JP2007081239A - Magnetic device and switching power source using it - Google Patents

Magnetic device and switching power source using it Download PDF

Info

Publication number
JP2007081239A
JP2007081239A JP2005268988A JP2005268988A JP2007081239A JP 2007081239 A JP2007081239 A JP 2007081239A JP 2005268988 A JP2005268988 A JP 2005268988A JP 2005268988 A JP2005268988 A JP 2005268988A JP 2007081239 A JP2007081239 A JP 2007081239A
Authority
JP
Japan
Prior art keywords
magnetic
ribbon
layer
magnetic device
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005268988A
Other languages
Japanese (ja)
Inventor
Tetsuo Inoue
哲夫 井上
Takao Sawa
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2005268988A priority Critical patent/JP2007081239A/en
Publication of JP2007081239A publication Critical patent/JP2007081239A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic device excellent in high frequency characteristics and a switching power source using it. <P>SOLUTION: The magnetic device is a wound body of a laminate provided with a ribbon-like magnetic body layer and a conductor layer arranged in parallel with the longitudinal direction. Also, it is preferable that the magnetization easy direction of the ribbon-like magnetic body layer matches with an outline conductor layer longitudinal direction. Also, the gap of the wound body may be filled with the mixture of a magnetic material and a resin. Then, an amorphous ribbon is preferable for the ribbon-like magnetic body layer. Such a magnetic device is suitable for an inductor, a noise filter and various kinds of transformers. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

インダクタ、ノイズフィルタ、各種トランスに好適な磁気デバイスおよびそれを用いたスイッチング電源に関する。   The present invention relates to an inductor, a noise filter, a magnetic device suitable for various transformers, and a switching power supply using the magnetic device.

スイッチング電源回路は高効率で大電流出力が可能で、かつ出力電圧が連続可変できるので近年の携帯機器の低消費電力化を実現する上で重要となっている。しかしながら、スイッチング電源回路はクロックでスイッチをON、OFFするため大きなスイッチングノイズが発生する。一方でLSIの低消費電力化に伴う低電圧化でそのノイズは無視できないものになってきている。また、スイッチング周波数が高くなり、従来より高周波で大電流ノイズに対応できるノイズフィルタが必要となっていた。
また、スイッチング電源用インダクタにも高周波、大電流、低損失が要求されている。数MHzでは主にフェライトを用いたインダクタが使用されるが、フェライトは飽和磁束が低いため大電流では磁気飽和を起こしてしまう。また、アモルファス、センダストなどに比べ保磁力が大きい為、損失が大きくなってしまっていた。一方、アモルファスリボンを用いたインダクタは、MHz帯になると急激に透磁率が低下しインダクタンスが劣化する問題があった。
また、携帯機器に搭載するノイズフィルタには小型化も求められるようになっている。特開平5−291865号公報(特許文献1)では、コイルを巻回したノイズフィルタが提案されている。これは表面が絶縁材で被覆された薄板状の導電線を重ね合わせ渦巻状に巻き回した構造を有し、2つのコイルがそれぞれインダクタンス成分をさらに両者が絶縁材を介して対向することでキャパシタンス成分を有することで分布定数型フィルタを形成している。しかし、自己インダクタンス、相互インダクタンスは大きな値を得られないためその小型化には限界があった。また、特開平7−122460号公報(特許文献2)では帯状導電体を誘電体シートを介して積層して巻回したLCノイズフィルタが提案されているが、自己インダクタンス、相互インダクタンスは大きな値を得られないためその小型化には限界があった。
これら特許文献1および特許文献2のノイズフィルタは、いずれも非磁性の金属材料を用いていたため、自己インダクタンスおよび相互インダクタンスが共に大きな値が得られなかったのである。このような問題に対応するために、特開2004−358847号公報(特許文献3)では、非晶質磁性薄帯と樹脂フィルムを交互に積層した磁気コア材料が開示されている。
The switching power supply circuit is capable of high-efficiency and high-current output, and the output voltage can be continuously varied. Therefore, it is important to realize low power consumption of portable devices in recent years. However, since the switching power supply circuit is turned on and off by a clock, a large switching noise is generated. On the other hand, the noise has become non-negligible due to the low voltage accompanying the low power consumption of LSI. In addition, since the switching frequency is increased, a noise filter capable of handling high-current noise at a higher frequency than before has been required.
In addition, high frequency, large current, and low loss are also required for switching power supply inductors. An inductor using ferrite is mainly used at several MHz, but since ferrite has a low saturation magnetic flux, magnetic saturation occurs at a large current. Moreover, since the coercive force is larger than amorphous, sendust, etc., the loss has increased. On the other hand, an inductor using an amorphous ribbon has a problem in that the magnetic permeability suddenly decreases and the inductance deteriorates in the MHz band.
In addition, noise filters mounted on portable devices are also required to be downsized. Japanese Patent Laid-Open No. 5-291865 (Patent Document 1) proposes a noise filter in which a coil is wound. This has a structure in which thin conductive wires whose surfaces are covered with an insulating material are overlapped and wound in a spiral shape, and two coils each have an inductance component and both are opposed to each other via an insulating material. Having a component forms a distributed constant filter. However, there is a limit to downsizing the self-inductance and mutual inductance because large values cannot be obtained. Japanese Laid-Open Patent Publication No. 7-122460 (Patent Document 2) proposes an LC noise filter in which strip-shaped conductors are laminated and wound via a dielectric sheet. However, self-inductance and mutual inductance have large values. Since it was not obtained, there was a limit to its miniaturization.
Since the noise filters of Patent Document 1 and Patent Document 2 both use nonmagnetic metal materials, large values of both the self-inductance and the mutual inductance cannot be obtained. In order to cope with such a problem, JP 2004-358847 A (Patent Document 3) discloses a magnetic core material in which amorphous magnetic ribbons and resin films are alternately laminated.

特開平5−291865号公報JP-A-5-291865 特開平7−122460号公報JP-A-7-122460 特開2004−358847号公報JP 2004-358847 A 特開平8−55736号公報JP-A-8-55736

しかしながら、特許文献3の磁気コア材料は非晶質磁性薄帯を用いていることから10MHz以下の領域ではインダクタンス値は大きくなったもの、それ以上の高周波域では周波数特性は満足いくものではなかった。つまり、更なる高周波域で使用するとインダクタンス値が急激に低下すると言った現象が起きていたのである。
このような状況に鑑み本発明者は鋭意研究の結果、リボン状磁性体層と導体層の巻回方法を工夫することにより、高周波特性の優れた磁気デバイスを提供できることを見出したのである。
また、従来の磁気デバイスはトランスはトランス専用、ノイズフィルタはノイズフィルタ専用に設計されており、磁気デバイス間での互換性はなかった。そのため、近年のスイッチング電源のように複雑な回路構成を有するものでは、それぞれに部品(磁気デバイス)を用意しなければならないことから組立て性が良いとは言えなかった。
However, since the magnetic core material of Patent Document 3 uses an amorphous magnetic ribbon, the inductance value increased in the region of 10 MHz or less, and the frequency characteristics were not satisfactory in the higher frequency region. . In other words, the phenomenon that the inductance value suddenly decreases when used in a higher frequency range has occurred.
In view of such a situation, as a result of earnest research, the present inventor has found that a magnetic device having excellent high-frequency characteristics can be provided by devising a winding method of the ribbon-like magnetic layer and the conductor layer.
Further, the conventional magnetic device is designed for the transformer only for the transformer and the noise filter only for the noise filter, and there is no compatibility between the magnetic devices. For this reason, a device having a complicated circuit configuration such as a recent switching power supply cannot be said to have good assemblability because parts (magnetic devices) must be prepared for each.

本発明の磁気デバイスは、リボン状磁性体層とその長手方向に平行に配置された導体層を有する積層体の巻回体であることを特徴とするものである。また、前記リボン状磁性体層の磁化容易方向が概略導体層長手方向と一致したものが好ましい。また、前記巻回体の空隙を、磁性材料と樹脂の混合物で充填することが好ましい。また、前記リボン状磁性体層が磁性材料と樹脂の混合物であることが好ましい。また、前記導体層が複数本の導体からなることが好ましい。また、前記リボン状磁性体層と前記導体層の間に絶縁性フィルムを介することが好ましい。また、前記リボン状磁性体層が、アモルファスリボンであることが好ましい。
また、本発明の前記磁気デバイスはインダクタ、ノイズフィルタ、トランスなどの様々な分野に適用可能である。特に、同一形状でインダクタ、ノイズフィルタ等の各種磁気デバイスに適用できることから磁気デバイス間の互換性が成り立つので汎用性が高い。また、前記リボン状磁性体層が接地される構造を具備していることが好ましい。このような磁気デバイスはスイッチング電源に好適である。
The magnetic device of the present invention is a wound body of a laminate having a ribbon-like magnetic layer and a conductor layer arranged in parallel with the longitudinal direction thereof. Further, it is preferable that the direction of easy magnetization of the ribbon-like magnetic layer is substantially coincident with the longitudinal direction of the conductor layer. Moreover, it is preferable to fill the space | gap of the said winding body with the mixture of a magnetic material and resin. The ribbon-like magnetic layer is preferably a mixture of a magnetic material and a resin. The conductor layer is preferably composed of a plurality of conductors. Moreover, it is preferable to interpose an insulating film between the ribbon-like magnetic layer and the conductor layer. The ribbon-like magnetic layer is preferably an amorphous ribbon.
The magnetic device of the present invention can be applied to various fields such as an inductor, a noise filter, and a transformer. In particular, since the same shape can be applied to various magnetic devices such as an inductor and a noise filter, compatibility between the magnetic devices is established, so that versatility is high. Moreover, it is preferable that the ribbon-like magnetic layer has a structure that is grounded. Such a magnetic device is suitable for a switching power supply.

本発明の磁気デバイスは高周波特性、特に1MHz以上の高周波特性に優れ、かつ、磁気飽和し難い。そのため、大電流デバイスに適している。また、それを用いたスイッチング電源は高周波特性の良いものとなる。 The magnetic device of the present invention is excellent in high frequency characteristics, particularly high frequency characteristics of 1 MHz or more, and hardly magnetically saturated. Therefore, it is suitable for large current devices. Moreover, a switching power supply using the same has good high frequency characteristics.

本発明の磁気デバイスは、リボン状磁性体層とその長手方向に平行に配置された導体層を有する積層体の巻回体であることを特徴とするものである。
まず、リボン状磁性体層は、フェライト、センダスト、アモルファス(非晶質)、微細結晶を有する磁性材料などの磁性粉末を樹脂で固めたもの、急冷凝固法等によって得られた薄帯、絶縁フィルム上にスパッタや蒸着等の気相成長またはメッキにより成膜した磁性膜を用いてもよい。
また、アモルファスは、Co系アモルファス、Fe系アモルファスが挙げられ、微細結晶を有する磁性材料は300オングストローム(0.03μm)以下の微細結晶を有するFe系磁性材料が挙げられる(特許文献4参照)。また、気相成長またはメッキによる磁性膜としては、CoZrNb系、CoZrNbTa系、FeBN系、CoFeB−SiO系、CoFeAlO系、CoAlPdO系、CoFeMn系、CoFeN系、FeNi系等の軟磁性膜が挙げられる。
The magnetic device of the present invention is a wound body of a laminate having a ribbon-like magnetic layer and a conductor layer arranged in parallel with the longitudinal direction thereof.
First, the ribbon-like magnetic layer is made of a magnetic material such as ferrite, sendust, amorphous (amorphous), or a magnetic material having fine crystals, which is solidified with a resin, a ribbon obtained by a rapid solidification method, an insulating film, etc. A magnetic film formed by vapor deposition such as sputtering or vapor deposition or plating may be used.
Examples of amorphous materials include Co-based amorphous materials and Fe-based amorphous materials. Magnetic materials having fine crystals include Fe-based magnetic materials having fine crystals of 300 angstroms (0.03 μm) or less (see Patent Document 4). Examples of the magnetic film formed by vapor deposition or plating include soft magnetic films such as CoZrNb, CoZrNbTa, FeBN, CoFeB-SiO, CoFeAlO, CoAlPdO, CoFeMn, CoFeN, and FeNi.

また、リボン状磁性体層の厚みは100μm以下が好ましい。磁気特性と言う点では100μmを超えても問題はないが、巻回することを考慮すると磁性体層の厚みは100μm以下が好ましく、さらには50μm以下である。また、リボン状磁性体層の厚みの下限値は0.1μm以上が好ましい。0.1μm未満では磁性層が薄く充分な磁気特性が得られない恐れがある。また、薄い磁性層を均一に作製するのは製造上の管理が煩雑になることから0.1μm以上が好ましい。このような磁性層の厚みを考慮すると、急冷凝固法により薄帯(リボン)を得ることのできるアモルファスが好ましい材料となる。特にCo系アモルファスであれば磁気特性も良好である。また、リボン状磁性体層は、長手方向に材料の磁気異方性(結晶磁気異方性、誘導磁気異方性など)を重畳させてもよい。
次に、リボン状磁性体層の長手方向に平行に配置された導体層を有するものである。導体層は、Cu、Al等の金属材料が好ましい。導体層の形態は、リボン状(薄帯状)でもよいし、気相成長やメッキ等の薄膜であってもよい。導体層の厚みはリボン状磁性体層同様に100μm以下が好ましい。従来のように巻線を施すタイプではないことから磁気デバイスの体積を小さくすることができ小型化を可能とする。
また、リボン状磁性体層と導体層は平行に配置されている。この「平行に配置」とは略平行で良く、両者のなす角が20°以内の低角であることが望ましい。つまり、リボン状磁性体層の長手方向(磁化容易軸)と導体層の長手方向が略平行であることが重要なのである。また、リボン状磁性体層と導体層のなす角度が20°以内のことをリボン状磁性体層の磁化容易方向が概略導体層長手方向と一致と称するものとする。
このようなリボン状磁性体層と導体層を長手方向に平行に配置した積層体を形成し、さらに巻回することにより磁気デバイスが形成される。巻回回数は任意である。また、巻回後の形状は円形、楕円、長方形など特に限定されるものではない。
Further, the thickness of the ribbon-like magnetic layer is preferably 100 μm or less. In terms of magnetic characteristics, there is no problem even if the thickness exceeds 100 μm, but considering the winding, the thickness of the magnetic layer is preferably 100 μm or less, and more preferably 50 μm or less. Further, the lower limit of the thickness of the ribbon-like magnetic layer is preferably 0.1 μm or more. If the thickness is less than 0.1 μm, the magnetic layer may be thin and sufficient magnetic properties may not be obtained. Moreover, it is preferable that the thickness of the thin magnetic layer is 0.1 μm or more because manufacturing management becomes complicated. Considering the thickness of such a magnetic layer, an amorphous material capable of obtaining a ribbon (ribbon) by a rapid solidification method is a preferable material. In particular, if it is Co-based amorphous, the magnetic properties are also good. Further, the ribbon-like magnetic layer may have material magnetic anisotropy (crystal magnetic anisotropy, induced magnetic anisotropy, etc.) superimposed in the longitudinal direction.
Next, it has a conductor layer arrange | positioned in parallel with the longitudinal direction of a ribbon-like magnetic body layer. The conductor layer is preferably a metal material such as Cu or Al. The form of the conductor layer may be a ribbon shape (thin ribbon shape) or a thin film such as vapor phase growth or plating. The thickness of the conductor layer is preferably 100 μm or less like the ribbon-like magnetic layer. Since it is not the type which winds like the past, the volume of a magnetic device can be made small and size reduction is attained.
The ribbon-like magnetic layer and the conductor layer are arranged in parallel. This “arranged in parallel” may be substantially parallel, and it is desirable that the angle between the two is a low angle within 20 °. That is, it is important that the longitudinal direction (magnetization easy axis) of the ribbon-like magnetic layer and the longitudinal direction of the conductor layer are substantially parallel. In addition, the angle between the ribbon-like magnetic layer and the conductor layer being within 20 ° is referred to as that the direction of easy magnetization of the ribbon-like magnetic layer substantially coincides with the longitudinal direction of the conductor layer.
A laminated body in which such ribbon-like magnetic body layers and conductor layers are arranged in parallel in the longitudinal direction is formed, and further wound to form a magnetic device. The number of windings is arbitrary. Moreover, the shape after winding is not specifically limited, such as a circle, an ellipse, and a rectangle.

また、リボン状磁性体層が、フェライト、アモルファス等の磁性材料の粉末を樹脂で固めたもの、つまりはリボン状磁性体層が絶縁性を具備している場合は、直接その上に導体層を設けてもよい。一方、アモルファス等のようにリボン状磁性体層が導電性を有している場合は、磁性体層と導体層の間に絶縁層を設ける必要がある。絶縁層は、絶縁性樹脂フィルム、酸化物等の無機絶縁層などが挙げられる。薄帯状の磁性体層および導体層を用いる場合は、絶縁層は樹脂フィルムであることが好ましい。薄帯状の磁性体層、薄帯状の導体層および樹脂フィルムであれば3層ともフィルム状となりロールによる巻取り方式により作製できるので、量産性が向上する。
薄帯状の磁性体層、薄帯状の導体層および樹脂フィルムを用いた磁気デバイスの一例を図1に示す。図中、1は磁気デバイス、2はリボン状磁性体層、3は導体層、4は樹脂フィルム、5は端子である。図中、樹脂フィルム4は磁性層2の両面に設けているが、少なくとも導体層3と磁性層2の間に1層設けてあれば良い。また、樹脂フィルム4を磁性層2の両面に設けておけば、巻回後の最外層の磁性層2が剥き出しにならずに済み、最外層の樹脂フィルムが保護層の役割を果たす。また、導体層3の両端には端子5が設けられている。この端子5は、導体層3を折り曲げて形成してもよいし、別途端子部材を取り付けたものであってもよい。また、樹脂フィルム4には磁性粉末を混合した磁性シートを用いてもよい。
In addition, when the ribbon-like magnetic layer is made of a powder of magnetic material such as ferrite or amorphous, which is solidified with a resin, that is, if the ribbon-like magnetic layer has an insulating property, a conductor layer is directly formed thereon. It may be provided. On the other hand, when the ribbon-like magnetic layer is conductive, such as amorphous, it is necessary to provide an insulating layer between the magnetic layer and the conductor layer. Examples of the insulating layer include an insulating resin film and an inorganic insulating layer such as an oxide. In the case where a thin magnetic layer and a conductor layer are used, the insulating layer is preferably a resin film. If it is a ribbon-like magnetic layer, a ribbon-like conductor layer, and a resin film, all three layers are film-like and can be produced by a winding method using a roll, so that mass productivity is improved.
An example of a magnetic device using a ribbon-like magnetic layer, a ribbon-like conductor layer, and a resin film is shown in FIG. In the figure, 1 is a magnetic device, 2 is a ribbon-like magnetic layer, 3 is a conductor layer, 4 is a resin film, and 5 is a terminal. In the figure, the resin film 4 is provided on both surfaces of the magnetic layer 2, but at least one layer may be provided between the conductor layer 3 and the magnetic layer 2. Moreover, if the resin film 4 is provided on both surfaces of the magnetic layer 2, the outermost magnetic layer 2 after winding is not exposed, and the outermost resin film serves as a protective layer. Terminals 5 are provided at both ends of the conductor layer 3. The terminal 5 may be formed by bending the conductor layer 3 or may be provided with a terminal member separately. The resin film 4 may be a magnetic sheet mixed with magnetic powder.

また、導体層は複数本であっても良い(図7参照)。複数本設ける場合であっても、それぞれの導体層はリボン状磁性体層の長手方向に平行に配置するものとする。また、複数の導体層同士は重なり合う部分があっても良いものとする。また、図7のように導体層を複数本とすることにより、複数系のトランスを実現することができる。
また、リボン状磁性体層、絶縁層、導体層はそれぞれ単層であってもよいし、複数層を積層した後、巻回体としてもよい。前述では絶縁層(樹脂フィルム)によりリボン状磁性体層を挟んだ形態について説明したが、例えば、リボン状磁性体層/絶縁層/導体層/絶縁層/リボン状磁性体層/絶縁層…のように各層を複数層設けた積層体を構成した後、巻回体としてもよい(図8参照)。
また、巻回体において、各層の空隙(隙間)に磁性粉末と樹脂の混合物を充填することが好ましい。充填する際の混合物はペースト状であると空隙に詰めやすい。このような混合物を充填するとインダクタンス値を向上させることができる。磁性粉末は、前述に記載のリボン状磁性体層に用いる材料が好ましい。特に、リボン状磁性体層に用いるものと同じであることが好ましい。また、樹脂はシリコーン樹脂、エポキシ樹脂、ポリイミド樹脂などが好ましい。
以上のような本発明の磁気デバイスは、電流方向と磁化容易方向が一致する為、磁性体は磁化困難軸方向に磁化されることになり、磁化回転モードで磁化反転が行なわれる。このため周波数特性が大幅に改善され数MHzで安定したインダクタンスとが得られる。
また、本発明の磁気デバイスは、リボン状磁性体層が接地される構造を具備していても良い。接地される構造とは、例えば図10に示したように端子5とは別に接地電極6を設ける際に、リボン状磁性体層と接地電極6が導通している状態を示す。この接地電極6は少なくとも1本以上あればよい。また、接地される構造を為し得る際は、リボン状磁性体層の幅>絶縁層の幅の関係とすることにより、接地電極6とリボン状磁性体層2の導通を取り易くする。また、剥き出しになったリボン状磁性体層には導電性粉末と樹脂の混合物(導電ペースト)を充填し、リボン状磁性体層間が同電位になるように(位相差が生じないように)導電性を具備させることが好ましい。なお、導電性粉末は、銅、銀等の金属粉末が挙げられる。また、導電ペーストを充填する際は、導体層3と導電ペーストが導通しないようにするものとする。
このように、本発明の磁気デバイスは、高周波特性に優れているのでインダクタ、ノイズフィルタ、トランス等の様々な磁気デバイスに好適である。また、従来の磁気デバイスのようにトロイダルコアに巻線を施す必要がないので体積を小さくすることができる。
このような磁気デバイスは、スイッチング電源に有効であり、1MHz以上の高周波領域で使用されるスイッチング電源に好適である。
Further, a plurality of conductor layers may be provided (see FIG. 7). Even when a plurality of conductor layers are provided, each conductor layer is arranged in parallel with the longitudinal direction of the ribbon-like magnetic layer. Further, the plurality of conductor layers may have overlapping portions. Further, a plurality of transformers can be realized by using a plurality of conductor layers as shown in FIG.
The ribbon-like magnetic layer, the insulating layer, and the conductor layer may each be a single layer, or may be a wound body after a plurality of layers are stacked. In the above description, the ribbon-like magnetic layer is sandwiched between insulating layers (resin films). For example, ribbon-like magnetic layer / insulating layer / conductor layer / insulating layer / ribbon-like magnetic layer / insulating layer. Thus, after constituting a laminated body in which a plurality of layers are provided, a wound body may be used (see FIG. 8).
Further, in the wound body, it is preferable to fill a gap (gap) in each layer with a mixture of magnetic powder and resin. When the mixture at the time of filling is pasty, it is easy to pack in the gap. When such a mixture is filled, the inductance value can be improved. The magnetic powder is preferably a material used for the ribbon-like magnetic layer described above. In particular, it is preferably the same as that used for the ribbon-like magnetic layer. The resin is preferably a silicone resin, an epoxy resin, a polyimide resin, or the like.
In the magnetic device of the present invention as described above, since the current direction coincides with the easy magnetization direction, the magnetic material is magnetized in the hard axis direction, and magnetization reversal is performed in the magnetization rotation mode. For this reason, the frequency characteristics are greatly improved, and a stable inductance can be obtained at several MHz.
The magnetic device of the present invention may have a structure in which the ribbon-like magnetic layer is grounded. The grounded structure indicates a state where the ribbon-like magnetic layer and the ground electrode 6 are electrically connected when the ground electrode 6 is provided separately from the terminal 5 as shown in FIG. There may be at least one ground electrode 6. Further, when a grounded structure can be achieved, the ground electrode 6 and the ribbon-shaped magnetic layer 2 can be easily connected by setting the relation of the width of the ribbon-shaped magnetic layer> the width of the insulating layer. Also, the ribbon-like magnetic layer that has been exposed is filled with a mixture of conductive powder and resin (conductive paste) so that the ribbon-like magnetic layer has the same potential (so as not to cause a phase difference). It is preferable to have the property. Examples of the conductive powder include metal powders such as copper and silver. In addition, when the conductive paste is filled, the conductor layer 3 and the conductive paste are prevented from conducting.
Thus, since the magnetic device of the present invention is excellent in high frequency characteristics, it is suitable for various magnetic devices such as inductors, noise filters, and transformers. Further, since it is not necessary to wind the toroidal core unlike the conventional magnetic device, the volume can be reduced.
Such a magnetic device is effective for a switching power supply and is suitable for a switching power supply used in a high frequency region of 1 MHz or higher.

(実施例1)
幅10mm×長さ600mm×厚さ25μmのCo74FeSi14(at%)アモルファス合金の溶湯急冷リボンを磁性体層として用いた。導体層は幅2mm×長さ600mm(+端子部)×厚さ30μmの銅箔のスリット材を用い、幅10mm×長さ600mm×厚さ25μm厚のポリイミドフィルムを絶縁層に用いた。これらを図4のように重ね合わせ巻回体を作製する(アモルファスリボンとその長手方向に平行に導体を配置し絶縁層を介して巻回)ことにより、直径12mmの図1に示したインダクタを作製した。このとき、磁性体層の長手方向が磁化容易方向と一致する様にした。
このような実施例1に係るインダクタに関して周波数特性を調べた。その結果を図2に示す。図2から明らかなように1MHz以上の高周波領域において、インダクタンス値の低下が見られず優れた高周波特性を有していることが分かる。
また、100kHz、励磁交流電圧0.1Vに固定し直流重畳電流値(A)を変えた場合のインダクタンス値の変化を調べた。その結果を図3に示す。図3から分かる通り、大電流でも高インダクタンスを維持できる。
このように、電流方向と磁化容易方向が一致する為、磁性体は磁化困難軸方向に磁化される事になり、磁化回転モードで磁化反転が行なわれる。また、磁化容易軸は形状磁気異方性により長手方向につきやすくなっておりその方向に材料の磁気異方性(結晶磁気異方性、誘導磁気異方性など)を重畳してもよい。
Example 1
A melt quench ribbon of Co 74 Fe 4 Si 8 B 14 (at%) amorphous alloy having a width of 10 mm, a length of 600 mm, and a thickness of 25 μm was used as the magnetic layer. The conductor layer was a copper foil slit material having a width of 2 mm × length of 600 mm (+ terminal portion) × thickness of 30 μm, and a polyimide film having a width of 10 mm × length of 600 mm × thickness of 25 μm was used for the insulating layer. These are laminated as shown in FIG. 4 to produce a wound body (amorphous ribbon and a conductor arranged in parallel to the longitudinal direction and wound through an insulating layer), whereby the inductor shown in FIG. Produced. At this time, the longitudinal direction of the magnetic layer was made to coincide with the easy magnetization direction.
The frequency characteristics of the inductor according to Example 1 were examined. The result is shown in FIG. As is apparent from FIG. 2, it can be seen that in a high frequency region of 1 MHz or more, the inductance value does not decrease and has excellent high frequency characteristics.
Further, the change in the inductance value when the DC superimposed current value (A) was changed while being fixed at 100 kHz and the excitation AC voltage 0.1 V was examined. The result is shown in FIG. As can be seen from FIG. 3, high inductance can be maintained even with a large current.
Thus, since the current direction and the easy magnetization direction coincide with each other, the magnetic material is magnetized in the hard magnetization axis direction, and magnetization reversal is performed in the magnetization rotation mode. Further, the easy axis of magnetization tends to be in the longitudinal direction due to the shape magnetic anisotropy, and the magnetic anisotropy (crystal magnetic anisotropy, induced magnetic anisotropy, etc.) of the material may be superimposed in that direction.

(比較例1)
実施例1と同様の材料を用い、アモルファスリボンの長手方向に対し垂直になるように導体層を巻回して直径12mmの比較例1に係るインダクタを作製した。比較例1に係るインダクタに関してインダクタンスの周波数特性を図5に示す。図5から周波数の増大とともに急激にインダクタンスが小さくなっている。これは磁化反転が磁壁移動により行われるためと考えられる。
(実施例2)
実施例1と同様の材料を用い、アモルファスリボンの長手方向に対し、導体層の角度を変えた場合のインダクタンス値を調べた。その結果を図6に示す。図6から分かる通り、アモルファスリボンの長手方向と導体層の角度が20°を超えて大きくなると高周波帯域でのインダクタンス値の低下が確認された。従って、アモルファスリボンの長手方向と導体層のなす角度は20°以下が好ましい範囲である。言い換えれば、磁化容易方向と導体長手方向は、磁化反転が主に磁化回転により実現すれば良いので完全に一致する必要は無く概略一致する様にすれば良いのである。
(実施例3〜5)
次に実施例1のインダクタを用いて、その空隙に磁性粉末と樹脂の混合物(磁性ペースト)を充填したものを実施例3、絶縁層として磁性粉末と樹脂の混合物シート(磁性シート)を用いたものを実施例4、実施例3と実施例4の両方の構成を具備したものを実施例5とした。各実施例に係るインダクタの100kHzにおけるインダクタンス値を調べた。その結果を表1に示す。
なお、磁性粉末としてはセンダスト粉(平均粒径10μm以下)、樹脂はシリコーン樹脂を用いた。
(Comparative Example 1)
Using the same material as in Example 1, a conductor layer was wound so as to be perpendicular to the longitudinal direction of the amorphous ribbon to produce an inductor according to Comparative Example 1 having a diameter of 12 mm. FIG. 5 shows the frequency characteristics of the inductance with respect to the inductor according to Comparative Example 1. From FIG. 5, the inductance decreases rapidly with increasing frequency. This is considered because magnetization reversal is performed by domain wall movement.
(Example 2)
Using the same material as in Example 1, the inductance value when the angle of the conductor layer was changed with respect to the longitudinal direction of the amorphous ribbon was examined. The result is shown in FIG. As can be seen from FIG. 6, when the angle between the longitudinal direction of the amorphous ribbon and the conductor layer exceeds 20 °, a decrease in the inductance value in the high frequency band was confirmed. Therefore, the angle between the longitudinal direction of the amorphous ribbon and the conductor layer is preferably 20 ° or less. In other words, the direction of easy magnetization and the longitudinal direction of the conductor need not be completely coincident with each other because the magnetization reversal may be realized mainly by the magnetization rotation.
(Examples 3 to 5)
Next, using the inductor of Example 1, the gap was filled with a mixture of magnetic powder and resin (magnetic paste) in Example 3, and a magnetic powder and resin mixture sheet (magnetic sheet) was used as the insulating layer. Example 5 was provided with both the configurations of Example 3 and Example 4 and Example 4. The inductance value at 100 kHz of the inductor according to each example was examined. The results are shown in Table 1.
Sendust powder (average particle size of 10 μm or less) was used as the magnetic powder, and silicone resin was used as the resin.

Figure 2007081239
Figure 2007081239

表1から分かる通り、磁性ペーストまたはおよび磁性シートを用いると、磁気効率が向上し、インダクタンス値が向上する。また、導体内部の磁束密度が低減し導体内部での渦電流損失が低減、よってデバイス損失が抑制できる。
(実施例6〜8)
次にノイズフィルタとして用いた例を示す。まず、実施例1と同形状の巻回体を用いたものを実施例6とした。
また、図7に示すように2本の導体を並列に置いたものを実施例7とする。
幅10mm×長さ600mm×厚さ25μmのCo74FeSi14(at%)アモルファス合金の溶湯急冷リボンを磁性体層として用いた。導体層は幅9.5mmの片面にCu箔(厚さ18μm)を貼り付けたポリイミドフィルム(厚さ25μm)を、導体幅2mm、導体間隔1mm、各テープ端から導体までの距離が2、2.5mmとなる様にエッチング加工したものを、9.5mm×長さ600mm×厚さ25μm厚のポリイミドフィルムを絶縁層に用いた。内部端子部を図9に示すように内径6mm外径8mmのビニール管を用いて取り出し、図1のように巻回し、直径15mmの図9に示したインダクタを作製した。このとき、磁性体層の長手方向が磁化容易方向と一致する様にした。また、図10に示したようにアモルファスリボン間に導体ペーストを埋め込み、アモルファスリボンを接地電極6とした。接地電極6とは端子5のように外部回路に接続するための端子ではなく、あくまで接地用の電極として機能するものである。
実施例6、7に係るノイズフィルタに関して減衰率の周波数特性を調べた。その結果を実施例6は図11、実施例7は図12に示した。
各図から分かる通り、各フィルタは、電流方向と磁化容易方向が一致する為、磁性体は磁化困難軸方向に磁化される事になり、磁化回転モードで磁化反転が行なわれる。このため周波数特性が大幅に改善される。このように本実施例にかかる磁気デバイスはインダクタやノイズフィルタなど様々な分野に適用できることから汎用性が高い。
図11に示す様に透過信号の減衰率は高周波帯域で大きくなり、効果的なlow pass filterが形成される。
また、図12には差動モード信号の透過信号の減衰率(SCC21)およびコモンモード信号の透過信号の減衰率(SDD21)を示す。10M〜数GHzの広い領域において、コモンモード信号に対する大きな減衰率を示し減衰率を示している。これは、実施例7(図12)が図8に示すように、2本の導体を絶縁層を介して対向させ、前記2つの導体を磁性体層で挟み込むことで大きな自己インダクタンス、相互インダクタンスおよびキャパシタ成分を得ることができるためである。
また、実施例8として図8に示したように(絶縁層/磁性体層/絶縁層/導体層/絶縁層/導体層)の積層体を巻回し2つの導体を絶縁層を介して対向させたものについて実験を行ったところ実施例7とほぼ同様の結果が得られた。
As can be seen from Table 1, when the magnetic paste or the magnetic sheet is used, the magnetic efficiency is improved and the inductance value is improved. In addition, the magnetic flux density inside the conductor is reduced, eddy current loss inside the conductor is reduced, and thus device loss can be suppressed.
(Examples 6 to 8)
Next, the example used as a noise filter is shown. First, Example 6 was obtained by using a wound body having the same shape as Example 1.
Further, as shown in FIG. 7, Example 7 is one in which two conductors are placed in parallel.
A melt quench ribbon of Co 74 Fe 4 Si 8 B 14 (at%) amorphous alloy having a width of 10 mm, a length of 600 mm, and a thickness of 25 μm was used as the magnetic layer. The conductor layer is a polyimide film (thickness 25 μm) in which a Cu foil (thickness 18 μm) is bonded on one side having a width of 9.5 mm, the conductor width 2 mm, the conductor spacing 1 mm, and the distance from each tape end to the conductor is 2, 2 A polyimide film having a thickness of 9.5 mm, a length of 600 mm, and a thickness of 25 μm was used for the insulating layer. The internal terminal portion was taken out using a vinyl tube having an inner diameter of 6 mm and an outer diameter of 8 mm as shown in FIG. 9 and wound as shown in FIG. 1 to produce the inductor shown in FIG. 9 having a diameter of 15 mm. At this time, the longitudinal direction of the magnetic layer was made to coincide with the easy magnetization direction. Further, as shown in FIG. 10, a conductive paste was embedded between the amorphous ribbons, and the amorphous ribbon was used as the ground electrode 6. The ground electrode 6 is not a terminal for connecting to an external circuit like the terminal 5 but functions as a ground electrode.
The frequency characteristics of the attenuation rate for the noise filters according to Examples 6 and 7 were examined. The results are shown in FIG. 11 for Example 6 and FIG. 12 for Example 7.
As can be seen from each figure, the current direction and the easy magnetization direction of each filter coincide with each other, so that the magnetic material is magnetized in the hard axis direction, and magnetization reversal is performed in the magnetization rotation mode. For this reason, the frequency characteristics are greatly improved. Thus, the magnetic device according to the present embodiment is highly versatile because it can be applied to various fields such as inductors and noise filters.
As shown in FIG. 11, the attenuation rate of the transmitted signal is increased in the high frequency band, and an effective low pass filter is formed.
FIG. 12 shows the transmission signal attenuation rate (SCC21) of the differential mode signal and the transmission signal attenuation rate (SDD21) of the common mode signal. In a wide region of 10 M to several GHz, a large attenuation rate with respect to the common mode signal is shown, indicating the attenuation rate. As shown in FIG. 8 in Example 7 (FIG. 12), the two conductors are opposed to each other through an insulating layer, and the two conductors are sandwiched between magnetic layers, so that a large self-inductance, mutual inductance, and This is because a capacitor component can be obtained.
Further, as shown in FIG. 8 as Example 8, a laminate of (insulating layer / magnetic layer / insulating layer / conductor layer / insulating layer / conductor layer) is wound so that the two conductors are opposed to each other through the insulating layer. As a result of experiments on the samples, almost the same results as in Example 7 were obtained.

本発明の磁気デバイスの一例を示す模式図Schematic diagram showing an example of the magnetic device of the present invention 実施例(インダクタ)のインダクタンス値の周波数特性の一例を示す図The figure which shows an example of the frequency characteristic of the inductance value of an Example (inductor) 実施例(インダクタ)の直流重畳特性の一例を示す図The figure which shows an example of the direct current superposition characteristic of an Example (inductor) 本発明の各層の積層形態の一例を示す模式図The schematic diagram which shows an example of the lamination | stacking form of each layer of this invention 比較例(従来インダクタ)のインダクタンスの周波数特性を示す図The figure which shows the frequency characteristic of the inductance of the comparative example (conventional inductor) 磁化容易方向とリボン長手方向のなす角度とインダクタンスの周波数特性の関係の一例を示す図The figure which shows an example of the relationship between the angle characteristic made by the easy magnetization direction and the ribbon longitudinal direction, and the frequency characteristic of the inductance 複数の導体層を配置するときの積層形態の一例を示す模式図Schematic diagram showing an example of a laminated form when a plurality of conductor layers are arranged 複数の導体層を配置するときの積層形態の他の一例を示す模式図The schematic diagram which shows another example of the lamination | stacking form when arrange | positioning a several conductor layer 電極の取り出し方の一例を示す図The figure which shows an example of how to take out an electrode 接地電極を設けた一例を示す図The figure which shows an example which provided the ground electrode 実施例6の減衰率の周波数特性を示す図The figure which shows the frequency characteristic of the attenuation factor of Example 6. 実施例7の減衰率の周波数特性を示す図The figure which shows the frequency characteristic of the attenuation factor of Example 7

符号の説明Explanation of symbols

1…磁気デバイス
2…リボン状磁性体層
3…導体層
4…絶縁層
5…端子部
6…接地電極
DESCRIPTION OF SYMBOLS 1 ... Magnetic device 2 ... Ribbon-like magnetic body layer 3 ... Conductor layer 4 ... Insulating layer 5 ... Terminal part 6 ... Ground electrode

Claims (10)

リボン状磁性体層とその長手方向に平行に配置された導体層を有する積層体の巻回体であることを特徴とする磁気デバイス。 A magnetic device comprising a laminated body having a ribbon-like magnetic body layer and a conductor layer arranged in parallel to the longitudinal direction thereof. 前記リボン状磁性体層の磁化容易方向が概略導体層長手方向と一致したことを特徴とする請求項1記載の磁気デバイス。 2. The magnetic device according to claim 1, wherein the direction of easy magnetization of the ribbon-like magnetic material layer substantially coincides with the longitudinal direction of the conductor layer. 前記巻回体の空隙を、磁性材料と樹脂の混合物で充填したことを特徴とする請求項1または請求項2のいずれか1項に記載の磁気デバイス。 3. The magnetic device according to claim 1, wherein a gap of the wound body is filled with a mixture of a magnetic material and a resin. 前記リボン状磁性体層が磁性材料と樹脂の混合物であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の磁気デバイス。 The magnetic device according to any one of claims 1 to 3, wherein the ribbon-like magnetic layer is a mixture of a magnetic material and a resin. 前記導体層が複数本の導体からなることを特徴とする請求項1乃至請求項4のいずれか1項に記載の磁気デバイス。 The magnetic device according to any one of claims 1 to 4, wherein the conductor layer includes a plurality of conductors. 前記リボン状磁性体層と前記導体層の間に絶縁性フィルムを介したことを特徴とする請求項1乃至請求項5のいずれか1項に記載の磁気デバイス。 The magnetic device according to claim 1, wherein an insulating film is interposed between the ribbon-like magnetic layer and the conductor layer. 前記リボン状磁性体層が、アモルファスリボンであることを特徴とする請求項1乃至請求項6のいずれか1項に記載の磁気デバイス。 The magnetic device according to any one of claims 1 to 6, wherein the ribbon-like magnetic layer is an amorphous ribbon. 前記リボン状磁性体層が接地されている構造を具備することを特徴とする請求項1乃至請求項7のいずれか1項に記載の磁気デバイス。 The magnetic device according to any one of claims 1 to 7, further comprising a structure in which the ribbon-like magnetic material layer is grounded. 前記磁気デバイスがインダクタ、ノイズフィルタ、トランスのいずれかであることを特徴とする請求項1乃至請求項8のいずれか1項に記載の磁気デバイス。 The magnetic device according to claim 1, wherein the magnetic device is an inductor, a noise filter, or a transformer. 請求項1乃至請求項9のいずれか1項に記載の磁気デバイスを用いたことを特徴とするスイッチング電源。 A switching power supply comprising the magnetic device according to claim 1.
JP2005268988A 2005-09-15 2005-09-15 Magnetic device and switching power source using it Pending JP2007081239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005268988A JP2007081239A (en) 2005-09-15 2005-09-15 Magnetic device and switching power source using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268988A JP2007081239A (en) 2005-09-15 2005-09-15 Magnetic device and switching power source using it

Publications (1)

Publication Number Publication Date
JP2007081239A true JP2007081239A (en) 2007-03-29

Family

ID=37941193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268988A Pending JP2007081239A (en) 2005-09-15 2005-09-15 Magnetic device and switching power source using it

Country Status (1)

Country Link
JP (1) JP2007081239A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211176A (en) * 2010-03-09 2011-10-20 Nitto Denko Corp Magnetic element for wireless power transmission and device for power supply
US8665048B2 (en) 2008-10-01 2014-03-04 3Di Power Limited Inductor for high frequency applications
WO2019132413A1 (en) * 2017-12-29 2019-07-04 엘지이노텍(주) Magnetic core, inductor, and emi filter comprising same
JP2020021903A (en) * 2018-08-03 2020-02-06 日本ケミコン株式会社 Coil and manufacturing method thereof
KR20200145816A (en) * 2017-12-29 2020-12-30 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same
KR20210122762A (en) * 2020-12-23 2021-10-12 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same
KR102661002B1 (en) 2024-01-26 2024-04-25 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8665048B2 (en) 2008-10-01 2014-03-04 3Di Power Limited Inductor for high frequency applications
JP2011211176A (en) * 2010-03-09 2011-10-20 Nitto Denko Corp Magnetic element for wireless power transmission and device for power supply
US9390849B2 (en) 2010-03-09 2016-07-12 Nitto Denko Corporation Magnetic element for wireless power transmission and power supply device
KR102197085B1 (en) 2017-12-29 2020-12-31 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same
KR20190081399A (en) * 2017-12-29 2019-07-09 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same
US11842831B2 (en) 2017-12-29 2023-12-12 Lg Innotek Co., Ltd. Magnetic core, inductor, and EMI filter comprising same
CN111566764A (en) * 2017-12-29 2020-08-21 Lg伊诺特有限公司 Magnetic core, inductor and EMI filter including the same
KR20200145816A (en) * 2017-12-29 2020-12-30 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same
WO2019132413A1 (en) * 2017-12-29 2019-07-04 엘지이노텍(주) Magnetic core, inductor, and emi filter comprising same
KR102310999B1 (en) 2017-12-29 2021-10-12 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same
CN111566764B (en) * 2017-12-29 2023-12-01 Lg伊诺特有限公司 Magnetic core, inductor and EMI filter including the same
US11289259B2 (en) 2017-12-29 2022-03-29 Lg Innotek Co., Ltd. Magnetic core, inductor, and EMI filter comprising same
JP7176281B2 (en) 2018-08-03 2022-11-22 日本ケミコン株式会社 Coil and its manufacturing method
JP2020021903A (en) * 2018-08-03 2020-02-06 日本ケミコン株式会社 Coil and manufacturing method thereof
KR102441952B1 (en) 2020-12-23 2022-09-07 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same
KR20230137859A (en) * 2020-12-23 2023-10-05 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same
KR20210122762A (en) * 2020-12-23 2021-10-12 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same
KR102631965B1 (en) 2020-12-23 2024-01-31 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same
KR102661002B1 (en) 2024-01-26 2024-04-25 엘지이노텍 주식회사 Magnetic core, inductor and emi filter comprising the same

Similar Documents

Publication Publication Date Title
JP6151185B2 (en) Magnetic sheet for non-contact power receiving device, non-contact power receiving device using the same, electronic device, and non-contact charging device
JPH09134820A (en) Planar magnetic device
WO2008007705A1 (en) Layered inductor
CN105074843A (en) Annular magnetic core using Fe iron-based nanocrystalline soft-magnetic alloy and magnetic component using said annular magnetic core
JP6508779B2 (en) Inductor containing magnetic composition and method of manufacturing the same
JP2007081239A (en) Magnetic device and switching power source using it
US20210383958A1 (en) Patterned magnetic cores
JP6504730B1 (en) Coil parts
JP3009686B2 (en) Inductor
JP3540733B2 (en) Planar magnetic element and semiconductor device using the same
JP5773250B2 (en) Inductor and two-phase interleaved control power factor correction converter
JP2001319813A (en) Inductive element
JP2008078177A (en) Inductor
JP2003257739A (en) High-frequency device
JP2000243637A (en) Thin inductor and thin dc-to-dc convertor using the same
US4845454A (en) Inductance element with core of magnetic thin films
US11562843B2 (en) Inductive filtering device with toric magnetic core
JPH11176653A (en) Magnetic core and magnetic parts using magnetic core
KR102262900B1 (en) Coil component
JP2003197436A (en) Core for magnetic element, magnetic element using the same, manufacturing method of the magnetic element and switching power supply using the magnetic element
WO1999003116A1 (en) Coil
JP2002043140A (en) Magnetic element
JP2001257120A (en) Multiple cylindrical choke coil
JPH10270253A (en) Inductance element and lc composite element
JP4825918B2 (en) Thin magnetic core manufacturing method and magnetic component manufacturing method