JP4627383B2 - Replaced steel deck bridge - Google Patents

Replaced steel deck bridge Download PDF

Info

Publication number
JP4627383B2
JP4627383B2 JP2001139862A JP2001139862A JP4627383B2 JP 4627383 B2 JP4627383 B2 JP 4627383B2 JP 2001139862 A JP2001139862 A JP 2001139862A JP 2001139862 A JP2001139862 A JP 2001139862A JP 4627383 B2 JP4627383 B2 JP 4627383B2
Authority
JP
Japan
Prior art keywords
steel
main girder
vertical rib
steel main
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001139862A
Other languages
Japanese (ja)
Other versions
JP2002332612A (en
Inventor
仁博 額谷
守 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI STRUCTURE MAINTENANCE AND IMPROVEMENT COMPANY
IHI Infrastructure Systems Co Ltd
Original Assignee
IHI STRUCTURE MAINTENANCE AND IMPROVEMENT COMPANY
IHI Infrastructure Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI STRUCTURE MAINTENANCE AND IMPROVEMENT COMPANY, IHI Infrastructure Systems Co Ltd filed Critical IHI STRUCTURE MAINTENANCE AND IMPROVEMENT COMPANY
Priority to JP2001139862A priority Critical patent/JP4627383B2/en
Publication of JP2002332612A publication Critical patent/JP2002332612A/en
Application granted granted Critical
Publication of JP4627383B2 publication Critical patent/JP4627383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鋼主桁によってコンクリート床版を支持して成るRC床版鋼桁橋のコンクリート床版を鋼床版に張り替えた張り替え鋼床版橋に関する。
【0002】
【従来の技術】
橋軸方向に延設された鋼主桁によって鉄筋コンクリート床版(以下RC床版と記す)を支持して成るRC床版鋼桁橋は、高架橋等の橋梁として多く用いられている。
【0003】
RC床版鋼桁橋は、RC床版は現場で型枠内に鉄筋を組んでコンクリートを打設することによって鋼主桁の上フランジの上に構築され、図8(A)に示すように、RC床版81と鋼主桁1とは鋼主桁1の上フランジ上面に植設されたジベル1AがRC床版81に埋没して剪断力を伝達可能に一体化結合される。
【0004】
近時、このようなRC床版鋼桁橋のRC床版の老朽化によって張り替えを要する橋梁が増加しつつある。
【0005】
RC床版の張り替えは、既存のRC床版81を切り刻んで除去し、鋼主桁1上に従前と同様のRC床版を再構築するのが一般的であるが、既存のRC床版の特に鋼主桁1との結合部81Aの解体除去は極めて面倒であり、また、旧床版除去後の新たなRC床版の構築も新製時と同様に型枠を設けて内部に鉄筋を組んでコンクリートを打設しなければならないために長い時間を要し、橋梁の床版張り替えの間行わざるを得ない交通規制期間が長期間に及ぶ。
【0006】
このため、RC床版除去後に、図8(B)に示すように鋼主桁1上に施工期間が短くて済む鋼床版82を結合設置することが提案されている。鋼床版82は、鋼板製のデッキプレート82Aの下面に複数の縦リブ82B,横リブ82Cが組み合わされて溶接一体化されて構成され、適宜大きさの単位ブロックに製造工場にて組み上げた後、施工現場に搬送して橋脚上に据え付けるいわゆるプレハブ工法によって施工でき、RC床版に比較して軽量に構成できると共に施工現場での工数が少なく工期も短くできる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記のごとき従来の鋼床版は、鋼板製デッキプレート82Aの下面に複数の縦リブ82Bと、これと直交する横リブ82Cを組み合わせて溶接によって一体化して形成するため、制作が面倒でコストが高いという問題がある。
【0008】
また、鋼床版は鋼主桁と橋軸水平方向の力を伝達可能に結合しなければならないがそのためには鋼主桁の上フランジ上面を平滑に形成する必要があり、この鋼主桁の上面処理が極めて難しいという問題があった。
【0009】
本発明は、上記解決課題に鑑みてなされたものであって、単純な構成で低コストに製作できると共に張り替え作業も容易な鋼床版橋の提供を目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成する本発明の張り替え鋼床版橋は、路床を形成する鋼板部材を、鋼主桁の上部に残存するコンクリート床版結合部の上側に配設し、
前記鋼板部材の裏面に、前記鋼主桁と対応する部位を除いて橋軸方向に延びる縦リブ部材を所定間隔で配置し、
これら縦リブ部材のうち前記鋼主桁の直近の両側の縦リブ部材と当該鋼主桁とを、垂直フランジと水平フランジとが直交して形成された水平力伝達結合部材の垂直フランジを前記鋼主桁に締結固定するとともに、水平フランジを前記直近の両側の縦リブ部材と締結固定して水平橋軸方向の力を伝達可能に構成する一方、
前記縦リブ部材の下側に非接触状態で当該縦リブ部材と直交する方向に延びる横方向構造部材を所定間隔で配設して両端部を鋼主桁に締結固定して架設し、
前記縦リブ部材のうち鋼主桁の直近の両側の縦リブ部材を除く縦リブ部材と前記横方向構造部材とを結合材で結合して前記路床を含む重量を縦リブ部材、結合材および横方向構造部材を介して鋼主桁に担荷支持可能に構成したことを特徴とする。
【0012】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態について説明する。
【0013】
図1は本発明に係る張り替え鋼床版橋の一構成例である橋梁の橋軸と直交する横断面図,図2は図1のA−A断面図,図3は図1のB−B断面図,図4は図2のC−C断面図,図5は床版の下側からの斜視図である。尚、図1,図4は略左半分を示して図中右側の側縁部は省略してある。
【0014】
図示橋梁は、鋼主桁1によって鋼床版10を支持して構成され、鋼床版10の上側にはアスファルト等によって所定厚さの舗装11が施工されている。
【0015】
鋼主桁1は、所定高さの腹板1Wの上下端縁にそれぞれ所定幅のフランジ(上フランジ1U,下フランジ1L)を備えたI形断面の鋼桁であって橋軸方向延設され、その下フランジ1Lが図示しない橋脚上に支承を介して載置されるものである。上フランジ1Uの上部には張り替え前のコンクリート床版の一部である結合部2が残存している。これは、張り替え前のコンクリート床版は上フランジ1Uに植設されたジベル1Aによって当該鋼主桁1と橋軸方向水平力を伝達可能に強固に結合されていて除去が困難で時間を要するため、表面の舗装を除去する程度でそのまま残存させているものである。
【0016】
鋼床版10は、路床部20と、横方向構成部材としての横リブ30と、該横リブ30と鋼主桁1とを結合する結合ブラケット40と、路床部20と横リブ30とを結合する結合部材としての多数の結合材50と、路床部20と鋼主桁1とを結合する水平力伝達結合部材としての水平力ブラケット60と、により構成され、横リブ30が結合ブラケット40を介して鋼主桁1間に架設されると共に、この横リブ30と路床部20とが多数の結合材50を介して結合され、更に、路床部20が水平力ブラケット60を介して鋼主桁1に結合されている。
【0017】
路床部20は、路床を形成する鋼板部材としてのデッキプレート21の下面に、鋼主桁1と対応する部位を除いて橋軸方向に延びる縦リブ部材としての縦リブ22が橋軸直交方向に所定間隔で配設されて構成されている。
【0018】
縦リブ22は、所定肉厚の鋼板によって下縁にフランジ22を有する断面形状L字状に形成され、その上端縁でデッキプレート21の下面に溶接固定されて橋軸と直交する方向に所定間隔で複数条配設されている。
【0019】
横リブ30は、所定板厚の鋼板によって所定幅の板状でその上縁と下縁にそれぞれ同方向に延設された所定幅のフランジを備えて形成されており、長手方向両端で断面形状L字状の結合ブラケット40を介して主桁の腹板Wに締結固定されて鋼主桁1の間に架設され、橋軸方向に所定間隔で配設されている。尚、その断面形状は、結合材50を締着し得る形状であれば適宜変更可能なものである。
【0020】
結合材50は、断面形状L字状の鋼材であって、一端側(下側)で横リブ30の板面に高張力ボルト&ナットによって締結されると共に、他端側(上側)が路床部20の縦リブ22に高張力ボルト&ナットによって締結固定され、横リブ30と各縦リブ22とを、横リブ30で路床部20の重量を担荷する(路床部20の重量を横リブ30に伝達する)ように結合している。
【0021】
水平力ブラケット60は、垂直フランジと水平フランジとが直交する断面形状のL字形であって、その垂直フランジが鋼主桁1の腹板Wに高張力ボルト&ナットによって締結固定されると共に、水平フランジが路床部20の直近の縦リブ22のフランジ22Fに高張力ボルト&ナットによって締結され、これによって、路床部20と鋼主桁1とを路床部20に作用する水平橋軸方向の力を鋼主桁1に伝達し得るように結合している。
【0022】
そして、鋼床版10は、路床部20のデッキプレート21を鋼主桁1の上フランジ1U上に残存する結合部2より上側に位置させて、鋼主桁1間に結合ブラケット40を介して架設された横リブ30及び水平力ブラケット60を介して鋼主桁1に結合して設けられている。路床部20と横リブ30とは多数の結合材50を介して結合されており、従って、路床部20は結合材50を介して横リブ30によって支持されているものである。
【0023】
上記のごとく構成された橋梁では、路床部20の重量を含む垂直方向の力は結合材50を介して横リブ30によって担荷して鋼主桁1に伝達すると共に、路床部20に作用する水平橋軸方向の力は水平力ブラケット60を介して鋼主桁に伝達する。つまり、垂直方向の力と水平橋軸方向の力の伝達経路がそれぞれ独立しているものである。
【0024】
このように、水平橋軸方向の力を水平力ブラケット60を介して鋼主桁に伝達するよう構成したことにより、構成を単純化できると共に、コンクリート床版の橋梁を鋼床版に張り替える際に、コンクリート床版の鋼主桁1との強固な結合部位(結合部2)の除去及び鋼主桁1の上面(上フランジ1U)の加工が不要となり、短かい工期で低コストに構築できる。その施工は、鋼主桁1の間に横リブ30を配設した後、コンクリート床版を除去し、工場にて適宜大きさに製作した路床部20をクレーンで吊り上げて横リブ30に結合することで行うことができる。その際、結合材50は、横リブ30又は路床部20の何れかに予め固定しておいても良いものである。
【0025】
尚、路床部20の構成及び当該路床部20と横リブ30との結合構造は、上記構成例に限らず適宜変更可能なものである。例えば、図6に横断面図を示すように、デッキプレート21の下面に配設された縦リブ22′を下縁に左右に突出するフランジ22F′を備えた断面形状逆T字状とし、そのフランジ22F′を横リブ30の上フランジ30Fに載置状態として直接締着するように構成しても良い。しかし、本構成例のごとく結合材50を介して結合して縦リブ22と横リブ30とを非接触とすることで、路床部20と横リブ30の位置合わせが不要となり各構成部材の精度管理及び施工が容易となる。
【0026】
また、図7に横断面図を示すように、横リブ30′を水平力ブラケット60′の間に架設するように構成しても良いものである。
【0027】
更に、上記構成例では、鋼主桁1と結合ブラケット40,結合ブラケット40と横リブ30,横リブ30と結合材50,結合材50と路床部20,鋼主桁1と水平力ブラケット60,水平力ブラケット60と路床部20の結合は、ボルト・ナットによって行うように構成されいるが、現場溶接によって結合する構成としても良いものである。
【0028】
【発明の効果】
以上述べたように、本発明に係る張り替え鋼床版橋によれば、路床を形成する鋼板部材が、鋼主桁間に架設された横方向構造部材によって担荷支持されて鋼主桁の上部に残存するコンクリート床版結合部の上側に配設されると共に、鋼板部材と鋼主桁とが水平力伝達結合部材を介して水平橋軸方向の力を伝達可能に結合されて構成されていることにより、垂直方向の力と水平橋軸方向の力の伝達経路がそれぞれ独立させて構成を単純化できると共に、コンクリート床版の橋梁を張り替える際にコンクリート床版の強固な結合部の除去及び鋼主桁上面の加工が不要となり、短かい工期で低コストに張り替えできるものである。
【0029】
また、鋼板部材の裏面には縦リブ部材が橋軸方向に延設されており、該縦リブ部材と横方向構造部材とは結合部材を介して結合されて構成されていることにより、縦リブ部材と横方向構造部材とを非接触化することで、鋼板部材と横方向構造部材の位置合わせが不要となって各構成部材の精度管理及び施工がより容易となる。
【図面の簡単な説明】
【図1】本発明に係る張り替え鋼床版橋の一構成例である橋梁の橋軸と直交する横断面図である。
【図2】図1のA−A断面図である。
【図3】図1のB−B断面図である。
【図4】図2のC−C断面図である。
【図5】床版の下側からの斜視図である。
【図6】他の構成例を示す橋梁の横断面である。
【図7】他の構成例を示す橋梁の横断面である。
【図8】従来例を示し、(A)はコンクリート床版鋼桁橋の横断面図,(B)はその鋼床版への張り替え説明図である。
【符号の説明】
1 鋼主桁
2 結合部(コンクリート床版結合部)
10 鋼床版
20 路床部
21 デッキプレート(鋼板部材)
22 縦リブ
30 横リブ(横方向構成部材)
50 結合材(結合部材)
60 水平力ブラケット(水平力伝達結合部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rehabilitated steel deck slab bridge in which a concrete deck of an RC floor slab steel girder bridge that is supported by a steel main girder is replaced with a steel deck.
[0002]
[Prior art]
RC floor slab steel girder bridges, in which reinforced concrete floor slabs (hereinafter referred to as RC floor slabs) are supported by steel main girders extending in the direction of the bridge axis, are often used as bridges for viaducts.
[0003]
RC floor slab steel girder bridge is constructed on the top flange of steel main girder by placing concrete with steel bars in the formwork on site, as shown in Fig. 8 (A) The RC floor slab 81 and the steel main girder 1 are integrally coupled so that a gibber 1A implanted on the upper surface of the upper flange of the steel main girder 1 is buried in the RC floor slab 81 so that a shearing force can be transmitted.
[0004]
Recently, the number of bridges that need to be replaced is increasing due to the deterioration of the RC floor slabs of such RC floor slab steel girder bridges.
[0005]
The RC floor slab is generally replaced by chopping and removing the existing RC floor slab 81 and reconstructing the same RC floor slab as before on the steel main girder 1. In particular, the dismantling and removal of the connecting portion 81A with the steel main girder 1 is extremely troublesome, and the construction of a new RC floor slab after the removal of the old floor slab is also provided with a rebar inside with a formwork as in the case of new production. It takes a long time to lay concrete in the building, and the traffic regulation period that must be done during the bridge slab replacement is long.
[0006]
For this reason, it has been proposed that after the RC floor slab is removed, a steel floor slab 82 that requires a shorter construction period on the steel main girder 1 is jointly installed as shown in FIG. 8 (B). The steel slab 82 is formed by welding and integrating a plurality of vertical ribs 82B and horizontal ribs 82C on the lower surface of a steel plate deck plate 82A, and is assembled into a unit block of an appropriate size after being assembled at a manufacturing plant. It can be constructed by the so-called prefabricated method that is transported to the construction site and installed on the pier, which can be constructed lighter than the RC floor slab, and can reduce the number of man-hours at the construction site and shorten the construction period.
[0007]
[Problems to be solved by the invention]
However, since the conventional steel slab as described above is formed integrally by welding a plurality of vertical ribs 82B and transverse ribs 82C orthogonal to the lower surface of the steel plate deck plate 82A, production is troublesome. There is a problem that the cost is high.
[0008]
In addition, the steel slab must be connected to the steel main girder so that the force in the horizontal direction of the bridge axis can be transmitted.To that end, the upper surface of the upper flange of the steel main girder must be formed smoothly. There was a problem that the top surface treatment was extremely difficult.
[0009]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a steel slab bridge that can be manufactured at a low cost with a simple configuration and can be easily replaced.
[0010]
[Means for Solving the Problems]
The rehabilitated steel deck slab bridge of the present invention that achieves the above object is characterized in that a steel plate member that forms a road bed is disposed on the upper side of the concrete slab joint remaining on the upper part of the steel main girder,
On the back surface of the steel plate member, vertical rib members extending in the bridge axis direction excluding a portion corresponding to the steel main girder are arranged at predetermined intervals,
Among these vertical rib members, the vertical rib members on both sides closest to the steel main girder and the steel main girder are connected to each other, and the vertical flange of the horizontal force transmission coupling member formed by orthogonally intersecting the vertical flange and the horizontal flange is the steel. While tightening and fixing to the main girder, the horizontal flange is fastened and fixed to the vertical rib members on both sides on the nearest side and configured to transmit the force in the horizontal bridge axis direction,
A lateral structural member extending in a direction orthogonal to the vertical rib member in a non-contact state below the vertical rib member is disposed at a predetermined interval, and both ends are fastened and fixed to a steel main girder.
Of the vertical rib members, the vertical rib members excluding the vertical rib members on both sides closest to the steel main girder and the horizontal structural member are combined with a bonding material , and the weight including the road bed is determined as the vertical rib member, the bonding material, and The steel main girder is configured so as to be able to carry a load via a lateral structural member.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0013]
FIG. 1 is a cross-sectional view orthogonal to the bridge axis of a bridge which is an example of the construction of a steel plate slab bridge according to the present invention, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 4 is a cross-sectional view taken along the line CC of FIG. 2, and FIG. 5 is a perspective view from the lower side of the floor slab. 1 and 4 show a substantially left half, and the right side edge in the figure is omitted.
[0014]
The illustrated bridge is configured by supporting a steel deck 10 by a steel main girder 1, and a pavement 11 having a predetermined thickness is constructed on the upper side of the steel deck 10 by asphalt or the like.
[0015]
The steel main girder 1 is a steel girder having an I-shaped cross section provided with flanges (upper flange 1U, lower flange 1L) having predetermined widths at upper and lower edges of the web 1W having a predetermined height, and extends in the direction of the bridge axis. The lower flange 1L is placed on a pier (not shown) via a support. At the upper portion of the upper flange 1U, the joint portion 2 that is a part of the concrete floor slab before being replaced remains. This is because the concrete slab before re-installation is firmly connected to the steel main girder 1 and the bridge axis direction horizontal force by the gibber 1A planted on the upper flange 1U, and it is difficult to remove and requires time. The surface pavement is removed as it is.
[0016]
The steel deck 10 includes a roadbed portion 20, a horizontal rib 30 as a lateral component, a coupling bracket 40 that connects the horizontal rib 30 and the steel main girder 1, a roadbed portion 20 and a horizontal rib 30. And a horizontal force bracket 60 as a horizontal force transmission connecting member for connecting the road bed 20 and the steel main girder 1. The lateral rib 30 is a connecting bracket. 40, the horizontal rib 30 and the road bed 20 are connected to each other through a large number of connecting members 50, and the road bed 20 is further connected to the horizontal force bracket 60 through the horizontal force bracket 60. Are connected to the steel main girder 1.
[0017]
The roadbed portion 20 has a vertical rib 22 as a vertical rib member extending in the bridge axis direction excluding a portion corresponding to the steel main girder 1 on a lower surface of a deck plate 21 as a steel plate member forming the roadbed, and orthogonal to the bridge axis. It is arranged at predetermined intervals in the direction.
[0018]
Vertical ribs 22 are formed on the cross-sectional shape L-shape having a flange 22 F on the lower edge by the steel of a predetermined thickness, the predetermined direction orthogonal fixed by welding to the lower surface of the deck plate 21 in the bridge axis at its upper edge A plurality of strips are arranged at intervals.
[0019]
The lateral ribs 30 are formed in a plate shape having a predetermined width by a steel plate having a predetermined plate thickness, and are provided with flanges having a predetermined width extending on the upper edge and the lower edge in the same direction. L-shaped coupling bracket 40 is fastened and fixed to the main girder of the webs 1 W through is bridged between the steel main beam 1 are arranged at predetermined intervals in the bridge axis direction. The cross-sectional shape can be changed as appropriate as long as the binding material 50 can be fastened.
[0020]
The binding material 50 is a steel material having an L-shaped cross section, and is fastened to the plate surface of the lateral rib 30 on one end side (lower side) by a high-tensile bolt and nut, and the other end side (upper side) is a roadbed. Fastened to the vertical ribs 22 of the portion 20 by high tension bolts and nuts, and the horizontal ribs 30 and the vertical ribs 22 are loaded with the weight of the roadbed portion 20 by the horizontal ribs 30 (the weight of the roadbed portion 20 is reduced). Are transmitted to the lateral rib 30).
[0021]
The horizontal force bracket 60 is L-shaped with a cross-sectional shape in which the vertical flange and the horizontal flange are orthogonal to each other, and the vertical flange is fastened and fixed to the belly plate 1 W of the steel main girder 1 by high tension bolts and nuts. The horizontal flange is fastened to the flange 22F of the vertical rib 22 immediately adjacent to the roadbed 20 by high-tensile bolts and nuts, thereby causing the roadbed 20 and the steel main girder 1 to act on the roadbed 20. The directional force is coupled so as to be transmitted to the steel main beam 1.
[0022]
And the steel deck 10 is positioned above the connecting part 2 remaining on the upper flange 1U of the steel main girder 1 with the deck plate 21 of the road bed part 20 interposed between the steel main girder 1 via the connecting bracket 40. The steel main girder 1 is provided through a lateral rib 30 and a horizontal force bracket 60 that are erected. The roadbed portion 20 and the lateral rib 30 are coupled to each other via a large number of bonding materials 50, and therefore the roadbed portion 20 is supported by the lateral ribs 30 via the bonding material 50.
[0023]
In the bridge configured as described above, the vertical force including the weight of the roadbed portion 20 is carried by the lateral ribs 30 via the bonding material 50 and transmitted to the steel main girder 1 and also to the roadbed portion 20. The acting force in the horizontal bridge axis direction is transmitted to the steel main beam 1 via the horizontal force bracket 60. That is, the transmission path for the force in the vertical direction and the force in the direction of the horizontal bridge axis is independent of each other.
[0024]
As described above, the configuration in which the force in the horizontal bridge axial direction is transmitted to the steel main girder 1 via the horizontal force bracket 60 can simplify the configuration and replace the bridge of the concrete deck with the steel deck. In this case, it is not necessary to remove the strong joint part (joint part 2) with the steel main girder 1 of the concrete floor slab and to process the upper surface of the steel main girder 1 (upper flange 1U). it can. For the construction, after arranging the horizontal ribs 30 between the steel main girders 1, the concrete floor slab is removed, and the roadbed 20 manufactured to an appropriate size at the factory is lifted with a crane and joined to the horizontal ribs 30. Can be done. At this time, the binding material 50 may be fixed in advance to either the lateral rib 30 or the road bed portion 20.
[0025]
In addition, the structure of the roadbed part 20 and the connection structure of the roadbed part 20 and the lateral rib 30 are not limited to the above-described configuration example but can be changed as appropriate. For example, as shown in a cross-sectional view in FIG. 6, a vertical rib 22 'disposed on the lower surface of the deck plate 21 is formed into an inverted T-shaped cross section having a flange 22F' protruding left and right at the lower edge. The flange 22F ′ may be configured to be fastened directly to the upper flange 30F of the lateral rib 30 in a mounted state. However, as shown in this configuration example, the vertical ribs 22 and the horizontal ribs 30 are non-contacted by being bonded via the bonding material 50, so that the alignment of the road bed 20 and the horizontal ribs 30 becomes unnecessary. Accuracy control and construction become easy.
[0026]
Further, as shown in the cross-sectional view of FIG. 7, the lateral rib 30 'may be constructed between the horizontal force brackets 60'.
[0027]
Further, in the above configuration example, the steel main girder 1 and the coupling bracket 40, the coupling bracket 40 and the lateral rib 30, the lateral rib 30 and the coupling material 50, the coupling material 50 and the road bed 20, the steel main girder 1 and the horizontal force bracket 60. , The horizontal force bracket 60 and the road bed 20 are coupled by bolts and nuts, but may be coupled by field welding.
[0028]
【The invention's effect】
As described above, according to the upholstered steel slab bridge according to the present invention, the steel plate member forming the road bed is supported and supported by the lateral structural member laid between the steel main girders. The steel plate member and the steel main girder are arranged on the upper side of the concrete floor slab joint remaining on the upper part, and are configured so that the force in the horizontal bridge axis direction can be transmitted via the horizontal force transmission joint member. This makes it possible to simplify the structure by making the transmission path for the vertical force and the horizontal bridge axis independent, and to remove the strong joints of the concrete slab when replacing the concrete slab bridge. In addition, the processing of the upper surface of the steel main girder is unnecessary, and it can be replaced at a low cost with a short construction period.
[0029]
In addition, a longitudinal rib member extends in the bridge axis direction on the back surface of the steel plate member, and the longitudinal rib member and the lateral structural member are coupled via a coupling member, whereby the longitudinal rib member By making the member and the lateral structural member non-contact, the alignment of the steel plate member and the lateral structural member is not required, and the accuracy control and construction of each component member becomes easier.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view orthogonal to a bridge axis of a bridge which is an example of a configuration of a rehabilitated steel floor slab bridge according to the present invention.
FIG. 2 is a cross-sectional view taken along the line AA of FIG.
3 is a cross-sectional view taken along the line BB in FIG.
4 is a cross-sectional view taken along the line CC of FIG.
FIG. 5 is a perspective view from the underside of the floor slab.
FIG. 6 is a cross section of a bridge showing another configuration example.
FIG. 7 is a cross section of a bridge showing another configuration example.
8A and 8B show a conventional example, in which FIG. 8A is a transverse cross-sectional view of a concrete floor slab steel girder bridge, and FIG.
[Explanation of symbols]
1 Steel main girder 2 Joint (concrete floor slab joint)
10 Steel deck 20 Roadbed 21 Deck plate (steel plate member)
22 Vertical rib 30 Horizontal rib (transverse component)
50 Binder (Bonding member)
60 Horizontal force bracket (horizontal force transmission coupling member)

Claims (1)

路床を形成する鋼板部材を、鋼主桁の上部に残存するコンクリート床版結合部の上側に配設し、
前記鋼板部材の裏面に、前記鋼主桁と対応する部位を除いて橋軸方向に延びる縦リブ部材を所定間隔で配置し、
これら縦リブ部材のうち前記鋼主桁の直近の両側の縦リブ部材と当該鋼主桁とを、垂直フランジと水平フランジとが直交して形成された水平力伝達結合部材の垂直フランジを前記鋼主桁に締結固定するとともに、水平フランジを前記直近の両側の縦リブ部材と締結固定して水平橋軸方向の力を伝達可能に構成する一方、
前記縦リブ部材の下側に非接触状態で当該縦リブ部材と直交する方向に延びる横方向構造部材を所定間隔で配設して両端部を鋼主桁に締結固定して架設し、
前記縦リブ部材のうち鋼主桁の直近の両側の縦リブ部材を除く縦リブ部材と前記横方向構造部材とを結合材で結合して前記路床を含む重量を縦リブ部材、結合材および横方向構造部材を介して鋼主桁に担荷支持可能に構成したことを特徴とする張り替え鋼床版橋。
The steel plate member that forms the road bed is disposed on the upper side of the concrete slab joint remaining on the upper part of the steel main girder,
On the back surface of the steel plate member, vertical rib members extending in the bridge axis direction excluding a portion corresponding to the steel main girder are arranged at a predetermined interval,
Of these vertical rib members, the vertical rib members on both sides closest to the steel main girder and the steel main girder are connected to each other, and the vertical flange of the horizontal force transmission coupling member formed by orthogonally intersecting the vertical flange and the horizontal flange is the steel. While fastening and fixing to the main girder, the horizontal flange is fastened and fixed to the vertical rib members on both sides on the nearest side and configured to transmit the force in the horizontal bridge axis direction,
A lateral structural member extending in a direction orthogonal to the vertical rib member in a non-contact state below the vertical rib member is disposed at a predetermined interval, and both ends are fastened and fixed to a steel main girder, and installed.
The vertical rib member excluding the vertical rib members on both sides closest to the steel main girder and the lateral structural member are combined with a bonding material , and the weight including the road bed is determined as the vertical rib member, the bonding material, and A rehabilitated steel deck slab bridge that is configured to be able to carry a load on a steel main girder via a lateral structural member.
JP2001139862A 2001-05-10 2001-05-10 Replaced steel deck bridge Expired - Lifetime JP4627383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001139862A JP4627383B2 (en) 2001-05-10 2001-05-10 Replaced steel deck bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001139862A JP4627383B2 (en) 2001-05-10 2001-05-10 Replaced steel deck bridge

Publications (2)

Publication Number Publication Date
JP2002332612A JP2002332612A (en) 2002-11-22
JP4627383B2 true JP4627383B2 (en) 2011-02-09

Family

ID=18986565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001139862A Expired - Lifetime JP4627383B2 (en) 2001-05-10 2001-05-10 Replaced steel deck bridge

Country Status (1)

Country Link
JP (1) JP4627383B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321267B1 (en) 2011-12-23 2013-10-28 김영호 Cross-section stiffiness enhancement and lining board installation area reduction having steel girder used temporary bridge and construction method of the same
JP6042622B2 (en) * 2012-03-09 2016-12-14 株式会社横河住金ブリッジ Floor slab structure using sandwich type composite slab panel
JP5848716B2 (en) * 2013-01-11 2016-01-27 株式会社駒井ハルテック Floor slab replacement method
JP6541520B2 (en) * 2015-09-08 2019-07-10 日鉄エンジニアリング株式会社 Renewed construction method of existing road and rebuilt road
JP6939731B2 (en) * 2018-07-24 2021-09-22 Jfeエンジニアリング株式会社 Widening bracket structure and floor slab widening structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192109A (en) * 1983-04-12 1984-10-31 株式会社宮地鉄工所 Synthetic beam structure
JPH02186001A (en) * 1989-01-13 1990-07-20 Doboku Kenkyu Center Restoration of reinforced concrete floor in bridge
JPH03271408A (en) * 1990-03-20 1991-12-03 Ishikawajima Harima Heavy Ind Co Ltd Steel floor bed for repairing bridge and method of attaching thereof
JPH10196025A (en) * 1996-11-18 1998-07-28 Natl House Ind Co Ltd Floor panel fitting structure
JP2001081726A (en) * 1999-09-16 2001-03-27 Ishikawajima Harima Heavy Ind Co Ltd Method and structure for re-laying steel floor slab of concrete floor slab bridge

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480605A (en) * 1987-06-17 1989-03-27 Sho Bond Const Method of installing steel floor block panel and composite girder for steel floor block panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192109A (en) * 1983-04-12 1984-10-31 株式会社宮地鉄工所 Synthetic beam structure
JPH02186001A (en) * 1989-01-13 1990-07-20 Doboku Kenkyu Center Restoration of reinforced concrete floor in bridge
JPH03271408A (en) * 1990-03-20 1991-12-03 Ishikawajima Harima Heavy Ind Co Ltd Steel floor bed for repairing bridge and method of attaching thereof
JPH10196025A (en) * 1996-11-18 1998-07-28 Natl House Ind Co Ltd Floor panel fitting structure
JP2001081726A (en) * 1999-09-16 2001-03-27 Ishikawajima Harima Heavy Ind Co Ltd Method and structure for re-laying steel floor slab of concrete floor slab bridge

Also Published As

Publication number Publication date
JP2002332612A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP4625763B2 (en) Composite structure of main girder and precast slab
KR101107826B1 (en) Slab-type box girder made by precast concrete and method constructing the bridge therewith
JP2004137686A (en) Composite panel structure, panel bridge structure and construction method for continuous composite girder bridge
JP4416337B2 (en) Construction method of the replacement composite floor slab girder bridge
JP2003253621A (en) Continuous beam structure for continuing existing simple beam bridge
JP4627383B2 (en) Replaced steel deck bridge
JP3737475B2 (en) Box girder bridge structure and construction method
KR100565384B1 (en) Structure of continuous PSC beam with connection member and steel cross beam and bridge construction method using the same
JP2523447B2 (en) Floor slab installation structure in bridge
JP2007107339A (en) Structure and its construction method for steel concrete compound rigid frame bridge
JP4359731B2 (en) Method of replacing concrete floor slab bridge with steel slab and structure of replacing concrete floor slab bridge with steel slab
CN111893859B (en) Combined T-shaped bridge deck continuous structure and construction method
KR102325276B1 (en) Half Precast Concrete continuous slab and construction method of the same
JP3579167B2 (en) Deck for road surface and its laying method
JP2008231688A (en) Bridge structure using composite floor slab, its construction method, and form for composite floor slab
JP4977110B2 (en) Composite digit structure and composite digit construction method
JP2006112086A (en) Structure of bridge and method for rebuilding bridge
JP6655746B2 (en) Bridge structure and floor slab replacement method
JP6425848B1 (en) Bridge replacement method
JP2002173911A (en) Re-covering execution method for steel floorslab and concrete floorslab
KR102568981B1 (en) Composite Girder Structure using Precast Form and its Construction Method
JP2001049616A (en) Precast pc web for use in concrete bridge and prestressed concrete bridge having the pc web
JPH11303022A (en) Bridge composite floor slab
KR101044469B1 (en) Combined projection beam and prestressed concrete girder
JP5295198B2 (en) Composite floor slab and continuous girder bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term