JP2006284083A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2006284083A
JP2006284083A JP2005104184A JP2005104184A JP2006284083A JP 2006284083 A JP2006284083 A JP 2006284083A JP 2005104184 A JP2005104184 A JP 2005104184A JP 2005104184 A JP2005104184 A JP 2005104184A JP 2006284083 A JP2006284083 A JP 2006284083A
Authority
JP
Japan
Prior art keywords
compression
air conditioner
building
air
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005104184A
Other languages
Japanese (ja)
Other versions
JP5295481B2 (en
Inventor
Masayuki Yano
正幸 谷野
Shuichi Ishii
秀一 石井
Akihiko Okamura
明彦 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2005104184A priority Critical patent/JP5295481B2/en
Publication of JP2006284083A publication Critical patent/JP2006284083A/en
Application granted granted Critical
Publication of JP5295481B2 publication Critical patent/JP5295481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively improve the cooling capability of compression-expansion type air-conditioners. <P>SOLUTION: This building air conditioning system comprises the compression-expansion type air conditioners 10, 15 for cooling an are-conditioned space in a building 1 with a refrigerating cycle in which refrigerant is circulated between outdoor units 20, 40 and indoor units 11, 16. Herein, heat exchangers 32, 52 are provided for heat exchange between the refrigerant which is fed from the outdoor units 20, 40 of the compression-expansion type air-conditioners 10, 15 into the indoor units 11, 16 and cooling water cooled by a cooling tower 70. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,圧縮膨張方式の空調装置を有する建築物の空調システムに関する。   The present invention relates to an air conditioning system for buildings having a compression / expansion air conditioning system.

貸しビル等の業務用建築物などの内部には,各ユニットに分割された複数の空調空間が存在する。そのような複数の空調空間を空調する空調設備として,室外機で凝縮させた冷媒を室内機に循環供給して膨張させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置が一般に知られている。この空調装置は,パッケージ型空調装置などと呼ばれている。例えば,特開2003−56930号公報には,そのような圧縮膨張方式の空調装置に用いられる冷凍サイクルが開示されている。また,圧縮膨張方式の空調装置の一つとして,建築物内に複数配置された室内機に,共通の室外機から冷媒が循環供給されるいわゆるビルマルチ型の空調装置も知られている。   A plurality of air-conditioned spaces divided into individual units exist inside commercial buildings such as rental buildings. As an air conditioning system that air-conditions multiple air-conditioned spaces, a compression / expansion system that cools the air-conditioned space in the building by circulating and supplying refrigerant condensed in the outdoor unit to the indoor unit and expanding it. The air conditioner is generally known. This air conditioner is called a package type air conditioner. For example, Japanese Patent Laid-Open No. 2003-56930 discloses a refrigeration cycle used in such a compression / expansion type air conditioner. As one of the compression-expansion type air conditioners, a so-called building multi-type air conditioner is also known in which refrigerant is circulated and supplied from a common outdoor unit to a plurality of indoor units arranged in a building.

この圧縮膨張方式の空調装置は設置が比較的容易であり,また,一般的に空調装置のパーソナル性が明かなため,貸しビルオーナーにとってはテナントなどへの課金が透明である等の利点がある。そのため,テナントビルや小規模建物などに一般に採用されている。   This compression / expansion type air conditioner is relatively easy to install, and the personality of the air conditioner is generally clear, so there are advantages such as transparent billing to tenants and the like for rental building owners . Therefore, it is generally adopted for tenant buildings and small buildings.

特開2003−56930号公報JP 2003-56930 A

圧縮膨張方式の空調装置は,室内の床面積当たりの冷房負荷が大きいほど,室外機と室内機の台数を増加させる必要がある。しかしながら,室外機の台数が増加し,屋上階や各階のベランダ等に設置される室外機の密度が高くなると,室外機の排気によって室外機周辺の空気温度が上昇し,室外機の吸気温度が高くなるため,冷房能力が低下する問題があった。また,空気温度の上昇により,都市のヒートアイランド現象をまねく要因にもなっていた。更に,冷房能力低下により,室外機の設置台数をより増加させる必要が生じ,設備費用が高コストとなるとともに,室外機がより高密度に設置され,冷房能力がさらに低下する問題があった。   The compression / expansion type air conditioner needs to increase the number of outdoor units and indoor units as the cooling load per floor area in the room increases. However, as the number of outdoor units increases and the density of outdoor units installed on the rooftop or on the veranda of each floor increases, the air temperature around the outdoor unit rises due to the exhaust of the outdoor unit, and the intake air temperature of the outdoor unit increases. There was a problem that the cooling capacity declined because it became higher. In addition, the rise in air temperature has also contributed to the urban heat island phenomenon. Furthermore, due to a decrease in cooling capacity, it was necessary to increase the number of outdoor units installed, resulting in high equipment costs, and outdoor units installed at a higher density, resulting in a further decrease in cooling capacity.

一方,このような冷房能力の低下を回避するために,室外機に散水することも行われている。しかしそうすると,散水の垂流しに伴う藻の発生や,室外機フィンの腐食などといった室外機廻りの水仕舞いの問題を生ずることになる。   On the other hand, in order to avoid such a decrease in cooling capacity, water is sprayed to the outdoor unit. However, if you do so, problems such as the generation of algae accompanying the sprinkling of water spray and the corrosion of outdoor unit fins will occur.

本発明は以上の如き問題に鑑みてなされたものであり,圧縮膨張方式の空調装置の冷房能力を,低コストで向上できる空調システムを提供することにある。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide an air conditioning system capable of improving the cooling capacity of a compression / expansion type air conditioner at low cost.

本発明によれば,室外機と室内機の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置を有する建築物の空調システムであって,前記圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒と,冷却塔で冷却された冷却水とを熱交換させる熱交換器を設けたことを特徴とする,空調システムが提供される。   According to the present invention, there is provided an air conditioning system for a building having a compression / expansion type air conditioner that circulates a refrigerant between an outdoor unit and an indoor unit and cools an air-conditioned space in the building by performing a refrigeration cycle. There is provided an air-conditioning system comprising a heat exchanger for exchanging heat between the refrigerant sent from the outdoor unit of the compression-expansion type air conditioner to the indoor unit and the cooling water cooled by the cooling tower. The

この空調システムにあっては,圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒を,冷却塔で冷却された冷却水で冷却することにより,圧縮膨張方式の空調装置の冷房能力を向上させることができる。   In this air conditioning system, the cooling capacity of the compression / expansion air conditioner is improved by cooling the refrigerant sent from the outdoor unit of the compression / expansion air conditioner to the indoor unit with the cooling water cooled by the cooling tower. Can be improved.

前記空調システムは,前記圧縮膨張方式の空調装置を複数有するものでも良い。また,前記空調システムは,前記圧縮膨張方式の空調装置の他に,熱源設備の冷媒を空調空間内に設置した室内機に循環供給して,建築物内の空調空間を冷房するセントラル方式の空調装置を有する構成でも良い。その場合,前記熱源設備は,冷却手段として冷却塔を備え,前記熱交換器は,このセントラル方式の熱源設備の冷却塔で冷却された冷却水と,前記圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒とを熱交換させる構成としても良い。   The air conditioning system may include a plurality of compression / expansion air conditioning devices. In addition to the compression / expansion air conditioner, the air conditioning system circulates and supplies the refrigerant of the heat source facility to the indoor unit installed in the air conditioned space to cool the air conditioned space in the building. A configuration having an apparatus may be used. In this case, the heat source equipment includes a cooling tower as a cooling means, and the heat exchanger includes cooling water cooled by the cooling tower of the central type heat source equipment and an outdoor unit of the compression / expansion type air conditioner. It is good also as a structure which heat-exchanges with the refrigerant | coolant sent to an indoor unit.

また,本発明によれば,室外機と室内機の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置を有する建築物の空調システムであって,前記圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒と,雨水,地下水または前記建築物の空調衛生設備から排出される排水とを熱交換させる熱交換器を設けたことを特徴とする,空調システムが提供される。   Further, according to the present invention, there is provided an air conditioning system for a building having a compression / expansion type air conditioner that circulates a refrigerant between the outdoor unit and the indoor unit and cools an air-conditioned space in the building by performing a refrigeration cycle. And a heat exchanger for exchanging heat between the refrigerant sent from the outdoor unit of the compression / expansion type air conditioner to the indoor unit and rainwater, groundwater or waste water discharged from the air-conditioning sanitary equipment of the building. An air conditioning system is provided.

この空調システムにあっては,圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒を,雨水,地下水または前記建築物の空調衛生設備から排出される排水で冷却することにより,冷熱源動力を投入せずに,圧縮膨張方式の空調装置の冷房能力を向上させることができる。   In this air conditioning system, the refrigerant sent from the outdoor unit of the compression / expansion type air conditioner to the indoor unit is cooled by rainwater, groundwater, or waste water discharged from the air conditioning and sanitary equipment of the building. The cooling capacity of the compression / expansion type air conditioner can be improved without applying power.

また,本発明によれば,室外機と室内機の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置を有する建築物の空調システムであって,前記圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒と,前記建築物に設けられた給湯用ボイラまたは蒸気用ボイラに供給される給水とを熱交換させる熱交換器を設けたことを特徴とする,空調システムが提供される。   Further, according to the present invention, there is provided an air conditioning system for a building having a compression / expansion type air conditioner that circulates a refrigerant between the outdoor unit and the indoor unit and cools an air-conditioned space in the building by performing a refrigeration cycle. A heat exchanger for exchanging heat between the refrigerant sent from the outdoor unit of the compression-expansion type air conditioner to the indoor unit and the hot-water supply boiler or steam supply water provided in the building. An air conditioning system is provided, which is characterized by being provided.

この空調システムにあっては,圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒を,給湯用ボイラまたは蒸気用ボイラに供給される給水で冷却することにより,圧縮膨張方式の空調装置の冷房能力を向上させることができる。また,圧縮膨張方式の空調装置の冷媒を冷却したことにより,給湯用ボイラまたは蒸気用ボイラに供給される給水は昇温され,給湯設備の省エネルギ化がはかられる。   In this air conditioning system, the refrigerant sent from the outdoor unit of the compression / expansion type air conditioner to the indoor unit is cooled by the feed water supplied to the hot water boiler or steam boiler, thereby compressing and expanding the air conditioner. The cooling capacity of the can be improved. In addition, by cooling the refrigerant of the compression / expansion type air conditioner, the temperature of the feed water supplied to the hot water boiler or the steam boiler is raised, thereby saving energy in the hot water supply facility.

また,本発明によれば,室外機と室内機の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置を有する建築物の空調システムであって,前記圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒と,前記建築物に設けられた貯湯槽を有する給湯設備の貯湯水とを熱交換させる熱交換器を設け,非給湯時間帯に該熱交換器で熱交換した貯湯水を,給湯時間帯に加熱して給湯することを特徴とする,空調システムが提供される。   Further, according to the present invention, there is provided an air conditioning system for a building having a compression / expansion type air conditioner that circulates a refrigerant between the outdoor unit and the indoor unit and cools an air-conditioned space in the building by performing a refrigeration cycle. A heat exchanger for exchanging heat between the refrigerant sent from the outdoor unit of the compression / expansion air conditioner to the indoor unit and hot water stored in a hot water supply facility having a hot water storage tank provided in the building, There is provided an air conditioning system characterized in that hot water that has been heat-exchanged by the heat exchanger during a hot water supply time zone is heated to supply hot water during the hot water supply time zone.

この空調システムにあっては,圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒を,加熱給湯前の貯湯水で冷却することにより,圧縮膨張方式の空調装置の冷房能力を向上させることができる。また,圧縮膨張方式の空調装置の冷媒を冷却したことにより貯湯水は昇温され,給湯設備の省エネルギ化がはかられる。   In this air conditioning system, the cooling capacity of the compression / expansion type air conditioner is improved by cooling the refrigerant sent from the outdoor unit of the compression / expansion type air conditioner to the indoor unit with the hot water stored before the hot water supply. be able to. In addition, by cooling the refrigerant in the compression / expansion type air conditioner, the temperature of the hot water is raised and energy saving of the hot water supply equipment can be achieved.

本発明によれば,圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒を,電力などのエネルギーを大量に要さずに冷却でき,圧縮膨張方式の空調装置の冷房能力が向上し,結果的に建築物全体の省エネルギー性を高めることができる。既に存在する設備や本来の目的のために存在する設備を空調熱源としても活用できるようになる。未利用エネルギの利用により,追加的なコストを要しない。したがって,改修工事などに極めて有益である。   According to the present invention, the refrigerant sent from the outdoor unit of the compression / expansion type air conditioner to the indoor unit can be cooled without requiring a large amount of energy such as electric power, and the cooling capacity of the compression / expansion type air conditioner is improved. As a result, the energy saving performance of the entire building can be improved. Existing facilities and facilities for the original purpose can be used as air conditioning heat sources. By using unused energy, no additional cost is required. Therefore, it is extremely useful for repair work.

以下,本発明の実施の形態を,図面を参照にして説明する。図1は,本発明の実施の形態にかかる空調システムを適用した建築物1の説明図である。建築物1の内部には,2つに分割された空調空間a,bが形成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Drawing 1 is an explanatory view of building 1 to which an air-conditioning system concerning an embodiment of the invention is applied. Inside the building 1, air-conditioned spaces a and b divided into two are formed.

空調空間aには,圧縮膨張方式の空調装置10の室内機11が設置されている。空調空間bには,圧縮膨張方式の空調装置15の室内機16が設置されている。なお,「空調空間」とは,例えば室,階,あるいは室の一部の区域などであり,室内機が負荷を受け持つ空間を指す。   An indoor unit 11 of a compression / expansion air conditioner 10 is installed in the air conditioned space a. An indoor unit 16 of a compression / expansion type air conditioner 15 is installed in the air conditioned space b. The “air-conditioned space” is, for example, a room, a floor, or a partial area of the room, and refers to a space in which the indoor unit is responsible for the load.

圧縮膨張方式の空調装置10は,空調空間aのみを独立して空調する個別方式の空調装置である。この空調装置10は,建築物1の外部に設置された室外機20と,空調空間aに設置された室内機11と,室外機20から室内機11に冷媒を送る配管21及び室内機11から室外機20に冷媒を送る配管22を備えている。室外機20は,建築物1の屋上,ベランダ,隣接地などに設置され,冷房運転時は外気によって冷媒を冷却する。室外機20は,圧縮機25,放熱コイル26,ファン27,制御弁28等を備えており,室内機11は,膨張弁29などの制御弁,蒸発器30,ファン31等を備えている。そして,配管21,22を通じて,これら圧縮機25,放熱コイル26,制御弁28,膨張弁29,蒸発器30の順に冷媒を循環させることにより,冷凍サイクルを行わせしめて,空調空間a内の冷房運転を行うようになっている。室外機20から室内機11に冷媒を送る配管21には,後述するように,圧縮膨張方式の空調装置10の冷媒と,冷却塔70で冷却された冷却水とを熱交換させるための熱交換器32が設けられている。   The compression-expansion air conditioner 10 is an individual air conditioner that independently air-conditions only the air-conditioned space a. The air conditioner 10 includes an outdoor unit 20 installed outside the building 1, an indoor unit 11 installed in the air-conditioned space a, a pipe 21 that sends refrigerant from the outdoor unit 20 to the indoor unit 11, and the indoor unit 11. A pipe 22 for sending the refrigerant to the outdoor unit 20 is provided. The outdoor unit 20 is installed on the roof, veranda, adjacent land, etc. of the building 1 and cools the refrigerant by outside air during the cooling operation. The outdoor unit 20 includes a compressor 25, a heat dissipation coil 26, a fan 27, a control valve 28, and the like. The indoor unit 11 includes a control valve such as an expansion valve 29, an evaporator 30, a fan 31, and the like. The refrigerant is circulated through the pipes 21 and 22 in the order of the compressor 25, the heat radiation coil 26, the control valve 28, the expansion valve 29, and the evaporator 30, thereby causing the refrigeration cycle to be performed and cooling the air-conditioning space a. It is designed to drive. As will be described later, in the pipe 21 for sending the refrigerant from the outdoor unit 20 to the indoor unit 11, heat exchange for exchanging heat between the refrigerant of the compression / expansion type air conditioner 10 and the cooling water cooled by the cooling tower 70 is performed. A vessel 32 is provided.

同様に,圧縮膨張方式の空調装置15は,空調空間bのみを独立して空調する個別方式の空調装置である。この空調装置15は,建築物1の外部に設置された室外機40と,空調空間bに設置された室内機16と,室外機40から室内機16に冷媒を送る配管41及び室内機16から室外機40に冷媒を送る配管42を備えている。室外機40も,建築物1の屋上,ベランダ,隣接地などに設置され,冷房運転時は外気によって冷媒を冷却する。室外機40も,圧縮機45,放熱コイル46,ファン47,制御弁48等を備えており,室内機16は,膨張弁49,蒸発器50,ファン51などの制御弁等を備えている。そして,配管41,42を通じて,これら圧縮機45,放熱コイル46,制御弁48,膨張弁49などの制御弁,蒸発器50の順に冷媒を循環させることにより,冷凍サイクルを行わせしめて,空調空間b内の冷房運転を行うようになっている。室外機40から室内機16に冷媒を送る配管41には,後述するように,圧縮膨張方式の空調装置15の冷媒と,冷却塔70で冷却された冷却水とを熱交換させるための熱交換器52が設けられている。   Similarly, the compression / expansion air conditioner 15 is an individual air conditioner that independently air-conditions only the air-conditioned space b. The air conditioner 15 includes an outdoor unit 40 installed outside the building 1, an indoor unit 16 installed in the air-conditioned space b, a pipe 41 that sends refrigerant from the outdoor unit 40 to the indoor unit 16, and the indoor unit 16. A pipe 42 for sending the refrigerant to the outdoor unit 40 is provided. The outdoor unit 40 is also installed on the roof, veranda, adjacent land, etc. of the building 1 and cools the refrigerant by outside air during the cooling operation. The outdoor unit 40 also includes a compressor 45, a heat radiation coil 46, a fan 47, a control valve 48, and the like, and the indoor unit 16 includes control valves such as an expansion valve 49, an evaporator 50, and a fan 51. The refrigerant is circulated through the pipes 41 and 42 in the order of the compressor 45, the heat radiating coil 46, the control valve 48 and the expansion valve 49, and the evaporator 50, thereby causing the refrigeration cycle to be performed. The cooling operation in b is performed. As will be described later, in the pipe 41 that sends the refrigerant from the outdoor unit 40 to the indoor unit 16, heat exchange for exchanging heat between the refrigerant of the compression-expansion type air conditioner 15 and the cooling water cooled by the cooling tower 70 is performed. A vessel 52 is provided.

また,建築物1の屋上などの外部には,冷却塔70が設置されている。この冷却塔70と,前述の熱交換器32,52との間には,配管75,76が接続してあり,冷却塔70において外気で冷却された冷却水は,ポンプ73の稼動によって,これら配管75,76を介して熱交換器32,52に循環供給されるようになっている。   A cooling tower 70 is installed outside the building 1 such as the rooftop. Pipes 75 and 76 are connected between the cooling tower 70 and the heat exchangers 32 and 52 described above, and the cooling water cooled by the outside air in the cooling tower 70 is operated by the pump 73. The heat exchangers 32 and 52 are circulated and supplied through the pipes 75 and 76.

以上のように構成された空調システムを備える建築物1において主として夏季に行われる冷房運転を説明すると,先ず空調空間aでは,圧縮膨張方式の空調装置10により,圧縮機25,放熱コイル26,制御弁28,膨張弁29などの制御弁,蒸発器30の順に冷媒が循環されて冷凍サイクルが行われ,空調空間a内の冷房が行われる。   The cooling operation performed mainly in the summer in the building 1 having the air conditioning system configured as described above will be described. First, in the air-conditioned space a, the compressor 25, the heat radiation coil 26, and the control are performed by the compression / expansion type air conditioner 10. The refrigerant is circulated in the order of the control valve such as the valve 28 and the expansion valve 29 and the evaporator 30 to perform the refrigeration cycle, and the air-conditioned space a is cooled.

ここで,圧縮膨張方式の空調装置10において,室外機20(圧縮機25,放熱コイル26および制御弁28)で凝縮液化された冷媒は,配管21を通って室内機11に供給されるが,その途中で,熱交換器32において冷却塔70から配管75を経て供給された冷却水と熱交換される。これにより,空調装置10において室外機20から室内機11に送られる冷媒は,減圧膨張前に冷却されて過冷却の状態となるので,空調装置10の冷房能力が向上することになる。なお,圧縮膨張方式の空調装置10の冷媒と熱交換した後,熱交換器32から配管76を経て冷却塔70に戻された冷却水は,冷却塔70において再び外気によって冷却される。   Here, in the compression / expansion type air conditioner 10, the refrigerant condensed and liquefied by the outdoor unit 20 (the compressor 25, the heat radiation coil 26 and the control valve 28) is supplied to the indoor unit 11 through the pipe 21. On the way, heat is exchanged with the cooling water supplied from the cooling tower 70 via the pipe 75 in the heat exchanger 32. Thereby, the refrigerant sent from the outdoor unit 20 to the indoor unit 11 in the air conditioner 10 is cooled before being decompressed and expanded to be in a supercooled state, so that the cooling capacity of the air conditioner 10 is improved. Note that the cooling water returned to the cooling tower 70 from the heat exchanger 32 via the pipe 76 after heat exchange with the refrigerant of the compression / expansion air conditioner 10 is cooled again by the outside air in the cooling tower 70.

また同様に,空調空間bにおいても,圧縮膨張方式の空調装置15により,圧縮機45,放熱コイル46,制御弁48,膨張弁49などの制御弁,蒸発器50の順に冷媒が循環されて冷凍サイクルが行われ,空調空間b内の冷房が行われる。こうして空調空間bでも,圧縮膨張方式の空調装置15による冷房が行われる。   Similarly, in the air-conditioned space b, the refrigerant is circulated in the order of the compressor 45, the heat release coil 46, the control valve 48, the expansion valve 49, and the evaporator 50 by the compression / expansion air conditioner 15 in this order. A cycle is performed to cool the air-conditioned space b. In this way, the air conditioning space b is also cooled by the compression / expansion type air conditioner 15.

この場合も同様に,圧縮膨張方式の空調装置15において,室外機40(圧縮機45,放熱コイル46および制御弁48)で凝縮液化された冷媒は,配管41を通って室内機16に供給されるが,その途中で,熱交換器52において冷却塔70から配管75を経て供給された冷却水と熱交換される。これにより,空調装置15において室外機40から室内機16に送られる冷媒も,減圧膨張前に冷却されて過冷却の状態となるので,空調装置15の冷房能力が同様に向上する。なお,圧縮膨張方式の空調装置15の冷媒と熱交換した後,熱交換器52から配管76を経て冷却塔70に戻された冷却水は,冷却塔70において再び外気によって冷却される。   Similarly, in this case, in the compression / expansion type air conditioner 15, the refrigerant condensed and liquefied by the outdoor unit 40 (the compressor 45, the heat radiation coil 46 and the control valve 48) is supplied to the indoor unit 16 through the pipe 41. In the middle of this, heat is exchanged with the cooling water supplied from the cooling tower 70 via the pipe 75 in the heat exchanger 52. As a result, the refrigerant sent from the outdoor unit 40 to the indoor unit 16 in the air conditioner 15 is also cooled before being decompressed and expanded to be in a supercooled state, so that the cooling capacity of the air conditioner 15 is similarly improved. After the heat exchange with the refrigerant of the compression / expansion type air conditioner 15, the cooling water returned from the heat exchanger 52 through the pipe 76 to the cooling tower 70 is cooled again by the outside air in the cooling tower 70.

以上に説明した本発明の実施の形態によれば,圧縮膨張方式の空調装置10,15の室外機20,40から送られる冷媒を,冷却塔70で冷却された冷却水で冷却してから室内機11,16に供給することにより,冷媒を減圧膨張前に冷却して過冷却の状態とすることができ,圧縮膨張方式の空調装置10,15の冷房能力を向上させることができる。冷却塔70の冷却水を利用することにより,電力などのエネルギーを大量に要さずに冷媒を冷却でき,建築物1全体の省エネルギー性を高めることができる。   According to the embodiment of the present invention described above, the refrigerant sent from the outdoor units 20 and 40 of the compression / expansion air conditioners 10 and 15 is cooled by the cooling water cooled by the cooling tower 70 and then the room. By supplying to the machines 11 and 16, the refrigerant can be cooled before being decompressed and expanded to be in a supercooled state, and the cooling capacity of the compression / expansion type air conditioners 10 and 15 can be improved. By using the cooling water of the cooling tower 70, the refrigerant can be cooled without requiring a large amount of energy such as electric power, and the energy saving performance of the entire building 1 can be improved.

また,システム全体の屋外への排熱は,室外機20,40の排熱の他,冷却塔70による水の蒸発潜熱でなされるため,屋外への排熱が顕熱のみである空冷のビル用マルチなどに比べ,都市のヒートアイランド現象も抑制できる。更に,室外機へ散水するシステムと違って,室外機廻りの水仕舞いの問題を発生させずに冷房能力を向上できる。   In addition, the exhaust heat to the outside of the entire system is generated by the latent heat of evaporation of water by the cooling tower 70 in addition to the exhaust heat of the outdoor units 20 and 40. Therefore, the air is cooled only by sensible heat. The urban heat island phenomenon can also be suppressed compared to multi-purpose machines. Furthermore, unlike the system that sprinkles water to the outdoor unit, the cooling capacity can be improved without causing the problem of water around the outdoor unit.

次に,図2は,本発明の別の実施の形態にかかる空調システムを適用した建築物1’の説明図である。この実施の形態の空調システムは,圧縮膨張方式の空調装置10,15の他に,熱源設備としての蓄熱槽60の冷媒(冷水61)を空調空間a,c内に設置した室内機としてのファンコイルユニット13,17に循環供給して,建築物1’内の空調空間を冷房するセントラル方式の空調装置12を有している。なお,圧縮膨張方式の空調装置10,15については,先に図1で説明した実施の形態と同様であるので,それらについては共通の符号を付すことにより,重複説明を省略する。   Next, FIG. 2 is explanatory drawing of the building 1 'to which the air conditioning system concerning another embodiment of this invention is applied. The air conditioning system of this embodiment is a fan as an indoor unit in which the refrigerant (cold water 61) of the heat storage tank 60 as a heat source facility is installed in the air conditioned spaces a and c in addition to the compression and expansion type air conditioners 10 and 15. A central air conditioner 12 that circulates and supplies the coil units 13 and 17 to cool the air-conditioned space in the building 1 ′ is provided. Note that the compression / expansion type air conditioners 10 and 15 are the same as those in the embodiment described above with reference to FIG.

この実施の形態にかかる建築物1’の内部には,3つに分割された空調空間a,b,cと,地下空間dが形成されている。これら3つの空調空間a,b,cのうち,空調空間aには,圧縮膨張方式の空調装置10の室内機11と,セントラル方式の空調装置12のファンコイルユニット13が設置されている。空調空間bには,圧縮膨張方式の空調装置15の室内機16のみが設置され,一方,空調空間cには,セントラル方式の空調装置12のファンコイルユニット17のみが設置されている。   Inside the building 1 ′ according to this embodiment, three divided air-conditioned spaces a, b, c and an underground space d are formed. Among these three air-conditioned spaces a, b, and c, the air-conditioning space a is provided with an indoor unit 11 of the compression / expansion air conditioner 10 and a fan coil unit 13 of the central air conditioner 12. In the air-conditioned space b, only the indoor unit 16 of the compression / expansion air conditioner 15 is installed, while in the air-conditioned space c, only the fan coil unit 17 of the central air conditioner 12 is installed.

セントラル方式の空調装置12は,地下空間dに設置された熱源設備としての蓄熱槽60と,空調空間aに設置されたファンコイルユニット13及び空調空間cに設置されたファンコイルユニット17を備えている。この空調装置12は,2つのファンコイルユニット13,17に,1つの共通の蓄熱槽60から冷媒としての冷水61を循環供給するようになっている。   The central type air conditioner 12 includes a heat storage tank 60 as a heat source facility installed in the underground space d, a fan coil unit 13 installed in the air conditioned space a, and a fan coil unit 17 installed in the air conditioned space c. Yes. The air conditioner 12 circulates and supplies cold water 61 as a refrigerant from one common heat storage tank 60 to the two fan coil units 13 and 17.

このセントラル方式の空調装置12において,蓄熱槽60に蓄えられた冷水61は,配管62,63を介してポンプ64の稼動によって冷凍機65に循環させられ,冷凍機65によって冷却された冷水が,蓄熱槽60に蓄えられるようになっている。冷凍機65には,建築物1の屋上など外部に設置された冷却塔70’が配管71,72によって接続してある。冷却塔70’は,セントラル方式の空調装置12の冷熱を生成するための冷凍機65の凝縮器(冷却手段)として機能するものであり,この冷却塔70’において外気で冷却された冷却水が,ポンプ73の稼動によって,配管71,72を介して冷凍機65に循環供給されている。   In the central type air conditioner 12, the cold water 61 stored in the heat storage tank 60 is circulated to the refrigerator 65 by the operation of the pump 64 via the pipes 62 and 63, and the cold water cooled by the refrigerator 65 is It can be stored in the heat storage tank 60. A cooling tower 70 ′ installed outside such as the roof of the building 1 is connected to the refrigerator 65 by pipes 71 and 72. The cooling tower 70 ′ functions as a condenser (cooling means) of the refrigerator 65 for generating cold heat of the central type air conditioner 12, and the cooling water cooled by the outside air in the cooling tower 70 ′ The pump 73 is circulated and supplied to the refrigerator 65 through the pipes 71 and 72 by the operation of the pump 73.

また,この冷却塔70’と,圧縮膨張方式の空調装置10,15に備えられた熱交換器32,51との間には,配管75,76が接続してあり,冷却塔70’において外気で冷却された冷却水は,ポンプ73の稼動によって,これら配管75,76を介して熱交換器32,51にも循環供給されるようになっている。即ち,先に図1で説明した実施の形態では,圧縮膨張方式の空調装置10,15の冷媒を専用の冷却塔70で冷却された冷却水で冷却するものであったが,この図2に示した実施の形態では,セントラル方式の空調装置12の冷却手段として備えられた冷却塔70’の冷却水で,圧縮膨張方式の空調装置10,15の冷媒を冷却するように構成した点が相違している。   Further, pipes 75 and 76 are connected between the cooling tower 70 'and the heat exchangers 32 and 51 provided in the compression / expansion type air conditioners 10 and 15, and the outside air is cooled in the cooling tower 70'. The cooling water cooled in the above is circulated and supplied to the heat exchangers 32 and 51 through these pipes 75 and 76 by the operation of the pump 73. That is, in the embodiment described above with reference to FIG. 1, the refrigerant of the compression / expansion type air conditioners 10 and 15 is cooled by the cooling water cooled by the dedicated cooling tower 70. The illustrated embodiment is different in that the refrigerant of the compression / expansion type air conditioners 10 and 15 is cooled by the cooling water of the cooling tower 70 ′ provided as the cooling means of the central type air conditioner 12. is doing.

空調空間aに設置されたファンコイルユニット13は,冷却コイル80とファン81を備えている。同様に,空調空間cに設置されたファンコイルユニット17も,冷却コイル82とファン83を備えている。これらファンコイルユニット13の冷却コイル80とファンコイルユニット17の冷却コイル82には,ポンプ85の稼動で蓄熱槽60から汲み上げられた冷水61が,配管86を通じてそれぞれ送液される。そして,ファンコイルユニット13では,ファン61の稼動によって冷却コイル80の表面に空調空間a内の空気を送風し,空調空間a内の空気を冷却することにより冷房が行われる。同様に,ファンコイルユニット17でも,ファン83の稼動によって冷却コイル82の表面に空調空間c内の空気を循環送風し,空調空間c内の空気を冷却することにより冷房が行われる。そして,これら冷却コイル80,82を通過した冷水61(空調空間a,c内の空気と熱交換した後の冷水61)は,配管87に排出されて蓄熱槽60に戻される。   The fan coil unit 13 installed in the air-conditioned space a includes a cooling coil 80 and a fan 81. Similarly, the fan coil unit 17 installed in the air-conditioned space c also includes a cooling coil 82 and a fan 83. Cold water 61 pumped from the heat storage tank 60 by the operation of the pump 85 is sent to the cooling coil 80 of the fan coil unit 13 and the cooling coil 82 of the fan coil unit 17 through a pipe 86. In the fan coil unit 13, the air in the conditioned space a is blown to the surface of the cooling coil 80 by the operation of the fan 61, and the air in the conditioned space a is cooled. Similarly, in the fan coil unit 17, the air in the air-conditioned space c is circulated and blown to the surface of the cooling coil 82 by the operation of the fan 83, and the air in the air-conditioned space c is cooled. The cold water 61 (cold water 61 after heat exchange with the air in the air-conditioned spaces a and c) that has passed through the cooling coils 80 and 82 is discharged to the pipe 87 and returned to the heat storage tank 60.

しかして,以上のように構成された空調システムを備える建築物1’において主として夏季に行われる冷房運転を説明すると,先ず空調空間aでは,圧縮膨張方式の空調装置10による冷房に加え,セントラル方式の空調装置12により,蓄熱槽60から汲み上げられた冷水61がファンコイルユニット13に供給されて,冷房が行われる。こうして空調空間aでは,圧縮膨張方式の空調装置10とセントラル方式の空調装置12の両方による冷房が行われる。そして図1で説明した場合と同様に,圧縮膨張方式の空調装置10において,室外機20から室内機11に送られる冷媒は,減圧膨張前に冷却塔70’の冷却水で冷却されて過冷却の状態となるので,空調装置10の冷房能力が向上することになる。   The cooling operation performed mainly in the summer in the building 1 ′ having the air conditioning system configured as described above will be described. First, in the air-conditioned space a, in addition to the cooling by the compression / expansion type air conditioner 10, the central type The cooling water 61 pumped from the heat storage tank 60 is supplied to the fan coil unit 13 by the air conditioner 12 and air conditioning is performed. Thus, in the air-conditioned space a, cooling is performed by both the compression / expansion air conditioner 10 and the central air conditioner 12. As in the case described with reference to FIG. 1, in the compression / expansion type air conditioner 10, the refrigerant sent from the outdoor unit 20 to the indoor unit 11 is cooled with the cooling water of the cooling tower 70 'before being depressurized and expanded. Therefore, the cooling capacity of the air conditioner 10 is improved.

次に空調空間bでは,圧縮膨張方式の空調装置15のみによる冷房が行われる。この場合も同様に,圧縮膨張方式の空調装置15において,室外機40から室内機16に送られる冷媒は,減圧膨張前に冷却塔70’の冷却水で冷却されて過冷却の状態となるので,空調装置15の冷房能力が向上する。   Next, in the air-conditioned space b, cooling is performed only by the compression / expansion type air conditioner 15. Similarly, in this case, in the compression / expansion type air conditioner 15, the refrigerant sent from the outdoor unit 40 to the indoor unit 16 is cooled by the cooling water of the cooling tower 70 ′ before being decompressed and expanded, and is in a supercooled state. , The cooling capacity of the air conditioner 15 is improved.

また空調空間cでは,セントラル方式の空調装置12により,蓄熱槽60から汲み上げられた冷水61がファンコイルユニット17に供給されて,冷房が行われる。こうして空調空間cでは,セントラル方式の空調装置12のみによる冷房が行われる。   In the air-conditioned space c, the central air conditioner 12 supplies the cold water 61 pumped from the heat storage tank 60 to the fan coil unit 17 for cooling. Thus, in the air-conditioned space c, cooling is performed only by the central type air conditioner 12.

そして,セントラル方式の空調装置12において,ファンコイルユニット13,17(冷却コイル80,82)を通過した冷水61(空調空間a,c内の空気と熱交換した後の冷水61)は,配管87を通って蓄熱槽60に戻される。こうして蓄熱槽60に戻された冷水61は,冷凍機65に循環させられて冷却され,蓄熱槽60に蓄えられる。また,冷却塔70’において外気で冷却された冷却水が冷凍機65に循環供給され,冷凍機65の冷却負荷が処理される。   In the central air conditioner 12, the cold water 61 (cold water 61 after heat exchange with the air in the air-conditioned spaces a and c) that has passed through the fan coil units 13 and 17 (cooling coils 80 and 82) And returned to the heat storage tank 60. The cold water 61 thus returned to the heat storage tank 60 is circulated through the refrigerator 65 to be cooled and stored in the heat storage tank 60. Further, the cooling water cooled by the outside air in the cooling tower 70 ′ is circulated and supplied to the refrigerator 65, and the cooling load of the refrigerator 65 is processed.

以上に説明した本発明の実施の形態によっても,同様に電力などのエネルギーを大量に要さずに圧縮膨張方式の空調装置10,15の冷房能力を向上させることができ,建築物1全体の省エネルギー性を高めることができる。また,都市のヒートアイランド現象も抑制できる。   Similarly, according to the embodiment of the present invention described above, the cooling capacity of the compression / expansion type air conditioners 10 and 15 can be improved without requiring a large amount of energy such as electric power. Energy saving can be improved. It can also suppress urban heat island phenomena.

なお,一般に,建築物の空調システムの出力は余裕を持って設計されるので,この実施の形態によれば,高効率なセントラル方式の空調装置12を主として稼動させ,比較的効率の悪い圧縮膨張方式の空調装置10,15の稼働を抑えることにより,空調システムの省エネルギー性を更に高めることができる。   In general, the output of a building air conditioning system is designed with a margin. Therefore, according to this embodiment, a highly efficient central type air conditioner 12 is mainly operated and a relatively inefficient compression / expansion is performed. By suppressing the operation of the air conditioners 10 and 15 of the system, the energy saving property of the air conditioning system can be further enhanced.

また,空調空間a,bには互いに独立した圧縮膨張方式の空調装置10,15を設けているので,空調空間a,bについては空調装置のパーソナル性が明らかとなり,貸しビルオーナーなどにとってはテナントなどへの課金が透明となる。このように,利便性及び自立性と,セントラル方式の空調装置12の特長である省エネルギー性及び地球環境保全策への柔軟性(フロン使用量低減,自然冷媒利用)の両方を併せ持つ統合型の空調システムを提供できる。   Further, since the air conditioning spaces a and b are provided with the compression / expansion type air conditioning devices 10 and 15 which are independent from each other, the personality of the air conditioning devices becomes clear with respect to the air conditioning spaces a and b. The billing to etc becomes transparent. In this way, integrated air conditioning that combines both convenience and independence with the energy saving and the flexibility of global environmental conservation measures (reduction of chlorofluorocarbons and the use of natural refrigerants), which are the features of the central air conditioner 12 Can provide a system.

また,震災などの緊急時には,電気の復旧から水道の復旧までは圧縮膨張方式の空調装置10,15の運転が可能であるので,ガス・水道等のライフラインに対する自立性も併せ持つ空調システムといえる。そして,セントラル方式の空調装置12の蓄熱槽60として,冷水61を蓄える蓄熱槽を採用した場合は,その冷水61は緊急時の生活用水としても活用できる。また,セントラル方式の空調装置12の冷凍手段として用いられる冷凍機63は,フロン冷媒の使用量が相当に少ないので,地球環境保全(フロン対策/オゾン層破壊対策)にも寄与できる。   In the event of an emergency such as an earthquake disaster, the compression / expansion type air conditioners 10 and 15 can be operated from the restoration of electricity to the restoration of water supply. I can say that. And when the thermal storage tank which stores the cold water 61 is employ | adopted as the thermal storage tank 60 of the central type air conditioner 12, the cold water 61 can be utilized also as domestic water in emergency. Further, the refrigerator 63 used as the refrigeration means of the central type air conditioner 12 uses a considerably small amount of the chlorofluorocarbon refrigerant, and thus can contribute to the preservation of the global environment (measures against chlorofluorocarbons / measures against ozone layer destruction).

また,例えば空調システムのリニューアル(設備増築)などに対しては,軽微な工事で済む圧縮膨張方式の空調装置の増設によって,冷房負荷の増強に容易に対応できる。その場合も,セントラル方式の空調装置12が備える冷却塔70’の冷却水を利用して,圧縮膨張方式の空調装置10,15の冷媒を冷却することによって,増設した圧縮膨張方式の空調装置の冷房能力を容易に向上させることができる。   Also, for example, renewal of the air conditioning system (extension of equipment) can easily cope with an increase in cooling load by adding a compression / expansion type air conditioner that requires only minor work. Also in this case, the cooling water of the cooling tower 70 ′ provided in the central air conditioner 12 is used to cool the refrigerant in the compression / expansion air conditioners 10 and 15, thereby increasing the capacity of the additional compression / expansion air conditioner. The cooling capacity can be easily improved.

また,図2に示したようにセントラル方式の空調装置を利用する場合,各空調空間に設けられるセントラル方式の空調装置の室内設備の台数も任意であり,すべての空調空間にセントラル方式の空調装置の室内設備をそれぞれ設けても良いし,図示したように,一部の空調空間にセントラル方式の空調装置を設けても良い。また,一つの空調空間にセントラル方式の空調装置を複数台設けても良い。   As shown in FIG. 2, when a central air conditioner is used, the number of indoor units of the central air conditioner provided in each air conditioned space is arbitrary, and the central air conditioner is installed in all air conditioned spaces. Each of the indoor facilities may be provided, or as shown in the figure, a central type air conditioner may be provided in a part of the air-conditioned space. Further, a plurality of central type air conditioners may be provided in one air conditioning space.

なお,図2に示したように圧縮膨張方式の空調装置10の室内機11とセントラル方式の空調装置12のファンコイルユニット13の両方を設置する空調空間aとしては,例えばデパートの出入り口,倉庫の荷捌室など,冷房負荷の多い箇所が考えられる。また,圧縮膨張方式の空調装置15の室内機16のみが設置される空調空間bとしては,例えば会議室,ホテルの宴会場などといった非定常の冷房負荷が要求される箇所が考えられる。そして,圧縮膨張方式の空調装置10により,そのような箇所に発生する非定常の冷房負荷を処理すれば良い。そうすれば,圧縮膨張方式の空調機10の電源スイッチのオン・オフにより簡単に発停できる。一方,セントラル方式の空調装置12のファンコイルユニット17のみが設置される空調空間cとしては,例えば執務室,冷蔵倉庫など,定常負荷の冷房が要求される箇所が考えられる。そして,セントラル方式の空調装置12により,そのような箇所で発生する定常の冷房負荷を処理すれば良い。   As shown in FIG. 2, as the air-conditioning space a in which both the indoor unit 11 of the compression / expansion air conditioner 10 and the fan coil unit 13 of the central air conditioner 12 are installed, for example, the entrance / exit of a department store, a warehouse A place with a large cooling load, such as a cargo room, can be considered. Further, as the air-conditioned space b in which only the indoor unit 16 of the compression / expansion type air conditioner 15 is installed, a place where an unsteady cooling load is required such as a conference room or a hotel banquet hall can be considered. Then, the unsteady cooling load generated in such a place may be processed by the compression / expansion type air conditioner 10. If it does so, it can start and stop easily by ON / OFF of the power switch of the air conditioner 10 of a compression / expansion system. On the other hand, as the air-conditioned space c in which only the fan coil unit 17 of the central type air conditioner 12 is installed, there may be a place where a constant load cooling is required, such as a office room or a refrigerated warehouse. Then, it is only necessary to process a steady cooling load generated at such a location by the central type air conditioner 12.

また,図2では,建築物1の地下空間dにセントラル方式の空調装置12の蓄熱槽60を設置した例を示したが,セントラル方式の空調装置の熱源設備(蓄熱槽など)は建築物の外部に設置しても良い。また,セントラル方式の空調装置の熱源設備は一つに限らず,複数の熱源設備によって建築物内の冷却負荷を賄っても良い。セントラル方式の空調装置に備えられる熱源設備は,例えば建築物内の大半の冷却負荷を賄えるような比較的大量の冷熱を生成及び蓄熱できるようなものであることが好ましい。   FIG. 2 shows an example in which the heat storage tank 60 of the central air conditioner 12 is installed in the underground space d of the building 1, but the heat source facilities (such as the heat storage tank) of the central air conditioner are It may be installed outside. Further, the heat source equipment of the central type air conditioner is not limited to one, and the cooling load in the building may be covered by a plurality of heat source equipments. It is preferable that the heat source equipment provided in the central type air conditioner can generate and store a relatively large amount of cold heat that can cover most cooling loads in the building, for example.

なお,セントラル方式の空調装置の熱源設備として蓄熱槽を採用する場合は,水蓄熱方式でも氷蓄熱方式でも良い。また,セントラル方式の空調装置12の室内機としてのファンコイルユニット13,17を例示したが,その他,エアハンドリングユニットやユニタリーヒートポンプをセントラル方式の空調装置の室内設備としても良い。ファンコイルユニットに限らず,例えば冷蔵食品のショーケースの冷却など,空調以外の用途にも適用できる。   When a heat storage tank is adopted as a heat source facility for a central type air conditioner, either a water heat storage method or an ice heat storage method may be used. Further, although the fan coil units 13 and 17 as the indoor units of the central type air conditioner 12 have been illustrated, other air handling units and unitary heat pumps may be used as the indoor equipment of the central type air conditioner. The present invention is not limited to the fan coil unit, and can be applied to uses other than air conditioning such as cooling of a refrigerated food showcase.

なお,圧縮膨張方式の空調装置の冷媒を,セントラル方式の空調装置12の冷却塔70’の冷却水で冷却する他,セントラル方式の空調装置を併用する場合であっても,別途に冷却塔を追加し,その追加した冷却塔の冷却水で圧縮膨張方式の空調装置の冷媒を冷却することも可能である。   In addition to cooling the refrigerant of the compression / expansion type air conditioner with the cooling water of the cooling tower 70 'of the central type air conditioner 12, a cooling tower is separately provided even when the central type air conditioner is used together. It is also possible to cool the refrigerant of the compression / expansion type air conditioner with the cooling water of the added cooling tower.

次に,図3は,本発明の別の実施の形態にかかる空調システムを適用した建築物1a’の説明図である。この実施の形態の空調システムは,圧縮膨張方式の空調装置10,15において室外機20,40から室内機11,16に送られる冷媒と,雨水,地下水または建築物1a’の空調衛生設備から排出される排水とを熱交換させる熱交換器87,88を有している。   Next, FIG. 3 is explanatory drawing of the building 1a 'to which the air-conditioning system concerning another embodiment of this invention is applied. The air conditioning system of this embodiment is a refrigerant that is sent from the outdoor units 20 and 40 to the indoor units 11 and 16 in the compression / expansion type air conditioners 10 and 15 and discharged from rainwater, groundwater, or air conditioning sanitary facilities of the building 1a ′. Heat exchangers 87 and 88 for exchanging heat with the wastewater to be discharged.

この実施の形態にかかる建築物1a’の内部には,2つに分割された空調空間a,bと,地下空間dが形成されている。空調空間aには,圧縮膨張方式の空調装置10の室内機11とが設置され,空調空間bには,圧縮膨張方式の空調装置15の室内機16が設置されている。この実施の形態にかかる圧縮膨張方式の空調装置10,15は,共通の室外機から複数の室内機に冷媒を循環供給させるビル用マルチの空調装置として構成されている。ビル用マルチとした点を除けば,圧縮膨張方式の空調装置10,15は,先に図1で説明した実施の形態と同様の構成であり,詳細な説明は省略する。   Inside the building 1a 'according to this embodiment, an air-conditioned space a, b divided into two and an underground space d are formed. The indoor unit 11 of the compression / expansion air conditioner 10 is installed in the air-conditioned space a, and the indoor unit 16 of the compression / expansion air conditioner 15 is installed in the air-conditioned space b. The compression / expansion type air conditioners 10 and 15 according to this embodiment are configured as multi-building air conditioners that circulate and supply refrigerant from a common outdoor unit to a plurality of indoor units. Except for the building multi, the compression / expansion type air conditioners 10 and 15 have the same configuration as that of the embodiment described above with reference to FIG.

この実施の形態にかかる建築物1a’の地下空間dには,雨水,地下水または前記建築物の空調衛生設備から排出される排水を溜める水槽89が設置されている。「建築物の空調衛生設備から排出される排水」は,例えば厨房排水や汚水,冷却塔のオーバーフロー水,空調ドレンであり,建物の運用で必然的に生じる排水である。本発明は,従来そのまま廃棄されていた排水の熱を利用する。この水槽89は上方(例えば雨樋,厨房,トイレ,冷却塔下部水槽,空調機ドレインパン)や下方(湧水槽や井戸)から不図示の配管を経て排水等を受け入れる。そして,ここに溜められた水は,水管90を通り,水/水熱交換器91を経た後,建築物1a’の外部に排出されるようになっている。この水/水熱交換器91には,圧縮膨張方式の空調装置10,15の冷媒が通される熱交換器87,88との間で冷媒を循環させる,ポンプ92を備えた循環配管93が接続される。   In the underground space d of the building 1a 'according to this embodiment, a water tank 89 is installed to store rainwater, underground water, or waste water discharged from the air conditioning and sanitary equipment of the building. The “drainage discharged from the air-conditioning sanitary facilities of buildings” is, for example, kitchen drainage, sewage, cooling tower overflow water, and air conditioning drain, and is inevitably generated in the operation of the building. The present invention uses the heat of wastewater that has been conventionally discarded. This water tank 89 receives drainage and the like from above (for example, rain gutter, kitchen, toilet, cooling tower lower water tank, air conditioner drain pan) and below (spring water tank and well) through a pipe (not shown). The water stored here passes through the water pipe 90, passes through the water / water heat exchanger 91, and is then discharged to the outside of the building 1a '. The water / water heat exchanger 91 includes a circulation pipe 93 including a pump 92 that circulates refrigerant between the heat exchangers 87 and 88 through which the refrigerant of the compression / expansion air conditioners 10 and 15 passes. Connected.

水槽89から配水管90を通って外部に排出される雨水,地下水,排水等は常温である。このため,水/水熱交換器91において,排水と熱交換させることによって循環配管93内の冷媒はほぼ常温に冷却される。そして,このようにほぼ常温に冷却された冷媒が,循環配管93を通って,圧縮膨張方式の空調装置10,15の冷媒が通る熱交換器87,88に供給されている。   Rainwater, groundwater, drainage, etc. discharged from the water tank 89 through the water distribution pipe 90 to the outside are at room temperature. For this reason, in the water / water heat exchanger 91, the refrigerant in the circulation pipe 93 is cooled to substantially room temperature by exchanging heat with the waste water. The refrigerant thus cooled to approximately room temperature is supplied to the heat exchangers 87 and 88 through which the refrigerant of the compression / expansion type air conditioners 10 and 15 passes through the circulation pipe 93.

以上のように構成された空調システムを備える建築物1a’において主として夏季に行われる冷房運転を説明すると,先ず空調空間aでは,圧縮膨張方式の空調装置10による冷房が行われる。ここで,圧縮膨張方式の空調装置10において,室外機20で凝縮液化された冷媒は,配管21を通って室内機11に供給されるが,その途中で,熱交換器87において循環配管93を通る冷媒と熱交換される。これにより,空調装置10において室外機20から室内機11に送られる冷媒は,減圧膨張前にほぼ常温まで冷却されて過冷却の状態となるので,空調装置10の冷房能力が向上することになる。なお,圧縮膨張方式の空調装置10の冷媒と熱交換した後,熱交換器87から循環配管93を経て水/水側熱交換器91に戻された冷媒は,水/水熱交換器91において再び排水等によってほぼ常温まで冷却される。   The cooling operation performed mainly in the summer in the building 1a ′ including the air conditioning system configured as described above will be described. First, the air conditioning space a is cooled by the compression / expansion type air conditioner 10. Here, in the compression / expansion type air conditioner 10, the refrigerant condensed and liquefied in the outdoor unit 20 is supplied to the indoor unit 11 through the pipe 21, but in the middle of the circulation pipe 93 in the heat exchanger 87. Heat exchange with the passing refrigerant. As a result, the refrigerant sent from the outdoor unit 20 to the indoor unit 11 in the air conditioner 10 is cooled to substantially room temperature before decompression and expansion, and is in a supercooled state, so that the cooling capacity of the air conditioner 10 is improved. . Note that the refrigerant returned from the heat exchanger 87 to the water / water side heat exchanger 91 through the circulation pipe 93 after exchanging heat with the refrigerant of the compression / expansion air conditioner 10 passes through the water / water heat exchanger 91. It is cooled down to almost normal temperature again by drainage.

また,空調空間bにおいても同様に,圧縮膨張方式の空調装置15による冷房が行われる。この場合も,圧縮膨張方式の空調装置15において,室外機40で凝縮液化された冷媒は,配管41を通って室内機16に供給されるが,その途中で,熱交換器88において循環配管93を通る冷媒と熱交換されて過冷却の状態とされ,空調装置15の冷房能力も同様に向上する。   Similarly, in the air-conditioned space b, cooling is performed by the compression / expansion type air conditioner 15. Also in this case, in the compression / expansion type air conditioner 15, the refrigerant condensed and liquefied in the outdoor unit 40 is supplied to the indoor unit 16 through the pipe 41, but in the middle of the circulation pipe 93 in the heat exchanger 88. Heat is exchanged with the refrigerant passing through the state of supercooling, and the cooling capacity of the air conditioner 15 is improved as well.

この図3に示した実施の形態によれば,雨水,地下水または前記建築物の空調衛生設備から排出される排水を利用することにより,圧縮膨張方式の空調装置10,15の冷房能力を向上させることができ,建築物1全体の省エネルギー性を高めることができ,都市のヒートアイランド現象も抑制できる。更に,室外機へ散水するシステムと違って,室外機廻りの水仕舞いの問題を発生させずに冷房能力を向上できる。   According to the embodiment shown in FIG. 3, the cooling capacity of the compression / expansion type air conditioners 10 and 15 is improved by using rainwater, groundwater, or waste water discharged from the air conditioning and sanitary equipment of the building. It is possible to improve the energy saving performance of the entire building 1 and to suppress the urban heat island phenomenon. Furthermore, unlike the system that sprinkles water to the outdoor unit, the cooling capacity can be improved without causing the problem of water around the outdoor unit.

次に,図4は,本発明の別の実施の形態にかかる空調システムを適用した建築物1b’の説明図である。この実施の形態の空調システムは,圧縮膨張方式の空調装置10,15において室外機20,40から室内機11,16に送られる冷媒と,建築物1b’に設けられた給湯設備95に供給される給水とを熱交換させる熱交換器96,97を有している。   Next, FIG. 4 is explanatory drawing of the building 1b 'to which the air-conditioning system concerning another embodiment of this invention is applied. The air conditioning system of this embodiment is supplied to the refrigerant sent from the outdoor units 20 and 40 to the indoor units 11 and 16 in the compression / expansion type air conditioners 10 and 15 and the hot water supply equipment 95 provided in the building 1b ′. Heat exchangers 96 and 97 for exchanging heat with the feed water.

この実施の形態にかかる建築物1b’の内部には,2つに分割された空調空間a,bと,地下空間dが形成されている。空調空間aには,圧縮膨張方式の空調装置10の室内機11が設置され,空調空間bには,圧縮膨張方式の空調装置15の室内機16が設置されている。この実施の形態にかかる圧縮膨張方式の空調装置10,15も,共通の室外機から複数の室内機に冷媒を循環供給させるビル用マルチの空調装置として構成されている。その他の点は,圧縮膨張方式の空調装置10,15は,先に図1で説明した実施の形態と同様の構成であり,詳細な説明は省略する。   Inside the building 1b 'according to this embodiment, the air-conditioned spaces a and b divided into two and the underground space d are formed. The indoor unit 11 of the compression / expansion type air conditioner 10 is installed in the conditioned space a, and the indoor unit 16 of the compression / expansion type air conditioner 15 is installed in the conditioned space b. The compression-expansion type air conditioners 10 and 15 according to this embodiment are also configured as a multi-building air conditioner that circulates and supplies refrigerant from a common outdoor unit to a plurality of indoor units. In other respects, the compression / expansion type air conditioners 10 and 15 have the same configuration as that of the embodiment described above with reference to FIG. 1, and a detailed description thereof will be omitted.

この実施の形態にかかる建築物1b’の地下空間dには,建築物1b’内に給湯をするための中央式の給湯設備の給湯用ボイラまたは蒸気用ボイラ95が設置されている。この実施の形態では,不図示の補給水管により外部から供給された補給水(市水)が,膨張タンク98に入った後,給水管99を通って熱交換器96.97を経た後,給湯用ボイラまたは蒸気用ボイラ95に給水されるようになっている。なお,補給水は,膨張タンク98への給水管と並列関係に別に供給されるように設けられていても良い。また,給湯用ボイラまたは蒸気用ボイラ95から膨張タンク98へは,膨張配管100が接続される。   In the underground space d of the building 1b 'according to this embodiment, a hot water supply boiler or a steam boiler 95 of a central hot water supply facility for supplying hot water into the building 1b' is installed. In this embodiment, make-up water (city water) supplied from the outside by a make-up water pipe (not shown) enters the expansion tank 98, passes through the water supply pipe 99, passes through the heat exchanger 96.97, and then supplies hot water. Water is supplied to the boiler for steam or the boiler for steam 95. The makeup water may be provided so as to be separately supplied in parallel with the water supply pipe to the expansion tank 98. An expansion pipe 100 is connected from the hot water supply boiler or the steam boiler 95 to the expansion tank 98.

以上のように構成された空調システムを備える建築物1b’において主として夏季に行われる冷房運転を説明すると,先ず空調空間aでは,圧縮膨張方式の空調装置10による冷房が行われる。ここで,圧縮膨張方式の空調装置10において,室外機20で凝縮液化された冷媒は,配管21を通って室内機11に供給されるが,その途中で,熱交換器96において給湯用ボイラまたは蒸気用ボイラ95に給水される補給水と熱交換される。これにより,空調装置10において室外機20から室内機11に送られる冷媒は,減圧膨張前にほぼ常温まで冷却されて過冷却の状態となるので,空調装置10の冷房能力が向上することになる。なお,圧縮膨張方式の空調装置10の冷媒と熱交換した後,熱交換器96から給湯用ボイラまたは蒸気用ボイラ95に給水される補給水は,前に昇温されるので,給湯用ボイラまたは蒸気用ボイラ95の省エネルギ化がはかられる。   The cooling operation performed mainly in the summer in the building 1b 'including the air conditioning system configured as described above will be described. First, in the air conditioned space a, the cooling by the compression / expansion type air conditioner 10 is performed. Here, in the compression / expansion type air conditioner 10, the refrigerant condensed and liquefied in the outdoor unit 20 is supplied to the indoor unit 11 through the pipe 21, and on the way, in the heat exchanger 96, Heat exchange is performed with makeup water supplied to the steam boiler 95. As a result, the refrigerant sent from the outdoor unit 20 to the indoor unit 11 in the air conditioner 10 is cooled to substantially room temperature before decompression and expansion, and is in a supercooled state, so that the cooling capacity of the air conditioner 10 is improved. . After the heat exchange with the refrigerant of the compression / expansion air conditioner 10, the makeup water supplied from the heat exchanger 96 to the hot water boiler or steam boiler 95 is heated before, so that the hot water boiler or Energy saving of the steam boiler 95 can be achieved.

また,空調空間bにおいても同様に,圧縮膨張方式の空調装置15による冷房が行われる。この場合も,圧縮膨張方式の空調装置15において,室外機40で凝縮液化された冷媒は,配管41を通って室内機16に供給されるが,その途中で,熱交換器97において給湯用ボイラまたは蒸気用ボイラ95に給水される補給水と熱交換されて過冷却の状態とされ,空調装置15の冷房能力も同様に向上する。また,補給水の昇温により,給湯用ボイラまたは蒸気用ボイラ95の省エネルギ化がはかられる。   Similarly, in the air-conditioned space b, cooling is performed by the compression / expansion type air conditioner 15. Also in this case, in the compression / expansion type air conditioner 15, the refrigerant condensed and liquefied by the outdoor unit 40 is supplied to the indoor unit 16 through the pipe 41. Alternatively, heat is exchanged with make-up water supplied to the steam boiler 95 so as to be supercooled, and the cooling capacity of the air conditioner 15 is similarly improved. In addition, the temperature of the make-up water can save energy in the hot water supply boiler or the steam boiler 95.

この図4に示した実施の形態によれば,給湯用ボイラまたは蒸気用ボイラ95への補給水を利用することにより,圧縮膨張方式の空調装置10,15の冷房能力を向上させることができ,建築物1全体の省エネルギー性を高めることができ,都市のヒートアイランド現象も抑制できる。更に,室外機へ散水するシステムと違って,室外機廻りの水仕舞いの問題を発生させずに冷房能力を向上できる。   According to the embodiment shown in FIG. 4, the cooling capacity of the compression / expansion type air conditioners 10 and 15 can be improved by using the makeup water to the hot water supply boiler or the steam boiler 95, The energy saving performance of the entire building 1 can be improved, and the urban heat island phenomenon can be suppressed. Furthermore, unlike the system that sprinkles water to the outdoor unit, the cooling capacity can be improved without causing the problem of water around the outdoor unit.

次に,図5は,本発明の別の実施の形態にかかる空調システムを適用した建築物1c’の説明図である。この実施の形態の空調システムは,圧縮膨張方式の空調装置10,15において室外機20,40から室内機11,16に送られる冷媒と,建築物1c’に設けられた貯湯槽105に溜められた貯湯水とを熱交換させる熱交換器106,107を有している。   Next, FIG. 5 is explanatory drawing of the building 1c 'to which the air-conditioning system concerning another embodiment of this invention is applied. The air conditioning system of this embodiment is stored in a refrigerant sent from the outdoor units 20 and 40 to the indoor units 11 and 16 in the compression / expansion type air conditioners 10 and 15 and a hot water storage tank 105 provided in the building 1c ′. Heat exchangers 106 and 107 for exchanging heat with the stored hot water.

この実施の形態にかかる建築物1c’の内部には,2つに分割された空調空間a,bが形成されている。空調空間aには,圧縮膨張方式の空調装置10の室内機11とが設置され,空調空間bには,圧縮膨張方式の空調装置15の室内機16が設置されている。この実施の形態にかかる圧縮膨張方式の空調装置10,15も,共通の室外機から複数の室内機に冷媒を循環供給させるビル用マルチの空調装置として構成されている。その他の点は,圧縮膨張方式の空調装置10,15は,先に図1で説明した実施の形態と同様の構成であり,詳細な説明は省略する。   Inside the building 1c 'according to this embodiment, two air-conditioned spaces a and b are formed. The indoor unit 11 of the compression / expansion air conditioner 10 is installed in the air-conditioned space a, and the indoor unit 16 of the compression / expansion air conditioner 15 is installed in the air-conditioned space b. The compression-expansion type air conditioners 10 and 15 according to this embodiment are also configured as a multi-building air conditioner that circulates and supplies refrigerant from a common outdoor unit to a plurality of indoor units. In other respects, the compression / expansion type air conditioners 10 and 15 have the same configuration as that of the embodiment described above with reference to FIG. 1, and a detailed description thereof will be omitted.

この実施の形態にかかる建築物1c’の屋上には,建築物1c’内に給湯をするための中央式給湯の貯湯槽105が設置されている。貯湯槽105の内部には,貯湯水が溜められている。また,貯湯槽105には,貯湯槽105から抜き出した貯湯水を,熱交換器106,107を経由させた後,貯湯槽105に戻す循環配管108が接続される。   On the roof of the building 1c 'according to this embodiment, a central hot water storage tank 105 for supplying hot water is installed in the building 1c'. Hot water is stored in the hot water tank 105. The hot water storage tank 105 is connected to a circulation pipe 108 for returning the hot water extracted from the hot water storage tank 105 to the hot water storage tank 105 after passing through the heat exchangers 106 and 107.

以上のように構成された空調システムを備える建築物1c’において主として夏季に行われる冷房運転を説明すると,先ず空調空間aでは,圧縮膨張方式の空調装置10による冷房が行われる。ここで,圧縮膨張方式の空調装置10において,室外機20で凝縮液化された冷媒は,配管21を通って室内機11に供給される。建築物1c’の給湯時間帯が夕方以降である場合,昼間の冷房運転時は,室内機11に供給される冷媒は,熱交換器106において加熱前の貯湯水と熱交換される。これにより,空調装置10において室外機20から室内機11に送られる冷媒は,減圧膨張前に冷却されて過冷却の状態となるので,空調装置10の冷房能力が向上することになる。一方,貯湯水は,給湯時間の少し前から加熱され始めるが,圧縮膨張方式の空調装置10で予熱されているため,給湯設備の省エネルギ化がはかられる。   The cooling operation performed mainly in the summer in the building 1c ′ including the air conditioning system configured as described above will be described. First, in the air-conditioned space a, the cooling by the compression / expansion type air conditioner 10 is performed. Here, in the compression-expansion type air conditioner 10, the refrigerant condensed and liquefied in the outdoor unit 20 is supplied to the indoor unit 11 through the pipe 21. When the hot water supply time zone of the building 1 c ′ is after the evening, during the daytime cooling operation, the refrigerant supplied to the indoor unit 11 is heat-exchanged with the hot water before heating in the heat exchanger 106. Thereby, the refrigerant sent from the outdoor unit 20 to the indoor unit 11 in the air conditioner 10 is cooled before being decompressed and expanded to be in a supercooled state, so that the cooling capacity of the air conditioner 10 is improved. On the other hand, the hot-water storage water starts to be heated slightly before the hot water supply time, but since it is preheated by the compression / expansion type air conditioner 10, energy saving of the hot water supply equipment can be achieved.

また,空調空間bにおいても同様に,圧縮膨張方式の空調装置15による冷房が行われる。この場合も,圧縮膨張方式の空調装置15において,室外機40で凝縮液化された冷媒は,配管41を通って室内機16に供給される。建築物1c’の給湯時間帯が夕方以降である場合,昼間の冷房運転時は,室内機16に供給される冷媒は,熱交換器107において加熱前の貯湯水と熱交換される。その結果,過冷却の状態となるので,空調装置15の冷房能力も同様に向上する。また,貯湯水の昇温により,給湯設備の省エネルギ化がはかられる。なお,このような空調システムが適用される建築物1c’としては,ホテルや集合住宅などが例示され,その入浴時等に備えて給湯が開始される。   Similarly, in the air-conditioned space b, cooling is performed by the compression / expansion type air conditioner 15. Also in this case, in the compression / expansion air conditioner 15, the refrigerant condensed and liquefied by the outdoor unit 40 is supplied to the indoor unit 16 through the pipe 41. When the hot water supply time zone of the building 1 c ′ is after the evening, during the daytime cooling operation, the refrigerant supplied to the indoor unit 16 is heat-exchanged with the hot water before heating in the heat exchanger 107. As a result, since it is in a supercooled state, the cooling capacity of the air conditioner 15 is similarly improved. In addition, the temperature of the hot water storage can save energy in the hot water supply equipment. As the building 1c 'to which such an air conditioning system is applied, a hotel, a housing complex, etc. are exemplified, and hot water supply is started in preparation for bathing.

この図5に示した実施の形態によれば,給湯設備の貯湯槽105に溜められた貯湯水を利用することにより,圧縮膨張方式の空調装置10,15の冷房能力を向上させることができ,建築物1全体の省エネルギー性を高めることができ,都市のヒートアイランド現象も抑制できる。更に,室外機へ散水するシステムと違って,室外機廻りの水仕舞いの問題を発生させずに冷房能力を向上できる。   According to the embodiment shown in FIG. 5, by using the hot water stored in the hot water storage tank 105 of the hot water supply facility, the cooling capacity of the compression / expansion type air conditioners 10 and 15 can be improved. The energy saving performance of the entire building 1 can be improved, and the urban heat island phenomenon can also be suppressed. Furthermore, unlike the system that sprinkles water to the outdoor unit, the cooling capacity can be improved without causing the problem of water around the outdoor unit.

以上,本発明の好ましい実施の形態を説明したが,本発明は以上に例示した形態に限定されない。図1,3〜5では,建築物1の内部に2つの空調空間a,bを示し,図2では,建築物1’の内部に3つの空調空間a,b,cを示したが,建築物の内部に形成された空調空間は一つでも良いし,任意の複数に分割されていても良い。建築物の階数も任意であり,単層の建物でも,複数階の建物で良い。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to the form illustrated above. In FIGS. 1 and 3 to 5, two air-conditioned spaces a and b are shown inside the building 1, and in FIG. 2, three air-conditioned spaces a, b, and c are shown inside the building 1 ′. There may be one air-conditioned space formed inside the object, or it may be divided into an arbitrary number. The number of floors of the building is arbitrary, and a single-layer building or a multi-storey building may be used.

また,各空調空間に設けられる圧縮膨張方式の空調装置は任意であり,すべての空調空間に圧縮膨張方式の空調装置をそれぞれ設けても良いし,図2に示したように,一部の空調空間に圧縮膨張方式の空調装置を設けても良い。また,圧縮膨張方式の空調装置は,図3〜5に示したような一つの室外機から複数の室内機に冷媒を送るマルチ方式でも良い。また,圧縮膨張方式の空調装置は冷房運転のみを行うものでなくても良く,暖房運転も可能な冷暖房装置でも良いことはもちろんである。   In addition, the compression / expansion type air conditioner provided in each air conditioned space is arbitrary, and a compression / expansion type air conditioner may be provided in each of the air conditioned spaces, as shown in FIG. A compression-expansion type air conditioner may be provided in the space. In addition, the compression / expansion type air conditioner may be a multi-type that sends refrigerant from one outdoor unit to a plurality of indoor units as shown in FIGS. Of course, the compression / expansion type air conditioner does not have to perform only the cooling operation, and may be a cooling / heating device capable of heating operation.

図6は,実施例に用いた圧縮膨張方式の空調装置100の説明図である。圧縮膨張方式の空調装置100を構成する室外機101と室内機102を備えている。なお,実施例に用いたものは,一つの共通の室外機101から2つの室内機102に冷媒を循環供給させるビル用マルチの空調装置100(6馬力)として構成されている。この空調装置100において,室外機101から室内機102に冷媒を送る配管105に熱交換器106を設け,この熱交換器106に冷却水を循環(20L/min)させて,冷媒を冷却した。冷却水温度(冷水温度)を変化させ,種々の冷却水温度における冷房能力の試験結果を得て,その実現可能性(効果)を評価した。熱交換器106に供給される冷却水の温度と,冷房能力の関係を調べた結果,図7,8を得た。図7は,外気温度が35℃の定格の運転条件での試験結果,図8は,外気温度が43℃の高外気温度の運転条件での試験結果である。なお,外気温度43℃は,室外機を同一場所(屋上やベランダ等)に設置した場合の,吐出し空気と吸込み空気のショートサーキットによって,実際の外気温度よりも室外機の吸込み空気温度が高くなる場合を想定したものである。冷房能力は,「過冷却なし」(冷水を供給していない場合)の冷房能力を基準にした冷房能力の割合で示した。即ち,冷却水温度がT℃の場合;冷房能力比=(冷却水温度がT℃の冷房能力)/(「過冷却なし」の冷房能力)である。なお,冷房能力は,圧縮機出入り口および過冷却後の冷媒のエンタルピー・冷媒流量・過冷却熱交換量より求めたものである。   FIG. 6 is an explanatory diagram of the compression / expansion type air conditioner 100 used in the embodiment. An outdoor unit 101 and an indoor unit 102 constituting the compression-expansion type air conditioner 100 are provided. In addition, what was used for the Example is comprised as the multi air conditioning apparatus 100 for buildings (6 horsepower) which circulates and supplies a refrigerant | coolant from the common outdoor unit 101 to the two indoor units 102. FIG. In this air conditioner 100, a heat exchanger 106 is provided in a pipe 105 for sending a refrigerant from the outdoor unit 101 to the indoor unit 102, and cooling water is circulated (20 L / min) in the heat exchanger 106 to cool the refrigerant. The cooling water temperature (cold water temperature) was changed, the cooling performance test results at various cooling water temperatures were obtained, and the feasibility (effect) was evaluated. As a result of examining the relationship between the temperature of the cooling water supplied to the heat exchanger 106 and the cooling capacity, FIGS. FIG. 7 shows test results under rated operating conditions with an outside air temperature of 35 ° C., and FIG. 8 shows test results under operating conditions with a high outside temperature of 43 ° C. outside air temperature. Note that the outdoor air temperature of 43 ° C is higher than the actual outdoor air temperature due to the short circuit of the discharge air and the intake air when the outdoor unit is installed in the same place (rooftop, veranda, etc.). Is assumed. The cooling capacity is expressed as a percentage of the cooling capacity based on the cooling capacity of “no supercooling” (when no chilled water is supplied). That is, when the cooling water temperature is T ° C .; cooling capacity ratio = (cooling capacity when the cooling water temperature is T ° C.) / (Cooling capacity without “overcooling”). The cooling capacity is obtained from the compressor entrance / exit and the enthalpy, refrigerant flow rate, and subcooling heat exchange amount after subcooling.

約10℃程度の冷却水であれば,定格の運転条件で約30%,高外気温度の運転条件で約50%の大幅な冷房能力の向上が確認できた。30℃程度の冷却水の場合でも,定格の運転条件で約20%,高外気温度の運転条件で約35%の冷房能力の向上が確認できた。   With cooling water of about 10 ° C, a significant improvement in cooling capacity of about 30% under rated operating conditions and about 50% under high outdoor temperature operating conditions was confirmed. Even in the case of cooling water at about 30 ° C., it was confirmed that the cooling capacity was improved by about 20% under the rated operating conditions and about 35% under the high outdoor temperature operating conditions.

この性能試験のように大幅に冷房能力が向上する理由を,以下に示す。実施例で行ったビル用マルチの試験装置のように,凝縮器(室外機101)で冷媒蒸気を凝縮・液化した後,その凝縮冷媒を熱交換器106で冷却して,膨張弁(室内機102)で冷媒液を膨張,蒸発器で蒸発(冷熱製造,冷房)させてから,さらに冷媒蒸気を圧縮する冷凍サイクルは,一般には「過冷却サイクル」と言われており,凝縮器出口で冷媒が完全に凝縮・液化して,その後,冷媒液を凝縮温度以下に冷却(過冷却)する場合には,上記の試験結果のような大幅な冷房能力の向上は期待できない。しかし,通常のビル用マルチでは,室外機(凝縮器)のコンパクト化・低コスト化,また室外機内制御弁などの圧力損失のため,室外機から室内機に送られる冷媒は,完全に液単相にならない。   The reason why the cooling capacity is greatly improved as in this performance test is shown below. Like the building multi-use test apparatus in the embodiment, after the refrigerant vapor is condensed and liquefied by the condenser (outdoor unit 101), the condensed refrigerant is cooled by the heat exchanger 106, and the expansion valve (indoor unit) The refrigeration cycle in which the refrigerant liquid is expanded in 102) and evaporated (cold production, cooling) in the evaporator and then the refrigerant vapor is further compressed is generally called a “supercooling cycle”. If the refrigerant is completely condensed and liquefied, and then the refrigerant liquid is cooled below the condensing temperature (supercooled), a significant improvement in cooling capacity as in the above test results cannot be expected. However, in a normal building mulch, the outdoor unit (condenser) is made compact and low in cost, and pressure loss of the outdoor unit control valve, etc., the refrigerant sent from the outdoor unit to the indoor unit is completely liquid. Don't be in phase

ここで,図9,10に,種々の冷却水の温度における,試験装置の運転状態をモリエル線図上に示す。図9は,外気温度が35℃の定格の運転条件,図10は,外気温度が43℃で高外気温度の運転条件での試験結果である。   Here, FIGS. 9 and 10 show the operation state of the test apparatus on the Mollier diagram at various cooling water temperatures. FIG. 9 shows test results under rated operating conditions where the outside air temperature is 35 ° C., and FIG. 10 shows test results under operating conditions where the outside air temperature is 43 ° C. and high outside air temperature.

何れの場合も,「過冷却なし」の通常のビル用マルチの場合,室外機から室内機に送られる冷媒は気液二相であること(完全な液単相ではないこと)がわかる。一方,40℃〜5℃の各冷却水温度で冷媒を冷却した場合は,サブクールユニット(熱交換器)での冷熱は,凝縮温度以下までの過冷却だけでなく,気液二相中の蒸気冷媒の凝縮に使われていることがわかる。このように,熱交換器での大きな交換熱量が,大幅な冷房能力のアップをもたらすことになることが確認できた。実際のビル用マルチを用いた試験結果から,30℃程度の冷却水の場合でも,約20%〜35%の冷房能力の向上が確認できた。その結果,ビル用マルチの「冷媒」と「冷却水」とを熱交換される熱交換器を設けたシステムでも,実現性が十分あることが確認できた。これにより,上記実施の形態で説明した,冷却塔の冷却水,雨水,地下水または前記建築物の空調衛生設備から排出される排水,給湯用ボイラまたは蒸気用ボイラの補給水,貯湯槽を有する給湯設備の加熱前の貯湯水などを利用して,圧縮膨張方式の空調装置の冷房能力を向上できることが分った。   In any case, in the case of a normal building mulch with “no supercooling”, it can be seen that the refrigerant sent from the outdoor unit to the indoor unit is a gas-liquid two phase (not a complete liquid single phase). On the other hand, when the refrigerant is cooled at each cooling water temperature of 40 ° C. to 5 ° C., the cooling heat in the subcool unit (heat exchanger) is not only supercooling to the condensation temperature or lower, but also the vapor in the gas-liquid two-phase. It can be seen that it is used for refrigerant condensation. In this way, it was confirmed that a large amount of heat exchanged in the heat exchanger would greatly increase the cooling capacity. From the test results using an actual building mulch, it was confirmed that the cooling capacity was improved by about 20% to 35% even in the case of cooling water at about 30 ° C. As a result, it was confirmed that the system with a heat exchanger for exchanging heat between the “refrigerant” and “cooling water” of the building mulch has sufficient feasibility. As a result, the cooling water, rain water, ground water or drainage discharged from the air conditioning sanitary equipment of the building, hot water boiler or steam boiler replenishing water, hot water supply having a hot water tank, as described in the above embodiment It was found that the cooling capacity of the compression / expansion air conditioning system can be improved by using hot water before the equipment is heated.

本発明は,事務所ビル,商業ビル,電算センター等の業務用ビルに適用できる。また,病院,食品工場,ホテル,老人ホーム,集合住宅等,中央式で給湯や蒸気供給を行う建築物にも適用できる。   The present invention can be applied to commercial buildings such as office buildings, commercial buildings, and computer centers. It can also be applied to buildings such as hospitals, food factories, hotels, nursing homes, apartment houses, etc. that supply hot water and steam in a central style.

本発明の実施の形態にかかる空調システムを適用した建築物の説明図である。It is explanatory drawing of the building to which the air conditioning system concerning embodiment of this invention is applied. 圧縮膨張方式の空調装置の他にセントラル方式の空調装置を備えた,本発明の実施の形態にかかる空調システムを適用した建築物の説明図である。It is explanatory drawing of the building which applied the air conditioning system concerning embodiment of this invention provided with the central type air conditioner other than the compression-expansion type air conditioner. 圧縮膨張方式の空調装置の冷媒と,雨水,地下水または前記建築物の空調衛生設備から排出される排水とを熱交換させる熱交換器を備えた,本発明の実施の形態にかかる空調システムを適用した建築物の説明図である。Application of an air conditioning system according to an embodiment of the present invention, which includes a heat exchanger for exchanging heat between a refrigerant of a compression / expansion air conditioner and rainwater, groundwater, or wastewater discharged from the air conditioning sanitary equipment of the building It is explanatory drawing of the made building. 圧縮膨張方式の空調装置の冷媒と,建築物に設けられた給湯用ボイラまたは蒸気用ボイラに供給される給水とを熱交換させる熱交換器を備えた,本発明の実施の形態にかかる空調システムを適用した建築物の説明図である。An air-conditioning system according to an embodiment of the present invention, comprising a heat exchanger for exchanging heat between a refrigerant of a compression-expansion type air-conditioning apparatus and hot-water supply boiler or steam supply water provided to a building It is explanatory drawing of the building which applied No .. 圧縮膨張方式の空調装置の冷媒と,建築物に設けられた貯湯槽に溜められた貯湯水とを熱交換させる熱交換器を備えた,本発明の実施の形態にかかる空調システムを適用した建築物の説明図である。A building to which an air conditioning system according to an embodiment of the present invention is applied, which includes a heat exchanger that exchanges heat between a refrigerant of a compression / expansion air conditioner and hot water stored in a hot water tank provided in the building It is explanatory drawing of a thing. 実施例に用いた圧縮膨張方式の空調装置の説明図である。It is explanatory drawing of the air conditioning apparatus of the compression / expansion system used for the Example. 外気温度が35℃の定格の運転条件での試験結果を示すグラフである。It is a graph which shows the test result on the driving | running condition of the rating whose external temperature is 35 degreeC. 外気温度が43℃の高外気温度の運転条件での試験結果を示すグラフである。It is a graph which shows the test result on the driving | running condition of the high outside temperature whose outside temperature is 43 degreeC. 外気温度が35℃の定格の運転条件での,種々の冷却水の温度における,試験装置の運転状態を示すモリエル線図である。It is a Mollier diagram which shows the driving | running state of a test device in the temperature of various cooling water on the driving | running conditions with a rating of 35 degreeC outside temperature. 外気温度が43℃で高外気温度の運転条件での,種々の冷却水の温度における,試験装置の運転状態を示すモリエル線図である。It is a Mollier diagram which shows the driving | running state of a test device in the temperature of various cooling water on the driving | running conditions of 43 degreeC and high outdoor temperature.

符号の説明Explanation of symbols

1,1’ 建築物
a,b,c 空調空間
d 地下空間
10,15 圧縮膨張方式の空調装置
11,16 室内機
12 セントラル方式の空調装置
13,17 ファンコイルユニット
20,40 室外機
32,52 熱交換器
60 蓄熱槽
61 冷水
63 冷凍機
70,70’ 冷却塔
1,1 'Building a, b, c Air-conditioned space d Underground space 10, 15 Compression / expansion air conditioner 11, 16 Indoor unit 12 Central air conditioner 13, 17 Fan coil unit 20, 40 Outdoor unit 32, 52 Heat exchanger 60 Heat storage tank 61 Cold water 63 Freezer 70, 70 'Cooling tower

Claims (6)

室外機と室内機の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置を有する建築物の空調システムであって,
前記圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒と,冷却塔で冷却された冷却水とを熱交換させる熱交換器を設けたことを特徴とする,空調システム。
A building air conditioning system having a compression / expansion type air conditioner that circulates a refrigerant between an outdoor unit and an indoor unit and cools an air-conditioned space in the building by performing a refrigeration cycle,
An air conditioning system comprising a heat exchanger for exchanging heat between a refrigerant sent from an outdoor unit of the compression / expansion type air conditioner to the indoor unit and cooling water cooled by a cooling tower.
前記空調システムは,前記圧縮膨張方式の空調装置を複数有することを特徴とする,請求項1に記載の空調システム。   The air conditioning system according to claim 1, wherein the air conditioning system includes a plurality of the compression-expansion type air conditioners. 前記空調システムは,前記圧縮膨張方式の空調装置の他に,冷却手段として冷却塔を備える熱源設備の冷媒を,空調空間内に設置した室内機に循環供給して建築物内の空調空間を冷房するセントラル方式の空調装置を有し,前記熱交換器は,このセントラル方式の熱源設備の冷却塔で冷却された冷却水と,前記圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒とを熱交換させるものであることを特徴とする,請求項1または2に記載の空調システム。   In addition to the compression / expansion type air conditioner, the air conditioning system circulates and supplies the refrigerant of a heat source facility having a cooling tower as a cooling means to indoor units installed in the air conditioned space to cool the air conditioned space in the building. A central type air conditioner, and the heat exchanger includes cooling water cooled by a cooling tower of the central type heat source facility and a refrigerant sent from the outdoor unit of the compression / expansion type air conditioner to the indoor unit. The air conditioning system according to claim 1, wherein the air conditioning system exchanges heat with each other. 室外機と室内機の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置を有する建築物の空調システムであって,
前記圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒と,雨水,地下水または前記建築物の空調衛生設備から排出される排水とを熱交換させる熱交換器を設けたことを特徴とする,空調システム。
A building air conditioning system having a compression / expansion type air conditioner that circulates a refrigerant between an outdoor unit and an indoor unit and cools an air-conditioned space in the building by performing a refrigeration cycle,
A heat exchanger for exchanging heat between the refrigerant sent from the outdoor unit of the compression-expansion type air conditioner to the indoor unit and rainwater, groundwater or waste water discharged from the air-conditioning sanitary equipment of the building is provided. Air conditioning system.
室外機と室内機の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置を有する建築物の空調システムであって,
前記圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒と,前記建築物に設けられた給湯用ボイラまたは蒸気用ボイラに供給される給水とを熱交換させる熱交換器を設けたことを特徴とする,空調システム。
A building air conditioning system having a compression / expansion type air conditioner that circulates a refrigerant between an outdoor unit and an indoor unit and cools an air-conditioned space in the building by performing a refrigeration cycle,
A heat exchanger for exchanging heat between the refrigerant sent from the outdoor unit of the compression-expansion type air conditioner to the indoor unit and the hot water supply boiler or steam supply water provided in the building is provided. An air conditioning system characterized by
室外機と室内機の間で冷媒を循環させ,冷凍サイクルを行うことにより建築物内の空調空間を冷房する圧縮膨張方式の空調装置を有する建築物の空調システムであって,
前記圧縮膨張方式の空調装置の室外機から室内機に送られる冷媒と,前記建築物に設けられた貯湯槽を有する給湯設備の貯湯水とを熱交換させる熱交換器を設け,非給湯時間帯に該熱交換器で熱交換した貯湯水を,給湯時間帯に加熱して給湯することを特徴とする,空調システム。
A building air conditioning system having a compression / expansion type air conditioner that circulates a refrigerant between an outdoor unit and an indoor unit and cools an air-conditioned space in the building by performing a refrigeration cycle,
A heat exchanger for exchanging heat between the refrigerant sent from the outdoor unit of the compression / expansion type air conditioner to the indoor unit and hot water stored in a hot water supply facility having a hot water storage tank provided in the building; An air conditioning system characterized in that the hot water stored in the heat exchanger is heated during hot water supply time to supply hot water.
JP2005104184A 2005-03-31 2005-03-31 Air conditioning system Active JP5295481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104184A JP5295481B2 (en) 2005-03-31 2005-03-31 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104184A JP5295481B2 (en) 2005-03-31 2005-03-31 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2006284083A true JP2006284083A (en) 2006-10-19
JP5295481B2 JP5295481B2 (en) 2013-09-18

Family

ID=37406197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104184A Active JP5295481B2 (en) 2005-03-31 2005-03-31 Air conditioning system

Country Status (1)

Country Link
JP (1) JP5295481B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513845A (en) * 2006-12-18 2010-04-30 アメリカン パワー コンバージョン コーポレイション Ice thermal storage modular for non-stop cooling water
JP2012068008A (en) * 2010-08-23 2012-04-05 Takasago Thermal Eng Co Ltd Air conditioning system of facilities having plural stories and method of operating the same
JP2012117685A (en) * 2010-11-29 2012-06-21 Takasago Thermal Eng Co Ltd Cooling system and cooling method
CN104374018A (en) * 2014-12-03 2015-02-25 郭祥 Concentrated and efficient water cooling energy-saving system of data center
KR20180106724A (en) * 2017-03-21 2018-10-01 엘지전자 주식회사 Air conditioning system for refrigerating and freezing
US20190113245A1 (en) * 2017-10-18 2019-04-18 Willis Lewin Usilton Closed-loop air-to-water air conditioning system
JP2019148410A (en) * 2018-02-26 2019-09-05 日本ピーマック株式会社 Latent heat treatment module, outside air treatment device and air-conditioning system
CN114909725A (en) * 2022-05-30 2022-08-16 格力电器(合肥)有限公司 High-efficiency energy-saving multi-split system

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155047A (en) * 1981-03-20 1982-09-25 Matsushita Electric Ind Co Ltd Hot water supply device
JPS59147938A (en) * 1983-02-10 1984-08-24 Daikin Ind Ltd Operation changing-over device of heat-pump type heating apparatus combined with hot water supplier
JPS59231354A (en) * 1983-06-10 1984-12-26 Daikin Ind Ltd Device for controlling operation of heat pump type room cooling and hot water supplying machine
JPS61125547A (en) * 1984-11-21 1986-06-13 株式会社東芝 Heat pump type boiler device
JPH01277181A (en) * 1988-04-28 1989-11-07 M T Akua:Kk Space cooling hot water supply device, space heating hot water supply device and cooling/heating hot water supply device
JPH0244163A (en) * 1988-08-04 1990-02-14 M T Akua:Kk Cooling with hot water supply, heating with hot water supply, and cooling and heating with hot water supply apparatus
JPH02109909U (en) * 1989-02-16 1990-09-03
JPH02302567A (en) * 1989-05-17 1990-12-14 Gastar Corp Heat pump type cooling and heating device
JPH0755173A (en) * 1993-06-30 1995-03-03 Hazama Gumi Ltd Central supplying system for hot water
JPH09250784A (en) * 1996-03-19 1997-09-22 Toshiba Corp Cold storage air conditioning system
JPH10259959A (en) * 1997-03-19 1998-09-29 Mitsubishi Electric Corp Heating device using refrigeration cycle
JPH11316038A (en) * 1998-04-30 1999-11-16 Sankosha Corp Air conditioning system
JP2002022269A (en) * 2000-07-07 2002-01-23 Sanyo Electric Co Ltd Heat pump type hot water feeding device
JP2002130862A (en) * 2000-10-26 2002-05-09 Yutaka Ukiyuuden Air-conditioning system
JP2003056930A (en) * 2001-08-08 2003-02-26 Hitachi Ltd Air heat source type heat pump apparatus, water-cooled heat pump apparatus, air-cooled refrigerating apparatus and water-cooled refrigerating apparatus
JP2003207174A (en) * 2002-01-18 2003-07-25 Zeneral Heat Pump Kogyo Kk Heat source storage water-cooled heat pump system of separate package type
JP2003336868A (en) * 2002-05-20 2003-11-28 Jfe Engineering Kk Remodeling method of existing air conditioning system and remodeling system
JP2004211998A (en) * 2003-01-07 2004-07-29 Takasago Thermal Eng Co Ltd Air conditioning system
JP2004233010A (en) * 2003-01-31 2004-08-19 Daikin Ind Ltd Heat pump type water heater
JP2004293868A (en) * 2003-03-26 2004-10-21 Mitsubishi Electric Corp Renewing method of refrigerating cycle device
JP2006052934A (en) * 2004-07-12 2006-02-23 Sanyo Electric Co Ltd Heat exchange apparatus and refrigerating machine

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155047A (en) * 1981-03-20 1982-09-25 Matsushita Electric Ind Co Ltd Hot water supply device
JPS59147938A (en) * 1983-02-10 1984-08-24 Daikin Ind Ltd Operation changing-over device of heat-pump type heating apparatus combined with hot water supplier
JPS59231354A (en) * 1983-06-10 1984-12-26 Daikin Ind Ltd Device for controlling operation of heat pump type room cooling and hot water supplying machine
JPS61125547A (en) * 1984-11-21 1986-06-13 株式会社東芝 Heat pump type boiler device
JPH01277181A (en) * 1988-04-28 1989-11-07 M T Akua:Kk Space cooling hot water supply device, space heating hot water supply device and cooling/heating hot water supply device
JPH0244163A (en) * 1988-08-04 1990-02-14 M T Akua:Kk Cooling with hot water supply, heating with hot water supply, and cooling and heating with hot water supply apparatus
JPH02109909U (en) * 1989-02-16 1990-09-03
JPH02302567A (en) * 1989-05-17 1990-12-14 Gastar Corp Heat pump type cooling and heating device
JPH0755173A (en) * 1993-06-30 1995-03-03 Hazama Gumi Ltd Central supplying system for hot water
JPH09250784A (en) * 1996-03-19 1997-09-22 Toshiba Corp Cold storage air conditioning system
JPH10259959A (en) * 1997-03-19 1998-09-29 Mitsubishi Electric Corp Heating device using refrigeration cycle
JPH11316038A (en) * 1998-04-30 1999-11-16 Sankosha Corp Air conditioning system
JP2002022269A (en) * 2000-07-07 2002-01-23 Sanyo Electric Co Ltd Heat pump type hot water feeding device
JP2002130862A (en) * 2000-10-26 2002-05-09 Yutaka Ukiyuuden Air-conditioning system
JP2003056930A (en) * 2001-08-08 2003-02-26 Hitachi Ltd Air heat source type heat pump apparatus, water-cooled heat pump apparatus, air-cooled refrigerating apparatus and water-cooled refrigerating apparatus
JP2003207174A (en) * 2002-01-18 2003-07-25 Zeneral Heat Pump Kogyo Kk Heat source storage water-cooled heat pump system of separate package type
JP2003336868A (en) * 2002-05-20 2003-11-28 Jfe Engineering Kk Remodeling method of existing air conditioning system and remodeling system
JP2004211998A (en) * 2003-01-07 2004-07-29 Takasago Thermal Eng Co Ltd Air conditioning system
JP2004233010A (en) * 2003-01-31 2004-08-19 Daikin Ind Ltd Heat pump type water heater
JP2004293868A (en) * 2003-03-26 2004-10-21 Mitsubishi Electric Corp Renewing method of refrigerating cycle device
JP2006052934A (en) * 2004-07-12 2006-02-23 Sanyo Electric Co Ltd Heat exchange apparatus and refrigerating machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513845A (en) * 2006-12-18 2010-04-30 アメリカン パワー コンバージョン コーポレイション Ice thermal storage modular for non-stop cooling water
JP2012068008A (en) * 2010-08-23 2012-04-05 Takasago Thermal Eng Co Ltd Air conditioning system of facilities having plural stories and method of operating the same
JP2012117685A (en) * 2010-11-29 2012-06-21 Takasago Thermal Eng Co Ltd Cooling system and cooling method
CN104374018A (en) * 2014-12-03 2015-02-25 郭祥 Concentrated and efficient water cooling energy-saving system of data center
KR20180106724A (en) * 2017-03-21 2018-10-01 엘지전자 주식회사 Air conditioning system for refrigerating and freezing
KR102260447B1 (en) * 2017-03-21 2021-06-02 엘지전자 주식회사 Air conditioning system for refrigerating and freezing
US20190113245A1 (en) * 2017-10-18 2019-04-18 Willis Lewin Usilton Closed-loop air-to-water air conditioning system
US10429090B2 (en) * 2017-10-18 2019-10-01 Willis Lewin Usilton Closed-loop air-to-water air conditioning system
JP2019148410A (en) * 2018-02-26 2019-09-05 日本ピーマック株式会社 Latent heat treatment module, outside air treatment device and air-conditioning system
CN114909725A (en) * 2022-05-30 2022-08-16 格力电器(合肥)有限公司 High-efficiency energy-saving multi-split system
CN114909725B (en) * 2022-05-30 2024-03-15 格力电器(合肥)有限公司 Efficient energy-saving multi-split system

Also Published As

Publication number Publication date
JP5295481B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5295481B2 (en) Air conditioning system
JP5615381B2 (en) Hot water supply and air conditioning complex equipment
JP3596347B2 (en) Refrigeration air conditioner and control method thereof
WO2011108068A1 (en) Air-conditioning hot-water-supplying system
JP5373959B2 (en) Air conditioner
Nguyen Carbon dioxide in ice rink refrigeration
Thu et al. Proposal of an eco-friendly high-performance air-conditioning system. Part 1. Possibility of improving existing air-conditioning system by an evapo-transpiration condenser
JP2008070004A (en) Heat source system
JP2011163617A (en) Water heater and hot water supply system
JP4809055B2 (en) Air conditioner and other function addition equipment
KR101308028B1 (en) Thermal energy sharing system for multi buildings
JP2009109086A (en) Air conditioning system
KR20150098128A (en) Multi Heatpump System
Surroop et al. Technical and economic assessment of seawater air conditioning in hotels
Pezzutto et al. Cooling technologies overview and market shares: Part 1 of the study “Renewable cooling under the revised Renewable Energy Directive ENER/C1/2018-493”
JP2004156791A (en) Facility system and its construction method
JP4419475B2 (en) Heating system and housing
JPH11344240A (en) Air conditioning heat source
JP4472383B2 (en) Air conditioning system
JP2003207174A (en) Heat source storage water-cooled heat pump system of separate package type
US20240344741A1 (en) Thermal hub system featuring refrigeration
Zharov et al. Energy efficient air conditioning system of the computing centre of the space design and technology Bureau
JPH05118595A (en) Water heat source air-conditioner device and air-conditioning facility employing the same device
JP4779480B2 (en) Heat source system for high temperature cold water application
KR100324542B1 (en) High efficient &amp; simultaneous cold and hot heat source making system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5295481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150