JP6339359B2 - Wastewater utilization system and wastewater utilization method - Google Patents

Wastewater utilization system and wastewater utilization method Download PDF

Info

Publication number
JP6339359B2
JP6339359B2 JP2013262589A JP2013262589A JP6339359B2 JP 6339359 B2 JP6339359 B2 JP 6339359B2 JP 2013262589 A JP2013262589 A JP 2013262589A JP 2013262589 A JP2013262589 A JP 2013262589A JP 6339359 B2 JP6339359 B2 JP 6339359B2
Authority
JP
Japan
Prior art keywords
water
heat
temperature
treated water
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013262589A
Other languages
Japanese (ja)
Other versions
JP2015117909A (en
Inventor
昇 陶
昇 陶
博樹 川本
博樹 川本
伯晋 高島
伯晋 高島
和伯 湯本
和伯 湯本
伸司 名古屋
伸司 名古屋
慎一 中野
慎一 中野
章宏 松平
章宏 松平
旬 植田
旬 植田
勉 永津
勉 永津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Takasago Thermal Engineering Co Ltd
Tokyo Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, Tokyo Electric Power Co Inc, Tokyo Electric Power Co Holdings Inc filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2013262589A priority Critical patent/JP6339359B2/en
Publication of JP2015117909A publication Critical patent/JP2015117909A/en
Application granted granted Critical
Publication of JP6339359B2 publication Critical patent/JP6339359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、排水の利用技術に関する。   The present invention relates to drainage utilization technology.

従来、廃熱の残る排水を常時排出して廃棄している、生産工場、大型温浴施設等の施設がある。例えば、食品を生産、加工する工場からは、原料や容器の洗浄等に使用した温水が排出される。   Conventionally, there are facilities such as production factories and large-sized hot bath facilities that always discharge wastewater with waste heat. For example, warm water used for washing raw materials and containers is discharged from factories that produce and process food.

このような施設や付近の施設等では、洗浄等のための適当な水質の温水の需要が存在し得る。従来、このような温水は、水道等から新たに受水した水を、ガス等の燃料を用いてボイラにより加熱することで製造されていた。   In such facilities and nearby facilities, there may be a demand for hot water having an appropriate water quality for cleaning and the like. Conventionally, such hot water has been produced by heating water newly received from a water supply or the like with a boiler using fuel such as gas.

また、このような施設や付近の施設等では、空調等のための冷熱の需要も存在し得る。例えば、水冷方式の空調設備では、冷水を空調機へ循環供給するための冷熱の需要がある。このような空調設備では、電力を消費する冷凍機等を用いた冷却によって、冷水の供給が行われている。   In addition, in such facilities and nearby facilities, there may be demand for cooling for air conditioning and the like. For example, in a water-cooled air conditioning facility, there is a demand for cold heat for circulating and supplying cold water to an air conditioner. In such an air conditioning facility, cold water is supplied by cooling using a refrigerator that consumes electric power.

従来、排水を処理する技術として、生物処理方式による排水処理設備用ヒートポンプシステムが提案されている(例えば、特許文献1を参照)。また、廃熱を有効利用するための技術が提案されている(例えば、特許文献2から4を参照)。   Conventionally, a heat pump system for wastewater treatment facilities using a biological treatment method has been proposed as a technique for treating wastewater (see, for example, Patent Document 1). In addition, techniques for effectively using waste heat have been proposed (see, for example, Patent Documents 2 to 4).

特開2012−115813号公報JP 2012-115813 A 特開2011−149562号公報JP 2011-149562 A 特開2007−202446号公報JP 2007-202446 A 特公平7−4212号公報Japanese Patent Publication No. 7-4212

上述した施設等では、原水は目的の処理をして単に排水され、あるいは排水を資源として利用しておらず、排水は、資源利用の観点では有効とはいえない。また、上述の提案されている排水処理設備用ヒートポンプシステムや、廃熱を有効利用するための技術によっても、他の系のサイクルへの利用、例えば廃熱の冷熱の利用に改善の余地がある。   In the facilities described above, the raw water is simply drained after the intended treatment, or the drainage is not used as a resource, and the drainage is not effective from the viewpoint of resource utilization. In addition, there is room for improvement in the use of other systems for cycles, such as the use of cold heat from waste heat, by the proposed heat pump system for wastewater treatment facilities and the technology for effectively utilizing waste heat. .

また、上述のように、新たに受水した水をボイラにより加熱して温水を製造することは、水や燃料等の資源、電力等のエネルギーの有効利用の観点からは、好ましくない場合がある。   In addition, as described above, it is not preferable to produce hot water by heating newly received water with a boiler from the viewpoint of effective use of resources such as water and fuel, and energy such as electric power. .

このような状況に鑑み、本発明は、より省資源、より省エネルギーで、洗浄用水等の所望の温水を排水から得ることができる、排水の有効利用技術を提供することを課題とする。   In view of such a situation, it is an object of the present invention to provide an effective wastewater utilization technique that can obtain desired hot water such as cleaning water from wastewater with more resource saving and energy saving.

本発明では、上記課題を解決するために、以下の手段を採用した。すなわち、本発明は、排水を浄化処理し、処理水を生成する浄化処理装置と、冷却塔から冷却水の供給を受けて空調用の冷水を循環供給する熱源機を有する空調システムにおける、前記冷却塔と前記
熱源機との間を循環し前記処理水よりも高温である冷却水が流入され、前記処理水を前記冷却水との間で熱交換して昇温する熱交換器と、前記熱交換器で昇温されて流入する処理水を、前記空調システムの熱源機へ還る前記冷水から吸熱して更に昇温し、昇温した処理水を温水の需要設備へ供給する熱回収ヒートポンプとを備える、排水利用システムである。
The present invention employs the following means in order to solve the above-described problems. That is, the present invention provides an air conditioning system having a purification treatment device that purifies wastewater and generates treated water, and a heat source system that receives cooling water from a cooling tower and circulates and supplies cold water for air conditioning. A heat exchanger that circulates between the tower and the heat source unit and that has a higher temperature than the treated water is introduced, and heat-exchanges the treated water with the cooling water to raise the temperature, and the heat A heat recovery heat pump that absorbs the treated water that has been heated by the exchanger and flows in from the cold water that is returned to the heat source unit of the air conditioning system, further raises the temperature, and supplies the heated treated water to the hot water demand facility. It is a wastewater utilization system.

本発明によれば、排水が浄化処理されて他の温度利用系(冷熱需要系)である空調システムとの熱融通で昇温される。そのため、排水を有効利用して浄化された温水を供給できる。また、冷熱需要系の冷却用熱媒体である空調システムの冷水及び冷却水の降温と、処理水の昇温とを併せて行うため、それぞれ独立に行う場合に比べ、全体として、電力等のエネルギーや燃料等の資源の消費がより抑制される。したがって、排水を有効利用し、より省資源、より省エネルギーで、空調システムの稼働及び所望の温水の供給を行うことができる。   According to the present invention, the waste water is purified and the temperature is raised by heat interchange with an air conditioning system that is another temperature utilization system (cold energy demand system). Therefore, it is possible to supply hot water purified by effectively using waste water. In addition, since the cooling of cooling water and cooling water of the air conditioning system, which is the cooling heat medium of the cold energy demand system, and the temperature of the treated water are performed together, energy such as electric power as a whole is compared with the case where each is performed independently. Consumption of resources such as fuel and fuel is further suppressed. Therefore, the waste water can be effectively used, and the air conditioning system can be operated and desired hot water can be supplied with less resources and more energy.

水冷方式の空調システムにおいて、冬季と比較して外気温が高い夏季等には、冷却塔の冷却能力が低下し、高温のままの冷却水が冷凍機等の熱源機へ供給される場合がある。このような場合、熱源機に関する消費電力あたりの冷却能力等であるエネルギー消費効率が低下する。本発明によれば、このような高温の冷却水と処理水との間で熱交換がされ、熱源機へ供給される冷却水が降温されるとともに、処理水が昇温される。そのため、熱源機のエネルギー効率を向上させるとともに、冷却水が含む熱を利用して所望の温水を得ることができる。よって、空調システムの稼働及び温水の製造、供給をより省エネルギーで行うことができる。   In a water-cooled air conditioning system, the cooling capacity of the cooling tower is reduced in summer when the outside air temperature is higher than in winter, and cooling water that remains hot may be supplied to heat source equipment such as a refrigerator. . In such a case, energy consumption efficiency such as a cooling capacity per power consumption related to the heat source device is lowered. According to the present invention, heat is exchanged between such high-temperature cooling water and treated water, the cooling water supplied to the heat source unit is lowered, and the treated water is heated. Therefore, while improving the energy efficiency of a heat source machine, desired warm water can be obtained using the heat which cooling water contains. Therefore, the operation of the air conditioning system and the production and supply of hot water can be performed with more energy saving.

また、本発明に係る排水利用システムにおいて、前記温水の需要設備は、洗浄設備であってもよい。   Moreover, in the wastewater utilization system according to the present invention, the hot water demand facility may be a washing facility.

このような本発明によれば、所望の温度に加温された温水であり、適当な水質である洗浄用水を、省資源、省エネルギーで供給することができる。   According to the present invention as described above, cleaning water that is warm water heated to a desired temperature and has an appropriate water quality can be supplied with reduced resources and energy.

また、本発明に係る排水利用システムにおいて、前記浄化処理装置は、ろ過膜を用いて、前記排水を浄化処理してもよい。   Moreover, the waste water utilization system which concerns on this invention WHEREIN: The said purification treatment apparatus may purify the said waste water using a filtration membrane.

また、本発明は、排水を浄化処理して処理水を生成し、冷却塔から冷却水の供給を受けて空調用の冷水を循環供給する熱源機を有する空調システムにおける、前記冷却塔と前記熱源機との間を循環し前記処理水よりも高温である冷却水との間で、前記処理水を熱交換して昇温し、前記熱交換で昇温されて流入する処理水を、前記空調システムの熱源機へ還る前記冷水から吸熱して更に昇温し、前記昇温した処理水を温水の需要設備へ供給する、排水利用方法であってもよい。   Further, the present invention provides the cooling tower and the heat source in an air conditioning system having a heat source device that purifies wastewater to generate treated water, receives a supply of cooling water from the cooling tower, and circulates and supplies cold water for air conditioning. The temperature of the treated water is increased by exchanging heat with the cooling water having a temperature higher than that of the treated water. It may be a wastewater utilization method that absorbs heat from the cold water that is returned to the heat source unit of the system, further increases the temperature, and supplies the heated treated water to the hot water demand facility.

本発明によれば、より省資源、より省エネルギーで、洗浄用水等の所望の温水を排水から得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, desired warm water, such as washing water, can be obtained from waste water with more resource saving and energy saving.

図1は、実施の形態に係る排水利用システム等を例示する構成図である。FIG. 1 is a configuration diagram illustrating a wastewater utilization system and the like according to the embodiment. 図2は、排水を処理水との熱交換により降温するための構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example for lowering the temperature of the wastewater by heat exchange with the treated water. 図3は、夏季における排水利用システムの運用を例示する説明図である。FIG. 3 is an explanatory diagram illustrating the operation of the wastewater utilization system in the summer. 図4は、冬季における排水利用システムの運用を例示する説明図である。FIG. 4 is an explanatory diagram illustrating the operation of the wastewater utilization system in winter.

以下、本発明の実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。なお、以下に説明する実施の形態は、本発明を実施する一例を示すものであって、本発明を以下に説明する具体的な構成に限定するものではない。本発明を実施するにあたっては、実施の形態に応じた具体的な構成が適宜採用されることが好ましい。   Hereinafter, embodiments of the present invention (hereinafter also referred to as “present embodiments”) will be described with reference to the drawings. The embodiment described below shows an example for carrying out the present invention, and the present invention is not limited to a specific configuration described below. In practicing the present invention, it is preferable to adopt a specific configuration according to the embodiment as appropriate.

本実施形態に係る排水利用システムは、生産施設から排出される排水を回収し、浄化処理された温水を生成し、生成した温水を温水の需要設備である洗浄設備へ供給するシステムとして説明される。なお、排水利用システムは、生産施設以外の施設等から回収される排水を利用するものであってもよい。また、本実施形態に係る空調システムは、冷熱の需要を有する冷熱需要系であり、冷却水や冷水を冷却用熱媒体として循環させる水冷方式の空調システムとして説明される。なお、本実施形態では、排水利用システムと空調システムとは、別個のシステムとして説明されるが、排水利用システムが空調システムを含むシステムとして実施されてもよい。   The wastewater utilization system according to the present embodiment is described as a system that collects wastewater discharged from a production facility, generates purified hot water, and supplies the generated hot water to cleaning equipment that is a hot water demand facility. . Note that the wastewater utilization system may use wastewater collected from facilities other than the production facility. The air conditioning system according to the present embodiment is a cold energy demand system having a demand for cold energy, and is described as a water cooling type air conditioning system in which cooling water or cold water is circulated as a cooling heat medium. In the present embodiment, the drainage utilization system and the air conditioning system are described as separate systems, but the drainage utilization system may be implemented as a system including an air conditioning system.

<構成>
図1は、本実施形態に係る排水利用システム等を例示する構成図である。図1には、排水利用システム1、生産施設2、空調システム3、及び洗浄設備4が示されている。排水利用システム1と生産施設2との間には、排水処理槽21を介して排水を供給する水路が設けられている。排水利用システム1と洗浄設備4との間には、排水利用システム1から洗浄設備4へ温水を供給する水路が設けられている。空調システム3と排水利用システム1との間には、空調システム3の冷却水及び冷水を空調システム3から排水利用システム1へ引き入れて、空調システム3へ戻すための水路が設けられている。図1において、矢印の向きは、水路における水流の向きを示している。なお、各水路には、保温性の高い材質や断熱材被覆などの構造が採用されることが好ましい。以下、生産施設2、空調システム3、排水利用システム1、洗浄設備4の順に構成の詳細を説明する。
<Configuration>
FIG. 1 is a configuration diagram illustrating a wastewater utilization system and the like according to this embodiment. FIG. 1 shows a wastewater utilization system 1, a production facility 2, an air conditioning system 3, and a cleaning facility 4. Between the wastewater utilization system 1 and the production facility 2, a water channel for supplying wastewater through a wastewater treatment tank 21 is provided. Between the wastewater utilization system 1 and the cleaning facility 4, a water channel for supplying hot water from the wastewater utilization system 1 to the cleaning facility 4 is provided. Between the air conditioning system 3 and the wastewater utilization system 1, a water channel is provided for drawing cooling water and cold water of the air conditioning system 3 from the air conditioning system 3 to the wastewater utilization system 1 and returning it to the air conditioning system 3. In FIG. 1, the direction of the arrow indicates the direction of the water flow in the water channel. In addition, it is preferable that each water channel employ | adopts structures, such as a material with high heat retention and a heat insulating material coating | cover. Hereinafter, the details of the configuration will be described in the order of the production facility 2, the air conditioning system 3, the wastewater utilization system 1, and the cleaning equipment 4.

生産施設2は、生産活動が行われる工場等の施設である。生産施設2は、生産活動に伴い、排水を排出する。排出された排水は、排水処理槽21に一時的に貯水される。排水処理槽21に貯水された排水は、ポンプP11によって送り出され、排水利用システム1のUF膜処理システム11へ供給される。すなわち、排水が浄化されて廃棄されずに回収されることになる。   The production facility 2 is a facility such as a factory where production activities are performed. The production facility 2 discharges waste water along with production activities. The discharged waste water is temporarily stored in the waste water treatment tank 21. The wastewater stored in the wastewater treatment tank 21 is sent out by the pump P11 and supplied to the UF membrane treatment system 11 of the wastewater utilization system 1. That is, the waste water is purified and collected without being discarded.

空調システム3は、水冷方式の空調設備である。空調システム3は、冷凍機31、冷却塔32、及び空調機32を有する。空調システム3には、ポンプP34が設置された冷却水の循環水路が設けられており、冷却水は冷凍機31及び冷却塔32を通流する。また、空調システム3には、ポンプP33及びP35が設置された冷水の循環水路が設けられており、冷水は冷凍機31及び空調機33を通流する。   The air conditioning system 3 is a water-cooled air conditioning facility. The air conditioning system 3 includes a refrigerator 31, a cooling tower 32, and an air conditioner 32. The air conditioning system 3 is provided with a cooling water circulation channel in which the pump P34 is installed, and the cooling water flows through the refrigerator 31 and the cooling tower 32. The air conditioning system 3 is provided with a cold water circulation channel in which pumps P33 and P35 are installed, and the cold water flows through the refrigerator 31 and the air conditioner 33.

冷凍機31は、電力等を動力として、冷却塔32から冷却水の循環供給を受けて、空調機33へ空調用の冷水を循環供給する熱源機である。冷凍機31は、冷凍機31の蒸発器などの吸熱部位へ流入する冷水を、所定の温度に降温し、空調機33へ供給する。冷凍機31へ流入した冷却水は、冷凍機31の凝縮器や再生器などの発熱部位によって昇温され、その後冷却塔32へ向かう。冷凍機31へ流入する冷却水の温度が所定より高温の場合、冷凍機31におけるエネルギー効率が低下する。   The refrigerating machine 31 is a heat source unit that receives electric power or the like as power and circulates and supplies cooling water from the cooling tower 32 and circulates and supplies cold air for air conditioning to the air conditioner 33. The refrigerator 31 lowers the temperature of cold water flowing into an endothermic site such as an evaporator of the refrigerator 31 to a predetermined temperature and supplies the cold water to the air conditioner 33. The cooling water that has flowed into the refrigerator 31 is heated by a heat generating part such as a condenser or a regenerator of the refrigerator 31, and then travels to the cooling tower 32. When the temperature of the cooling water flowing into the refrigerator 31 is higher than a predetermined temperature, the energy efficiency in the refrigerator 31 is lowered.

冷却塔32は、屋外等に設置され、流入する冷却水を、大気等と熱交換して冷却し、冷凍機31へ供給する。気温が高い夏季等には、冷却塔32の冷却能力が低下する場合がある。   The cooling tower 32 is installed outdoors or the like, cools the inflowing cooling water by exchanging heat with the atmosphere or the like, and supplies it to the refrigerator 31. In summer when the temperature is high, the cooling capacity of the cooling tower 32 may decrease.

空調機33は、供給される冷水と室内の空気との間で熱交換を行う。空調機33としてファンコイルユニットを例示できる。熱交換後の昇温された冷水は、冷凍機31へ還る。   The air conditioner 33 performs heat exchange between the supplied cold water and indoor air. An example of the air conditioner 33 is a fan coil unit. The heated cold water after the heat exchange is returned to the refrigerator 31.

排水利用システム1は、生産施設2から排出され、回収された排水を利用して、所望の温水を供給するシステムである。排水利用システム1は、UF膜処理システム11、処理水槽12、熱回収用熱交換器13、及び熱回収ヒートポンプ14を備える。排水利用システム1には、ポンプP12が設置された処理水の水路が設けられており、UF膜処理システム11から供給される処理水が、処理水槽12、熱回収用熱交換器13、熱回収ヒートポンプ14を順に経由して、温水となって洗浄設備4へ供給される。   The drainage utilization system 1 is a system that supplies desired hot water using the drainage discharged from the production facility 2 and collected. The wastewater utilization system 1 includes a UF membrane treatment system 11, a treatment water tank 12, a heat recovery heat exchanger 13, and a heat recovery heat pump 14. The wastewater utilization system 1 is provided with a water channel for treated water in which a pump P12 is installed, and treated water supplied from the UF membrane treatment system 11 is treated water tank 12, heat recovery heat exchanger 13, heat recovery. It passes through the heat pump 14 in order and is supplied to the washing facility 4 as warm water.

UF膜処理システム11は、浄化処理装置である。UF膜処理システム11は、UF膜(限外ろ過膜)を用いて、排水処理槽21から供給される廃熱を帯びた排水を浄化処理し、所定の水質の処理水を生成する。UF膜として、分画分子量15万、径8インチのスパイラル型のPVDF(ポリフッ化ビニリデン)膜を例示できる。UF膜処理システム11は、排水の浄化処理を行い、処理水を処理水槽12へ供給する。なお、UF膜処理システム11の代わりに、RO膜(逆浸透膜)により浄化処理を行うシステム、その他の浄化装置が採用されてもよい。   The UF membrane treatment system 11 is a purification treatment apparatus. The UF membrane treatment system 11 purifies the wastewater with waste heat supplied from the wastewater treatment tank 21 using a UF membrane (ultrafiltration membrane) to generate treated water of a predetermined water quality. Examples of the UF film include a spiral PVDF (polyvinylidene fluoride) film having a molecular weight cut-off of 150,000 and a diameter of 8 inches. The UF membrane treatment system 11 purifies wastewater and supplies treated water to the treated water tank 12. Instead of the UF membrane treatment system 11, a system that performs purification treatment using an RO membrane (reverse osmosis membrane) or other purification devices may be employed.

なお、排水処理槽21からUF膜処理システム11へ向かう排水とUF膜処理システム11から処理水槽12へ向かう処理水との間で熱交換する熱交換器を更に設けてもよい。例えば、図2に示すように、UF膜処理システム11の上流側に熱交換器15、下流側に熱交換器16を設け、ポンプP13によって水等の熱媒体を熱交換器15及び熱交換器16の間で循環させて、当該熱交換を行ってもよい。この場合、循環する熱媒体を介して、排水の温熱を、熱交換器15において吸熱し、熱交換器16において処理水へ放熱することができる。このようにすることで、当該熱交換によって、UF膜処理システム11へ向かう排水を降温するとともに、処理水槽12へ向かう処理水を昇温することができる。そのため、処理水槽12からUF膜処理システム11へ供給される排水がUF膜の耐熱温度を超えるときに、当該排水をUF膜の耐熱温度内の温度等へ降温しつつ、排水の温熱を廃棄せずに有効利用することが可能となる。   In addition, you may further provide the heat exchanger which heat-exchanges between the waste_water | drain which goes to the UF membrane processing system 11 from the waste water treatment tank 21, and the treated water which goes to the treated water tank 12 from the UF membrane treatment system 11. For example, as shown in FIG. 2, a heat exchanger 15 is provided on the upstream side of the UF membrane treatment system 11, and a heat exchanger 16 is provided on the downstream side, and a heat medium such as water is transferred to the heat exchanger 15 and the heat exchanger by a pump P13. The heat exchange may be performed by circulating between 16. In this case, the heat of the waste water can be absorbed by the heat exchanger 15 and radiated to the treated water by the heat exchanger 16 via the circulating heat medium. By doing in this way, the temperature of the waste water which goes to the UF membrane processing system 11 can be temperature-fallen, and the temperature of the treated water which goes to the treated water tank 12 can be raised by the said heat exchange. Therefore, when the wastewater supplied from the treated water tank 12 to the UF membrane treatment system 11 exceeds the heat resistant temperature of the UF membrane, the temperature of the wastewater is discarded while the temperature of the wastewater is lowered to a temperature within the heat resistant temperature of the UF membrane. It is possible to use it effectively without using it.

処理水槽12は、処理水を一時的に貯留する。処理水槽12は、処理水の供給量を安定化させる役割を担う。また、処理水槽12に貯留される処理水に対しては、水質分析あるいは濁度計を用いた水質確認が実施される。処理水槽12に貯水された処理水は、ポンプP12によって、熱回収用熱交換器13へ供給される。なお、処理水槽12には、保温性の高い材質、構造が採用されることが好ましい。   The treated water tank 12 temporarily stores treated water. The treated water tank 12 plays a role of stabilizing the amount of treated water supplied. In addition, for the treated water stored in the treated water tank 12, water quality analysis or water quality confirmation using a turbidimeter is performed. The treated water stored in the treated water tank 12 is supplied to the heat recovery heat exchanger 13 by the pump P12. In addition, it is preferable that the material and structure with high heat retention are employ | adopted for the treated water tank 12. FIG.

熱回収用熱交換器13は、処理水槽12から供給される処理水を、空調システム3における冷却水の循環水路から流入される冷却水との間で熱交換する。熱回収用熱交換器13として、対向流式の顕熱交換器を例示できる。処理水は、図1における右側に示される水路から熱回収用熱交換器13へ流入する。また、冷却水は、ポンプP31によって送り出されて、左側に示される水路から熱回収用熱交換器13へ流入する。処理水は、熱回収用熱交換器13を通流した後、熱回収ヒートポンプ14へ供給される。冷却水は、熱回収用熱交換器13を通流した後、冷却水の循環水路へ戻され、冷凍機31へ供給される。   The heat recovery heat exchanger 13 exchanges heat between the treated water supplied from the treated water tank 12 and the cooling water flowing from the cooling water circulation channel in the air conditioning system 3. An example of the heat recovery heat exchanger 13 is a counter flow sensible heat exchanger. The treated water flows into the heat recovery heat exchanger 13 from the water channel shown on the right side in FIG. The cooling water is sent out by the pump P31 and flows into the heat recovery heat exchanger 13 from the water channel shown on the left side. The treated water flows through the heat recovery heat exchanger 13 and then is supplied to the heat recovery heat pump 14. The cooling water flows through the heat recovery heat exchanger 13, is then returned to the cooling water circulation channel, and is supplied to the refrigerator 31.

本実施形態の熱回収用熱交換器13によれば、流入する冷却水が流入する処理水より高温である場合、熱交換によって、冷却水が降温するとともに、処理水が昇温することになる。そのため、空調システム3の冷熱の需要を満たすとともに、冷却水から回収した温熱を処理水の昇温に利用することができる。   According to the heat recovery heat exchanger 13 of the present embodiment, when the inflowing cooling water is at a higher temperature than the inflowing treatment water, the heat exchange causes the cooling water to fall and the treatment water to rise in temperature. . Therefore, while satisfying the cold demand of the air conditioning system 3, the heat recovered from the cooling water can be used to raise the temperature of the treated water.

なお、本実施形態では、冷却塔32から冷凍機31へ向かう冷却水が、熱回収用熱交換
器13に流入して処理水と熱交換するが、冷凍機31から冷却塔32へ向かう冷却水が熱回収用熱交換器13に流入して処理水と熱交換するように構成することもできる。ただし、冷凍機31に流入する冷却水温度を降温させる方が、より冷凍機31のエネルギー効率を向上させることができるので、冷却塔32から冷凍機31へ向かう冷却水と処理水とで熱交換する構成とするのが望ましい。
In this embodiment, the cooling water from the cooling tower 32 toward the refrigerator 31 flows into the heat recovery heat exchanger 13 and exchanges heat with the treated water. However, the cooling water from the refrigerator 31 toward the cooling tower 32 Can be configured to flow into the heat recovery heat exchanger 13 and exchange heat with the treated water. However, since the energy efficiency of the refrigerator 31 can be further improved by lowering the temperature of the cooling water flowing into the refrigerator 31, heat exchange is performed between the cooling water from the cooling tower 32 toward the refrigerator 31 and the treated water. It is desirable to adopt a configuration to do so.

なお、排水利用システム1は、冷却塔32によって冷却された冷却水が処理水槽12から熱回収用熱交換器13へ流入する処理水より高温である場合、ポンプP31を稼働した状態で運用される。具体的には、夏季等において、空調システム3の冷却塔32の冷却能力が低下し、冷却水が十分に冷却されない場合に、このような運用がされる。また、排水利用システム1は、冷却塔32によって冷却された冷却水が処理水槽12から熱回収用熱交換器13へ流入する処理水より高温ではない場合、ポンプP31の稼働を停止した状態で運用される。具体的には、冬季等において、空調システム3の冷却塔32の冷却能力が十分である場合に、このような運用がされる。   The drainage system 1 is operated with the pump P31 in operation when the cooling water cooled by the cooling tower 32 is at a higher temperature than the treated water flowing from the treated water tank 12 into the heat recovery heat exchanger 13. . Specifically, such an operation is performed when the cooling capacity of the cooling tower 32 of the air conditioning system 3 is reduced in summer and the like and the cooling water is not sufficiently cooled. In addition, when the cooling water cooled by the cooling tower 32 is not at a higher temperature than the treated water flowing into the heat recovery heat exchanger 13 from the treated water tank 12, the wastewater utilization system 1 is operated in a state where the operation of the pump P31 is stopped. Is done. Specifically, such operation is performed when the cooling capacity of the cooling tower 32 of the air conditioning system 3 is sufficient in winter or the like.

なお、排水利用システム1には、熱回収用熱交換器13へ流入する処理水の温度を計測する温度計と、冷却塔32から冷凍機31へ向かう冷却水の温度を計測する温度計とを設けてもよい。この場合において、排水利用システム1には、冷却水の計測温度が処理水の計測温度より高いときにポンプP31を稼働し、それ以外のときにポンプP31を停止する自動制御機構が設けられてもよい。   The wastewater utilization system 1 includes a thermometer that measures the temperature of the treated water flowing into the heat recovery heat exchanger 13 and a thermometer that measures the temperature of the cooling water from the cooling tower 32 to the refrigerator 31. It may be provided. In this case, the wastewater utilization system 1 is provided with an automatic control mechanism that operates the pump P31 when the measured temperature of the cooling water is higher than the measured temperature of the treated water and stops the pump P31 at other times. Good.

熱回収ヒートポンプ14は、熱回収用熱交換器13から供給される処理水を、空調システム3の冷水の循環水路より流入される冷水から吸熱(同時に処理水へ放熱)して昇温するヒートポンプである。処理水は、図1における右側に示される水路から熱回収ヒートポンプ14へ流入する。冷水は、ポンプP32によって送り出されて、左側に示される水路から熱回収ヒートポンプ14へ流入する。ここで流入される冷水は、冷水の循環水路において空調機33から冷凍機31へ還る冷水、すなわち熱を消費した後の冷水である。熱回収ヒートポンプ14は、処理水を所定の温度(例えば、35℃以上)に昇温するように、冷水から処理水への熱移動を行う。熱回収ヒートポンプ14は、昇温した処理水を洗浄設備4へ供給する。また、熱回収ヒートポンプ14によって降温された冷水は、冷水の循環水路へ戻され、冷凍機31へ供給される。   The heat recovery heat pump 14 is a heat pump that raises the temperature of the treated water supplied from the heat recovery heat exchanger 13 by absorbing heat from the cold water flowing from the cold water circulation channel of the air conditioning system 3 (simultaneously releasing heat to the treated water). is there. The treated water flows into the heat recovery heat pump 14 from the water channel shown on the right side in FIG. The cold water is sent out by the pump P32 and flows into the heat recovery heat pump 14 from the water channel shown on the left side. The cold water that flows in here is cold water that is returned from the air conditioner 33 to the refrigerator 31 in the circulation channel of the cold water, that is, cold water after consuming heat. The heat recovery heat pump 14 performs heat transfer from the cold water to the treated water so as to raise the temperature of the treated water to a predetermined temperature (for example, 35 ° C. or higher). The heat recovery heat pump 14 supplies the treated water whose temperature has been raised to the cleaning facility 4. Further, the cold water cooled by the heat recovery heat pump 14 is returned to the circulation channel of the cold water and supplied to the refrigerator 31.

本実施形態の熱回収ヒートポンプ14によれば、冷水を降温するという空調システム3の冷熱の需要を満たすとともに、冷水から吸熱した温熱を処理水の昇温に利用することができる。特に、処理水が熱回収用熱交換器13において昇温されている場合、処理水が熱回収用熱交換器13において昇温されずに熱回収ヒートポンプ14単体で所定の温度まで昇温される場合に比べ、より少ない熱移送の動力で、所望の温度の温水を得ることができる。また、得られる温水は、適切な水質に浄化されているため、洗浄力の高い洗浄用水として利用できる。   According to the heat recovery heat pump 14 of the present embodiment, it is possible to satisfy the demand for cold air of the air conditioning system 3 that lowers the temperature of the cold water, and to use the heat absorbed from the cold water to raise the temperature of the treated water. In particular, when the temperature of the treated water is raised in the heat recovery heat exchanger 13, the temperature of the treated water is not raised in the heat recovery heat exchanger 13 and is raised to a predetermined temperature by the heat recovery heat pump 14 alone. Compared to the case, hot water having a desired temperature can be obtained with less heat transfer power. Moreover, since the obtained warm water is purified to an appropriate water quality, it can be used as cleaning water with high detergency.

洗浄設備4は、洗浄用水としての温水を需要する洗浄設備である。洗浄設備4は、熱回収ヒートポンプ14から供給される昇温された処理水を、洗浄用水として使用する。洗浄設備4として、食品等の運搬容器を35℃程度の温水で洗浄する設備を例示できる。なお、洗浄対象及び温水の温度は、このような例示に限定されない。洗浄設備4は、例えば、野菜、工業製品その他の物を洗浄するものであってもよい。なお、洗浄設備4は、図1では生産施設2の外部に設置されているが、生産施設2の内部に設置されるものであってもよい。この場合において、洗浄設備4における洗浄に用いられた温水が、排水として回収され、再度、排水利用システム1へ供給されて利用されてもよい。   The cleaning facility 4 is a cleaning facility that demands hot water as cleaning water. The cleaning equipment 4 uses the heated treated water supplied from the heat recovery heat pump 14 as cleaning water. An example of the cleaning facility 4 is a facility for cleaning a transport container for food or the like with warm water of about 35 ° C. Note that the temperature of the object to be cleaned and the temperature of the hot water are not limited to such examples. The cleaning equipment 4 may clean vegetables, industrial products, and other things, for example. Although the cleaning equipment 4 is installed outside the production facility 2 in FIG. 1, it may be installed inside the production facility 2. In this case, the hot water used for cleaning in the cleaning facility 4 may be recovered as drainage and supplied to the drainage utilization system 1 again for use.

なお、洗浄設備4は、熱回収ヒートポンプ14から供給される温水のみを使用するもの
に限らず、別系統からの温水も供給されるようにし、当該別系統からの温水の温度や供給量を調整することによって、洗浄設備4に供給する温水の温度を調整するものであってもよい。また、熱回収ヒートポンプ14から供給される温水を更に昇温して温度を調整するものであってもよい。この場合でも、洗浄設備4へ供給される処理水は予熱に供されており、別途昇温するための装置の電力等のエネルギーや燃料等の資源の消費が抑制される。また、洗浄設備4の代わりに、衣料用洗濯機、温水プール等その他の温水の需要設備が採用されてもよい。
The cleaning equipment 4 is not limited to using only hot water supplied from the heat recovery heat pump 14, but also supplies hot water from another system, and adjusts the temperature and supply amount of the hot water from the other system. By doing so, the temperature of the hot water supplied to the cleaning equipment 4 may be adjusted. Further, the temperature may be adjusted by further raising the temperature of the hot water supplied from the heat recovery heat pump 14. Even in this case, the treated water supplied to the cleaning facility 4 is preheated, and consumption of energy such as electric power of the apparatus for separately raising the temperature and resources such as fuel are suppressed. Further, instead of the washing facility 4, other hot water demanding equipment such as a clothes washing machine and a hot water pool may be employed.

<夏季の運用>
図3は、夏季における排水利用システム1の運用を例示する説明図である。この例では、ポンプP31が稼働した状態で排水利用システム1が運用されている。そのため、空調システム3の冷却水が排水利用システム1へ引き入れられ、熱回収用熱交換器13において、冷却水と処理水との間での熱交換が行われる。図3において、熱回収用熱交換器13には、処理水槽12から20℃の処理水が流入する。一方、冷却水の循環水路から熱回収用熱交換器13へ、処理水よりも高温である30℃の冷却水が流入する。この冷却水は、上述のように、冷却塔32の冷却能力が低下したために、十分には冷却されていない冷却水である。熱回収用熱交換器13における処理水と冷却水との間での熱交換によって、処理水は28℃へ昇温し、冷却水は23℃へ降温する。
<Summer operation>
FIG. 3 is an explanatory diagram illustrating the operation of the wastewater utilization system 1 in the summer. In this example, the wastewater utilization system 1 is operated with the pump P31 operating. Therefore, the cooling water of the air conditioning system 3 is drawn into the wastewater utilization system 1, and the heat recovery heat exchanger 13 performs heat exchange between the cooling water and the treated water. In FIG. 3, treated water at 20 ° C. flows from the treated water tank 12 into the heat recovery heat exchanger 13. On the other hand, 30 ° C. cooling water, which is higher in temperature than the treated water, flows into the heat recovery heat exchanger 13 from the cooling water circulation channel. As described above, the cooling water is not sufficiently cooled because the cooling capacity of the cooling tower 32 is reduced. By the heat exchange between the treated water and the cooling water in the heat exchanger 13 for heat recovery, the treated water is heated to 28 ° C. and the cooling water is lowered to 23 ° C.

図3において、熱回収用熱交換器13において28℃に昇温された処理水は、熱回収ヒートポンプ14へ流入する。一方、冷水の循環水路から熱回収ヒートポンプ14へ、冷水が流入する。熱回収ヒートポンプ14において、冷水は降温され、処理水は所定の温度である35℃まで更に昇温される。   In FIG. 3, the treated water heated to 28 ° C. in the heat recovery heat exchanger 13 flows into the heat recovery heat pump 14. On the other hand, cold water flows into the heat recovery heat pump 14 from the cold water circulation channel. In the heat recovery heat pump 14, the temperature of the cold water is lowered, and the temperature of the treated water is further raised to a predetermined temperature of 35 ° C.

なお、処理水、冷却水、冷水の温度は、図3に例示される温度に限定されるものではない。   In addition, the temperature of a treated water, cooling water, and cold water is not limited to the temperature illustrated in FIG.

<冬季の運用>
図4は、冬季における排水利用システム1の運用を例示する説明図である。この例では、ポンプP31の稼働が停止した状態で排水利用システム1が運用されている。そのため、空調システム3の冷却水が排水利用システム1へ引き入れられず、熱回収用熱交換器13において、冷却水と処理水との間の熱交換が行われない。一方、ポンプP32は稼働しており、冷水は排水利用システム1へ引き入れられる。そのため、熱回収ヒートポンプ14において、冷水が降温され、処理水が所定の温度である35℃まで昇温される。なお、春、秋等の中間期にも、ポンプP31の稼働が停止された状態で、冬季と同様の運用がされてよい。
<Operation in winter>
FIG. 4 is an explanatory diagram illustrating the operation of the wastewater utilization system 1 in winter. In this example, the wastewater utilization system 1 is operated in a state where the operation of the pump P31 is stopped. Therefore, the cooling water of the air conditioning system 3 is not drawn into the wastewater utilization system 1, and the heat exchange between the cooling water and the treated water is not performed in the heat recovery heat exchanger 13. On the other hand, the pump P32 is operating, and the cold water is drawn into the wastewater utilization system 1. Therefore, in the heat recovery heat pump 14, the temperature of the cold water is lowered and the temperature of the treated water is raised to a predetermined temperature of 35 ° C. It should be noted that during the intermediate period such as spring and autumn, the operation similar to that in the winter season may be performed with the operation of the pump P31 being stopped.

以上説明した本実施形態によれば、排水が回収され、浄化処理されて昇温される。そのため、排水を有効利用して浄化された温水を生成できる。この際、空調システム3の冷水の降温と処理水の昇温とが併せて行われる。よって、空調システム3の冷水の降温と処理水の昇温とをそれぞれ独立に行う場合に比べ、全体として、電力等のエネルギー、燃料、水等の資源の消費がより抑制される。そのため、排水を有効利用し、より省資源、より省エネルギーで、空調システム3の稼働及び所望の温水の供給を行うことができる。   According to this embodiment described above, the waste water is collected, purified, and heated. Therefore, it is possible to generate purified hot water by effectively using the waste water. At this time, the temperature lowering of the cold water of the air conditioning system 3 and the temperature rising of the treated water are performed together. Therefore, as compared with the case where the cooling water temperature of the air conditioning system 3 and the temperature of the treated water are increased independently, the consumption of energy such as electric power, resources such as fuel and water is further suppressed as a whole. Therefore, the waste water can be effectively used, and the air conditioning system 3 can be operated and desired hot water can be supplied with less resources and more energy.

夏季等には、更に、空調システム3の高温の冷却水と処理水との間で熱交換がされる。そのため、冷凍機31へ供給される冷却水が降温されるとともに、処理水が昇温される。そのため、冷凍機31のエネルギー効率を向上させるとともに、冷却水が含んでいた熱を利用して所望の温水を得ることができる。よって、空調システム3の稼働及び温水の供給を更に省エネルギーで行うことができる。   In summer, heat exchange is further performed between the high-temperature cooling water of the air conditioning system 3 and the treated water. Therefore, the temperature of the cooling water supplied to the refrigerator 31 is lowered and the temperature of the treated water is raised. Therefore, the energy efficiency of the refrigerator 31 can be improved, and desired hot water can be obtained using the heat contained in the cooling water. Therefore, the operation of the air conditioning system 3 and the supply of hot water can be performed with further energy saving.

1 排水利用システム
11 UF膜処理システム(浄化処理装置)
12 処理水槽
13 熱回収用熱交換器(熱交換器)
14 熱回収ヒートポンプ(ヒートポンプ)
15、16 熱交換器
2 生産施設
21 排水処理槽
3 空調システム
31 冷凍機
32 冷却塔
33 空調機
4 洗浄設備(温水の需要設備)
P11、P12、P13、P31、P32、P33、P34、P35 ポンプ
1 Wastewater utilization system 11 UF membrane treatment system (Purification treatment equipment)
12 Treated water tank 13 Heat exchanger for heat recovery (heat exchanger)
14 Heat recovery heat pump (heat pump)
15, 16 Heat exchanger 2 Production facility 21 Wastewater treatment tank 3 Air conditioning system 31 Refrigerator 32 Cooling tower 33 Air conditioner 4 Washing equipment (hot water demand equipment)
P11, P12, P13, P31, P32, P33, P34, P35 Pump

Claims (5)

排水を浄化処理し、処理水を生成する浄化処理装置と、
冷却塔から冷却水の供給を受けて空調用の冷水を循環供給する熱源機を有する空調システムにおける、前記冷却塔と前記熱源機との間を循環し前記処理水よりも高温である冷却水が流入され、前記処理水を前記冷却水との間で熱交換して昇温する熱交換器と、
前記熱交換器で昇温されて流入する処理水を、前記空調システムの熱源機へ還る前記冷水から吸熱して更に昇温し、昇温した処理水を温水の需要設備へ供給する熱回収ヒートポンプと、
を備え、
前記熱回収ヒートポンプにおいて吸熱されて降温した前記冷水は、前記空調システムの熱源機へ供給される、
排水利用システム。
A purification device that purifies wastewater and generates treated water;
In an air conditioning system having a heat source system that receives cooling water from a cooling tower and circulates and supplies cooling water for air conditioning, cooling water that circulates between the cooling tower and the heat source apparatus and is hotter than the treated water A heat exchanger that flows in and heat-exchanges the treated water with the cooling water to raise the temperature;
Heat recovery heat pump that heats up the treated water that has been heated by the heat exchanger and that flows back to the heat source unit of the air conditioning system from the cold water, further raises the temperature, and supplies the heated treated water to the hot water demand facility When,
Bei to give a,
The cold water that has been absorbed by the heat recovery heat pump and lowered in temperature is supplied to a heat source unit of the air conditioning system.
Wastewater utilization system.
前記排水利用システムは、処理水の温度及び冷却水の温度に応じて前記熱交換器への冷却水の流入を制御する流入制御手段を備える、  The wastewater utilization system includes inflow control means for controlling the inflow of cooling water to the heat exchanger according to the temperature of treated water and the temperature of cooling water.
請求項1に記載の排水利用システム。  The wastewater utilization system according to claim 1.
前記温水の需要設備は、洗浄設備である、
請求項1又は2に記載の排水利用システム。
The hot water demand facility is a washing facility,
The wastewater utilization system according to claim 1 or 2 .
前記浄化処理装置は、ろ過膜を用いて、前記排水を浄化処理する、
請求項1から3のうち何れか1項に記載の排水利用システム。
The purification treatment device purifies the waste water using a filtration membrane.
The wastewater utilization system according to any one of claims 1 to 3 .
排水を浄化処理して処理水を生成し、
冷却塔から冷却水の供給を受けて空調用の冷水を循環供給する熱源機を有する空調システムにおける、前記冷却塔と前記熱源機との間を循環し前記処理水よりも高温である冷却水との間で、前記処理水を熱交換して昇温し、
前記熱交換で昇温されて流入する処理水を、前記空調システムの熱源機へ還る前記冷水から吸熱して更に昇温し、前記昇温した処理水を温水の需要設備へ供給し、
前記吸熱されて降温した前記冷水は、前記空調システムの熱源機へ供給される、
排水利用方法。
Purify the wastewater to produce treated water,
In an air conditioning system having a heat source unit that receives cooling water supply from a cooling tower and circulates and supplies cooling water for air conditioning, the cooling water that circulates between the cooling tower and the heat source unit and is hotter than the treated water; The temperature of the treated water is increased by exchanging heat,
The treated water that has been heated and flowed in by the heat exchange is absorbed from the cold water that is returned to the heat source unit of the air conditioning system to further raise the temperature, and the heated treated water is supplied to the hot water demand facility ,
The cold water that has been absorbed and lowered is supplied to a heat source unit of the air conditioning system.
Wastewater usage method.
JP2013262589A 2013-12-19 2013-12-19 Wastewater utilization system and wastewater utilization method Active JP6339359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262589A JP6339359B2 (en) 2013-12-19 2013-12-19 Wastewater utilization system and wastewater utilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262589A JP6339359B2 (en) 2013-12-19 2013-12-19 Wastewater utilization system and wastewater utilization method

Publications (2)

Publication Number Publication Date
JP2015117909A JP2015117909A (en) 2015-06-25
JP6339359B2 true JP6339359B2 (en) 2018-06-06

Family

ID=53530780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262589A Active JP6339359B2 (en) 2013-12-19 2013-12-19 Wastewater utilization system and wastewater utilization method

Country Status (1)

Country Link
JP (1) JP6339359B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403333A (en) * 2016-12-01 2017-02-15 无锡溥汇机械科技有限公司 Energy-saving heat exchange system for refrigerator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132995U (en) * 1981-02-13 1982-08-19
JPH09174072A (en) * 1995-10-26 1997-07-08 Inax Corp Reclaimed water treatment apparatus
JP2005052793A (en) * 2003-08-07 2005-03-03 Japan Cost Planning:Kk Purified water feed device having thermoelectric cogeneration apparatus
JP4631857B2 (en) * 2007-02-08 2011-02-16 株式会社大林組 Heat source system for high temperature cold water application
JP2012098011A (en) * 2010-11-05 2012-05-24 Osakafu Keisatsu Kyokai Osaka Keisatsu Byoin Cooling tower
JP5737918B2 (en) * 2010-12-03 2015-06-17 三菱重工業株式会社 Biological treatment-type heat pump system for wastewater treatment equipment, biological treatment-type wastewater treatment equipment provided therewith, and control method for biological treatment-type wastewater treatment equipment heat pump system
JP2012159236A (en) * 2011-01-31 2012-08-23 Mitsubishi Heavy Ind Ltd System and method of exhaust heat recovery
JP5821235B2 (en) * 2011-03-30 2015-11-24 三浦工業株式会社 Liquid cooling system
JP5677188B2 (en) * 2011-05-10 2015-02-25 新日鉄住金エンジニアリング株式会社 Air conditioning equipment

Also Published As

Publication number Publication date
JP2015117909A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
CN104202950B (en) Temperature adjusting device
CN104061634B (en) A kind of heat pump driven two-stage high/low temperature solution dehumidifying air-conditioning system and control method
KR101389361B1 (en) High efficiency hybrid cooling/heating and hot water supply system with absorption type
CN107270502A (en) The secondary recuperation of heat Fresh air handing device and its method of work of central air conditioner system
JP4550127B2 (en) Water source heat pump air conditioning system
CN107091580A (en) Instant cooling and heating device
CN105485823A (en) Fresh air ventilator and fresh air ventilator unit
KR101325897B1 (en) Apparatus for recovering heat of wasted water
JP6339359B2 (en) Wastewater utilization system and wastewater utilization method
CN204460760U (en) Heat reclaim unit in sulfonating reaction
CN104482589B (en) Teaching building computer floor Waste Heat Recovery is hot water supply system and recovery method
JP5283593B2 (en) Waste heat utilization system
JP2009168255A (en) Water heat source heat pump air conditioning system
CN106091133B (en) Air treatment device and method
KR101209611B1 (en) Outdoor air conditioning system using low temperature waste heat
JP2009204280A (en) Waste heat recovery device for refrigerating device
CN106765752A (en) A kind of solar energy photovoltaic panel and solution-type air-conditioning energy storage co-feeding system and implementation
JP2009168256A (en) Combination type air conditioning system
CN106594927A (en) Solar photovoltaic panel and solution type air conditioner cogeneration system and implementation method
CN104110975B (en) A kind of industrial waste water disposal device
CN204063881U (en) A kind of residual neat recovering system of drying equipment
JP6230830B2 (en) Waste water treatment apparatus and waste water treatment method
CN205419977U (en) Refrigerating unit is at cooling water treatment system of flood period
CN206973666U (en) A kind of energy-conserving and environment-protective heating plant of thermal power plant
RU2442936C1 (en) System of reverse water supply with heat exchangers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180510

R150 Certificate of patent or registration of utility model

Ref document number: 6339359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150