JP4731125B2 - Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4731125B2
JP4731125B2 JP2004084041A JP2004084041A JP4731125B2 JP 4731125 B2 JP4731125 B2 JP 4731125B2 JP 2004084041 A JP2004084041 A JP 2004084041A JP 2004084041 A JP2004084041 A JP 2004084041A JP 4731125 B2 JP4731125 B2 JP 4731125B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
phosphazene compound
chlorine
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004084041A
Other languages
Japanese (ja)
Other versions
JP2005276455A (en
Inventor
泰郎 堀川
正珠 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004084041A priority Critical patent/JP4731125B2/en
Priority to CNA2005800141329A priority patent/CN1950969A/en
Priority to US10/599,150 priority patent/US20070183954A1/en
Priority to EP05719788A priority patent/EP1748511A4/en
Priority to PCT/JP2005/003473 priority patent/WO2005091421A1/en
Publication of JP2005276455A publication Critical patent/JP2005276455A/en
Application granted granted Critical
Publication of JP4731125B2 publication Critical patent/JP4731125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、2次電池の非水電解液用添加剤、該添加剤を含む2次電池用非水電解液及びそれを備えた非水電解液2次電池に関し、特に安全性及び低温特性に優れた非水電解液2次電池に関するものである。   The present invention relates to a non-aqueous electrolyte additive for a secondary battery, a non-aqueous electrolyte solution for a secondary battery including the additive, and a non-aqueous electrolyte secondary battery including the additive, and particularly to safety and low temperature characteristics. The present invention relates to an excellent nonaqueous electrolyte secondary battery.

近年、パソコン・VTR等のAV・情報機器のメモリーバックアップやそれらの駆動電源、又は電気自動車や燃料電池自動車の主電源若しくは補助電源として、軽量且つ長寿命で、高エネルギー密度の2次電池が求められている。これに対し、リチウムを負極活物質とする非水電解液2次電池は、リチウムの電極電位が金属中で最も低く、単位体積当りの電気容量が大きいために、エネルギー密度の高い2次電池の一つとして知られており、一部が実用化され市場に供給されている。例えば、ノート型パソコン及び携帯電話等の駆動電源として非水電解液2次電池が用いられており、また、電気自動車や燃料電池自動車の主電源若しくは補助電源として非水電解液2次電池を用いることが検討されている。   In recent years, lightweight, long-life, high-energy-density secondary batteries have been demanded as memory backups for AV and information devices such as personal computers and VTRs, as well as their drive power sources, or as main power sources or auxiliary power sources for electric vehicles and fuel cell vehicles. It has been. On the other hand, a non-aqueous electrolyte secondary battery using lithium as a negative electrode active material has the lowest lithium electrode potential among metals and a large electric capacity per unit volume. Known as one, some are put into practical use and supplied to the market. For example, a non-aqueous electrolyte secondary battery is used as a driving power source for notebook computers and mobile phones, and a non-aqueous electrolyte secondary battery is used as a main power source or auxiliary power source for electric vehicles and fuel cell vehicles. It is being considered.

これらの非水電解液2次電池においては、負極活物質のリチウムが水及びアルコール等の活性プロトンを有する化合物と激しく反応するため、該電池に使用される電解液は、エステル化合物及びエーテル化合物等の非プロトン性有機溶媒に限られている。   In these non-aqueous electrolyte secondary batteries, the negative electrode active material lithium reacts violently with a compound having active protons such as water and alcohol, so that the electrolyte used in the battery is an ester compound or an ether compound. It is limited to aprotic organic solvents.

しかしながら、上記非プロトン性有機溶媒は、負極活物質のリチウムとの反応性が低いものの、例えば、電池の短絡時等に大電流が急激に流れ、電池が異常に発熱した際に、気化・分解してガスを発生したり、発生したガス及び熱により電池の破裂・発火を引き起こしたり、短絡時に生じる火花が引火する等の危険性が高かった。   However, although the aprotic organic solvent has low reactivity with the lithium of the negative electrode active material, for example, when a battery is short-circuited, a large current flows suddenly, and when the battery abnormally generates heat, it is vaporized and decomposed. Thus, there is a high risk of generating gas, causing the battery to rupture or ignite due to the generated gas and heat, and sparks generated during a short circuit.

これに対して、非水電解液にホスファゼン化合物を添加して、非水電解液に不燃性、難燃性又は自己消火性を付与して、短絡等の非常時に電池が発火・引火する危険性を大幅に低減した非水電解液2次電池が開発されている。また、かかるホスファゼン化合物の中でも、環状で且つ分子中の各リン元素に2つのフッ素が結合したホスファゼン化合物は、リン元素に有機基が結合したホスファゼン化合物よりも非常に粘度が低いため、該ホスファゼン化合物を非水電解液に添加することで、非水電解液が低粘度化して、常温における2次電池の放電特性と共に、低温使用時の放電特性を改善できることが知られている(特許文献1参照)。   On the other hand, adding a phosphazene compound to the non-aqueous electrolyte to impart non-flammability, flame retardancy or self-extinguishing properties to the non-aqueous electrolyte may cause the battery to ignite or ignite in the event of an emergency such as a short circuit A non-aqueous electrolyte secondary battery that significantly reduces the above has been developed. Among such phosphazene compounds, a phosphazene compound that is cyclic and has two fluorine atoms bonded to each phosphorus element in the molecule has a much lower viscosity than a phosphazene compound in which an organic group is bonded to a phosphorus element. Is added to the non-aqueous electrolyte so that the viscosity of the non-aqueous electrolyte is reduced and the discharge characteristics of the secondary battery at room temperature can be improved as well as the discharge characteristics at low temperatures (see Patent Document 1). ).

国際公開第02/21631号パンフレットInternational Publication No. 02/21631 Pamphlet

しかしながら、環状で且つ分子中の各リン元素に2つのフッ素が結合したホスファゼン化合物は、沸点が低いため、高温使用時に該ホスファゼン化合物が気化する可能性があった。また、短絡等の非常時に電池の温度が上昇する際に、該ホスファゼン化合物は、非プロトン性有機溶媒よりも先に気化するため、残存する非プロトン性有機溶媒が単独で気化・分解してガスを発生したり、発生したガス及び熱により電池の破裂・発火が起こったり、短絡時に生じた火花が残存する非プロトン性有機溶媒に引火する等の危険性があった。   However, a phosphazene compound that is cyclic and has two fluorine atoms bonded to each phosphorus element in the molecule has a low boiling point, so that the phosphazene compound may vaporize when used at high temperatures. In addition, when the temperature of the battery rises in the event of an emergency such as a short circuit, the phosphazene compound is vaporized before the aprotic organic solvent. There is a risk that the battery may rupture or ignite due to the generated gas and heat, or the aprotic organic solvent in which the spark generated at the time of short-circuiting will remain ignited.

そこで、本発明の目的は、上記従来技術の問題を解決し、沸点が十分に高く、高温使用時に気化することなく、短絡等の非常時においても電解液の安全性を十分に確保でき、更には、優れた低温特性を付与することが可能な2次電池の非水電解液用添加剤を提供することにある。また、本発明の他の目的は、かかる添加剤を含む2次電池用非水電解液と、該非水電解液を備え、安全性及び低温特性に優れた非水電解液2次電池を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, the boiling point is sufficiently high, without being vaporized when used at high temperatures, it is possible to sufficiently ensure the safety of the electrolyte even in an emergency such as a short circuit, An object of the present invention is to provide an additive for a non-aqueous electrolyte for a secondary battery that can impart excellent low-temperature characteristics. Another object of the present invention is to provide a non-aqueous electrolyte for a secondary battery containing such an additive and a non-aqueous electrolyte secondary battery having the non-aqueous electrolyte and having excellent safety and low-temperature characteristics. There is.

本発明者らは、上記目的を達成するために鋭意検討した結果、特定構造の環状ホスファゼン化合物が、十分に高い沸点と、十分に低い凝固点と、非常に高い酸素指数とを有しており、該ホスファゼン化合物を非水電解液に添加することで、電池の高温使用時にホスファゼン化合物が気化することなく、短絡等の非常時においても非水電解液の安全性を十分に確保でき、更には、電池の低温特性が向上することを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a cyclic phosphazene compound having a specific structure has a sufficiently high boiling point, a sufficiently low freezing point, and a very high oxygen index, By adding the phosphazene compound to the non-aqueous electrolyte, the phosphazene compound does not vaporize when the battery is used at a high temperature, and the safety of the non-aqueous electrolyte can be sufficiently ensured even in an emergency such as a short circuit. The inventors have found that the low temperature characteristics of the battery are improved, and have completed the present invention.

即ち、本発明の2次電池の非水電解液用添加剤は、下記式(I):
(NPX2n ・・・ (I)
(式中、Xはそれぞれ独立してハロゲン元素であり、nは3〜15の整数である)で表され、且つ少なくとも2種のハロゲン元素を含み、凝固点が-20℃以下であるホスファゼン化合物からなることを特徴とする。
That is, the additive for non-aqueous electrolyte solution of the secondary battery of the present invention is represented by the following formula (I):
(NPX 2 ) n ... (I)
(Wherein, X is a halogen element independently, n represents 3 to 15 of an integer) is represented by, and saw including at least two kinds of halogen, phosphazene compound solidifying point of -20 ° C. or less It is characterized by comprising.

本発明の2次電池の非水電解液用添加剤の好適例においては、前記ホスファゼン化合物がフッ素と塩素とを含む。ここで、該ホスファゼン化合物は、上記式(I)中のXがそれぞれ独立してフッ素又は塩素であるのが更に好ましい。   In a preferred example of the non-aqueous electrolyte additive for secondary batteries of the present invention, the phosphazene compound contains fluorine and chlorine. Here, in the phosphazene compound, it is more preferable that each X in the formula (I) is independently fluorine or chlorine.

本発明の2次電池の非水電解液用添加剤の他の好適例においては、前記式(I)中のnが3〜5である。この場合、ホスファゼン化合物の粘度が十分に低いため、非水電解液の粘度を上昇させることが無く、2次電池の充放電特性を十分に確保することができる。   In another preferred embodiment of the additive for a non-aqueous electrolyte solution of the secondary battery of the present invention, n in the formula (I) is 3-5. In this case, since the viscosity of the phosphazene compound is sufficiently low, the charge / discharge characteristics of the secondary battery can be sufficiently ensured without increasing the viscosity of the non-aqueous electrolyte.

本発明の2次電池の非水電解液用添加剤は、前記式(I)中のnが3で、6つのXのうち1〜3つが塩素で残りがフッ素であるホスファゼン化合物及び/又は前記式(I)中のnが4で、8つのXのうち2〜4つが塩素で残りがフッ素であるホスファゼン化合物からなるのが更に好ましい。また、該ホスファゼン化合物が分子中に2つ以上の塩素原子を含み、各塩素原子がそれぞれ異なるリン原子に結合しているのがより一層好ましい。この場合、ホスファゼン化合物の凝固点が特に低いので、2次電池の低温特性を大幅に改善することができる。 The additive for a non-aqueous electrolyte of the secondary battery of the present invention is a phosphazene compound in which n in the formula (I) is 3, 1 to 3 out of 6 Xs and the rest is fluorine and / or More preferably, it is composed of a phosphazene compound in which n in the formula (I) is 4, 2 to 4 of 8 Xs are chlorine, and the remainder is fluorine. More preferably, the phosphazene compound contains two or more chlorine atoms in the molecule, and each chlorine atom is bonded to a different phosphorus atom. In this case, since the freezing point of the phosphazene compound is particularly low, the low temperature characteristics of the secondary battery can be greatly improved.

本発明の2次電池の非水電解液用添加剤においては、前記ホスファゼン化合物の凝固点が-20℃以下であり、ホスファゼン化合物の凝固点が十分に低いので、2次電池の低温特性を大幅に改善することができる。 In the non-aqueous electrolyte additive for a secondary battery of the present invention, the freezing point of the phosphazene compound is at -20 ° C. or less, because a sufficiently low freezing point of the phosphazene compound, significantly improve the low temperature properties of the secondary battery can do.

また、本発明の2次電池用非水電解液は、上記2次電池の非水電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とする。   Moreover, the non-aqueous electrolyte for secondary batteries of this invention is characterized by including the additive for non-aqueous electrolytes of the said secondary battery, an aprotic organic solvent, and a supporting salt.

本発明の2次電池用非水電解液の好適例においては、前記非プロトン性有機溶媒と前記2次電池の非水電解液用添加剤との沸点の差が25℃以下である。この場合、非常時にける非水電解液の安全性を十分に改善することができる。   In a preferred example of the non-aqueous electrolyte for secondary battery of the present invention, the difference in boiling point between the aprotic organic solvent and the additive for non-aqueous electrolyte of the secondary battery is 25 ° C. or less. In this case, the safety of the nonaqueous electrolytic solution in an emergency can be sufficiently improved.

更に、本発明の非水電解液2次電池は、上記2次電池用非水電解液と、正極と、負極とを備えることを特徴とし、安全性及び低温特性に特に優れる。   Furthermore, the non-aqueous electrolyte secondary battery of the present invention comprises the above-described non-aqueous electrolyte for secondary batteries, a positive electrode, and a negative electrode, and is particularly excellent in safety and low temperature characteristics.

本発明によれば、特定構造の環状ホスファゼン化合物からなり、高温使用時に気化することが無く、短絡等の非常時においても非水電解液の安全性を十分に確保でき、更には、2次電池の低温特性を大幅に改善できる2次電池の非水電解液用添加剤を提供することができる。また、かかる添加剤を含み、安全性が十分に高く、2次電池の低温特性を大幅に改善可能な2次電池用非水電解液を提供することができる。更に、該2次電池用非水電解液を備え、安全性及び低温特性に優れた非水電解液2次電池を提供することができる。   According to the present invention, it consists of a cyclic phosphazene compound having a specific structure, does not vaporize when used at high temperatures, can sufficiently ensure the safety of a non-aqueous electrolyte even in an emergency such as a short circuit, and further, a secondary battery. It is possible to provide an additive for a non-aqueous electrolyte of a secondary battery that can greatly improve the low temperature characteristics of the secondary battery. In addition, it is possible to provide a non-aqueous electrolyte for a secondary battery that includes such an additive and has sufficiently high safety and can significantly improve the low-temperature characteristics of the secondary battery. Furthermore, it is possible to provide a non-aqueous electrolyte secondary battery that includes the non-aqueous electrolyte for a secondary battery and is excellent in safety and low-temperature characteristics.

以下に、本発明を詳細に説明する。
<2次電池の非水電解液用添加剤>
本発明の2次電池の非水電解液用添加剤は、上記式(I)で表され、且つ少なくとも2種のハロゲン元素を含み、凝固点が-20℃以下である環状ホスファゼン化合物からなることを特徴とする。該ホスファゼン化合物は、十分に高い沸点を有するため、高温使用時において気化することが無く、本発明の添加剤を含む非水電解液を備えた2次電池は、高温使用時にも膨れる等の懸念がない。また、該ホスファゼン化合物は、十分に低い凝固点を有するため、低温においても液体として存在し、該ホスファゼンを2次電池の非水電解液に添加することで、2次電池の低温特性を改善することができる。更に、該ホスファゼン化合物は、非常に高い酸素指数を有し、電池の非常時に窒素ガス及び/又はリン酸エステル等を発生して、非水電解液を不燃性、難燃性又は自己消火性にし、2次電池の発火等の危険性を大幅に低減する作用を有する。
The present invention is described in detail below.
<Additive for secondary battery non-aqueous electrolyte>
Additive for the non-aqueous electrolyte secondary battery of the present invention are represented by the formula (I), and saw including at least two kinds of halogen elements, that consist of cyclic phosphazene compound solidifying point of -20 ° C. or less It is characterized by. Since the phosphazene compound has a sufficiently high boiling point, the phosphazene compound does not vaporize at the time of high temperature use, and the secondary battery including the non-aqueous electrolyte containing the additive of the present invention is likely to swell even at the time of high temperature use. There is no. In addition, since the phosphazene compound has a sufficiently low freezing point, it exists as a liquid even at a low temperature, and the low temperature characteristics of the secondary battery can be improved by adding the phosphazene to the non-aqueous electrolyte of the secondary battery. Can do. Furthermore, the phosphazene compound has a very high oxygen index, and generates nitrogen gas and / or phosphate ester in the emergency of the battery, making the non-aqueous electrolyte incombustible, flame retardant or self-extinguishing. It has the effect | action which reduces significantly dangers, such as ignition of a secondary battery.

本発明の2次電池の非水電解液用添加剤を構成するホスファゼン化合物は、上記式(I)で表され、且つ少なくとも2種のハロゲン元素を含む。式(I)において、Xはそれぞれ独立してハロゲン元素であり、該ハロゲン元素としては、フッ素、塩素、臭素等が挙げられ、これらの中でも、フッ素及び塩素が好ましい。また、上記ホスファゼン化合物は、少なくともフッ素と塩素とを含み、且つ総てのXがフッ素又は塩素であるのが好ましい。なお、ハロゲン元素を含む化合物を用いると、ハロゲンラジカルの発生が問題となることがあるが、上記ホスファゼン化合物は、分子中のリン元素がハロゲンラジカルを捕捉してハロゲン化リンを形成するため、このような問題は発生しない。   The phosphazene compound constituting the additive for non-aqueous electrolyte of the secondary battery of the present invention is represented by the above formula (I) and contains at least two halogen elements. In the formula (I), X is independently a halogen element, and examples of the halogen element include fluorine, chlorine, bromine and the like. Among these, fluorine and chlorine are preferable. The phosphazene compound preferably contains at least fluorine and chlorine, and all X are preferably fluorine or chlorine. Note that when a compound containing a halogen element is used, the generation of a halogen radical may be a problem. However, since the phosphorus element in the molecule captures the halogen radical and forms phosphorus halide, Such a problem does not occur.

また、式(I)において、nは3〜15の整数であり、3〜5であるのが好ましい。nが5を超えると、ホスファゼン化合物の粘度が高くなるため、非水電解液の粘度が上昇し、2次電池の内部抵抗が上昇したり、電解液の導電率が低下して、電池の充放電特性が低下する傾向がある。ここで、上記ホスファゼン化合物の25℃における粘度としては、電池の充放電特性を十分に確保する観点から、10mPa・s以下が好ましく、5mPa・s以下が更に好ましい。なお、本発明において、粘度は、粘度測定計[R型粘度計Model RE500-SL、東機産業(株)製]を用い、1rpm、2rpm、3rpm、5rpm、7rpm、10rpm、20rpm及び50rpmの各回転速度で120秒間づつ測定し、指示値が50〜60%となった時の回転速度を分析条件とし、その際に測定した値である。   Moreover, in Formula (I), n is an integer of 3-15, and it is preferable that it is 3-5. When n exceeds 5, the viscosity of the phosphazene compound increases, so the viscosity of the non-aqueous electrolyte increases, the internal resistance of the secondary battery increases, the conductivity of the electrolyte decreases, and the battery charge is reduced. Discharge characteristics tend to decrease. Here, the viscosity of the phosphazene compound at 25 ° C. is preferably 10 mPa · s or less, and more preferably 5 mPa · s or less, from the viewpoint of sufficiently securing the charge / discharge characteristics of the battery. In the present invention, the viscosity is 1 rpm, 2 rpm, 3 rpm, 5 rpm, 7 rpm, 10 rpm, 20 rpm, and 50 rpm using a viscometer [R-type viscometer Model RE500-SL, manufactured by Toki Sangyo Co., Ltd.] It is a value measured at that time, measured at the rotational speed for 120 seconds, with the rotational speed when the indicated value is 50 to 60% as the analysis condition.

上記ホスファゼン化合物は、限界酸素指数が30体積%以上であるのが好ましく、40体積%以上であるのが更に好ましい。限界酸素指数が40体積%以上のホスファゼン化合物を非水電解液に添加することで、電解液の発火・引火の危険性を大幅に低減することができる。ここで、限界酸素指数とは、JIS K 7201に規定の所定の試験条件下において、材料が燃焼を持続するのに必要な体積%で表される最低酸素濃度の値をいい、限界酸素指数が高いことは発火・引火の危険性が低いことを意味する。   The phosphazene compound preferably has a limiting oxygen index of 30% by volume or more, and more preferably 40% by volume or more. By adding a phosphazene compound having a limiting oxygen index of 40% by volume or more to the non-aqueous electrolyte, the risk of ignition and ignition of the electrolyte can be greatly reduced. Here, the limiting oxygen index means a value of the minimum oxygen concentration expressed by volume% necessary for the material to continue to burn under a predetermined test condition specified in JIS K 7201. A high value means a low risk of ignition or ignition.

上記ホスファゼン化合物は、凝固点-20℃以下であり、-30℃以下であるの好ましい。凝固点が-20℃以下のホスファゼン化合物を非水電解液に添加することで、2次電池の低温特性を確実に向上させることができ、また、かかるホスファゼン化合物を非水電解液に添加してなる非水電解液2次電池は、低温特性が優れるため、移動用(HEV用)電池として特に好適である。 The phosphazene compound, the freezing point is at -20 ° C. or less, preferably not more -30 ° C. or less. By adding a phosphazene compound having a freezing point of −20 ° C. or lower to the non-aqueous electrolyte, the low-temperature characteristics of the secondary battery can be reliably improved, and the phosphazene compound is added to the non-aqueous electrolyte. Non-aqueous electrolyte secondary batteries are particularly suitable as mobile (HEV) batteries because of their excellent low-temperature characteristics.

上記ホスファゼン化合物の中でも、凝固点の低さの観点から、式(I)中のnが3で、6つのXのうち1〜3つが塩素で残りがフッ素であるもの、並びに式(I)中のnが4で、8つのXのうち2〜4つが塩素で残りがフッ素であるものが特に好ましい。なお、式(I)中のXがフッ素又は塩素であるホスファゼン化合物の凝固点を、沸点及び酸素指数と共に表1に示す。 Among the above phosphazene compounds, from the viewpoint of a low freezing point, n in the formula (I) is 3, 1 to 3 out of 6 Xs are chlorine and the rest are fluorines, and in the formula (I) It is particularly preferable that n is 4, 2 to 4 of 8 Xs are chlorine and the rest is fluorine. The freezing points of phosphazene compounds in which X in the formula (I) is fluorine or chlorine are shown in Table 1 together with the boiling point and oxygen index.

Figure 0004731125
Figure 0004731125

表1からも明らかなように、式(I)中のXがフッ素又は塩素であるホスファゼン化合物においては、塩素数の増加(分子量の増加)に従って沸点が上昇するものの、凝固点は特定の塩素数範囲で最小となり、nが3の場合は、塩素数1〜3の範囲が特に好適で、nが4の場合は塩素数2〜4の範囲が特に好適である。 As is clear from Table 1, in the phosphazene compound in which X in the formula (I) is fluorine or chlorine, the boiling point rises as the chlorine number increases (increase in molecular weight), but the freezing point is in the specific chlorine number range. in becomes minimum, when n is 3, the range of the chlorine number 1-3 is particularly preferred, when n is 4, the range of 2 to 4 chlorine number are particularly preferred.

上記ホスファゼン化合物は、例えば、式(I)中のXが総て塩素である市販のホスファゼン化合物を出発物質として、総ての塩素をフッ素化剤によりフッ素化した後、目的とする塩素置換部位にアルコキシ基やアミン基等を導入した後、HClやホスゲン等の塩素化剤により再び塩素化を行う方法や、使用する式(I)中のXが総て塩素である市販のホスファゼン化合物に対して導入するフッ素の当量を計算した上で、必要量のフッ素化剤を添加する方法等で合成することができる。なお、上記ホスファゼン化合物は、1種単独で用いても、2種以上の混合物として用いてもよい。   The phosphazene compound is prepared by, for example, using commercially available phosphazene compounds in which X in the formula (I) is all chlorine as a starting material, fluorinating all chlorine with a fluorinating agent, and then at the target chlorine substitution site. After introducing an alkoxy group, an amine group, or the like, chlorinating again with a chlorinating agent such as HCl or phosgene, or a commercially available phosphazene compound in which X in the formula (I) is all chlorine After calculating the equivalent of fluorine to be introduced, it can be synthesized by a method of adding a necessary amount of a fluorinating agent. In addition, the said phosphazene compound may be used individually by 1 type, or may be used as a 2 or more types of mixture.

<2次電池用非水電解液>
本発明の2次電池用非水電解液は、上述した2次電池の非水電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とする。
<Nonaqueous electrolyte for secondary battery>
The non-aqueous electrolyte for a secondary battery of the present invention is characterized by containing the above-described additive for a non-aqueous electrolyte for a secondary battery, an aprotic organic solvent, and a supporting salt.

本発明の2次電池用非水電解液に用いる非プロトン性有機溶媒としては、特に制限はないが、電解液の粘度を低く抑える観点から、エーテル化合物やエステル化合物等が好ましい。具体的には、1,2-ジメトキシエタン、テトラヒドロフラン、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、エチルメチルカーボネート、メチルフォルメート等が好適に挙げられる。これらの中でも、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン等の環状エステル化合物、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状エステル化合物、1,2-ジメトキシエタン等の鎖状エーテル化合物等が更に好ましい。特に、環状のエステル化合物は、比誘電率が高くリチウム塩等の溶解性に優れる点で、鎖状のエステル化合物及びエーテル化合物は、低粘度であるため電解液の低粘度化の点で好適である。これらは1種単独で使用してもよく、2種以上を併用してもよいが、2種以上を併用するのが好適である。非プロトン性有機溶媒の25℃における粘度としては、特に制限はないが、10mPa・s(10cP)以下が好ましく、5mPa・s(5cP)以下が更に好ましい。   The aprotic organic solvent used in the non-aqueous electrolyte for secondary batteries of the present invention is not particularly limited, but is preferably an ether compound or an ester compound from the viewpoint of keeping the viscosity of the electrolyte low. Specific examples include 1,2-dimethoxyethane, tetrahydrofuran, dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate, propylene carbonate, γ-butyrolactone, γ-valerolactone, ethyl methyl carbonate, methyl formate, and the like. It is done. Among these, cyclic ester compounds such as ethylene carbonate, propylene carbonate, and γ-butyrolactone, chain ester compounds such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate, chain ether compounds such as 1,2-dimethoxyethane, and the like are further included. preferable. In particular, the cyclic ester compound has a high relative dielectric constant and is excellent in the solubility of lithium salts and the like, and the chain ester compound and the ether compound are suitable in terms of reducing the viscosity of the electrolytic solution because of low viscosity. is there. These may be used individually by 1 type, may use 2 or more types together, but it is suitable to use 2 or more types together. The viscosity of the aprotic organic solvent at 25 ° C. is not particularly limited, but is preferably 10 mPa · s (10 cP) or less, and more preferably 5 mPa · s (5 cP) or less.

本発明の2次電池用非水電解液においては、上記非プロトン性有機溶媒と上記2次電池の非水電解液用添加剤との沸点の差が25℃以下であるのが好ましい。より具体的には、本発明の2次電池用非水電解液は、一種以上の非プロトン性有機溶媒と支持塩とを含有し、更に、それぞれの前記非プロトン性有機溶媒に対して、該非プロトン性有機溶媒との沸点の差が25℃以下で且つ上記式(I)で表され少なくとも2種のハロゲン元素を含むホスファゼン化合物をそれぞれ含有するのが好ましい。   In the non-aqueous electrolyte for secondary battery of the present invention, the difference in boiling point between the aprotic organic solvent and the additive for non-aqueous electrolyte of the secondary battery is preferably 25 ° C. or less. More specifically, the non-aqueous electrolyte for a secondary battery of the present invention contains one or more aprotic organic solvents and a supporting salt, and further, It is preferable to contain a phosphazene compound having a boiling point difference from that of the protic organic solvent of 25 ° C. or less and containing at least two halogen elements represented by the above formula (I).

上記ホスファゼン化合物は、上述のように、電池の発火等の危険性を低減する作用を有するが、非プロトン性有機溶媒を含む非水電解液が、該非プロトン性有機溶媒と沸点が近いホスファゼン化合物を含まない場合、気相及び液相のいずれかにおいて非プロトン性有機溶媒とホスファゼン化合物とが共存しない温度範囲が広いため、電池の温度が異常に上昇した際に、気化した非プロトン性有機溶媒又は電池内に残存した非プロトン性有機溶媒の発火・引火の危険性を低減することができない。これに対し、非水電解液が、非プロトン性有機溶媒と共に、該非プロトン性有機溶媒と沸点が近いホスファゼン化合物を含む場合、電池の温度が異常に上昇した際に、非プロトン性有機溶媒とホスファゼン化合物が近い温度で気化するため、非プロトン性有機溶媒が液体として存在する場合及び気体として存在する場合のいずれにおいても、非プロトン性有機溶媒とホスファゼン化合物が共存し、その結果、非水電解液の発火・引火の危険性が大幅に低減される。   As described above, the phosphazene compound has an effect of reducing the risk of battery ignition and the like, but the non-aqueous electrolyte containing the aprotic organic solvent is a phosphazene compound having a boiling point close to that of the aprotic organic solvent. When not included, the aprotic organic solvent and the phosphazene compound in either the gas phase or the liquid phase have a wide temperature range so that when the battery temperature rises abnormally, the vaporized aprotic organic solvent or The risk of ignition and ignition of the aprotic organic solvent remaining in the battery cannot be reduced. In contrast, when the non-aqueous electrolyte contains a phosphazene compound having a boiling point close to that of the aprotic organic solvent together with the aprotic organic solvent, when the battery temperature rises abnormally, the aprotic organic solvent and the phosphazene Since the compound is vaporized at a close temperature, the aprotic organic solvent and the phosphazene compound coexist in both the case where the aprotic organic solvent is present as a liquid and the case where it is present as a gas. The risk of ignition and ignition is greatly reduced.

また、例えば、非水電解液が、低沸点の非プロトン性有機溶媒と高沸点の非プロトン性有機溶媒とを含む場合、低沸点の非プロトン性有機溶媒が気化する温度の近傍で、それに対応するホスファゼン化合物が気化するため、気化した非プロトン性有機溶媒の発火・引火の危険性を低減することができる。また、低沸点の非プロトン性有機溶媒と該低沸点の非プロトン性有機溶媒と沸点が近いホスファゼン化合物が気化した後も、高沸点の非プロトン性有機溶媒と共に該高沸点の非プロトン性有機溶媒と沸点が近いホスファゼン化合物が電解液中に存在するため、残存する非水電解液の発火・引火の危険性を低減することもできる。   In addition, for example, when the non-aqueous electrolyte contains a low-boiling aprotic organic solvent and a high-boiling aprotic organic solvent, it is possible to cope with it near the temperature at which the low-boiling aprotic organic solvent vaporizes. Since the phosphazene compound is vaporized, the risk of ignition and ignition of the vaporized aprotic organic solvent can be reduced. In addition, after the low-boiling aprotic organic solvent and the phosphazene compound having a boiling point close to that of the low-boiling aprotic organic solvent are vaporized, the high-boiling aprotic organic solvent and the high-boiling aprotic organic solvent are used. Since the phosphazene compound having a boiling point close to that of the electrolyte is present in the electrolytic solution, the risk of ignition and ignition of the remaining nonaqueous electrolytic solution can be reduced.

本発明の2次電池用非水電解液においては、使用する非プロトン性有機溶媒に応じて、該非プロトン性有機溶媒と沸点が近いホスファゼン化合物(添加剤)を適宜選択して用いるのが好ましい。ここで、上記式(I)で表され少なくとも2種のハロゲン元素を含むホスファゼン化合物は、分子中の塩素数や、nの値によって、広範囲の沸点を採り得るため、ホスファゼン化合物の分子構造を適宜選択することで、非水電解液の短絡等の非常時における危険性を大幅に低減することができる。   In the non-aqueous electrolyte for secondary battery of the present invention, it is preferable to appropriately select and use a phosphazene compound (additive) having a boiling point close to that of the aprotic organic solvent according to the aprotic organic solvent to be used. Here, since the phosphazene compound represented by the above formula (I) and containing at least two kinds of halogen elements can take a wide range of boiling points depending on the number of chlorines in the molecule and the value of n, the molecular structure of the phosphazene compound is appropriately determined. By selecting, the danger in the event of an emergency such as a short circuit of the non-aqueous electrolyte can be greatly reduced.

本発明の2次電池用非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これら支持塩は、1種単独で使用してもよく、2種以上を併用してもよい。 As the supporting salt used in the non-aqueous electrolyte for a secondary battery of the present invention, a supporting salt serving as an ion source of lithium ions is preferable. The supporting salt is not particularly limited, and for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N and Li ( Preferable examples include lithium salts such as C 2 F 5 SO 2 ) 2 N. These supporting salts may be used alone or in combination of two or more.

本発明の2次電池用非水電解液中の支持塩の濃度としては、0.2〜1.5mol/L(M)が好ましく、0.5〜1mol/L(M)が更に好ましい。支持塩の濃度が0.2mol/L(M)未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、1.5mol/L(M)を超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。   The concentration of the supporting salt in the non-aqueous electrolyte for secondary batteries of the present invention is preferably 0.2 to 1.5 mol / L (M), and more preferably 0.5 to 1 mol / L (M). When the concentration of the supporting salt is less than 0.2 mol / L (M), the conductivity of the electrolytic solution cannot be sufficiently ensured, and the discharge characteristics and charging characteristics of the battery may be hindered, and 1.5 mol / L ( (M) exceeds the viscosity of the electrolyte and the mobility of lithium ions cannot be sufficiently secured, so that the conductivity of the electrolyte cannot be sufficiently secured as described above. May cause trouble.

本発明の2次電池用非水電解液における上記ホスファゼン化合物の含有量(即ち、添加剤の含有量)は、電解液の安全性を向上させる観点から、1体積%以上が好ましく、5体積%以上が更に好ましく、また、電池の低温特性を向上させる観点から、10体積%以上が好ましく、15体積%以上が更に好ましい。   The content of the phosphazene compound (that is, the content of the additive) in the non-aqueous electrolyte for a secondary battery of the present invention is preferably 1% by volume or more, and 5% by volume from the viewpoint of improving the safety of the electrolyte. The above is more preferable, and from the viewpoint of improving the low-temperature characteristics of the battery, 10% by volume or more is preferable, and 15% by volume or more is more preferable.

<非水電解液2次電池>
本発明の非水電解液2次電池は、上述の2次電池用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液電池の技術分野で通常使用されている他の部材を備える。
<Nonaqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery of the present invention includes the above-described non-aqueous electrolyte for a secondary battery, a positive electrode, and a negative electrode, and is usually used in the technical field of a non-aqueous electrolyte battery such as a separator as necessary. It includes other members that are used.

本発明の非水電解液2次電池の正極に用いる正極活物質としては、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiFexCoyNi(1-x-y)2(式中、0≦x<1、0≦y<1、0<x+y≦1)、或いはLiMnxFey2-x-y等で表される。これらの中でも、高容量で安全性が高く、更には電解液の濡れ性に優れる点で、LiCoO2、LiNiO2、LiMn24が特に好適である。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the positive electrode active material used for the positive electrode of the non-aqueous electrolyte secondary battery of the present invention, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li-containing composite oxides such as LiFeO 2 and LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline are preferable. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni. In this case, the composite oxide includes: LiFe x Co y Ni (wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1) (1-xy) O 2, or represented by LiMn x Fe y O 2-xy like. Among these, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are particularly preferable in terms of high capacity, high safety, and excellent electrolyte wettability. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

本発明の非水電解液2次電池の負極に用いる負極活物質としては、リチウム金属自体、リチウムとAl、In、Pb又はZn等との合金、リチウムをドープした黒鉛等の炭素材料等が好適に挙げられ、これらの中でも安全性がより高く、電解液の濡れ性に優れる点で、黒鉛等の炭素材料が好ましく、黒鉛が特に好ましい。ここで、黒鉛としては、天然黒鉛、人造黒鉛、メソフェーズカーボンマイクロビーズ(MCMB)等、広くは易黒鉛化カーボンや難黒鉛化カーボンが挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。   As the negative electrode active material used for the negative electrode of the non-aqueous electrolyte secondary battery of the present invention, lithium metal itself, an alloy of lithium and Al, In, Pb, Zn or the like, a carbon material such as graphite doped with lithium, etc. are suitable. Among these, carbon materials such as graphite are preferable, and graphite is particularly preferable in that it is higher in safety and excellent in wettability of the electrolytic solution. Here, examples of graphite include natural graphite, artificial graphite, mesophase carbon microbeads (MCMB), and the like, and widely include graphitizable carbon and non-graphitizable carbon. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。   The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples thereof include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.

また、上記正極及び負極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。   Moreover, there is no restriction | limiting in particular as a shape of the said positive electrode and a negative electrode, It can select suitably from well-known shapes as an electrode. For example, a sheet shape, a columnar shape, a plate shape, a spiral shape, and the like can be given.

本発明の非水電解液2次電池に使用する他の部材としては、非水電解液2次電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適に使用できる。   Another member used in the non-aqueous electrolyte secondary battery of the present invention is a separator interposed in the non-aqueous electrolyte secondary battery between positive and negative electrodes so as to prevent a short circuit of current due to contact between both electrodes. It is done. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in batteries can be suitably used.

以上に説明した本発明の非水電解液2次電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液2次電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これに、シート状の負極を重ね合わせて巻き上げる等して、非水電解液2次電池を作製することができる。   The form of the non-aqueous electrolyte secondary battery of the present invention described above is not particularly limited, and various known forms such as a coin type, a button type, a paper type, a square type or a spiral type cylindrical battery are available. Preferably mentioned. In the case of the button type, a non-aqueous electrolyte secondary battery can be manufactured by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of the spiral structure, for example, a non-aqueous electrolyte secondary battery is manufactured by preparing a sheet-like positive electrode, sandwiching a current collector, and stacking and winding up the sheet-like negative electrode on the current collector. be able to.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<ホスファゼン化合物の合成>
(合成例1)
溶媒としてのニトロベンゼン中で(NPCl2)3 とフッ化ナトリウムとを混合し、減圧下(15kPa)で、室温から徐々に140℃まで約一時間かけて昇温し、揮発してくる留分を生成物として得た。
<Synthesis of phosphazene compounds>
(Synthesis Example 1)
(NPCl 2 ) 3 and sodium fluoride are mixed in nitrobenzene as a solvent and gradually heated from room temperature to 140 ° C. under reduced pressure (15 kPa) over about 1 hour. Obtained as product.

得られた生成物をGC-MSで分析したところ、式(I)中のnが3であって、6つのXの総てがフッ素の環状ホスファゼン化合物(沸点が52℃で、凝固点が28℃で、25℃における粘度が0.8mPa・s)と、式(I)中のnが3であって、6つのXのうち1つが塩素、5つがフッ素の環状ホスファゼン化合物(沸点が82℃で、凝固点が-30℃で、25℃における粘度が0.8mPa・s)と、式(I)中のnが3であって、6つのXのうち2つが塩素、4つがフッ素の環状ホスファゼン化合物(沸点が115℃で、凝固点が-46℃で、25℃における粘度が1.1mPa・s)と、式(I)中のnが3であって、6つのXのうち3つが塩素、3つがフッ素の環状ホスファゼン化合物(沸点が150℃で、凝固点が-35℃で、25℃における粘度が1.3mPa・s)との混合物であることを確認した。また、該混合物をそれぞれ蒸留により分離して、4種の純粋な環状ホスファゼン化合物を得た。   The obtained product was analyzed by GC-MS. As a result, n in the formula (I) was 3, and all six Xs were fluorine. A cyclic phosphazene compound having a boiling point of 52 ° C. and a freezing point of 28 ° C. A cyclic phosphazene compound having a viscosity of 0.8 mPa · s at 25 ° C. and n of 3 in formula (I), one of the six X being chlorine and five of fluorine (boiling point is 82 ° C., Cyclic phosphazene compound (boiling point) having a freezing point of −30 ° C. and a viscosity of 0.8 mPa · s at 25 ° C., n in the formula (I) being 3, 2 of 6 X being chlorine and 4 being fluorine Is 115 ° C, the freezing point is -46 ° C, the viscosity at 25 ° C is 1.1 mPa · s), n in the formula (I) is 3, 3 of 6 X are chlorine, 3 are fluorine It was confirmed to be a mixture with a cyclic phosphazene compound (boiling point: 150 ° C., freezing point: −35 ° C., viscosity at 25 ° C .: 1.3 mPa · s). In addition, the mixture was separated by distillation to obtain four kinds of pure cyclic phosphazene compounds.

(合成例2)
溶媒としてのニトロベンゼン中で(NPCl2)4 とフッ化亜硫酸カリウムとを混合し、減圧下(1kPa)で、室温から徐々に180℃まで約一時間かけて昇温し、揮発してくる留分を生成物として得た。
(Synthesis Example 2)
(NPCl 2 ) 4 and potassium fluoride sulfite are mixed in nitrobenzene as a solvent, and the temperature is gradually increased from room temperature to 180 ° C. under reduced pressure (1 kPa) over about one hour, and the fraction that volatilizes. Was obtained as the product.

得られた生成物をGC-MSで分析したところ、式(I)中のnが4であって、8つのXの総てがフッ素の環状ホスファゼン化合物(沸点が80℃で、凝固点が30℃で、25℃における粘度が0.8mPa・s)と、式(I)中のnが4であって、8つのXのうち1つが塩素、7つがフッ素の環状ホスファゼン化合物(沸点が117℃で、凝固点が-6℃で、25℃における粘度が1.2mPa・s)と、式(I)中のnが4であって、8つのXのうち2つが塩素、6つがフッ素の環状ホスファゼン化合物(沸点が147℃で、凝固点が-22℃で、25℃における粘度が1.5mPa・s)と、式(I)中のnが4であって、8つのXのうち3つが塩素、5つがフッ素の環状ホスファゼン化合物(沸点が178℃で、凝固点が-29℃で、25℃における粘度が1.9mPa・s)と、式(I)中のnが4であって、8つのXのうち4つが塩素、4つがフッ素の環状ホスファゼン化合物(沸点が205℃で、凝固点が-23℃で、25℃における粘度が2.3mPa・s)と、式(I)中のnが4であって、8つのXのうち5つが塩素、3つがフッ素の環状ホスファゼン化合物(沸点が232℃で、凝固点が-11℃で、25℃における粘度が2.8mPa・s)との混合物であることを確認した。また、該混合物をそれぞれ蒸留により分離して、5種の純粋な環状ホスファゼン化合物を得た。   When the obtained product was analyzed by GC-MS, n in the formula (I) was 4, and all of the eight Xs were fluorine-containing cyclic phosphazene compounds (boiling point was 80 ° C., freezing point was 30 ° C. A cyclic phosphazene compound having a viscosity of 0.8 mPa · s at 25 ° C. and n of 4 in formula (I), one of eight X being chlorine and seven being fluorine (boiling point is 117 ° C., A cyclic phosphazene compound (boiling point) having a freezing point of −6 ° C. and a viscosity of 1.2 mPa · s at 25 ° C., n in the formula (I) being 4, 2 of 8 X being chlorine and 6 being fluorine. Is 147 ° C, freezing point is -22 ° C, viscosity at 25 ° C is 1.5mPa · s), n in formula (I) is 4, 3 out of 8 X are chlorine, 5 are fluorine Cyclic phosphazene compound (boiling point is 178 ° C, freezing point is -29 ° C, viscosity at 25 ° C is 1.9mPa · s), n in formula (I) is 4, 4 out of 8 X are chlorine , Four are cyclic phosphazene compounds of fluorine (boiling point is 205 ° C, freezing point is -23 ° C, viscosity at 25 ° C is 2.3 mPa · s), n in formula (I) is 4, It was confirmed that the mixture was a cyclic phosphazene compound (boiling point is 232 ° C., freezing point is −11 ° C., viscosity at 25 ° C. is 2.8 mPa · s), 5 of which are chlorine and 3 are fluorine. In addition, the mixture was separated by distillation to obtain five pure cyclic phosphazene compounds.

<2次電池用非水電解液の作製>
次に、表2に示す配合の混合溶液(非プロトン性有機溶媒とホスファゼン化合物とからなる)を作製し、該混合溶液にLiPF6(支持塩)を1mol/L(M)の濃度で溶解させて非水電解液を調製した。得られた非水電解液の安全性及び限界酸素指数を下記の方法で測定・評価した。結果を表2に示す。
<Preparation of non-aqueous electrolyte for secondary battery>
Next, a mixed solution (comprising an aprotic organic solvent and a phosphazene compound) having the composition shown in Table 2 is prepared, and LiPF 6 (supporting salt) is dissolved in the mixed solution at a concentration of 1 mol / L (M). Thus, a non-aqueous electrolyte was prepared. The safety and critical oxygen index of the obtained nonaqueous electrolytic solution were measured and evaluated by the following methods. The results are shown in Table 2.

(1)電解液の安全性
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼挙動から非水電解液の安全性を評価した。その際、着火性、燃焼性、炭化物の生成、二次着火時の現象についても観察した。具体的には、UL試験基準に基づき、不燃性石英ファイバーに上記電解液1.0mLを染み込ませて、127mm×12.7mmの試験片を作製して行った。ここで、試験炎が試験片に着火しない場合(燃焼長:0mm)を「不燃性」、着火した炎が25mmラインまで到達せず且つ落下物にも着火が認められない場合を「難燃性」、着火した炎が25〜100mmラインで消火し且つ落下物にも着火が認められない場合を「自己消火性」、着火した炎が100mmラインを超えた場合を「燃焼性」と評価した。
(1) Safety of electrolyte solution The safety of the non-aqueous electrolyte solution was evaluated from the combustion behavior of flames ignited in an atmospheric environment by the method of arranging the UL94HB method of UL (Underwriting Laboratory) standard. At that time, ignitability, combustibility, formation of carbides, and secondary ignition phenomena were also observed. Specifically, based on the UL test standard, a non-combustible quartz fiber was impregnated with 1.0 mL of the electrolytic solution, and a test piece of 127 mm × 12.7 mm was produced. Here, when the test flame does not ignite the test piece (combustion length: 0 mm), it is “non-flammable”, and when the ignited flame does not reach the 25 mm line and the fallen object is not ignited, “flame retardant” The case where the ignited flame was extinguished on the 25 to 100 mm line and the fallen object was not ignited was evaluated as “self-extinguishing”, and the case where the ignited flame exceeded the 100 mm line was evaluated as “combustible”.

(2)電解液の限界酸素指数
JIS K 7201に準じて、電解液の限界酸素指数を測定した。具体的には、上記電解液の安全性の試験と同様にして試験片を作製し、該試験片を試験片支持具に垂直に、燃焼円筒(内径75mm、高さ450mm、直径4mmのガラス粒を底部から100±5mmの厚さに均等に満たし金属製の網をその上に置いたもの)の上端部から100mm以上の距離に位置するように取り付け、次に、燃焼円筒に酸素(JIS K 1101又はこれと同等以上のもの)及び窒素(JIS K 1107の2級又はこれと同等以上のもの)を流し、試験片を空気中で点火し(熱源はJIS K 2240の1種1号)、燃焼状態を調べた。但し、燃焼円筒内の総流量は11.4L/minである。この試験を3回行い、その平均値を表2に示す。なお、酸素指数とは、材料が燃焼を持続するのに必要な容量パーセントで表される最低酸素濃度の値をいい、本願では、試験片が3分以上継続して燃焼するか、着炎後の燃焼長さが50mm以上燃えるのに必要な最低の酸素流量とそのときの窒素流量から、下記の式:
限界酸素指数=(酸素流量)/[(酸素流量)+(窒素流量)]×100(体積%)
に従って限界酸素指数を算出した。
(2) Limiting oxygen index of electrolyte The limiting oxygen index of the electrolyte was measured according to JIS K7201. Specifically, a test piece was prepared in the same manner as the safety test of the electrolyte solution, and the test piece was perpendicular to the test piece support, and a combustion cylinder (inner diameter 75 mm, height 450 mm, diameter 4 mm glass particles). Is attached so that the thickness of the metal net is 100 ± 5mm evenly from the bottom and the metal mesh is placed on it at a distance of 100mm or more from the top, and then oxygen (JIS K) is attached to the combustion cylinder. 1101 or equivalent or higher) and nitrogen (second grade of JIS K 1107 or equivalent or higher), and the test piece is ignited in air (the heat source is JIS K 2240 type 1 No. 1), The combustion state was investigated. However, the total flow rate in the combustion cylinder is 11.4 L / min. This test was performed three times, and the average value is shown in Table 2. The oxygen index refers to the value of the minimum oxygen concentration expressed by the volume percent necessary for the material to continue burning. In this application, the test piece burns continuously for 3 minutes or longer, From the minimum oxygen flow rate required for burning 50 mm or more and the nitrogen flow rate at that time, the following formula:
Critical oxygen index = (oxygen flow rate) / [(oxygen flow rate) + (nitrogen flow rate)] × 100 (volume%)
The limiting oxygen index was calculated according to

<非水電解液2次電池の作製>
次に、LiMn24(正極活物質)94質量部に対して、アセチレンブラック(導電剤)3質量部と、ポリフッ化ビニリデン(結着剤)3質量部とを添加し、有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)で混練した後、該混練物を厚さ25μmのアルミニウム箔(集電体)にドクターブレードで塗工し、更に熱風乾燥(100〜120℃)して、厚さ80μmの正極シートを作製した。得られた正極シートに、厚さ25μmのセパレーター(微孔性フィルム:ポリプロピレン製)を介して、厚さ150μmのリチウム金属箔を重ね合わせて巻き上げ、円筒型電極を作製した。該円筒型電極の正極長さは約260mmであった。該円筒型電極に、上記電解液を注入して封口し、単三型リチウム電池(非水電解液2次電池)を作製した。得られた電池のサイクル特性及び低温特性を下記の方法で試験した。結果を表2に示す。
<Preparation of non-aqueous electrolyte secondary battery>
Next, 3 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder) are added to 94 parts by mass of LiMn 2 O 4 (positive electrode active material), and an organic solvent (acetic acid (50/50 mass% mixed solvent of ethyl and ethanol), kneaded product was coated on aluminum foil (current collector) with a thickness of 25μm with a doctor blade, and dried with hot air (100 ~ 120 ℃) Thus, a positive electrode sheet having a thickness of 80 μm was produced. A lithium electrode foil having a thickness of 150 μm was overlapped and wound on the obtained positive electrode sheet via a separator having a thickness of 25 μm (microporous film: made of polypropylene) to produce a cylindrical electrode. The positive electrode length of the cylindrical electrode was about 260 mm. The above electrolytic solution was injected into the cylindrical electrode and sealed to prepare an AA lithium battery (non-aqueous electrolyte secondary battery). The obtained battery was tested for cycle characteristics and low temperature characteristics by the following methods. The results are shown in Table 2.

(3)電池のサイクル特性
60℃の環境下で、上限電圧4.5V、下限電圧3.0V、放電電流100mA、充電電流50mAの条件で、100サイクルまで充放電を繰り返し、初期における放電容量と100サイクル後の放電容量とから、下記の式:
容量残存率S=100サイクル後の放電容量/初期放電容量×100(%)
に従って容量残存率Sを算出し、電池のサイクル特性の指標とした。
(3) Battery cycle characteristics
Under an environment of 60 ° C, charge / discharge was repeated up to 100 cycles under the conditions of an upper limit voltage of 4.5 V, a lower limit voltage of 3.0 V, a discharge current of 100 mA, and a charge current of 50 mA. From the initial discharge capacity and the discharge capacity after 100 cycles, The following formula:
Capacity remaining rate S = discharge capacity after 100 cycles / initial discharge capacity × 100 (%)
The capacity remaining rate S was calculated according to the above and used as an index of the cycle characteristics of the battery.

(4)電池の低温特性
20℃と-10℃の環境下のそれぞれで、上限電圧4.5V、下限電圧3.0V、放電電流100mA、充電電流50mAの条件で、100サイクルまで充放電を繰り返し、100サイクル後の放電容量を測定した。20℃における100サイクル後の放電容量と、-10℃における100サイクル後の放電容量とから、下記の式:
容量残存率L=放電容量(-10℃)/放電容量(20℃)×100(%)
に従って容量残存率Lを算出し、電池の低温特性の指標とした。
(4) Low temperature characteristics of the battery
Repeated charging and discharging up to 100 cycles under conditions of upper limit voltage 4.5V, lower limit voltage 3.0V, discharge current 100mA, charge current 50mA under each environment of 20 ℃ and -10 ℃, and measured discharge capacity after 100 cycles did. From the discharge capacity after 100 cycles at 20 ° C and the discharge capacity after 100 cycles at -10 ° C, the following formula:
Capacity remaining rate L = discharge capacity (−10 ° C.) / Discharge capacity (20 ° C.) × 100 (%)
The capacity remaining rate L was calculated according to the above and used as an index of the low temperature characteristics of the battery.

なお、表1中、ECはエチレンカーボネート(沸点238℃)を、DECはジエチルカーボネート(沸点127℃)を、DMCはジメチルカーボネート(沸点90℃)を、PCはプロピレンカーボネート(沸点242℃)を、EMCはエチルメチルカーボネート(沸点108℃)を、MFはメチルフォルメート(沸点32℃)を示す。また、ホスファゼンAは、式(I)において、nが3であって、6つのXのうち1つが塩素、5つがフッ素である環状ホスファゼン化合物(25℃における粘度:0.8mPa・s、沸点82℃)であり、ホスファゼンBは、式(I)において、nが3であって、6つのXのうち2つが塩素、4つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.1mPa・s、沸点115℃)であり、ホスファゼンCは、式(I)において、nが3であって、6つのXのうち3つが塩素、3つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.3mPa・s、沸点150℃)であり、ホスファゼンDは、式(I)において、nが4であって、8つのXのうち1つが塩素、7つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.2mPa・s、沸点117℃)であり、ホスファゼンEは、式(I)において、nが4であって、8つのXのうち2つが塩素、6つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.5mPa・s、沸点147℃)であり、ホスファゼンFは、式(I)において、nが4であって、8つのXのうち3つが塩素、5つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.9mPa・s、沸点178℃)であり、ホスファゼンGは、式(I)において、nが4であって、8つのXのうち4つが塩素、4つがフッ素である環状ホスファゼン化合物(25℃における粘度:2.3mPa・s、沸点205℃)であり、ホスファゼンHは、式(I)において、nが4であって、8つのXのうち5つが塩素、3つがフッ素である環状ホスファゼン化合物(25℃における粘度:2.8mPa・s、沸点232℃)である。   In Table 1, EC is ethylene carbonate (boiling point 238 ° C.), DEC is diethyl carbonate (boiling point 127 ° C.), DMC is dimethyl carbonate (boiling point 90 ° C.), PC is propylene carbonate (boiling point 242 ° C.), EMC represents ethyl methyl carbonate (boiling point 108 ° C.), and MF represents methyl formate (boiling point 32 ° C.). Phosphazene A is a cyclic phosphazene compound (viscosity at 25 ° C .: 0.8 mPa · s, boiling point 82 ° C.) wherein n is 3 and one of the six Xs is chlorine and five are fluorines in formula (I). Phosphazene B is a cyclic phosphazene compound (viscosity at 25 ° C .: 1.1 mPa · s, boiling point) in which n is 3 and 2 out of 6 X are chlorine and 4 are fluorine in formula (I) Phosphazene C is a cyclic phosphazene compound (viscosity at 25 ° C .: 1.3 mPa · s) in which n is 3 and 3 out of 6 Xs are chlorine and 3 are fluorines in formula (I) Phosphazene D is a cyclic phosphazene compound (viscosity at 25 ° C .: 1.2 mPas) in which n is 4 and one of eight Xs is chlorine and seven are fluorines in formula (I) S, boiling point 117 ° C.), and phosphazene E has the formula (I ), A cyclic phosphazene compound (viscosity at 25 ° C .: 1.5 mPa · s, boiling point 147 ° C.) in which n is 4 and 2 out of 8 X are chlorine and 6 are fluorine, and phosphazene F has the formula In (I), a cyclic phosphazene compound (viscosity at 25 ° C .: 1.9 mPa · s, boiling point 178 ° C.) in which n is 4 and 3 out of 8 Xs are chlorine and 5 are fluorines. A cyclic phosphazene compound (viscosity at 25 ° C .: 2.3 mPa · s, boiling point 205 ° C.) in which n is 4 and 4 out of 8 X are chlorine and 4 are fluorine in formula (I), H is a cyclic phosphazene compound (viscosity at 25 ° C .: 2.8 mPa · s, boiling point 232 ° C.) in which n is 4 and 5 out of 8 X are chlorine and 3 are fluorine in the formula (I) .

Figure 0004731125
Figure 0004731125

表2から明らかなように、実施例の非水電解液は、限界酸素指数が高く、安全性に優れ、実施例の非水電解液2次電池は、十分なサイクル特性を有しつつ、優れた低温特性を有することが分る。   As is clear from Table 2, the non-aqueous electrolyte of the example has a high critical oxygen index and excellent safety, and the non-aqueous electrolyte secondary battery of the example is excellent while having sufficient cycle characteristics. It can be seen that it has low temperature characteristics.

Claims (10)

下記式(I):
(NPX2n ・・・ (I)
(式中、Xはそれぞれ独立してハロゲン元素であり、nは3〜15の整数である)で表され、且つ少なくとも2種のハロゲン元素を含み、凝固点が-20℃以下であるホスファゼン化合物からなる2次電池の非水電解液用添加剤。
Formula (I) below:
(NPX 2 ) n ... (I)
(Wherein, X is a halogen element independently, n represents 3 to 15 of an integer) is represented by, and saw including at least two kinds of halogen, phosphazene compound solidifying point of -20 ° C. or less A non-aqueous electrolyte additive for secondary batteries comprising:
前記ホスファゼン化合物がフッ素と塩素とを含むことを特徴とする請求項1に記載の2次電池の非水電解液用添加剤。   The additive for a non-aqueous electrolyte of a secondary battery according to claim 1, wherein the phosphazene compound contains fluorine and chlorine. 前記式(I)中のXがそれぞれ独立してフッ素又は塩素であることを特徴とする請求項2に記載の2次電池の非水電解液用添加剤。   The additive for a non-aqueous electrolyte in a secondary battery according to claim 2, wherein X in the formula (I) is each independently fluorine or chlorine. 前記式(I)中のnが3〜5であることを特徴とする請求項1に記載の2次電池の非水電解液用添加剤。   The additive for non-aqueous electrolyte of a secondary battery according to claim 1, wherein n in the formula (I) is 3 to 5. 前記式(I)中のnが3で、6つのXのうち1〜3つが塩素で残りがフッ素であることを特徴とする請求項3又は4に記載の2次電池の非水電解液用添加剤。   5. The non-aqueous electrolyte for a secondary battery according to claim 3, wherein n in the formula (I) is 3, 1 to 3 out of 6 Xs are chlorine, and the remainder is fluorine. Additive. 前記式(I)中のnが4で、8つのXのうち2〜4つが塩素で残りがフッ素であることを特徴とする請求項3又は4に記載の2次電池の非水電解液用添加剤。 5. The non-aqueous electrolyte for a secondary battery according to claim 3, wherein n in the formula (I) is 4, 2 to 4 of 8 Xs are chlorine, and the remainder is fluorine. Additives. 前記ホスファゼン化合物が分子中に2つ以上の塩素原子を含み、各塩素原子がそれぞれ異なるリン原子に結合していることを特徴とする請求項5又は6に記載の2次電池の非水電解液用添加剤。   The non-aqueous electrolyte for a secondary battery according to claim 5 or 6, wherein the phosphazene compound contains two or more chlorine atoms in the molecule, and each chlorine atom is bonded to a different phosphorus atom. Additives. 請求項1〜7のいずれかに記載の2次電池の非水電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とする2次電池用非水電解液。 A non-aqueous electrolyte for a secondary battery comprising the additive for a non-aqueous electrolyte for a secondary battery according to any one of claims 1 to 7 , an aprotic organic solvent, and a supporting salt. 前記非プロトン性有機溶媒と前記2次電池の非水電解液用添加剤との沸点の差が25℃以下であることを特徴とする請求項8に記載の2次電池用非水電解液。 The non-aqueous electrolyte for a secondary battery according to claim 8 , wherein the difference in boiling point between the aprotic organic solvent and the additive for the non-aqueous electrolyte of the secondary battery is 25 ° C or less. 請求項8又は9に記載の2次電池用非水電解液と、正極と、負極とを備えた非水電解液2次電池。 A non-aqueous electrolyte secondary battery comprising the non-aqueous electrolyte for a secondary battery according to claim 8 or 9 , a positive electrode, and a negative electrode.
JP2004084041A 2004-03-23 2004-03-23 Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery Expired - Fee Related JP4731125B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004084041A JP4731125B2 (en) 2004-03-23 2004-03-23 Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
CNA2005800141329A CN1950969A (en) 2004-03-23 2005-03-02 Additive for nonaqueous electrolyte of battery, nonaqueous electrolyte for battery and battery loaded with nonaqueous electrolyte
US10/599,150 US20070183954A1 (en) 2004-03-23 2005-03-02 Additive for non-aqueous electrolyte in battery, non-aqueous electrolyte for battery and non-aqueos electrolyte battery
EP05719788A EP1748511A4 (en) 2004-03-23 2005-03-02 Additive for nonaqueous electrolyte of battery, nonaqueous electrolyte for battery and battery loaded with nonaqueous electrolyte
PCT/JP2005/003473 WO2005091421A1 (en) 2004-03-23 2005-03-02 Additive for nonaqueous electrolyte of battery, nonaqueous electrolyte for battery and battery loaded with nonaqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084041A JP4731125B2 (en) 2004-03-23 2004-03-23 Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005276455A JP2005276455A (en) 2005-10-06
JP4731125B2 true JP4731125B2 (en) 2011-07-20

Family

ID=35175911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084041A Expired - Fee Related JP4731125B2 (en) 2004-03-23 2004-03-23 Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP4731125B2 (en)
CN (1) CN1950969A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182462B2 (en) * 2006-05-15 2013-04-17 株式会社Gsユアサ Non-aqueous electrolyte and battery equipped with the same
JP2012094432A (en) * 2010-10-28 2012-05-17 Nippon Chem Ind Co Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
CN111193068B (en) * 2020-02-16 2021-02-05 徐州宝盈新能源科技有限公司 Polyphosphazene composite flame retardant additive for lithium battery electrolyte and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006301A (en) * 2002-04-10 2004-01-08 Bridgestone Corp Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same

Also Published As

Publication number Publication date
JP2005276455A (en) 2005-10-06
CN1950969A (en) 2007-04-18

Similar Documents

Publication Publication Date Title
JP5738011B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP4458841B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
JP2006286571A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2004006301A (en) Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same
JP2006294332A (en) Nonaqueous electrolyte solution, nonaqueous electrolyte solution battery, nonaqueous electrolyte solution electric double-layer capacitor, and safety evaluation method of nonaqueous electrolyte solution
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
WO2005091421A1 (en) Additive for nonaqueous electrolyte of battery, nonaqueous electrolyte for battery and battery loaded with nonaqueous electrolyte
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2006286570A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP4731125B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2008052988A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2008287965A (en) Non-aqueous electrolyte secondary battery
JP4703156B2 (en) Non-aqueous electrolyte secondary battery
JP2006134736A (en) Gel electrolyte for polymer battery and polymer battery equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees