JP4631857B2 - Heat source system for high temperature cold water application - Google Patents

Heat source system for high temperature cold water application Download PDF

Info

Publication number
JP4631857B2
JP4631857B2 JP2007029535A JP2007029535A JP4631857B2 JP 4631857 B2 JP4631857 B2 JP 4631857B2 JP 2007029535 A JP2007029535 A JP 2007029535A JP 2007029535 A JP2007029535 A JP 2007029535A JP 4631857 B2 JP4631857 B2 JP 4631857B2
Authority
JP
Japan
Prior art keywords
cold water
cooling
temperature
heat source
temperature cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007029535A
Other languages
Japanese (ja)
Other versions
JP2007132659A (en
Inventor
英男 宮原
尚貴 吉田
里志 西脇
信三 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007029535A priority Critical patent/JP4631857B2/en
Publication of JP2007132659A publication Critical patent/JP2007132659A/en
Application granted granted Critical
Publication of JP4631857B2 publication Critical patent/JP4631857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高温冷水適用の熱源システムに関し、特に、外気を大量に使用し、かつ内部機器による発熱が大きい半導体、液晶等の製造工場のクリーンルーム等を所定の温度、湿度に保つ空調システムに適用され、空調システムの省エネルギー化を図ることができる高温冷水適用の熱源システムに関する。   The present invention relates to a heat source system for applying high-temperature cold water, and in particular, to an air conditioning system that uses a large amount of outside air and maintains a predetermined temperature and humidity in a clean room of a manufacturing plant for semiconductors, liquid crystals, etc. that generate large amounts of heat from internal equipment In addition, the present invention relates to a heat source system for high-temperature cold water that can save energy in an air-conditioning system.

一般に、外気を大量に使用する半導体、液晶等の製造工場においては、外部から外気を取り入れて外気処理用冷却コイルで所定の温度まで冷却し、この冷却した空気と室内を循環している空気とを混合させ、ファンフィルターユニットを介してクリーンルーム内に供給し、クリーンルーム内を循環させた後にクリーンルーム外に排出させ、クリーンルームの周囲を循環させてドライコイルで冷却した後に再びクリーンルーム内に供給する空調システムが利用されている。   Generally, in a manufacturing factory for semiconductors, liquid crystals, etc. that use a large amount of outside air, outside air is taken in from outside and cooled to a predetermined temperature by a cooling coil for outside air treatment, and this cooled air and air circulating in the room Air conditioning system that mixes and supplies to the clean room via the fan filter unit, circulates inside the clean room, discharges it to the outside of the clean room, circulates around the clean room, cools it with a dry coil, and then feeds it into the clean room again Is being used.

従来の空調システムは、例えば、図5に示すように、冷水を製造する冷凍機21と、冷凍機21から供給される冷水を冷熱源とする並列接続されたドライコイル22、外気処理用冷却コイル24を有する外気処理空調機23、及び生産設備25と、を備えており、冷凍機21から例えば6℃の冷水をドライコイル22、外気処理用冷却コイル24、及び熱交換器を介して生産設備25に供給し、この冷水を冷熱源として、ドライコイル22を冷却し、外気処理用冷却コイル24で外部から取り入れた外気を冷却し、さらに生産設備25を冷却するように構成されていた。   For example, as shown in FIG. 5, a conventional air conditioning system includes a refrigerator 21 that produces cold water, a dry coil 22 that is connected in parallel with cold water supplied from the refrigerator 21 as a cold heat source, and a cooling coil for external air treatment. 24, an outside air processing air conditioner 23, and a production facility 25. For example, 6 ° C. cold water is supplied from the refrigerator 21 through the dry coil 22, the outside air processing cooling coil 24, and the heat exchanger. 25, the dry coil 22 is cooled using this cold water as a cooling heat source, the outside air taken in from the outside is cooled by the outside air processing cooling coil 24, and the production facility 25 is further cooled.

ところで、上記のような空調システムが使用される半導体等の製造工場等においては、全ての冷却負荷の内の外気負荷が全体の35〜45%を占め、その内の約2/3が潜熱負荷であり、また、外気負荷の内の約2/3〜4/5は、12℃程度の高温冷水を冷熱源とする外気処理用冷却コイルで処理することができる。従って、外気負荷の内の約1/5〜1/3(全冷却負荷の内の7〜15%)のみに対して、冷熱源として6℃の冷水を使用すればよく、それ以外の冷却負荷は12〜20℃の高温冷水で十分に処理することができる。これに対して、図5に示す例では、全ての冷却負荷に6℃程度の冷水を冷熱源として使用しているので、12〜20℃の高温冷水の場合と比べて、冷水製造手段の成績係数を低下させ、その結果、余分なエネルギーを消費することになる。   By the way, in a semiconductor manufacturing plant or the like in which the air conditioning system as described above is used, the outside air load out of all the cooling loads occupies 35 to 45% of the whole, and about 2/3 of them is the latent heat load. In addition, about 2/3 to 4/5 of the outside air load can be treated by a cooling coil for treating outside air using high-temperature cold water of about 12 ° C. as a cold heat source. Therefore, only about 1/5 to 1/3 of the outside air load (7 to 15% of the total cooling load) should use 6 ° C. cold water as a cooling heat source, and other cooling loads. Can be sufficiently treated with high-temperature cold water at 12 to 20 ° C. On the other hand, in the example shown in FIG. 5, since cold water of about 6 ° C. is used as a cold heat source for all cooling loads, the results of the cold water production means are compared with the case of high temperature cold water of 12-20 ° C. The coefficient is lowered, and as a result, extra energy is consumed.

一方、特許文献1には、既設の空調システムの空調機の前又は後ろに、配管のサイズを変えることなく、水冷ヒートポンプを増設し、既設の空調機の冷・暖房能力を高めるように構成したものが提案されている。
特開2005−69552号公報
On the other hand, Patent Document 1 is configured to increase the cooling / heating capacity of the existing air conditioner by adding a water-cooled heat pump without changing the size of the piping in front of or behind the air conditioner of the existing air conditioning system. Things have been proposed.
JP 2005-69552 A

しかし、システム全体として省エネルギー化を図ることについては、何ら考慮されていない。特許文献1に記載されている空調システムは、冷暖房能力を向上させるべく、建築、設備のリニューアルを行うことを目的としたものである。   However, no consideration is given to energy saving as a whole system. The air conditioning system described in Patent Document 1 is intended to renew buildings and facilities in order to improve the cooling and heating capacity.

本発明は、上記のような従来の問題に鑑みなされたものであって、半導体、液晶等の製造工場のクリーンルームの空調システムに適用した場合に、必要以上にエネルギーを消費することがなく、省エネルギー化及び省資源化を図ることができる高温冷水適用の熱源システムを提供することを目的とする。  The present invention has been made in view of the above-described conventional problems, and when applied to an air conditioning system in a clean room of a manufacturing factory for semiconductors, liquid crystals, etc., does not consume more energy than necessary and saves energy. An object of the present invention is to provide a heat source system for high-temperature chilled water that can reduce the cost and resources.

本発明の高温冷水適用の熱源システムは、所定の温度の高温冷水を作る直列接続された複数の冷凍機と、前記複数の冷凍機より供給される高温冷水を冷熱源として冷却される直列接続された複数の冷却対象と、を備え、前記複数の冷却対象のうち、前記高温冷水の流れに関して最上流側の冷却対象はドライコイルであり、前記複数の冷却対象で使用された冷水を前記複数の冷凍機のうち最上流側の冷凍機に戻すことを特徴とする。
また、本発明の高温冷水適用の熱源システムは、所定の温度の高温冷水を作る直列接続された複数の冷凍機と、前記複数の冷凍機より供給される高温冷水を冷熱源として冷却される直列接続された複数の冷却対象と、を備え、前記複数の冷却対象のうち、前記高温冷水の流れに関して最上流側の冷却対象は、前記高温冷水を冷熱源として冷却される外気処理用冷却コイルと、前記外気処理用冷却コイルにより冷却された外気を、前記高温冷水を冷熱源とすることなく冷却する冷却手段とを備える外気処理空調機であり、前記複数の冷却対象で使用された冷水を前記複数の冷凍機のうち最上流側の冷凍機に戻すことを特徴とする
The heat source system for high-temperature cold water application of the present invention is connected in series with a plurality of refrigerators connected in series for producing high-temperature cold water at a predetermined temperature, and cooled with the high-temperature cold water supplied from the plurality of refrigerators as a cold heat source. Among the plurality of cooling objects, the cooling object on the most upstream side with respect to the flow of the high-temperature cold water is a dry coil, and the cooling water used in the plurality of cooling objects is the plurality of cooling objects. It is characterized by returning to the most upstream refrigerator among the refrigerators.
Also, the heat source system for high temperature cold water application according to the present invention includes a plurality of serially connected refrigerators for producing high temperature cold water at a predetermined temperature, and a series that is cooled using the high temperature cold water supplied from the plurality of refrigerators as a cold heat source. A plurality of connected cooling objects, and among the plurality of cooling objects, the cooling object on the most upstream side with respect to the flow of the high-temperature cold water is an outside air processing cooling coil that is cooled using the high-temperature cold water as a cold heat source. A cooling means for cooling the outside air cooled by the outside-air treatment cooling coil without using the high-temperature cold water as a cold heat source, and the cold water used in the plurality of objects to be cooled is It is characterized by returning to the most upstream refrigerator among the plurality of refrigerators .

本発明によれば、冷凍機の出口側の高温冷水の温度を従来よりも高くすることができるので、冷水製造手段の成績係数を大幅に上昇させることができ、消費電力を大幅に減少させることができる。   According to the present invention, since the temperature of the high-temperature cold water on the outlet side of the refrigerator can be made higher than before, the coefficient of performance of the cold water production means can be greatly increased, and the power consumption can be greatly reduced. Can do.

以下、本発明の空調システムの一実施形態を図面を参照しながら説明する。
図1には、本発明による高温冷水適用の熱源システムの第1の実施の形態が示されていて、この高温冷水適用の熱源システム1は、半導体、液晶等の製造工場等の建物の内部に設けられるクリーンルームの冷却に適用され、クリーンルーム内を所定の条件(所定の温度、湿度)に保つ空調システムに有効なものである。
Hereinafter, an embodiment of an air conditioning system of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of a heat source system for high-temperature cold water application according to the present invention. This heat-source system 1 for high-temperature cold water application is located inside a building such as a semiconductor or liquid crystal manufacturing factory. The present invention is applied to cooling of a provided clean room and is effective for an air conditioning system that keeps the inside of a clean room at predetermined conditions (predetermined temperature and humidity).

本実施形態の高温冷水適用の熱源システム1は、所定の温度の高温冷水を作る冷水製造手段2と、冷水製造手段2から供給される高温冷水を冷熱源として、取り込んだ空気を所定の温度まで冷却する外気処理用冷却コイル7と、冷水製造手段2から供給される高温冷水を冷熱源として冷却される第1冷却対象5と、第1冷却対象5で使用された高温冷水を熱源水として、外気処理用冷却コイル7で冷却された外気を更に冷却する水熱源ヒートポンプ8と、外気処理用冷却コイル7で使用された高温冷水と水熱源ヒートポンプ8で使用された高温冷水とを混合し、この混合した高温冷水を冷熱源として冷却される第2冷却対象10とを備えており、第2冷却対象10で使用された高温冷水及び前記の混合した高温冷水を冷水製造手段2に戻すように構成している。   The heat source system 1 for high temperature cold water application according to the present embodiment includes a cold water production means 2 for producing high temperature cold water at a predetermined temperature, and the high temperature cold water supplied from the cold water production means 2 as a cold heat source, and the air taken in to a predetermined temperature. A cooling coil 7 for cooling the outside air to be cooled, a first cooling object 5 that is cooled using the high-temperature cold water supplied from the cold water production means 2 as a cooling heat source, and the high-temperature cold water used in the first cooling object 5 as a heat source water, The water heat source heat pump 8 that further cools the outside air cooled by the outside air treatment cooling coil 7 is mixed with the high temperature cold water used in the outside air treatment cooling coil 7 and the high temperature cold water used in the water heat source heat pump 8. A second cooling target 10 that is cooled using the mixed high-temperature cold water as a cold heat source, and the high-temperature cold water used in the second cooling target 10 and the mixed high-temperature cold water are returned to the cold-water production means 2. It is configured to.

すなわち、本実施形態の高温冷水適用の熱源システム1では、冷水を製造する冷水製造手段2は、第1冷凍機3と第2冷凍機4とが直列に接続された構成となっており、また、冷水を熱源水として冷却される冷却対象は、第1の冷却対象であるドライコイル5と、第2の冷却手段10とが直列に接続され、第1の冷却対象であるドライコイル5には外気処理用冷却コイル7が並列に接続された構成となっている。   That is, in the heat source system 1 applied with high-temperature cold water according to the present embodiment, the cold water production means 2 for producing cold water has a configuration in which the first refrigerator 3 and the second refrigerator 4 are connected in series. The cooling target to be cooled using the cold water as the heat source water is the first cooling target dry coil 5 and the second cooling means 10 connected in series, and the first cooling target dry coil 5 includes The outside air processing cooling coil 7 is connected in parallel.

冷水製造手段2は、第1冷凍機3と第2冷凍機4とを直列に接続して構成したものであって、第1冷凍機3の入口側の高温冷水の温度(T)は例えば22℃に設定され、この温度T(22℃)の高温冷水が第1冷凍機3で冷却されて所定の温度(T=17℃)の高温冷水とされる。そして、この温度(T=17℃)の高温冷水が第2冷凍機4に供給され、第2冷凍機4で冷却されて所定の温度(T=12℃)の高温冷水とされ、この温度(T=12℃)の高温冷水が配管15を介して外気処理用冷却コイル7及び第1冷却対象5に供給される。なお、冷水製造手段2は、3つ以上の冷凍機によって構成してもよい。 The cold water production means 2 is configured by connecting a first refrigerator 3 and a second refrigerator 4 in series, and the temperature (T 0 ) of high-temperature cold water on the inlet side of the first refrigerator 3 is, for example, The high temperature cold water having the temperature T 0 (22 ° C.) is cooled by the first refrigerator 3 to be the high temperature cold water having a predetermined temperature (T 1 = 17 ° C.). Then, high-temperature cold water having this temperature (T 1 = 17 ° C.) is supplied to the second refrigerator 4 and cooled by the second refrigerator 4 to obtain high-temperature cold water having a predetermined temperature (T 2 = 12 ° C.). High-temperature cold water having a temperature (T 2 = 12 ° C.) is supplied to the outside air processing cooling coil 7 and the first cooling object 5 through the pipe 15. In addition, you may comprise the cold water manufacturing means 2 by three or more refrigerators.

第1冷却対象5は、ドライコイル5であって、クリーンルームの周囲を循環する空気の顕熱を冷やすために使用される。ドライコイル5は、第2冷凍機4から供給される温度(T=12℃)の高温冷水を冷熱源とし、この冷熱源とドライコイル5に作用するクリーンルームの周囲を循環する空気との間で熱交換することにより、その空気を冷却する。ドライコイル5では、結露が生じない程度の温度に空気を冷却する。ドライコイル5で使用された高温冷水は、所定の温度(T=15℃)の高温冷水となって配管15内に排出され、配管15を介して水熱源ヒートポンプ8に供給される。 The first cooling object 5 is the dry coil 5 and is used for cooling the sensible heat of the air circulating around the clean room. The dry coil 5 uses a high-temperature cold water having a temperature (T 2 = 12 ° C.) supplied from the second refrigerator 4 as a cold heat source, and between this cold heat source and the air circulating around the clean room acting on the dry coil 5. The air is cooled by exchanging heat. In the dry coil 5, the air is cooled to a temperature that does not cause condensation. The high-temperature cold water used in the dry coil 5 becomes high-temperature cold water having a predetermined temperature (T 3 = 15 ° C.), is discharged into the pipe 15, and is supplied to the water heat source heat pump 8 through the pipe 15.

外気処理用冷却コイル7は、第2冷凍機4から供給される所定温度(T=12℃)の高温冷水を冷熱源とし、この高温冷水と外部から取り入れた外気との間で熱交換することにより、外気を所定の温度まで冷却する。この場合、外気処理用冷却コイル7では、外気をクリーンルーム内で必要とされる条件まで一度に冷却することができないので、外気処理用冷却コイル7で冷却した空気を後述する水熱源ヒートポンプ用の直接膨張コイル9で更に冷却し、必要とされる温度まで冷却する。外気処理用冷却コイル7で使用された高温冷水は、所定温度(T=22℃)の高温冷水となって配管15内に排出される。 The outside air treatment cooling coil 7 uses high temperature cold water supplied from the second refrigerator 4 at a predetermined temperature (T 2 = 12 ° C.) as a cold heat source, and performs heat exchange between the high temperature cold water and outside air taken from the outside. As a result, the outside air is cooled to a predetermined temperature. In this case, since the outside air processing cooling coil 7 cannot cool the outside air to the required condition in the clean room at a time, the air cooled by the outside air processing cooling coil 7 is directly used for a water heat source heat pump described later. Further cooling is performed by the expansion coil 9, and the cooling is performed to a required temperature. The high temperature cold water used in the outside air treatment cooling coil 7 is discharged into the pipe 15 as high temperature cold water at a predetermined temperature (T 4 = 22 ° C.).

水熱源ヒートポンプ8は、ドライコイル5からの高温冷水(T=15℃)を熱源水とする。水熱源ヒートポンプ8には、外気処理用冷却コイル7に連設される直接膨張コイル9が一体に設けられ、この直接膨張コイル9内を循環する冷媒と外気処理用冷却コイル7で冷却された空気との間で熱交換することにより、外気処理用冷却コイル7からの空気を更に冷却し、クリーンルーム内で必要とされる温度まで冷却する。水熱源ヒートポンプ8では、ドライコイル5からの高温冷水(T=15℃)を熱源水として用い、直接膨張コイル9を循環する冷媒から高温冷水に排熱することにより、水熱源ヒートポンプ8で使用された高温冷水は、所定温度(T=約16.5℃)の高温冷水となって配管15内に排出される。 The water heat source heat pump 8 uses high-temperature cold water (T 3 = 15 ° C.) from the dry coil 5 as heat source water. The water heat source heat pump 8 is integrally provided with a direct expansion coil 9 connected to the outside air processing cooling coil 7. The refrigerant circulating in the direct expansion coil 9 and the air cooled by the outside air processing cooling coil 7 are provided. The air from the outside air processing cooling coil 7 is further cooled to a temperature required in the clean room. In the water heat source heat pump 8, the high temperature cold water (T 3 = 15 ° C.) from the dry coil 5 is used as the heat source water, and the heat that is directly circulated through the expansion coil 9 is exhausted to the high temperature cold water to be used in the water heat source heat pump 8. The high-temperature cold water thus produced becomes high-temperature cold water at a predetermined temperature (T 5 = about 16.5 ° C.) and is discharged into the pipe 15.

外気処理用冷却コイル7から排出された高温冷水(T=22℃)と、水熱源ヒートポンプ8から排出された高温冷水(T=約16.5℃)は、配管15内で混合されて所定の温度(T=約18.5℃)の高温冷水とされ、この高温冷水と第2冷却対象10を循環する高温冷水との間で熱交換器18を介して熱交換が行われ、第2冷却対象10を循環する高温冷水が冷却され、第2冷却対象10である生産設備10が所定の温度まで冷却される。 The high temperature cold water (T 4 = 22 ° C.) discharged from the outside air processing cooling coil 7 and the high temperature cold water (T 5 = about 16.5 ° C.) discharged from the water heat source heat pump 8 are mixed in the pipe 15. It is high-temperature cold water of a predetermined temperature (T 6 = about 18.5 ° C.), and heat exchange is performed between the high-temperature cold water and the high-temperature cold water circulating through the second cooling target 10 via the heat exchanger 18, The high-temperature cold water circulating through the second cooling object 10 is cooled, and the production equipment 10 that is the second cooling object 10 is cooled to a predetermined temperature.

第2冷却対象10の冷却に熱交換器18を介して使用された高温冷水は、前記の高温冷水(T=約18.5℃)と混合し、所定の温度(T=22℃)の高温冷水となって配管15を介して第1冷凍機3の入口側に戻される。 The high temperature cold water used for cooling the second cooling object 10 through the heat exchanger 18 is mixed with the high temperature cold water (T 6 = about 18.5 ° C.), and a predetermined temperature (T 7 = 22 ° C.). Is returned to the inlet side of the first refrigerator 3 through the pipe 15.

図2には、本発明による高温冷水適用の熱源システムの第2の実施の形態が示されていて、この高温冷水適用の熱源システム1は、第2冷却対象10に高温冷水を直接供給し、第2冷却対象10の高温冷水の入口側と出口側との間にバイパス回路13を設けたものであって、その他の構成は前記第1の実施の形態に示すものと同様であるので、同一の部分には同一の番号を付してその詳細な説明は省略するものとする。   FIG. 2 shows a second embodiment of the heat source system for high-temperature cold water application according to the present invention. The heat source system 1 for high-temperature cold water application directly supplies the high-temperature cold water to the second cooling object 10. The bypass circuit 13 is provided between the inlet side and the outlet side of the high-temperature cold water of the second cooling object 10, and the other configurations are the same as those shown in the first embodiment. These parts are denoted by the same reference numerals, and detailed description thereof will be omitted.

バイパス回路13の途中には、バイパス回路13を開閉させるバルブ14が設けられ、このバルブ14を必要に応じて開放させることにより、第2冷却対象10で使用された高温冷水がバイパス回路13内を循環する。  A valve 14 that opens and closes the bypass circuit 13 is provided in the middle of the bypass circuit 13, and the high-temperature cold water used in the second cooling target 10 passes through the bypass circuit 13 by opening the valve 14 as necessary. Circulate.

第2の実施の形態では、第1の実施の形態の熱交換器18を省略しているが、高い清浄度が要求される生産設備10に高温冷水が供給されるのを防止するため、図1に示すように、熱交換器18を介してもよい、  In the second embodiment, the heat exchanger 18 of the first embodiment is omitted, but in order to prevent high-temperature cold water from being supplied to the production facility 10 that requires high cleanliness, FIG. 1 may be through a heat exchanger 18,

図3に、本発明による高温冷水適用の熱源システム1を、半導体製造工場のクリーンルームの空調システムに適用した例を示す。
すなわち、この適用例では、クリーンルーム31は建物30の内部に設けられている。また、建物30の床下には、外気処理用冷却コイル7、水熱源ヒートポンプ8、及び直接膨張コイル9が設けられ、建物30の内部のクリーンルーム31に隣接する部分にはドライコイル5が設けられ、クリーンルーム31の内部には第2冷却対象10である生産設備10が設けられ、クリーンルーム31の上部には、クリーンルーム31内に空気を供給するためのファンフィルターユニット32が設けられている。
FIG. 3 shows an example in which the heat source system 1 to which high-temperature cold water is applied according to the present invention is applied to an air conditioning system in a clean room of a semiconductor manufacturing factory.
That is, in this application example, the clean room 31 is provided inside the building 30. Further, under the floor of the building 30, an outside air processing cooling coil 7, a water heat source heat pump 8, and a direct expansion coil 9 are provided, and a dry coil 5 is provided in a portion adjacent to the clean room 31 inside the building 30, Inside the clean room 31, the production facility 10 as the second cooling object 10 is provided, and a fan filter unit 32 for supplying air into the clean room 31 is provided above the clean room 31.

そして、空調システムを作動させて、外気処理用冷却コイル7、水熱源ヒートポンプ8、及び直接膨張コイル9を作動させると、外部から建物30の床下に外気が取り込まれ、この外気が外気処理用冷却コイル7で冷却されて所定の温度の空気とされ、この空気が水熱源ヒートポンプ8で更に冷却されて所定の温度の空気とされ、この空気が床下から建物30の内部に噴出され、建物30の内部を循環してファンフィルターユニット32を介してクリーンルーム31の内部に供給され、クリーンルーム31の内部を循環してクリーンルーム31内を冷却した後に、クリーンルーム31外に排出される。そして、クリーンルーム31外に排出された空気は、クリーンルーム31の周囲を循環し、ドライコイル5で冷却されて、再びクリーンルーム31内に供給される。   Then, by operating the air conditioning system and operating the outside air processing cooling coil 7, the water heat source heat pump 8, and the direct expansion coil 9, outside air is taken into the floor of the building 30 from the outside, and this outside air is cooled for outside air processing. The air is cooled by the coil 7 to be a predetermined temperature air, and this air is further cooled by the water heat source heat pump 8 to be the air having a predetermined temperature, and this air is jetted into the building 30 from under the floor. It circulates inside and is supplied to the inside of the clean room 31 through the fan filter unit 32, circulates inside the clean room 31 to cool the inside of the clean room 31, and then is discharged outside the clean room 31. And the air discharged | emitted out of the clean room 31 circulates around the clean room 31, is cooled by the dry coil 5, and is supplied in the clean room 31 again.

上記のように構成した本発明による高温冷水適用の熱源システム1にあっては、例えば、第1冷凍機3の入口側の高温冷水の温度をT=T=22℃、出口側の温度(第2冷凍機4の入口側の温度)をT=17℃、第2冷凍機4の出口側の温度をT=12℃に設定している。 In the heat source system 1 applied with high-temperature cold water according to the present invention configured as described above, for example, the temperature of the high-temperature cold water on the inlet side of the first refrigerator 3 is T 0 = T 7 = 22 ° C., and the temperature on the outlet side The temperature at the inlet side of the second refrigerator 4 is set to T 1 = 17 ° C., and the temperature at the outlet side of the second refrigerator 4 is set to T 2 = 12 ° C.

一般に、冷凍機の成績係数は、冷水温度が高いほど向上する。従って、本実施の形態によれば、冷凍機3、4の入口側及び出口側の冷水温度が従前の6℃よりも高くなっているので、冷凍機3、4の成績係数を高めて、その消費電力を減少させることができる。特に、第1冷凍機3の直前の高温冷水の温度Tが高くなるため、第1冷凍機3ではより高い成績係数が得られる。また、冷凍機3、4に接続される冷却塔での冷却水の蒸発水量を抑えて、補給水量を減らすことができるので、水の省資源化を図ることもできる。 Generally, the coefficient of performance of a refrigerator improves as the cold water temperature increases. Therefore, according to the present embodiment, since the cold water temperatures on the inlet side and the outlet side of the refrigerators 3 and 4 are higher than the conventional 6 ° C., the coefficient of performance of the refrigerators 3 and 4 is increased, Power consumption can be reduced. In particular, since the temperature T 0 of the high-temperature cold water immediately before the first refrigerator 3 is increased, the first refrigerator 3 can obtain a higher coefficient of performance. Moreover, since the amount of the evaporating water in the cooling tower connected to the refrigerators 3 and 4 can be suppressed and the amount of makeup water can be reduced, water resources can be saved.

図4に、1000USRTの冷凍能力を持つ冷凍機の冷水温度と冷凍機の消費電力及び成績係数との関係の一例を示す。図4において、例えば、上から2段目を見ると、冷凍機の入口側の冷水温度が11℃、出口側の温度が6℃、消費電力が582kW、成績係数(COP)が6.04を示している。この図4に示す関係から、冷凍機の出口側の冷水温度を高くする方が成績係数がよいことが分かる。一方、本実施の形態においては、第1冷凍機3の入口側の高温冷水の温度をT=T=22℃、出口側の温度(第2冷凍機4の入口側の温度)をT=17℃、第2冷凍機4の出口側の温度をT=12℃に設定している。図4において、例えば、一番下のデータ(20/15)を使用すると、消費電力は、444kWとなる。また、同じ図4の下から4段目の(17/12)を使用すると、消費電力は497kWであるので、概略の全消費電力は、合計444+497=941kWとなる。従来のものは、6℃の冷水を使用しているから、上から2番目のデータ(11/6)を使用すると、消費電力は、582×2=1164(kW)となり、その差は、1164−941=223(kW)となり、この分が省エネルギーとなる。 FIG. 4 shows an example of the relationship between the chilled water temperature of a refrigerator having a refrigeration capacity of 1000 USRT, the power consumption of the refrigerator, and the coefficient of performance. In FIG. 4, for example, when viewing the second stage from the top, the cold water temperature on the inlet side of the refrigerator is 11 ° C., the temperature on the outlet side is 6 ° C., the power consumption is 582 kW, and the coefficient of performance (COP) is 6.04. Show. From the relationship shown in FIG. 4, it can be seen that the coefficient of performance is better when the cold water temperature on the outlet side of the refrigerator is increased. On the other hand, in the present embodiment, the temperature of the high-temperature cold water on the inlet side of the first refrigerator 3 is T 0 = T 7 = 22 ° C., and the temperature on the outlet side (the temperature on the inlet side of the second refrigerator 4) is T 1 = 17 ° C., and the temperature on the outlet side of the second refrigerator 4 is set to T 2 = 12 ° C. In FIG. 4, for example, when the lowest data (20/15) is used, the power consumption is 444 kW. Also, if the fourth stage (17/12) from the bottom of FIG. 4 is used, the power consumption is 497 kW, so the total total power consumption is 444 + 497 = 941 kW in total. Since the conventional one uses 6 ° C. cold water, using the second data from the top (11/6), the power consumption is 582 × 2 = 1164 (kW), and the difference is 1164. −941 = 223 (kW), which is energy saving.

また、本発明においては、高温冷水をカスケード利用しているので、すなわち、ドライコイル5で使用された高温冷水を水熱源ヒートポンプ8で再使用し、外気処理用冷却コイル7で使用された高温冷水と水熱源ヒートポンプ8で使用された高温冷水とを混合したものを生産設備10で再使用しているので、カスケード利用していない従来のものと比較して、高温冷水の第1冷凍機3及び第2冷凍機4の入口側と出口側での温度差を大きくとることができる。従って、高温冷水の循環水量を大幅に減らすことができるので、配管15の口径を細くすることができるとともに、高温冷水を循環させるポンプ16の容量を小さくすることができ、配管系のコストダウンを図ることができる。この結果、水熱源ヒートポンプ8を増設するコストの増加と相殺し、イニシャルコストを上昇させずに、ランニングコストを大幅に低減させることができる。   In the present invention, since the high-temperature cold water is used in cascade, that is, the high-temperature cold water used in the dry coil 5 is reused in the water heat source heat pump 8 and the high-temperature cold water used in the outside-air treatment cooling coil 7 is used. And the high-temperature cold water used in the water heat source heat pump 8 are reused in the production facility 10, so that the first refrigerator 3 of the high-temperature cold water and The temperature difference between the inlet side and the outlet side of the second refrigerator 4 can be increased. Accordingly, the amount of high-temperature cold water circulating water can be greatly reduced, so that the diameter of the pipe 15 can be reduced and the capacity of the pump 16 for circulating the high-temperature cold water can be reduced, thereby reducing the cost of the piping system. Can be planned. As a result, the running cost can be greatly reduced without offsetting the increase in the cost of adding the water heat source heat pump 8 and increasing the initial cost.

さらに、第1冷凍機3の入口側の高温冷水の温度をT=T=22℃、出口側の温度をT=17℃としているので、第1冷凍機3として消費電力の非常に少ない省エネ型の冷水供給器、例えば、チルドタワー(商品名;日立金属(株))を使用することが可能になり、更に省エネルギー化を図ることができる。 Furthermore, since the temperature of the high-temperature cold water on the inlet side of the first refrigerator 3 is T 0 = T 7 = 22 ° C. and the temperature on the outlet side is T 1 = 17 ° C., the first refrigerator 3 consumes very much power. It is possible to use a small energy-saving chilled water supply device, for example, a chilled tower (trade name; Hitachi Metals, Ltd.), and further energy saving can be achieved.

なお、前記の説明においては、高温冷水をカスケード利用する対象として2つの冷却対象を設けたが、3つ以上の冷却対象を設けてもよいものであり、その場合にも同様の作用効果を奏する。   In the above description, two cooling targets are provided as targets for cascade use of high-temperature cold water. However, three or more cooling targets may be provided, and in this case, the same effects can be obtained. .

本発明による高温冷水適用の熱源システムの第1の形態を示したブロック線図である。It is the block diagram which showed the 1st form of the heat source system of the high temperature cold water application by this invention. 本発明による高温冷水適用の熱源システムの第2の形態を示したブロック線図である。It is the block diagram which showed the 2nd form of the heat source system of the high temperature cold water application by this invention. 本発明による高温冷水適用の熱源システムの適用例を示した説明図である。It is explanatory drawing which showed the example of application of the heat source system of the high temperature cold water application by this invention. 冷水温度と冷凍機の消費電力及び成績係数との関係を示した説明図である。It is explanatory drawing which showed the relationship between cold water temperature, the power consumption of a refrigerator, and a coefficient of performance. 従来の冷水の循環システムの一例を示したブロック線図である。It is the block diagram which showed an example of the conventional circulation system of cold water.

符号の説明Explanation of symbols

1 高温冷水適用の熱源システム 2 冷水製造手段
3 第1冷凍機 4 第2冷凍機
5 第1冷却対象(ドライコイル) 7 外気処理用冷却コイル
8 水熱源ヒートポンプ 9 直接膨張コイル
10 第2冷却対象(生産設備) 12 水用フィルター
15 配管 16 ポンプ
18 熱交換器 21 冷凍機
22 ドライコイル 23 外気処理空調機
24 外気処理用冷却コイル 25 生産設備
30 建物 31 クリーンルーム
32 ファンフィルターユニット
DESCRIPTION OF SYMBOLS 1 Heat source system applied with high temperature cold water 2 Chilled water production means 3 First refrigerator 4 Second refrigerator 5 First cooling object (dry coil) 7 Cooling coil for outside air treatment 8 Water heat source heat pump 9 Direct expansion coil 10 Second cooling object ( Production equipment) 12 Water filter 15 Piping 16 Pump 18 Heat exchanger 21 Refrigerator 22 Dry coil 23 Outside air treatment air conditioner 24 Outside air treatment cooling coil 25 Production equipment 30 Building 31 Clean room 32 Fan filter unit

Claims (2)

所定の温度の高温冷水を作る直列接続された複数の冷凍機と、
前記複数の冷凍機より供給される高温冷水を冷熱源として冷却される直列接続された複数の冷却対象と、を備え、
前記複数の冷却対象のうち、前記高温冷水の流れに関して最上流側の冷却対象はドライコイルであり、
前記複数の冷却対象で使用された冷水を前記複数の冷凍機のうち最上流側の冷凍機に戻すことを特徴とする高温冷水適用の熱源システム。
A plurality of refrigerators connected in series for producing high-temperature cold water at a predetermined temperature;
A plurality of serially connected cooling objects that are cooled by using high-temperature cold water supplied from the plurality of refrigerators as a cold heat source, and
Among the plurality of cooling objects, the cooling object on the most upstream side with respect to the flow of the high-temperature cold water is a dry coil,
A heat source system for applying high-temperature cold water, wherein the cold water used in the plurality of objects to be cooled is returned to the most upstream refrigerator among the plurality of refrigerators.
所定の温度の高温冷水を作る直列接続された複数の冷凍機と、
前記複数の冷凍機より供給される高温冷水を冷熱源として冷却される直列接続された複数の冷却対象と、を備え、
前記複数の冷却対象のうち、前記高温冷水の流れに関して最上流側の冷却対象は、前記高温冷水を冷熱源として冷却される外気処理用冷却コイルと、前記外気処理用冷却コイルにより冷却された外気を、前記高温冷水を冷熱源とすることなく冷却する冷却手段とを備える外気処理空調機であり、
前記複数の冷却対象で使用された冷水を前記複数の冷凍機のうち最上流側の冷凍機に戻すことを特徴とする高温冷水適用の熱源システム。
A plurality of refrigerators connected in series for producing high-temperature cold water at a predetermined temperature;
A plurality of serially connected cooling objects that are cooled by using high-temperature cold water supplied from the plurality of refrigerators as a cold heat source, and
Among the plurality of cooling targets, the cooling target on the most upstream side with respect to the flow of the high temperature cold water is an outside air treatment cooling coil that is cooled using the high temperature cold water as a cooling heat source, and an outside air cooled by the outside air treatment cooling coil. A cooling means for cooling the high-temperature cold water without using the high-temperature cold water as a cold heat source,
A heat source system for applying high-temperature cold water, wherein the cold water used in the plurality of objects to be cooled is returned to the most upstream refrigerator among the plurality of refrigerators .
JP2007029535A 2007-02-08 2007-02-08 Heat source system for high temperature cold water application Expired - Fee Related JP4631857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007029535A JP4631857B2 (en) 2007-02-08 2007-02-08 Heat source system for high temperature cold water application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007029535A JP4631857B2 (en) 2007-02-08 2007-02-08 Heat source system for high temperature cold water application

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005207338A Division JP4779480B2 (en) 2005-07-15 2005-07-15 Heat source system for high temperature cold water application

Publications (2)

Publication Number Publication Date
JP2007132659A JP2007132659A (en) 2007-05-31
JP4631857B2 true JP4631857B2 (en) 2011-02-16

Family

ID=38154462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007029535A Expired - Fee Related JP4631857B2 (en) 2007-02-08 2007-02-08 Heat source system for high temperature cold water application

Country Status (1)

Country Link
JP (1) JP4631857B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204702B2 (en) * 2009-03-23 2013-06-05 大成建設株式会社 Air conditioning system in a building with many heat generating devices
JP6339359B2 (en) * 2013-12-19 2018-06-06 高砂熱学工業株式会社 Wastewater utilization system and wastewater utilization method
WO2020016928A1 (en) * 2018-07-17 2020-01-23 三菱電機株式会社 Heat exchange unit, air conditioning device, and air conditioning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355938A (en) * 2000-06-15 2001-12-26 Sanken Setsubi Kogyo Co Ltd Cold water manufacturing system
JP2004156805A (en) * 2002-11-05 2004-06-03 Sanyo Electric Co Ltd Heat pump system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145046A (en) * 1975-06-09 1976-12-13 Takasago Thermal Eng Co Lts A method to improve cooling capacity of water
JPS61225528A (en) * 1985-03-30 1986-10-07 Yamatake Honeywell Co Ltd Method of capability control for serially operated refrigerator
JP3388564B2 (en) * 1996-02-02 2003-03-24 高砂熱学工業株式会社 District heat supply system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355938A (en) * 2000-06-15 2001-12-26 Sanken Setsubi Kogyo Co Ltd Cold water manufacturing system
JP2004156805A (en) * 2002-11-05 2004-06-03 Sanyo Electric Co Ltd Heat pump system

Also Published As

Publication number Publication date
JP2007132659A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
US10401077B2 (en) Chilled water cooling system
RU2555622C2 (en) Device and method for direct natural cooling
JP4706836B2 (en) Cooling system
EP1830136B1 (en) Cooling unit for air conditioning systems
JP2008215730A (en) Cooling system and method using free cooling
KR20070096993A (en) Cooling/heating and hot water supply system by using heat pump
JP4631857B2 (en) Heat source system for high temperature cold water application
JP5503461B2 (en) Air conditioning operation method using free cooling
JP2007322024A (en) Large temperature difference air conditioning system
JP2006284083A (en) Air conditioning system
JP2007198730A (en) Air conditioning refrigeration device
JP4994754B2 (en) Heat source system
US10718551B2 (en) Hybrid vapor compression/thermoelectric heat transport system
KR20090116629A (en) Method for using outdoor air to cool room devices
JP2011149602A (en) Cold source system
CN112254236A (en) Indirect evaporative cooling cold water system combining mechanical refrigeration and switching method
JP4779480B2 (en) Heat source system for high temperature cold water application
JP5578664B2 (en) Computer room air conditioner
JP2005134010A (en) Air conditioning device and air conditioning method
CN107490114B (en) Air conditioning system and method for radiating data center thereof
JPH1054619A (en) Air conditioning method and air conditioning system
US20110197618A1 (en) Multi-stage heat exchanger
WO2015001976A1 (en) Heat source system
JP4805065B2 (en) Air conditioning system
JP2006162207A (en) Ground heat utilizing water cooled heat pump air conditioning system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees