 52 ° C. and a freezing point of 28 ° C. A cyclic phosphazene compound having a viscosity of 0.8 mPa · s at 25 ° C. and n of 3 in formula (I), one of the six X being chlorine and five of fluorine (boiling point is 82 ° C., Cyclic phosphazene compound (boiling point) having a freezing point of −30 ° C. and a viscosity of 0.8 mPa · s at 25 ° C., n in the formula (I) being 3, 2 of 6 X being chlorine and 4 being fluorine Is 115 ° C, the freezing point is -46 ° C, the viscosity at 25 ° C is 1.1 mPa · s), n in the formula (I) is 3, 3 of 6 X are chlorine, 3 are fluorine It was confirmed to be a mixture with a cyclic phosphazene compound (boiling point: 150 ° C., freezing point: −35 ° C., viscosity at 25 ° C .: 1.3 mPa · s). In addition, the mixture was separated by distillation to obtain four kinds of pure cyclic phosphazene compounds.

(合成例2)
溶媒としてのニトロベンゼン中で(NPCl2)4 とフッ化亜硫酸カリウムとを混合し、減圧下(1kPa)で、室温から徐々に180℃まで約一時間かけて昇温し、揮発してくる留分を生成物として得た。
(Synthesis Example 2)
(NPCl 2 ) 4 and potassium fluoride sulfite are mixed in nitrobenzene as a solvent, and the temperature is gradually increased from room temperature to 180 ° C. under reduced pressure (1 kPa) over about one hour, and the fraction that volatilizes. Was obtained as the product.

得られた生成物をGC-MSで分析したところ、式(I)中のnが4であって、8つのXの総てがフッ素の環状ホスファゼン化合物(沸点が80℃で、凝固点が30℃で、25℃における粘度が0.8mPa・s)と、式(I)中のnが4であって、8つのXのうち1つが塩素、7つがフッ素の環状ホスファゼン化合物(沸点が117℃で、凝固点が-6℃で、25℃における粘度が1.2mPa・s)と、式(I)中のnが4であって、8つのXのうち2つが塩素、6つがフッ素の環状ホスファゼン化合物(沸点が147℃で、凝固点が-22℃で、25℃における粘度が1.5mPa・s)と、式(I)中のnが4であって、8つのXのうち3つが塩素、5つがフッ素の環状ホスファゼン化合物(沸点が178℃で、凝固点が-29℃で、25℃における粘度が1.9mPa・s)と、式(I)中のnが4であって、8つのXのうち4つが塩素、4つがフッ素の環状ホスファゼン化合物(沸点が205℃で、凝固点が-23℃で、25℃における粘度が2.3mPa・s)と、式(I)中のnが4であって、8つのXのうち5つが塩素、3つがフッ素の環状ホスファゼン化合物(沸点が232℃で、凝固点が-11℃で、25℃における粘度が2.8mPa・s)との混合物であることを確認した。また、該混合物をそれぞれ蒸留により分離して、5種の純粋な環状ホスファゼン化合物を得た。   When the obtained product was analyzed by GC-MS, n in the formula (I) was 4, and all of the eight Xs were fluorine-containing cyclic phosphazene compounds (boiling point was 80 ° C., freezing point was 30 ° C. A cyclic phosphazene compound having a viscosity of 0.8 mPa · s at 25 ° C. and n of 4 in formula (I), one of eight X being chlorine and seven being fluorine (boiling point is 117 ° C., A cyclic phosphazene compound (boiling point) having a freezing point of −6 ° C. and a viscosity of 1.2 mPa · s at 25 ° C., n in the formula (I) being 4, 2 of 8 X being chlorine and 6 being fluorine. Is 147 ° C, freezing point is -22 ° C, viscosity at 25 ° C is 1.5mPa · s), n in formula (I) is 4, 3 out of 8 X are chlorine, 5 are fluorine Cyclic phosphazene compound (boiling point is 178 ° C, freezing point is -29 ° C, viscosity at 25 ° C is 1.9mPa · s), n in formula (I) is 4, 4 out of 8 X are chlorine , Four are cyclic phosphazene compounds of fluorine (boiling point is 205 ° C, freezing point is -23 ° C, viscosity at 25 ° C is 2.3 mPa · s), n in formula (I) is 4, It was confirmed that the mixture was a cyclic phosphazene compound (boiling point is 232 ° C., freezing point is −11 ° C., viscosity at 25 ° C. is 2.8 mPa · s), 5 of which are chlorine and 3 are fluorine. In addition, the mixture was separated by distillation to obtain five pure cyclic phosphazene compounds.

<1次電池用非水電解液の作製>
次に、表2に示す配合の混合溶液(非プロトン性有機溶媒とホスファゼン化合物とからなる)を作製し、該混合溶液にLiBF4(支持塩)を0.75mol/L(M)の濃度で溶解させて非水電解液を調製した。得られた非水電解液の安全性及び限界酸素指数を下記の方法で測定・評価した。結果を表2に示す。
<Preparation of non-aqueous electrolyte for primary battery>
Next, a mixed solution (comprising an aprotic organic solvent and a phosphazene compound) having the composition shown in Table 2 is prepared, and LiBF 4 (supporting salt) is dissolved in the mixed solution at a concentration of 0.75 mol / L (M). To prepare a non-aqueous electrolyte. The safety and critical oxygen index of the obtained nonaqueous electrolytic solution were measured and evaluated by the following methods. The results are shown in Table 2.

(1)電解液の安全性
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼挙動から非水電解液の安全性を評価した。その際、着火性、燃焼性、炭化物の生成、二次着火時の現象についても観察した。具体的には、UL試験基準に基づき、不燃性石英ファイバーに上記電解液1.0mLを染み込ませて、127mm×12.7mmの試験片を作製して行った。ここで、試験炎が試験片に着火しない場合(燃焼長:0mm)を「不燃性」、着火した炎が25mmラインまで到達せず且つ落下物にも着火が認められない場合を「難燃性」、着火した炎が25〜100mmラインで消火し且つ落下物にも着火が認められない場合を「自己消火性」、着火した炎が100mmラインを超えた場合を「燃焼性」と評価した。
(1) Safety of electrolyte solution The safety of the non-aqueous electrolyte solution was evaluated from the combustion behavior of flames ignited in an atmospheric environment by the method of arranging the UL94HB method of UL (Underwriting Laboratory) standard. At that time, ignitability, combustibility, formation of carbides, and secondary ignition phenomena were also observed. Specifically, based on the UL test standard, a non-combustible quartz fiber was impregnated with 1.0 mL of the electrolytic solution, and a test piece of 127 mm × 12.7 mm was produced. Here, when the test flame does not ignite the test piece (combustion length: 0 mm), it is “non-flammable”. The case where the ignited flame was extinguished on the 25 to 100 mm line and the fallen object was not ignited was evaluated as “self-extinguishing”, and the case where the ignited flame exceeded the 100 mm line was evaluated as “combustible”.

(2)電解液の限界酸素指数
JIS K 7201に準じて、電解液の限界酸素指数を測定した。具体的には、上記電解液の安全性の試験と同様にして試験片を作製し、該試験片を試験片支持具に垂直に、燃焼円筒(内径75mm、高さ450mm、直径4mmのガラス粒を底部から100±5mmの厚さに均等に満たし金属製の網をその上に置いたもの)の上端部から100mm以上の距離に位置するように取り付け、次に、燃焼円筒に酸素(JIS K 1101又はこれと同等以上のもの)及び窒素(JIS K 1107の2級又はこれと同等以上のもの)を流し、試験片を空気中で点火し(熱源はJIS K 2240の1種1号)、燃焼状態を調べた。但し、燃焼円筒内の総流量は11.4L/minである。この試験を3回行い、その平均値を表2に示す。なお、酸素指数とは、材料が燃焼を持続するのに必要な容量パーセントで表される最低酸素濃度の値をいい、本願では、試験片が3分以上継続して燃焼するか、着炎後の燃焼長さが50mm以上燃えるのに必要な最低の酸素流量とそのときの窒素流量から、下記の式:
限界酸素指数=(酸素流量)/[(酸素流量)+(窒素流量)]×100(体積%)
に従って限界酸素指数を算出した。
(2) Limiting oxygen index of electrolyte The limiting oxygen index of the electrolyte was measured according to JIS K7201. Specifically, a test piece was prepared in the same manner as the safety test of the electrolyte solution, and the test piece was perpendicular to the test piece support, and a combustion cylinder (inner diameter 75 mm, height 450 mm, diameter 4 mm glass particles). Is attached so that the thickness of the metal net is 100 ± 5mm evenly from the bottom and the metal mesh is placed on it at a distance of 100mm or more from the top, and then oxygen (JIS K) is attached to the combustion cylinder. 1101 or equivalent or higher) and nitrogen (second grade of JIS K 1107 or equivalent or higher), and the test piece is ignited in air (the heat source is JIS K 2240 type 1 No. 1), The combustion state was investigated. However, the total flow rate in the combustion cylinder is 11.4 L / min. This test was performed three times, and the average value is shown in Table 2. The oxygen index refers to the value of the minimum oxygen concentration expressed by the volume percent necessary for the material to continue burning. In this application, the test piece burns continuously for 3 minutes or longer, From the minimum oxygen flow rate required for burning 50 mm or more and the nitrogen flow rate at that time, the following formula:
Critical oxygen index = (oxygen flow rate) / [(oxygen flow rate) + (nitrogen flow rate)] × 100 (volume%)
The limiting oxygen index was calculated according to

<非水電解液1次電池の作製>
次に、MnO2(正極活物質)と、アセチレンブラック(導電剤)と、ポリフッ化ビニリデン(結着剤)とを8:1:1の割合(質量比)で混合・混錬した後、該混練物を厚さ25μmのニッケル箔(集電体)に圧着・ペレット化し、更に加熱乾燥(100〜120℃)して、厚さ500μmの正極ペレットを作製した。得られた正極ペレットをφ16mmに打ち抜いたものを正極とし、リチウム箔(厚み0.5mm)をφ16mmに打ち抜いたものを負極とし、セルロースセパレーター[日本高度紙工業社製TF4030]を介して上記正負極を対座させ、上記電解液を注入して封口し、CR2016型の非水電解液1次電池(リチウム1次電池)を作製した。得られた電池の低温特性を下記の方法で試験した。結果を表2に示す。
<Preparation of non-aqueous electrolyte primary battery>
Next, after mixing and kneading MnO 2 (positive electrode active material), acetylene black (conductive agent), and polyvinylidene fluoride (binder) in a ratio (mass ratio) of 8: 1: 1, The kneaded product was pressure-bonded and pelletized on a nickel foil (current collector) having a thickness of 25 μm, and further heated and dried (100 to 120 ° C.) to produce a positive electrode pellet having a thickness of 500 μm. The obtained positive electrode pellet punched out to φ16 mm was used as the positive electrode, the lithium foil (thickness 0.5 mm) punched out to φ16 mm was used as the negative electrode, and the above positive and negative electrodes were connected via a cellulose separator [TF4030 manufactured by Nippon Advanced Paper Industries Co., Ltd.]. It was made to face, the said electrolyte solution was inject | poured and sealed, and the CR2016 type nonaqueous electrolyte primary battery (lithium primary battery) was produced. The obtained battery was tested for low temperature characteristics by the following method. The results are shown in Table 2.

(3)電池の低温特性
25℃と-40℃の環境下のそれぞれで、下限電圧1.5Vで、0.2C放電を行い、放電容量を測定した。25℃における放電容量と、-40℃における放電容量とから、下記の式:
放電容量残存率=放電容量(-40℃)/放電容量(25℃)×100(%)
に従って放電容量残存率を算出し、電池の低温特性の指標とした。
(3) Low temperature characteristics of the battery
Under an environment of 25 ° C. and −40 ° C., 0.2 C discharge was performed at a lower limit voltage of 1.5 V, and the discharge capacity was measured. From the discharge capacity at 25 ° C and the discharge capacity at -40 ° C, the following formula:
Discharge capacity remaining rate = discharge capacity (−40 ° C.) / Discharge capacity (25 ° C.) × 100 (%)
The residual capacity of the discharge capacity was calculated according to the above and used as an index of the low temperature characteristics of the battery.

なお、表1中、PCはプロピレンカーボネート(沸点242℃)を、DMEは1,2-ジメトキシエタン(沸点84℃)を、GBLはγ-ブチロラクトン(沸点204℃)を示す。また、ホスファゼンAは、式(I)において、nが3であって、6つのXのうち1つが塩素、5つがフッ素である環状ホスファゼン化合物(25℃における粘度:0.8mPa・s、沸点82℃)であり、ホスファゼンBは、式(I)において、nが3であって、6つのXのうち2つが塩素、4つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.1mPa・s、沸点115℃)であり、ホスファゼンCは、式(I)において、nが3であって、6つのXのうち3つが塩素、3つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.3mPa・s、沸点150℃)であり、ホスファゼンDは、式(I)において、nが4であって、8つのXのうち1つが塩素、7つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.2mPa・s、沸点117℃)であり、ホスファゼンEは、式(I)において、nが4であって、8つのXのうち2つが塩素、6つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.5mPa・s、沸点147℃)であり、ホスファゼンFは、式(I)において、nが4であって、8つのXのうち3つが塩素、5つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.9mPa・s、沸点178℃)であり、ホスファゼンGは、式(I)において、nが4であって、8つのXのうち4つが塩素、4つがフッ素である環状ホスファゼン化合物(25℃における粘度:2.3mPa・s、沸点205℃)であり、ホスファゼンHは、式(I)において、nが4であって、8つのXのうち5つが塩素、3つがフッ素である環状ホスファゼン化合物(25℃における粘度:2.8mPa・s、沸点232℃)である。   In Table 1, PC represents propylene carbonate (boiling point 242 ° C.), DME represents 1,2-dimethoxyethane (boiling point 84 ° C.), and GBL represents γ-butyrolactone (boiling point 204 ° C.). Phosphazene A is a cyclic phosphazene compound (viscosity at 25 ° C .: 0.8 mPa · s, boiling point 82 ° C.) wherein n is 3 and one of the six Xs is chlorine and five are fluorines in formula (I). Phosphazene B is a cyclic phosphazene compound (viscosity at 25 ° C .: 1.1 mPa · s, boiling point) in which n is 3 and 2 out of 6 X are chlorine and 4 are fluorine in formula (I) Phosphazene C is a cyclic phosphazene compound (viscosity at 25 ° C .: 1.3 mPa · s) in which n is 3 and 3 out of 6 Xs are chlorine and 3 are fluorines in formula (I) Phosphazene D is a cyclic phosphazene compound (viscosity at 25 ° C .: 1.2 mPas) in which n is 4 and one of eight Xs is chlorine and seven are fluorines in formula (I) S, boiling point 117 ° C.), and phosphazene E has the formula (I ), A cyclic phosphazene compound (viscosity at 25 ° C .: 1.5 mPa · s, boiling point 147 ° C.) in which n is 4 and 2 out of 8 X are chlorine and 6 are fluorine, and phosphazene F has the formula In (I), a cyclic phosphazene compound (viscosity at 25 ° C .: 1.9 mPa · s, boiling point 178 ° C.) in which n is 4 and 3 out of 8 Xs are chlorine and 5 are fluorines. A cyclic phosphazene compound (viscosity at 25 ° C .: 2.3 mPa · s, boiling point 205 ° C.) in which n is 4 and 4 out of 8 X are chlorine and 4 are fluorine in formula (I), H is a cyclic phosphazene compound (viscosity at 25 ° C .: 2.8 mPa · s, boiling point 232 ° C.) in which n is 4 and 5 out of 8 X are chlorine and 3 are fluorine in the formula (I) .

Figure 0004558362
Figure 0004558362

表2から明らかなように、実施例の非水電解液は、限界酸素指数が高く、安全性に優れ、実施例の非水電解液1次電池は、優れた低温特性を有することが分る。   As is clear from Table 2, the non-aqueous electrolyte of the example has a high critical oxygen index and is excellent in safety, and the non-aqueous electrolyte primary battery of the example has excellent low-temperature characteristics. .

Claims (11)

下記式(I):
(NPX2n ・・・ (I)
(式中、Xはそれぞれ独立してハロゲン元素であり、nは3〜15の整数である)で表され、且つ少なくとも2種のハロゲン元素を含むホスファゼン化合物からなる1次電池の非水電解液用添加剤。
Formula (I) below:
(NPX 2 ) n ... (I)
(Wherein X is independently a halogen element and n is an integer of 3 to 15), and a non-aqueous electrolyte for a primary battery comprising a phosphazene compound containing at least two halogen elements Additives.
前記ホスファゼン化合物がフッ素と塩素とを含むことを特徴とする請求項1に記載の1次電池の非水電解液用添加剤。   The additive for a non-aqueous electrolyte of a primary battery according to claim 1, wherein the phosphazene compound contains fluorine and chlorine. 前記式(I)中のXがそれぞれ独立してフッ素又は塩素であることを特徴とする請求項2に記載の1次電池の非水電解液用添加剤。   The additive for a non-aqueous electrolyte solution for a primary battery according to claim 2, wherein X in the formula (I) is independently fluorine or chlorine. 前記式(I)中のnが3〜5であることを特徴とする請求項1に記載の1次電池の非水電解液用添加剤。   2. The additive for a non-aqueous electrolyte for a primary battery according to claim 1, wherein n in the formula (I) is 3 to 5. 5. 前記式(I)中のnが3で、6つのXのうち1〜3つが塩素で残りがフッ素であることを特徴とする請求項3又は4に記載の1次電池の非水電解液用添加剤。   5. The non-aqueous electrolyte for a primary battery according to claim 3, wherein n in the formula (I) is 3, 1 to 3 out of 6 Xs are chlorine, and the remainder is fluorine. Additive. 前記式(I)中のnが4で、8つのXのうち1〜5つが塩素で残りがフッ素であることを特徴とする請求項3又は4に記載の1次電池の非水電解液用添加剤。   5. The non-aqueous electrolyte for a primary battery according to claim 3, wherein n in the formula (I) is 4, 1 to 5 of 8 Xs are chlorine, and the remainder is fluorine. Additive. 前記ホスファゼン化合物が分子中に2つ以上の塩素原子を含み、各塩素原子がそれぞれ異なるリン原子に結合していることを特徴とする請求項5又は6に記載の1次電池の非水電解液用添加剤。   The non-aqueous electrolyte for a primary battery according to claim 5 or 6, wherein the phosphazene compound contains two or more chlorine atoms in the molecule, and each chlorine atom is bonded to a different phosphorus atom. Additives. 前記ホスファゼン化合物の凝固点が-5℃以下であることを特徴とする請求項1に記載の1次電池の非水電解液用添加剤。   The additive for a non-aqueous electrolyte of a primary battery according to claim 1, wherein the freezing point of the phosphazene compound is -5 ° C or lower. 請求項1〜8のいずれかに記載の1次電池の非水電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とする1次電池用非水電解液。   A nonaqueous electrolytic solution for a primary battery comprising the additive for a nonaqueous electrolytic solution for a primary battery according to any one of claims 1 to 8, an aprotic organic solvent, and a supporting salt. 前記非プロトン性有機溶媒と前記1次電池の非水電解液用添加剤との沸点の差が25℃以下であることを特徴とする請求項9に記載の1次電池用非水電解液。   The nonaqueous electrolytic solution for a primary battery according to claim 9, wherein a difference in boiling points between the aprotic organic solvent and the additive for the nonaqueous electrolytic solution of the primary battery is 25 ° C. or less. 請求項9又は10に記載の1次電池用非水電解液と、正極と、負極とを備えた非水電解液1次電池。   The nonaqueous electrolyte primary battery provided with the nonaqueous electrolyte for primary batteries of Claim 9 or 10, the positive electrode, and the negative electrode.
JP2004084881A 2004-03-23 2004-03-23 Non-aqueous electrolyte additive for primary battery, non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery Expired - Fee Related JP4558362B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004084881A JP4558362B2 (en) 2004-03-23 2004-03-23 Non-aqueous electrolyte additive for primary battery, non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery
EP05719788A EP1748511A4 (en) 2004-03-23 2005-03-02 Additive for nonaqueous electrolyte of battery, nonaqueous electrolyte for battery and battery loaded with nonaqueous electrolyte
US10/599,150 US20070183954A1 (en) 2004-03-23 2005-03-02 Additive for non-aqueous electrolyte in battery, non-aqueous electrolyte for battery and non-aqueos electrolyte battery
PCT/JP2005/003473 WO2005091421A1 (en) 2004-03-23 2005-03-02 Additive for nonaqueous electrolyte of battery, nonaqueous electrolyte for battery and battery loaded with nonaqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084881A JP4558362B2 (en) 2004-03-23 2004-03-23 Non-aqueous electrolyte additive for primary battery, non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery

Publications (2)

Publication Number Publication Date
JP2005276492A JP2005276492A (en) 2005-10-06
JP4558362B2 true JP4558362B2 (en) 2010-10-06

Family

ID=35175945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084881A Expired - Fee Related JP4558362B2 (en) 2004-03-23 2004-03-23 Non-aqueous electrolyte additive for primary battery, non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery

Country Status (1)

Country Link
JP (1) JP4558362B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212051A (en) * 2008-03-06 2009-09-17 Fdk Energy Co Ltd Bobbin type lithium bettry

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574467A (en) * 1991-09-12 1993-03-26 Showa Denko Kk Macromolecular solid electrolyte
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP2003077532A (en) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2003249233A (en) * 2002-02-25 2003-09-05 Bridgestone Corp Lithium primary cell
JP2004055208A (en) * 2002-07-17 2004-02-19 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005116424A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574467A (en) * 1991-09-12 1993-03-26 Showa Denko Kk Macromolecular solid electrolyte
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP2003077532A (en) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2003249233A (en) * 2002-02-25 2003-09-05 Bridgestone Corp Lithium primary cell
JP2004055208A (en) * 2002-07-17 2004-02-19 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005116424A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2005276492A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP5001506B2 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
JP5738011B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
JP4257725B2 (en) Non-aqueous electrolyte secondary battery
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP4450732B2 (en) Battery supporting salt, method for producing the same, and battery
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
JP4458841B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2008258022A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery equipped with it
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
JP2004006301A (en) Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same
JPWO2003041197A1 (en) Non-aqueous electrolyte primary battery and additive for non-aqueous electrolyte of the battery
JPWO2005104289A1 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery including the same
JP4373207B2 (en) Polymer secondary battery and polymer electrolyte
JP2002083628A (en) Additive for nonaqueous electrolytic solution secondary battery and the nonaqueous electrolytic solution secondary battery
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
WO2005091421A1 (en) Additive for nonaqueous electrolyte of battery, nonaqueous electrolyte for battery and battery loaded with nonaqueous electrolyte
JP4558362B2 (en) Non-aqueous electrolyte additive for primary battery, non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery
JP2008052988A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP4731125B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2003249233A (en) Lithium primary cell
JP2006134736A (en) Gel electrolyte for polymer battery and polymer battery equipped with it
JP4873855B2 (en) Battery non-aqueous electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees