JP4630620B2 - Noise removal device - Google Patents

Noise removal device Download PDF

Info

Publication number
JP4630620B2
JP4630620B2 JP2004287117A JP2004287117A JP4630620B2 JP 4630620 B2 JP4630620 B2 JP 4630620B2 JP 2004287117 A JP2004287117 A JP 2004287117A JP 2004287117 A JP2004287117 A JP 2004287117A JP 4630620 B2 JP4630620 B2 JP 4630620B2
Authority
JP
Japan
Prior art keywords
core
coil
shaft portion
noise removal
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004287117A
Other languages
Japanese (ja)
Other versions
JP2006100701A (en
Inventor
育雄 垣内
隆重 志賀
勝 前田
正一 登坂
学 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2004287117A priority Critical patent/JP4630620B2/en
Publication of JP2006100701A publication Critical patent/JP2006100701A/en
Application granted granted Critical
Publication of JP4630620B2 publication Critical patent/JP4630620B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、信号ライン等から高周波ノイズを除去するためのノイズ除去デバイスに関する。   The present invention relates to a noise removal device for removing high-frequency noise from a signal line or the like.

携帯電話やパソコン等のディジタル機器にあってはその高機能化に伴って信号処理速度の高速化が進んでおり、クロック周波数が1GHzを越えるCPUを用いたディジタル機器も数多く存在する。クロック周波数が数百MHzを越えるディジタル回路ではその基本波の帯域だけではなく高調波が現れるGHz帯域にも高周波ノイズが生じるため、数百MHz〜数GHzの広帯域で高周波ノイズを除去する必要がある。   In digital devices such as mobile phones and personal computers, the signal processing speed has been increased with the increase in functionality, and there are many digital devices using a CPU whose clock frequency exceeds 1 GHz. In a digital circuit having a clock frequency exceeding several hundred MHz, high-frequency noise is generated not only in the fundamental wave band but also in a GHz band where harmonics appear. Therefore, it is necessary to remove high-frequency noise in a wide band of several hundred MHz to several GHz. .

高周波ノイズを除去するためのデバイスとしては高Q値のインダクタ素子が一般的であるが、この種のデバイスは特定の周波数帯域でのみ他の周波数帯域に比べて遥かに高いインピーダンスを生じる特性を有するものであるため、数百MHz〜数GHzの広帯域で高周波ノイズを除去するにはピーク特性が異なる複数のデバイスを併用しなければならず回路設計に伴う負担も嵩んでしまう。
特開2000−156622号公報
A high-Q inductor element is generally used as a device for removing high-frequency noise, but this type of device has a characteristic that produces a much higher impedance only in a specific frequency band than in other frequency bands. Therefore, in order to remove high-frequency noise in a wide band of several hundreds of MHz to several GHz, a plurality of devices having different peak characteristics must be used in combination, increasing the burden associated with circuit design.
JP 2000-156622 A

先に述べたような現状において回路設計者が求めるノイズ除去デバイスは、ピークのインピーダンスが低下しても広い周波数帯域でノイズ除去効果が十分に期待できる程度のインピーダンスを生じるような特性を有するものであり、このようなインピーダンス特性を有するデバイスを用いたほうが1個のデバイスで広い周波数帯域において狙い通りのノイズ除去効果を安定して得ることができると共に回路設計に伴う負担も大幅に軽減することができる。   In the current situation as described above, the noise removal device required by circuit designers has such a characteristic that even if the peak impedance is reduced, the impedance can be sufficiently expected to have a noise removal effect in a wide frequency band. Yes, it is possible to stably obtain the targeted noise removal effect in a wide frequency band with a single device by using a device having such impedance characteristics, and greatly reduce the burden associated with circuit design. it can.

本発明は前記事情に鑑みて創作されたもので、その目的とするところは、1個のデバイスで広い周波数帯域においてノイズ除去効果を安定して得ることができるノイズ除去デバイスを提供することにある。   The present invention was created in view of the above circumstances, and an object thereof is to provide a noise removal device that can stably obtain a noise removal effect in a wide frequency band with a single device. .

前記目的を達成するため、本発明のノイズ除去デバイスは、透磁率の共鳴周波数が100MHz以上である磁性材から成り、2つの四角柱部の間に該四角柱部の断面外形よりも断面外形が小さな軸部を有するコアと、コアの軸部上にコイル用線材を線間に所定スペースを有するように巻き付けて構成されたコイルと、コアを構成する磁性材よりも誘電率が小さい絶縁材から成り、コアの軸部上に存するコイルの線間に充填されるようにコイルを覆い、且つ、外観形状が四角柱状になるように形成された外装と、コア両端の四角柱部に形成され、コイルの各端部と電気的に導通する1対の外部電極とを備える、ことをその特徴とする。   In order to achieve the above object, the noise removal device of the present invention is made of a magnetic material having a resonance frequency of magnetic permeability of 100 MHz or more, and has a cross-sectional outer shape between two square column portions rather than a cross-sectional shape of the square column portion. From a core having a small shaft portion, a coil formed by winding a coil wire on the shaft portion of the core so as to have a predetermined space between the wires, and an insulating material having a lower dielectric constant than the magnetic material constituting the core Formed, covering the coil so as to be filled between the coil wires existing on the shaft portion of the core, and being formed in a quadrangular prism portion at both ends of the core, and an exterior formed so that the external shape is a quadrangular prism shape, It is characterized by comprising a pair of external electrodes in electrical communication with each end of the coil.

本発明によれば、1個のデバイスで広い周波数帯域においてノイズ除去効果を安定して得ることができる。   According to the present invention, it is possible to stably obtain a noise removal effect in a wide frequency band with one device.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

まず、図1〜図4を参照して、本発明を適用したノイズ除去デバイスの構造について説明する。尚、以下の説明では図1の左右方向をデバイスの長さ、図2の左右方向をデバイスの幅、図2の上下方向をデバイスの高さと表記する。   First, the structure of a noise removal device to which the present invention is applied will be described with reference to FIGS. In the following description, the left-right direction in FIG. 1 is referred to as the device length, the left-right direction in FIG. 2 as the device width, and the up-down direction in FIG. 2 as the device height.

図1はノイズ除去デバイスを幅方向の一面側から見た図、図2は図1に示したノイズ除去デバイスを長さ方向の一面側から見た図、図3は図2のa−a線断面図、図4は図1のb−b線断面図であり、図中の10はデバイス、11はコア、12はコイル、13は外装、14は1対の外部電極である。   1 is a view of the noise removal device as viewed from one side in the width direction, FIG. 2 is a view of the noise removal device shown in FIG. 1 as viewed from one side in the length direction, and FIG. 3 is a line aa in FIG. 4 is a cross-sectional view taken along the line bb of FIG. 1, in which 10 is a device, 11 is a core, 12 is a coil, 13 is an exterior, and 14 is a pair of external electrodes.

コア11は透磁率の共鳴周波数が100MHz以上である磁性材から成る。ここでの共鳴周波数とは、μ=μ’+jμ”(μは透磁率、μ’は磁界に追従できる透磁率の実数成分、jμ”は磁界に追従できず90度遅れる透磁率の虚数成分)の式において透磁率の虚数成分jμ”がピークとなる周波数を指す。   The core 11 is made of a magnetic material having a permeability resonance frequency of 100 MHz or more. Here, the resonance frequency is μ = μ ′ + jμ ″ (μ is the magnetic permeability, μ ′ is a real component of the magnetic permeability that can follow the magnetic field, and jμ ″ is an imaginary component of the magnetic permeability that can not follow the magnetic field and is delayed by 90 degrees). In the equation, the frequency at which the imaginary component jμ ″ of the magnetic permeability reaches a peak.

透磁率の共鳴周波数が100MHz以上である磁性材としては、Ni−Zn系スピネルフェライトや、スピネルフェライトよりも共鳴周波数が高いY型またはZ型等の六方晶フェライト等が好適に使用できる。また、焼結性の調整のためにNi−Zn−Cu系スピネルフェライトを用いてもよく、Bi23やSiO2 等の添加により焼結性を調整することもできる。さらに、特性の微調整を行うためにCoOやMn23やMgOやCr23等の酸化物を添加してもよい。 As a magnetic material having a magnetic resonance resonance frequency of 100 MHz or more, Ni—Zn spinel ferrite, Y-type or Z-type hexagonal ferrite having a resonance frequency higher than that of spinel ferrite, and the like can be preferably used. In addition, Ni—Zn—Cu based spinel ferrite may be used for adjusting the sinterability, and the sinterability can be adjusted by adding Bi 2 O 3 , SiO 2 or the like. Furthermore, an oxide such as CoO, Mn 2 O 3 , MgO, or Cr 2 O 3 may be added to finely adjust the characteristics.

Ni−Zn系スピネルフェライトはFe比やNi/Zn比等の組成調整により透磁率及び周波数特性を調整可能である。Ni−Zn系スピネルフェライトを使用する場合における好ましいFe比はFe23として40mol%以上であるが、Fe比が49.5mol%を越えると損失が大きくなり、且つ、46mol%未満では透磁率が低くなる傾向があることからFe比が46〜49.5mol%の範囲のものを使用することが望ましい。また、共鳴周波数はNi/Zn比で変化可能であり、Ni/Zn比を大きくすることで共鳴周波数を高くすることができる。好ましいNi/Zn比は1以上であるが、Ni/Zn比が4以上のものを使用することが望ましい。 Ni-Zn spinel ferrite can be adjusted in magnetic permeability and frequency characteristics by adjusting the composition such as Fe ratio and Ni / Zn ratio. The preferred Fe ratio in the case of using the Ni-Zn-based spinel ferrite is 40 mol% or more as Fe 2 O 3, loss of Fe ratio exceeds 49.5 mol% is increased, and is less than 46 mol% permeability Therefore, it is desirable to use a material having an Fe ratio in the range of 46 to 49.5 mol%. The resonance frequency can be changed by the Ni / Zn ratio, and the resonance frequency can be increased by increasing the Ni / Zn ratio. A preferable Ni / Zn ratio is 1 or more, but it is desirable to use a Ni / Zn ratio of 4 or more.

尚、コア11を構成する磁性材には、前記フェライト磁性体粉末またはその他の磁性体粉末を、非磁性の無機絶縁体中または非磁性の有機絶縁体中に所定量含有させた複合磁性体を用いることもできる。因みに、前記透磁率の共鳴周波数が100MHz未端のものでは高周波帯域で十分なインピーダンス特性が得られない。   The magnetic material constituting the core 11 is a composite magnetic material in which a predetermined amount of the ferrite magnetic powder or other magnetic powder is contained in a nonmagnetic inorganic insulator or nonmagnetic organic insulator. It can also be used. Incidentally, when the resonance frequency of the magnetic permeability is not 100 MHz, sufficient impedance characteristics cannot be obtained in the high frequency band.

また、コア11は、2つの四角柱部11aを両端に対称に有し、且つ、2つの四角柱部11aの間に該四角柱部11aの断面外形よりも断面外形が小さな軸部11bを同軸上に有する。2つの四角柱部11aの断面は正方形またはこれに近似した形状を成し、軸部11bの断面は円形またはこれに近似した形状を成す。図面には2つの四角柱部11aと軸部11bとの境界面をコア11の中心線と直交する面で構成したものを示してあるが、境界面をコア11の中心線と鋭角を成す面、立体的には四角柱部11aから軸部11bに向かって徐々に外形が小さくなる円錐台状に形成しても構わない。また、2つの四角柱部11aの底面には、断面が台形状または矩形状を成す凹部11a1が長さ方向に沿って設けられている。コア11の2つの四角柱部11aの長さ及び軸部11bの長さには特段の制限はないが、軸部11bの長さはコイル12を所定の巻き数及びピッチで構成可能な長さを確保できるようにする。また、コア11の軸部11bの直径Dは、コア両端の四角柱部11aの高さをTとしたときに、0.3T<D<0.9Tの範囲内、好ましくは0.5Tとなるようにする。   Further, the core 11 has two rectangular column parts 11a symmetrically at both ends, and a shaft part 11b having a smaller sectional outline than that of the rectangular column part 11a is coaxially disposed between the two rectangular column parts 11a. Have on. The cross sections of the two quadrangular columnar portions 11a are square or have a shape similar thereto, and the cross section of the shaft portion 11b is circular or have a shape approximate to this. In the drawing, the boundary surface between the two quadrangular columnar portions 11a and the shaft portion 11b is formed by a surface orthogonal to the center line of the core 11, but the boundary surface is a surface that forms an acute angle with the center line of the core 11. Three-dimensionally, it may be formed in a truncated cone shape whose outer shape gradually decreases from the quadrangular prism portion 11a toward the shaft portion 11b. Moreover, the recessed part 11a1 in which a cross section forms trapezoid shape or a rectangular shape is provided in the bottom face of the two square pillar parts 11a along the length direction. There are no particular restrictions on the length of the two quadrangular columnar portions 11a and the length of the shaft portion 11b of the core 11, but the length of the shaft portion 11b is a length that allows the coil 12 to be configured with a predetermined number of turns and pitch. Can be secured. Further, the diameter D of the shaft portion 11b of the core 11 is within a range of 0.3T <D <0.9T, preferably 0.5T, where T is the height of the rectangular column portion 11a at both ends of the core. Like that.

コイル12は導線を絶縁材で被覆した線材から成り、該コイル用線材をコア11の軸部11b上に所定回数巻き付けることにより構成されている。コイル用線材の導線は所定の抵抗率を有するものであれば適宜使用できるが、好ましくはCu系,Ni系,Ag系のものが使用される。コイル用線材の絶縁材には絶縁性を有するものであれば適宜使用できるが、好ましくはポリウレタンやポリエステル等のプラスチックが使用される。   The coil 12 is made of a wire in which a conductive wire is covered with an insulating material, and is configured by winding the coil wire on the shaft portion 11 b of the core 11 a predetermined number of times. The conductive wire of the coil wire can be used as long as it has a predetermined resistivity, but Cu-based, Ni-based, and Ag-based wires are preferably used. Any insulating material for the coil wire can be used as long as it has insulating properties, but plastics such as polyurethane and polyester are preferably used.

また、コイル12を構成するコイル用線材は線同志が密接して巻き付けられておらず、線間に所定スペースを有するように巻き付けられている(スペース巻き)。コイル12の巻き数Nは、軸部11bの長さをBとし、コイル用線材の導線の直径をAとしたときに、B/{A+(A/2)}B/3Aの範囲内にあることが好ましい。また、コイル12の線間スペースはコイル用線材の直径の1/2〜3倍、好ましくはコイル用線材の直径の0.8倍になるようにする。 Moreover, the coil wire which comprises the coil 12 is not wound closely, but is wound so that there may be a predetermined space between the wires (space winding). The number N of turns of the coil 12 is in the range of B / {A + (A / 2)} N B / 3A, where B is the length of the shaft portion 11b and A is the diameter of the conductive wire of the coil wire. It is preferable to be within. The space between the coils 12 is set to 1/2 to 3 times the diameter of the coil wire, and preferably 0.8 times the diameter of the coil wire.

さらに、コイル12の一端部12aは一方の四角柱部11aの凹部11a1内に挿入されて該凹部11a1の深さに整合するように平たく潰され、他端部12aは他方の四角柱部11aの凹部11a1内に挿入されて該凹部11a1の深さに整合するように平たく潰されている。   Furthermore, the one end 12a of the coil 12 is inserted into the recess 11a1 of one square column 11a and flattened so as to match the depth of the recess 11a1, and the other end 12a is formed on the other square column 11a. It is inserted into the recess 11a1 and crushed flat so as to match the depth of the recess 11a1.

外装13は絶縁材から成り、軸部11b上に存するコイル12の線間に充填されるようにコイル12を覆い、且つ、外観形状が四角柱状になるように形成されており、その4つの側面は四角柱部11aの4つの側面とそれぞれ平行またはこれに近似した形態を成す。この外装13はコア11を構成する磁性材よりも誘電率が小さい絶縁材から成り、具体的にはNi−Zn系スピネルフェライト粉末,Mn−Zn系スピネルフェライト粉末,六方晶フェライト粉末,金属磁性粉末のうちの少なくとも1種をエポキシ樹脂等の絶縁性プラスチック材料に30〜90wt%、好ましくは65wt%含有させた磁性粉末含有プラスチックから成る。前記金属磁性粉末にはパーマロイ,センダスト,純鉄等が好適に使用でき、この場合には外装表面の平滑性を得るために最大粒径が20μm以下のものを用いることが好ましく、より好ましくは金属磁性粉末の表面に酸化膜を形成したものを用いる。   The exterior 13 is made of an insulating material, covers the coil 12 so as to be filled between the wires of the coil 12 existing on the shaft portion 11b, and is formed so that the external shape is a quadrangular prism shape. Are parallel to or approximate to the four side surfaces of the quadrangular prism portion 11a. The exterior 13 is made of an insulating material having a dielectric constant smaller than that of the magnetic material constituting the core 11, and specifically, Ni—Zn spinel ferrite powder, Mn—Zn spinel ferrite powder, hexagonal ferrite powder, metal magnetic powder. It is made of a magnetic powder-containing plastic in which at least one of them is contained in an insulating plastic material such as an epoxy resin in an amount of 30 to 90 wt%, preferably 65 wt%. For the metal magnetic powder, permalloy, sendust, pure iron or the like can be suitably used. In this case, in order to obtain the smoothness of the exterior surface, it is preferable to use the one having a maximum particle size of 20 μm or less, more preferably metal. A magnetic powder having an oxide film formed on the surface thereof is used.

1対の外部電極14は、各四角柱部11aの底面及び端面の一部を連続して覆うようにほぼ均一な厚さで形成され、各外部電極14はコイル12の各端部12aと電気的に導通している。また、デバイス10を基板等に実装するときのことを考慮し各外部電極14の底面部分は外装13の底面部分よりも下方に突出している。各外部電極14はAg,Cu,Ni,Sn等の金属またはこれらの合金から成り、単層または多層構造を有する。外部電極14の厚さには特段の制限はない。この外部電極14は各四角柱部11aの端面及び該端面と隣接する4つの面に連続して設けられていてもよいが、好ましくは各四角柱部11aの底面及び端面の一部を連続して覆うような形態とし、端面に回り込む部分の高さを四角柱部11aの高さの1/4〜1/2とする。   The pair of external electrodes 14 is formed with a substantially uniform thickness so as to continuously cover a part of the bottom surface and the end surface of each quadrangular column portion 11 a, and each external electrode 14 is electrically connected to each end portion 12 a of the coil 12. Is conductive. In consideration of the case where the device 10 is mounted on a substrate or the like, the bottom surface portion of each external electrode 14 protrudes downward from the bottom surface portion of the exterior 13. Each external electrode 14 is made of a metal such as Ag, Cu, Ni, Sn, or an alloy thereof, and has a single layer or a multilayer structure. There is no particular limitation on the thickness of the external electrode 14. The external electrode 14 may be continuously provided on the end surface of each square column portion 11a and four surfaces adjacent to the end surface, but preferably, the bottom surface of each square column portion 11a and a part of the end surface are continuously provided. The height of the portion that wraps around the end face is set to 1/4 to 1/2 of the height of the quadrangular prism portion 11a.

図5〜図10は先に説明したデバイス10を1608サイズ(長さと幅と高さのそれぞれの基準値が1.6mm,0.8mm,0.8mm)で作成した場合における各種検証データを示し、図11は同デバイスのインピーダンス特性を示す。   5 to 10 show various verification data when the above-described device 10 is created in 1608 size (reference values of length, width, and height are 1.6 mm, 0.8 mm, and 0.8 mm), respectively. FIG. 11 shows the impedance characteristics of the device.

図5はコア材の検証データを示すもので、ここではコア11がFe23を47mol%,NiOを40mol%,ZnOを2mol%,CuOを6mol%の組成比としたNi−Zn系スピネルフェライト(透磁率の共鳴周波数が100MHz以上の磁性材)から成るもののインピーダンス特性を実線で表し、コア11がフェライト粉末を含まないアルミナから成るもののインピーダンス特性を破線で表してある。 FIG. 5 shows verification data of the core material. Here, the core 11 has a composition ratio of 47 mol% of Fe 2 O 3 , 40 mol% of NiO, 2 mol% of ZnO, and 6 mol% of CuO. The impedance characteristic of a ferrite (magnetic material having a magnetic permeability resonance frequency of 100 MHz or more) is shown by a solid line, and the impedance characteristic of a core 11 made of alumina not containing ferrite powder is shown by a broken line.

図5から分かるように、コア11がフェライト粉末を含まないアルミナから成るもの(破線参照)では7.5GHz付近でインピーダンスが急激に上昇するピーキィなインピーダンス特性を示すが、コア11が前記組成比を有するNi−Zn系スピネルフェライトから成るもの(実線参照)では3.0GHz付近と9.0GHz付近の2箇所に共振点が現れると共に広い周波数帯域で比較的フラットなインピーダンス特性を示す。   As can be seen from FIG. 5, when the core 11 is made of alumina containing no ferrite powder (see the broken line), the core 11 shows a strong impedance characteristic in which the impedance rapidly increases in the vicinity of 7.5 GHz. In the case of the Ni—Zn-based spinel ferrite (see solid line), resonance points appear at two locations near 3.0 GHz and 9.0 GHz, and a relatively flat impedance characteristic is exhibited in a wide frequency band.

図6はコア11の軸部径の検証データを示すもので、ここでは軸部11bの直径を0.5T(Tは四角柱部11aの高さ)としたもののインピーダンス特性を実線で表し、軸部1bの直径を0.9T以上としたもののインピーダンス特性を実線で表してある。因みに、1608サイズでは四角柱部11aの高さTの基準値は0.8mmであるので0.5Tの場合の軸部直径は0.4mmとなり、0.9Tの場合の軸部直径は0.72mmとなる。   FIG. 6 shows verification data of the diameter of the shaft portion of the core 11. Here, the impedance characteristic of the shaft portion 11b having a diameter of 0.5T (T is the height of the quadrangular column portion 11a) is represented by a solid line. The impedance characteristic of the portion 1b having a diameter of 0.9T or more is shown by a solid line. Incidentally, in the 1608 size, the reference value of the height T of the quadrangular columnar portion 11a is 0.8 mm, so the shaft diameter in the case of 0.5T is 0.4 mm, and the shaft diameter in the case of 0.9T is 0. 72 mm.

図6から分かるように、軸部11bの直径が0.9T以上のもの(破線参照)では1.0GHz付近でインピーダンスが急激に上昇するピーキィなインピーダンス特性を示すが、軸部11bの直径が0.5Tのもの(実線参照)では3.5GHz付近と9.0GHz付近の2箇所に共振点が現れると共に広い周波数帯域で比較的フラットなインピーダンス特性を示す。   As can be seen from FIG. 6, when the shaft 11b has a diameter of 0.9T or more (see the broken line), the impedance suddenly increases near 1.0 GHz, but the shaft 11b has a diameter of 0. In the case of .5T (see solid line), resonance points appear at two locations near 3.5 GHz and 9.0 GHz, and a relatively flat impedance characteristic is exhibited in a wide frequency band.

図7はコイル12の巻線形態の検証データを示すもので、ここでは直径50μmのコイル用線材を40μm(=50μm×0.8)の線間スペースが空くように巻き数6でスペース巻きしたもののインピーダンス特性を実線で表し、同じコイル用線材を線間スペースが零となるように巻き数6で密巻きしたもののインピーダンス特性を破線で表してある。   FIG. 7 shows the verification data of the winding form of the coil 12. Here, a coil wire having a diameter of 50 μm is wound with 6 turns so that a space between wires of 40 μm (= 50 μm × 0.8) is vacant. The impedance characteristic of the thing is represented by a solid line, and the impedance characteristic of the same coil wire rod that is closely wound with 6 turns so that the space between the wires is zero is represented by a broken line.

図7から分かるように、密巻きのもの(破線参照)では1.5GHz付近で共振点が現れるインピーダンス特性を示すが、スペース巻きのもの(実線参照)では1.5GHz付近と8.5GHz付近の2箇所に共振点が現れると共に広い周波数帯域で比較的フラットなインピーダンス特性を示す。   As can be seen from FIG. 7, the closely wound type (see the broken line) shows the impedance characteristic where the resonance point appears near 1.5 GHz, but the space wound type (see the solid line) shows the vicinity of 1.5 GHz and around 8.5 GHz. Resonance points appear at two locations and a relatively flat impedance characteristic in a wide frequency band.

図8はコイル12の巻き数の検証データを示すもので、ここではコイル12の巻き数を8としたもののインピーダンス特性を実線で表し、コイル12の巻き数を4としたもののインピーダンス特性を破線で表してある。   FIG. 8 shows verification data of the number of turns of the coil 12. Here, the impedance characteristic of the coil 12 having 8 turns is represented by a solid line, and the impedance characteristic of the coil 12 having 4 turns is represented by a broken line. It is represented.

図8から分かるように、巻き数が4のもの(破線参照)では3.0GHz付近と9.5GHz付近の2箇所に共振点が現れるものの9.5GHz付近でインピーダンスが急激に上昇するピーキィなインピーダンス特性を示すが、巻き数が8のもの(実線参照)では3.0GHz付近と9.0GHz付近の2箇所に共振点が現れると共に広い周波数帯域で比較的フラットなインピーダンス特性を示す。   As can be seen from FIG. 8, when the number of turns is 4 (see the broken line), resonance points appear at two locations near 3.0 GHz and 9.5 GHz, but the impedance increases rapidly around 9.5 GHz. The characteristic is shown, but when the number of turns is 8 (see solid line), resonance points appear at two places near 3.0 GHz and 9.0 GHz, and a relatively flat impedance characteristic is shown in a wide frequency band.

図9は外装材の検証データを示すもので、ここでは外装13がコア11と同じNi−Zn系スピネルフェライト粉末を65wt%含有するエポキシ樹脂から成るもののインピーダンス特性を実線で表し、フェライト粉末を含有しないエポキシ樹脂から成るもののインピーダンス特性を破線で表してある。   FIG. 9 shows the verification data of the exterior material. Here, the impedance characteristics of the exterior 13 made of an epoxy resin containing 65 wt% of the same Ni—Zn spinel ferrite powder as the core 11 are represented by a solid line, and the ferrite powder is contained. Impedance characteristics of the non-epoxy resin are represented by broken lines.

図9から分かるように、外装13がフェライト粉末比含有のエポキシ樹脂から成るもの(破線参照)では9.5GHz付近でインピーダンスが急激に上昇するピーキィなインピーダンス特性を示すが、外装13が前記フェライト粉末含有のエポキシ樹脂から成るもの(実線参照)では2.0GHz付近と8.0GHz付近の2箇所に共振点が現れると共に広い周波数帯域で比較的フラットなインピーダンス特性を示す。   As can be seen from FIG. 9, the package 13 made of an epoxy resin containing a ferrite powder ratio (see the broken line) shows a strong impedance characteristic in which the impedance rapidly increases in the vicinity of 9.5 GHz. In the case of the epoxy resin containing (see solid line), resonance points appear at two locations near 2.0 GHz and 8.0 GHz, and a relatively flat impedance characteristic is exhibited in a wide frequency band.

図10は電極形態の検証データを示すものでは、ここでは外部電極14が各四角柱部11aの底面及び端面の一部に連続して覆うように設け、且つ、端面に回り込む部分の高さを四角柱部11aの高さの3/8としたもののインピーダンス特性を実線で表し、外部電極14が各四角柱部11aの端面及び該端面と隣接する4つの面に連続して設けられたもののインピーダンス特性を破線で表してある。因みに、1608サイズでは四角柱部11aの高さの基準値は0.8mmであるので高さの3/8とした場合の回り込み部分の高さは0.3mmとなる。   FIG. 10 shows verification data of the electrode configuration. Here, the external electrode 14 is provided so as to continuously cover the bottom surface and a part of the end surface of each quadrangular columnar portion 11a, and the height of the portion that wraps around the end surface is shown. The impedance characteristic of the rectangular column portion 11a that is 3/8 of the height is represented by a solid line, and the impedance of the external electrode 14 provided continuously on the end surface of each square column portion 11a and the four surfaces adjacent to the end surface is shown. The characteristic is represented by a broken line. Incidentally, in the 1608 size, the reference value of the height of the quadrangular columnar portion 11a is 0.8 mm, so that the height of the wraparound portion when the height is 3/8 is 0.3 mm.

図10から分かるように、何れのものも3.0GHz付近と8.0GHz付近の2箇所に共振点が現れる類似ししたインピーダンス特性を示すが、外部電極14が各四角柱部11aの底面及び端面の一部に連続して設けられたものの方(実線参照)が広い周波数帯域で高いインピーダンスを得ることができる。   As can be seen from FIG. 10, each of them has similar impedance characteristics in which resonance points appear at two locations near 3.0 GHz and 8.0 GHz, but the external electrode 14 has a bottom surface and an end surface of each square column portion 11a. The one provided continuously in a part (see solid line) can obtain a high impedance in a wide frequency band.

図11は図5〜図10のデータ検証で採用した各構成要素、詳しくは、
・コア材 :Fe23を47mol%,NiOを40mol%,ZnOを2mol%,C uOを6mol%の組成比としたNi−Zn系スピネルフェライト
・軸部径 :0.4mm
・巻線形態:直径50μmのコイル用線材を40μmの線間スペースが空くようにスペー ス巻き
・巻き数 :8
・外装材 :Ni−Zn系スピネルフェライト粉末を65wt%含有するエポキシ樹脂
・電極形態:各四角柱部11aの底面及び端面の一部に連続して覆う形態で、端面に回り 込む部分の高さが0.3mm
を組み合わせて構成された1608サイズのデバイス10のインピーダンス特性を示す。
FIG. 11 shows each component adopted in the data verification of FIGS.
Core material: Fe 2 O 3 of 47 mol%, NiO of 40 mol%, 2 mol% of ZnO, Ni-Zn-based spinel ferrite shank diameter and the C uO and 6 mol% composition ratio: 0.4 mm
-Winding form: Space winding and the number of windings: 8 so that the space between the wires of the coil wire 50mm in diameter is 40μm.
-Exterior material: Epoxy resin containing 65 wt% of Ni-Zn-based spinel ferrite powder-Electrode form: The height of the portion that wraps around the end face in a form that continuously covers the bottom face and part of the end face of each square pillar 11a Is 0.3mm
The impedance characteristic of the device 10 of 1608 size configured by combining

図11から分かるように、このデバイス10は、特定の周波数帯域でのみ他の周波数帯域に比べて遥かに高いインピーダンスを生じる特性を有するものではなく、3.0GHz付近と8.0GHz付近の2箇所に共振点が現れると共に数百MHz〜数GHzの広帯域においてなだらかな勾配を示すインピーダンス特性を有することから、1個のデバイスで広い周波数帯域において狙い通りのノイズ除去効果を安定して得ることが可能である。   As can be seen from FIG. 11, the device 10 does not have a characteristic that generates a much higher impedance than the other frequency bands only in a specific frequency band, and has two locations near 3.0 GHz and 8.0 GHz. Since it has an impedance characteristic that shows a gentle gradient in a wide band of several hundreds of MHz to several GHz with a resonance point appearing in a single device, it is possible to stably obtain the desired noise removal effect in a wide frequency band with one device It is.

このようなインピーダンス特性が現れる根拠は定かではないが、図1〜図4を引用して説明したデバイス10自体の基本構造が関与していることは勿論のこと、図5〜図10を引用して説明した各構成要素が関与していると考えられる。依って、前記デバイス10と同じものを他のサイズ、例えば1005サイズ(長さと幅と高さのそれぞれの基準値が1.0mm,0.5mm,0.5mm)で作成した場合や0603サイズ(長さと幅と高さのそれぞれの基準値が0.6mm,0.3mm,0.3mm)で作成した場合でも、同様の基本構造及び各構成要素を採用することにより同様の作用効果を得ることが可能である。   The basis for the appearance of such an impedance characteristic is not clear, but it goes without saying that the basic structure of the device 10 itself described with reference to FIGS. 1 to 4 is involved, and FIGS. It is thought that each component explained in the above is involved. Therefore, when the same device as the device 10 is produced in another size, for example, 1005 size (reference values of length, width, and height are 1.0 mm, 0.5 mm, and 0.5 mm) or 0603 size ( Even when the standard values of length, width, and height are 0.6 mm, 0.3 mm, and 0.3 mm), the same effect can be obtained by adopting the same basic structure and each component. Is possible.

尚、図1〜図4にはコア11の軸部11bとして断面外形が円形のものを示したが、図12に示すように、2つの四角柱部11a間に該四角柱部11aの断面外形よりも断面外形が小さく、且つ、断面が正方形またはこれに近似した形状を成す軸部11b’を同軸上に有するものをコア11として用いてもよい。この場合は軸部11b’上にコイル用線材を巻き付けてコイル12が構成されるため、前記軸部11bの直径に係る設計理念は軸部11b’の内接円の直径に適用すればよい。   1 to 4, the shaft 11b of the core 11 has a circular cross-sectional outer shape. However, as shown in FIG. 12, the cross-sectional outer shape of the quadrangular column 11a is between two rectangular columns 11a. The core 11 may have a shaft section 11b ′ having a smaller cross-sectional outer shape and having a square cross section or a shape similar to this. In this case, since the coil 12 is formed by winding the coil wire on the shaft portion 11b ', the design philosophy relating to the diameter of the shaft portion 11b may be applied to the diameter of the inscribed circle of the shaft portion 11b'.

本発明を適用したノイズ除去デバイスを幅方向の一面側から見た図である。It is the figure which looked at the noise removal device to which this invention is applied from the one surface side of the width direction. 図1に示したノイズ除去デバイスを長さ方向の一面側から見た図である。It is the figure which looked at the noise removal device shown in FIG. 1 from the one surface side of the length direction. 図2のa−a線断面図である。It is the sectional view on the aa line of FIG. 図1のb−b線断面図である。It is the bb sectional view taken on the line of FIG. コア材の検証データを示す図である。It is a figure which shows the verification data of a core material. コアの軸部径の検証データを示す図である。It is a figure which shows the verification data of the axial part diameter of a core. コイルの巻線形態の検証データを示す図である。It is a figure which shows the verification data of the coil | winding form of a coil. コイルの巻き数の検証データを示す図である。It is a figure which shows the verification data of the winding number of a coil. 外装材の検証データを示す図である。It is a figure which shows the verification data of an exterior material. 電極形態の検証データを示す図である。It is a figure which shows the verification data of an electrode form. 図5〜図10のデータ検証で採用した各構成要素を組み合わせて構成された1608サイズのデバイスのインピーダンス特性を示す図である。It is a figure which shows the impedance characteristic of the device of 1608 size comprised combining each component employ | adopted by the data verification of FIGS. 図1〜図4に示した軸部を四角柱状にしたノイズ除去デバイスを長さ方向の一面側から見た図である。It is the figure which looked at the noise removal device which made the axial part shown in FIGS. 1-4 the square pillar shape from the one surface side of the length direction.

符号の説明Explanation of symbols

10…デバイス、11…コア、11a…四角柱部、11b,11b’…軸部、12…コイル、13…外装、14…1対の外部電極。   DESCRIPTION OF SYMBOLS 10 ... Device, 11 ... Core, 11a ... Quadratic prism part, 11b, 11b '... Shaft part, 12 ... Coil, 13 ... Outer casing, 14 ... One pair of external electrodes.

Claims (5)

透磁率の共鳴周波数が100MHz以上である磁性材から成り、2つの四角柱部の間に該四角柱部の断面外形よりも断面外形が小さな軸部を有するコアと、
コアの軸部上にコイル用線材を線間に所定スペースを有するように巻き付けて構成されたコイルと、
コアを構成する磁性材よりも誘電率が小さい絶縁材から成り、コアの軸部上に存するコイルの線間に充填されるようにコイルを覆い、且つ、外観形状が四角柱状になるように形成された外装と、
コア両端の四角柱部に形成され、コイルの各端部と電気的に導通する1対の外部電極とを備え
GHz帯域の異なる2つの周波数で共振点が現れると共にGHz帯域を含む高周波帯域においてなだらかな勾配を示すインピーダンス特性を有する、
ことを特徴とするノイズ除去デバイス。
A core made of a magnetic material having a resonance frequency of magnetic permeability of 100 MHz or more, and having a shaft portion between two square column portions, the shaft portion having a smaller cross-sectional shape than the cross-sectional shape of the square column portion;
A coil configured by winding a coil wire on the shaft portion of the core so as to have a predetermined space between the wires;
It is made of an insulating material whose dielectric constant is smaller than that of the magnetic material that makes up the core. The coil is covered so that it is filled between the wires of the coil existing on the shaft part of the core, and the external shape is a quadrangular prism. The exterior,
A pair of external electrodes formed on the rectangular pillars at both ends of the core and electrically connected to each end of the coil ;
A resonance point appears at two different frequencies in the GHz band, and has an impedance characteristic showing a gentle gradient in a high frequency band including the GHz band.
A noise removing device characterized by that.
外装は、Ni−Zn系スピネルフェライト粉末,Mn−Zn系スピネルフェライト粉末,六方晶フェライト粉末,金属磁性粉末のうちの少なくとも1種を30〜90wt%含有する磁性粉末含有プラスチックから成る、
ことを特徴とする請求項1に記載のノイズ除去デバイス。
The outer package is made of a plastic containing magnetic powder containing 30 to 90 wt% of at least one of Ni—Zn spinel ferrite powder, Mn—Zn spinel ferrite powder, hexagonal ferrite powder, and metal magnetic powder.
The noise removal device according to claim 1.
コアの軸部の断面は円形または四角形であり、断面円形の直径または断面四角形の内接円の直径をDとし、コア両端の四角柱部の高さをTとしたときに、直径Dは0.3T<D<0.9Tの範囲内にある、
ことを特徴とする請求項1または2に記載のノイズ除去デバイス。
The cross section of the shaft portion of the core is circular or quadrangular, and the diameter D is 0 when the diameter of the circular cross section or the diameter of the inscribed circle of the cross sectional quadrangle is D and the height of the square pillars at both ends of the core is T. In the range of 3T <D <0.9T,
The noise removal device according to claim 1 or 2, characterized in that
コイルの巻き数をNとし、コアの軸部の長さをBとし、コイル用線材の導線の直径をAとしたときに、巻き数NはB/{A+(A/2)}B/3Aの範囲内にある、
ことを特徴とする請求項1または2に記載のノイズ除去デバイス。
When the number of turns of the coil is N, the length of the shaft portion of the core is B, and the diameter of the conductive wire of the coil wire is A, the number of turns N is B / {A + (A / 2)} N Within the range of B / 3A,
The noise removal device according to claim 1 or 2, characterized in that
1対の外部電極はコア両端の四角柱部の底面及び端面の一部を連続して覆う形態を有する、
ことを特徴とする請求項1または2に記載のノイズ除去デバイス。
The pair of external electrodes has a form continuously covering the bottom surface and part of the end surface of the quadrangular column at both ends of the core.
The noise removal device according to claim 1 or 2, characterized in that
JP2004287117A 2004-09-30 2004-09-30 Noise removal device Expired - Fee Related JP4630620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287117A JP4630620B2 (en) 2004-09-30 2004-09-30 Noise removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287117A JP4630620B2 (en) 2004-09-30 2004-09-30 Noise removal device

Publications (2)

Publication Number Publication Date
JP2006100701A JP2006100701A (en) 2006-04-13
JP4630620B2 true JP4630620B2 (en) 2011-02-09

Family

ID=36240189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287117A Expired - Fee Related JP4630620B2 (en) 2004-09-30 2004-09-30 Noise removal device

Country Status (1)

Country Link
JP (1) JP4630620B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005025374A1 (en) 2005-05-31 2006-12-07 Basf Ag Polymer-pigment hybrids for papermaking
JP2008205466A (en) * 2007-02-17 2008-09-04 Zhejiang Univ Magnetic parts
CH697212A5 (en) * 2007-07-18 2008-06-25 Microcomponents Sa Electrical coil, has electrical conducting coil wire of primary winding, coil wire of start winding and coil wire of final winding formed by continuous winding wire, where primary winding is wound directly on coil core
JP2009026897A (en) * 2007-07-18 2009-02-05 Tdk Corp Coil part
JP6522297B2 (en) * 2014-07-28 2019-05-29 太陽誘電株式会社 Coil parts
JP6695136B2 (en) * 2015-12-11 2020-05-20 株式会社村田製作所 Wirewound inductor
JP2018142644A (en) * 2017-02-28 2018-09-13 株式会社村田製作所 Inductor
JP6769450B2 (en) 2018-01-30 2020-10-14 株式会社村田製作所 Inductor parts

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837113U (en) * 1981-09-04 1983-03-10 東光株式会社 chip type inductor
JPS6083217U (en) * 1983-11-14 1985-06-08 デイエツクスアンテナ株式会社 high frequency coil
JPH0963850A (en) * 1995-06-15 1997-03-07 Murata Mfg Co Ltd Noise eliminator
JPH10163033A (en) * 1996-11-30 1998-06-19 Taiyo Yuden Co Ltd Wound electronic part and its manufacture and implementation
JPH11340059A (en) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd Inductance element
JP2002110428A (en) * 2000-10-03 2002-04-12 Taiyo Yuden Co Ltd Wire-wound common mode choke coil
JP2003002656A (en) * 2001-04-09 2003-01-08 Toda Kogyo Corp Soft magnetic hexagonal ferrite composite particle powder, green sheet using the same, and soft magnetic hexagonal ferrite sintered body
JP2003297642A (en) * 2002-04-02 2003-10-17 Tdk Corp Chip inductor and its manufacturing method
JP2004146671A (en) * 2002-10-25 2004-05-20 Tdk Corp Surface-mount common mode noise filter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837113U (en) * 1981-09-04 1983-03-10 東光株式会社 chip type inductor
JPS6083217U (en) * 1983-11-14 1985-06-08 デイエツクスアンテナ株式会社 high frequency coil
JPH0963850A (en) * 1995-06-15 1997-03-07 Murata Mfg Co Ltd Noise eliminator
JPH10163033A (en) * 1996-11-30 1998-06-19 Taiyo Yuden Co Ltd Wound electronic part and its manufacture and implementation
JPH11340059A (en) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd Inductance element
JP2002110428A (en) * 2000-10-03 2002-04-12 Taiyo Yuden Co Ltd Wire-wound common mode choke coil
JP2003002656A (en) * 2001-04-09 2003-01-08 Toda Kogyo Corp Soft magnetic hexagonal ferrite composite particle powder, green sheet using the same, and soft magnetic hexagonal ferrite sintered body
JP2003297642A (en) * 2002-04-02 2003-10-17 Tdk Corp Chip inductor and its manufacturing method
JP2004146671A (en) * 2002-10-25 2004-05-20 Tdk Corp Surface-mount common mode noise filter

Also Published As

Publication number Publication date
JP2006100701A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
CN105321653B (en) Coil component
KR101558110B1 (en) Inductor and manufacturing method thereof
US20160343498A1 (en) Coil component and manufacturing method thereof
JP2017028064A (en) Module substrate
JP4630620B2 (en) Noise removal device
US9875839B2 (en) Magnetic composition and inductor including the same
US20180174727A1 (en) Inductor for increasing inductance
US10716212B2 (en) LC device and method of manufacturing LC device
JP2008294085A (en) Planar magnetic element, and electronic apparatus employing the same
CN111986896A (en) Coil component
JP6113510B2 (en) Magnetic element
JP2014199902A (en) Line, spiral inductor, meander inductor, and solenoid coil
KR102148317B1 (en) Coil component
JP2007081239A (en) Magnetic device and switching power source using it
JP2006294723A (en) Common mode noise filter
TWI622067B (en) Coil component
WO2017115603A1 (en) Surface mount inductor and method for manufacturing same
JP6484453B2 (en) Magnetic core and coil device
US20100188184A1 (en) Inductor and core member thereof
JP6486614B2 (en) Inductor
TW201814740A (en) Coil device
JP2006128516A (en) Coil encapsulated dust core
JP7463937B2 (en) Inductor Components
JP6776793B2 (en) Coil parts
JP5140064B2 (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees