JP2004137686A - Composite panel structure, panel bridge structure and construction method for continuous composite girder bridge - Google Patents

Composite panel structure, panel bridge structure and construction method for continuous composite girder bridge Download PDF

Info

Publication number
JP2004137686A
JP2004137686A JP2002300882A JP2002300882A JP2004137686A JP 2004137686 A JP2004137686 A JP 2004137686A JP 2002300882 A JP2002300882 A JP 2002300882A JP 2002300882 A JP2002300882 A JP 2002300882A JP 2004137686 A JP2004137686 A JP 2004137686A
Authority
JP
Japan
Prior art keywords
bridge
panel
girder
composite panel
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002300882A
Other languages
Japanese (ja)
Other versions
JP3908642B2 (en
Inventor
Takahito Fujikawa
藤川 敬人
Nobuo Sekiguchi
関口 信雄
Nobuaki Sakurai
櫻井 信彰
Shigeki Mizukami
水上 繁樹
Original Assignee
Nippon Steel Corp
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, 新日本製鐵株式会社 filed Critical Nippon Steel Corp
Priority to JP2002300882A priority Critical patent/JP3908642B2/en
Publication of JP2004137686A publication Critical patent/JP2004137686A/en
Application granted granted Critical
Publication of JP3908642B2 publication Critical patent/JP3908642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite panel structure of steel and concrete, having required rigidity and reduced in manufacturing cost, and a composite panel bridge and a construction method for a continuous composite girder bridge using a composite panel for reducing the term of work in a job site and simplifying the construction using the composite panel. <P>SOLUTION: In this composite panel, upper surfaces 13 of a plurality of stringers 3 disposed at intervals are fixed to the lower surface of a bottom steel plate 2, and a plurality of transverse ribs 4 disposed at intervals in the direction intersecting perpendicularly to the stringers 3 are fixed to the upper surface of the bottom steel plate 2, and the composite panel is filled with bed plate concrete 5 to bury the transverse ribs 4. The composite panel is supported on a cross beam by a shearing member projected in the axial direction of a bridge provided on upper ends of the stringers 3 as main girders and a splice plate, and the side of the cross beam and the end of the composite panel 1 are integrally connected by a bearing pressure plate 10 mounted on the lower end of the stringer 3, a connecting means mounted on the side of the cross beam and the end of the composite panel 1, and concrete filling the periphery to construct the continuous girder. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、道路橋、高架橋、歩道橋や鉄道橋等の新設または架け替えに適用される床版と縦桁を一体化した鋼・コンクリートの合成パネル構造とこの合成パネルを用いたパネル橋梁構造ならびに合成パネルを用いた連続合成桁橋の施工方法に関する。
【0002】
【従来の技術】
従来から比較的小スパンの道路橋や鉄道橋等においては、プレテンション方式の単純床版橋(プレテン床版橋)や単純T桁橋(プレテンT桁橋)等のプレキャストコンクリート橋が知られている。また、鋼橋としては鈑桁やH型鋼からなる主桁を用いたH形鋼橋梁がある。
【0003】
これらの橋梁は構造面、施工性、メンテナンス性等においてそれぞれ特徴を有するが、H形鋼橋梁は標準化された圧延H型鋼製品を用いた主桁上に床版を組立可能であるため、施工が簡単で工期短縮が図れ、しかも軽量化できる点で有利である。
【0004】
鈑桁橋梁やH形鋼橋梁は主桁や横桁等の主構造と床版構造で構成されており、主桁上に配置される床版は現地施工される鉄筋コンクリート床版や鋼製型枠と補強鋼材がプレファブ化されたグレーチング床版等がある。
【0005】
しかし、従来の鈑桁橋梁は多くの主構造部材で構成されており、加工量が多くコストアップの要因になっている。また、主構造の架設は支保工や足場を使用して現場で高力ボルトや溶接で接続されるため、特殊な技能と品質管理が求められる。そして架設工程完了後に形状確認をしてから床版施工に移るのが一般的であり、現場工期を短縮できる鋼橋の特長が活かせない場合もある。特に型枠作業の必要な鉄筋コンクリート床版の場合にはかなりの工期が必要である。橋の架け替えや市街地施工等で工期短縮のニーズが大きい場合にはグレーチング床版、合成床版、鋼床版桁等が用いられている。
【0006】
また、最近は型鋼やトラス等の鋼材とコンクリートからなる合成床版橋梁等が多数提案されている。
【0007】
例えば特開平11−166208号公報(特許文献1)に開示されているものは、鋼板製の上面板と下面板が内リブを介して所定間隔で結合されてなる床版鋼殻体の内部にコンクリートを充填されて合成床版が形成され、この合成床版が桁組の上面に締結ボルトで締結された橋梁である。上記桁組は主桁と、主桁の横倒れ座屈防止や床版荷重を縦桁に分散化するための横桁で構成されている。
【0008】
また、特開2002−4221号公報(特許文献2)に開示されている橋梁は、底鋼板の上面に橋軸直角方向に配置した補強材(平鋼板)の内、2本の主桁間に位置する補強材を上方に向けた凸湾曲状(アーチ)とし、底鋼板と補強材の間に空間を形成して床版コンクリートにひび割れが発生し難くしたものである。この橋梁も主桁は横桁で連結されている。
【0009】
なお、通常の橋梁では主桁と別体として製作された合成床版を主桁上に載せて組立られるが、床版のみ用いた床版橋がある。
【0010】
床版橋の従来例としては、例えば特開平9−221717号公報(特許文献3)に開示されている。これは直線形鋼矢板の底板上にH形鋼またはCT形鋼の縦桁部材を複数結合した鋼製パネルと、直線形鋼矢板に設けた側板(枠体)をPC鋼材等で連結し、場所打ちコンクリートを打設して構成したものである。
【0011】
【特許文献1】
特開平11−166208号公報
【特許文献2】
特開2002−4221号公報
【特許文献3】
特開平9−221717号公報
【0012】
【発明が解決しようとする課題】
従来技術における鈑桁橋梁は構成部材が多く、架設時に支保工や足場を使用するため工期が長くコスト高であった。また、H形鋼橋梁と合成床版の組み合わせは、H型鋼からなる主桁と床版が別体となっているため、施工時に橋台(または橋脚)間に主桁を架設した後に床版を設置するため2工程必要であった。
【0013】
また、前記特開平11−166208号公報の合成床版は、上面鋼板と下面鋼板の鋼殻内にコンクリートを充填するものであるためコンクリートの充填性を確保するのが難しく鋼・コンクリートの合成効果に課題があり、合成床版は主桁と横桁からなる桁組の上面に締結ボルトで締結する必要があるため、主桁設置、横桁接合、合成床版締結と3工程必要となると共に横桁組立時に桁下に作業足場が必要となる課題もあった。
【0014】
特開2002−4221号公報の合成床版は、2本の主桁を用いた構造物に適用が限られ、主桁の横倒れ座屈防止や床版荷重の分散化のために横桁を用いており、また、前記の合成床版と同様に主桁と別体とされているため施工工程が多くなると共に横桁組立時に桁下に作業足場が必要となる課題がある。
【0015】
特開平9−221717号公報で例示する床版橋は、主桁が床版内に組み込まれ一体とされるため、設置工程は1工程で済む有利性はあるが、スパンが長くなると床版厚さが厚くなり自重が重くなるため数m程度の小規模橋梁や桁下空間に制限を受ける橋梁等に使用が限られている。
【0016】
また、多径間の橋梁構造の形式としては床版に主桁作用を分担させる連続合成桁橋にした方がコスト面で有利になる。しかし、連続桁橋にする場合は橋梁支点部における高結合強度を発揮する連続化と、負曲げモーメントによる床版コンクリートのひび割れを防止する必要がある。このため、従来技術においては、支間部のコンクリートを先行打設し養生(固化)後に支点部コンクリートを打設する方法や、コンクリートの打設時に一時的に支点部主桁をジャッキアップする施工方法を用いた連続桁橋における床版コンクリートの打設手段としたり、支点部の主桁上部にプレストレスを導入したり、補強鉄筋を多数配設する手段等が採用されていた。
【0017】
これらの従来技術による連続化手段では施工期間が長くなったり、大掛かりな設備を準備する必要が生じ施工費の増大を招く課題があった。
【0018】
本発明は、所要の剛性を有し、且つ製作コストを低減した鋼・コンクリートの合成パネル構造と、この合成パネルを用いて現地工期短縮および施工の単純化を図った合成パネル橋梁および合成パネルを用いた連続合成桁橋梁の施工方法を提供することを目的としたものである。
【0019】
【課題を解決するための手段】
本発明の構成は以下を要旨とするものである。
請求項1の発明は、底鋼板の下面に間隔をおいて配置した複数の縦桁の上面が固定され、該底鋼板の上面に前記縦桁と直交方向に複数の横リブが間隔をおいて固定配置され、該横リブを埋没するように床版コンクリートが充填されていることを特徴とする合成パネル構造である。
【0020】
請求項2の発明は、上記請求項1の合成パネルが縦桁方向と直交方向に複数に分割された分割パネルと中間パネルで構成されており、前記各分割パネルは縦桁を有し、縦桁を有しない中間パネルは底鋼板上面に固定された横リブが両側の分割パネルに向かって突出されており、分割パネルと中間パネルが前記横リブを介し床版コンクリートで結合されている合成パネル構造である。
【0021】
請求項3の発明は、上記請求項1または請求項2記載の合成パネルの縦桁が橋梁主桁として用いられ、縦桁端部に橋梁の橋台や橋脚等の支点に支持された横梁が固定されていることを特徴とする合成パネルを用いたパネル橋梁構造である。
【0022】
請求項4の発明は、複数の合成パネルを橋軸方向の支点間に配置した連続桁橋であって、支点上に配設された横梁に隣接して橋軸方向の前後に合成パネルが配設され、該合成パネルは主桁となる縦桁上端に設けた橋軸方向に突出するせん断部材と添接板で前記横梁に支持され、且つ縦桁下端部に設けた支圧板および横梁の側部と合成パネルの端部に設けた結合手段と周りに充填されているコンクリートで横梁と合成パネル端部が一体的に結合されて連続桁とされている請求項1または請求項2記載の合成パネルを用いたパネル橋梁構造。
【0023】
請求項5の発明は、上記請求項4の発明に係る連続桁形式の合成パネル橋梁の施工方法であって、
▲1▼橋梁の支点上に横梁を配設し、
▲2▼各横梁上端の橋軸方向の前後に、主桁となる縦桁上端に設けた橋軸方向に突出するせん断部材を係止して合成パネルを載置し、
▲3▼次に、横梁上端と合成パネル上端部を添接板で連結し、
▲4▼各合成パネルを単純梁の支持状態で、各合成パネルの底鋼板上の床版コンクリートおよび支点部の横梁側面と、支圧板および結合手段を設けた合成パネルの端部間にコンクリートを充填し、横梁と合成パネル端部を一体的に結合して連続桁とする合成パネルを用いた連続合成桁橋の施工方法である。
【0024】
【発明の実施形態】
以下、本発明の実施形態を説明する。
図1は本発明に係る合成パネル構造であって、橋梁用の床版として適用した実施形態を示す斜視図である。図2は合成パネルを縦桁方向と直交方向(幅員方向)に分割した分割パネル(a)と中間パネル(b)で構成する実施形態の斜視図である。
【0025】
本発明に係る合成パネル1は、底鋼板2とその下面に間隔をおいて配置した複数の縦桁3と、該底鋼板2の上面に縦桁3と直交方向に配置した横リブ4と、底鋼板2の上部に打設した床版コンクリート5を基本構成とする。
【0026】
前記縦桁3は主としてH形鋼(圧延材・ビルトH)が用いられ、他に大型溝形鋼、I形鋼、CT鋼等の形鋼や厚板で構成するI桁や箱桁を用いることも出来る。この縦桁3の寸法諸元・本数は支持点のスパンや死荷重・活荷重に応じて決定される。
【0027】
また、横リブ4は床版の補剛材および合成桁のジベルの役割も果たすもので、縦桁3より小寸法の各種形鋼(例えばH形鋼、溝形鋼、I形鋼、CT鋼、帯鋼等)が用いられる。横リブ4の側面に適宜ピッチで孔6を設けると、床版コンクリート5の充填性を良好にできると共に、ジベル作用によって鋼・コンクリートの合成効果を高めることが出来る。
【0028】
縦桁3と横リブ4の間に挟まれた底鋼板2は、床版コンクリート5を打設する際の型枠を兼用し、自身が主桁としての縦桁3と横リブ4を固定する結合材となり床版コンクリート5と付着して合成パネル1を構成する重要な構造部材である。
【0029】
なお、底鋼板2上のコンクリート5は現地打設するか、または工場にてプレキャストしてもよい。図中の符号7は幅員端部の側板で、底鋼板2上に床版コンクリート5を打設する際に側面の型枠となるもので、横リブ4上に配筋されている鉄筋は配力筋8である。また、縦桁3のウエブ端部に設けられた孔9、支圧板10、型枠11は、橋梁の支点に設置される横梁12(図4参照)と結合するための部材である。
【0030】
底鋼板2の下面に配置された縦桁3は上面(フランジ)13が底鋼板2の下面に溶接によって固定され、底鋼板2の上面に配置された横リブ4も同様に隅肉溶接によって固定されている。底鋼板2上部の床版コンクリート5は横リブ4および横リブ4と直交して配筋された配力筋8を、必要なかぶりを持って埋没充填するように打設されている。
【0031】
小規模の合成パネルでは分割する必要はないが、大型の合成パネルになると、輸送時に形状・重量の制約を受けるためパネルを分割して輸送し、現地で結合する必要がある。
【0032】
従来の合成パネルや鋼床版は縦桁と別体とされていたため、縦桁方向(橋軸方向)に分割したパネル(鋼床版)を先行設置した縦桁上に並べて結合されていたが、本発明の合成パネル1は、この実施形態のように縦桁方向と直交方向に複数に分割した分割パネル15を現地で中間パネル16を用いて結合する。
【0033】
前記分割パネル15は構造部材とするため望ましくは2本以上の縦桁3を有するようにし、中間パネル16は両側の分割パネル15を結合するものである。中間パネル16の結合手段は、中間パネル16の底鋼板2の上面に固定した横リブ4を両側の分割パネル15の底鋼板2上面に突出延長し床版コンクリート5の付着によることとしている。
【0034】
図2は分割パネル15と中間パネル16を分解した状態で示したものである。各分割パネル15は底鋼板2の下面に2本以上の縦桁3の上端を固定し、底鋼板2の上面には、縦桁3と直交方向に間隔をおいて横リブ4を固定している。
【0035】
底鋼板2の端部に設けられた受け材17は、中間パネル16の端部との隙間を覆うもので、床版コンクリート5の打設時に漏れが生じないようにシールされる。
【0036】
中間パネル16は縦桁3を有せず、隣り合う分割パネル15間に収まる幅とした底鋼板2の上面に横リブ4を固定し両側の分割パネル方向に突出させている。
【0037】
中間パネル16に固定した横リブ4は、両側の分割パネル15の横リブ4の配置とずれた位置に設けられている。この中間パネル16は、分割パネル15を設置後、隣り合う分割パネル15間に差し込まれ、底鋼板2の上面に設けた両側の分割パネル15に延長する横リブ4を介して床版コンクリート5との付着によって両側の分割パネル15を結合一体化する。
【0038】
なお、パネルの橋軸方向長さ(径間)が輸送可能長さをオーバーする場合は、橋軸方向に分割して輸送した後、架設地点において橋軸方向に分割したパネルを溶接、ボルト結合によって所定のパネル長さに地組した後、クレーンで吊り上げて横梁12上に載置するようにする。
【0039】
本発明の合成パネル構造は縦桁両端部に横梁12を固定して、横梁12を橋台や橋脚18の支点上に支持させれば、縦桁3を主桁として用いたパネル橋梁19となる。以下、パネル橋梁19では合成パネル1の縦桁3は橋梁主桁となるが、縦桁3と記載している。
【0040】
単純桁形式の小径間橋梁では合成パネル1を橋台18に載せるのみでパネル橋梁が構築できる。この場合は、合成パネルの縦桁(主桁)3端部に、縦桁3より桁高の高い横梁12を直接、溶接やボルト結合によって固定し、橋脚や橋台18に載せるのみで構築できる。横梁12と合成パネル1の結合は、後述のコンクリート結合手段(図4に示す橋梁支点の横梁12と合成パネル1の結合手段)を用いてもよい。
【0041】
また、幅員方向に分割した分割パネル15を中間パネル16で結合してパネル橋梁19を構築することができる。従来の主桁・横桁架設後に床版を施工する際には支保工や吊足場が必要であったが、本発明のパネル橋梁19では、分割パネル15間の結合作業および橋梁の支点上に設置された横梁12との固定作業をすべて橋面上で行うことができる。
【0042】
また、連続桁の場合でも径間毎に単独でパネル1の設置、床版コンクリート5の打設ができ、従来の連続桁橋のように全体の主桁・横桁を完了しないと床版コンクリート施工ができないような施工管理を必要としないことに大きな特徴があり、急速施工に適している。
【0043】
本発明のパネル橋梁19は、例えば、桁下の作業時間を短縮する必要のある跨線橋や市街地高架橋や車線を部分供用しながら既設橋梁を架け替える場合に特に有利となる。この場合は、既設橋梁の一方の片側車線を供用しながら他方の片側車線分を解体撤去して、支点橋脚18上に横梁12を設置後、分割パネル15と中間パネル16を設置し、床版コンクリート5を打設して片側車線分の橋梁を部分完成することができる。その後、供用車線を切り替えて一方の片側車線の解体撤去を行い同様にして分割パネル15と中間パネル16を設置し、床版コンクリート5を打設して部分完成した橋梁とも一体化して全幅の橋梁の架け替えを完成する。
【0044】
次に多径間橋梁において、本発明に係る合成パネル1を用いた連続桁形式の橋梁構造について説明する。従来の連続桁橋梁では連続化の施工に課題があったが、本発明の合成パネル1では容易に連続化施工を可能とすることができる。
【0045】
図3は本発明に係る合成パネル1を用いた3径間連続桁橋梁のパネル橋梁構造の実施形態を示す側面図であって、P1〜P4の橋脚18に支持された合成パネル1は、P2、P3、の中間橋脚(支点)18上に支持された横梁12を介して両径間の合成パネル1が連続桁構造とされている。
【0046】
図4は、橋梁支点の横梁12と合成パネル1の結合部を分解して示した斜視図である。合成パネル1は、前述の分割パネル15を中間パネル16で結合するものであるため説明は省き、端部の横梁12との結合部について詳細に明する。
【0047】
橋梁の橋脚(支点)18に支持された横梁12は、合成パネル1の桁高より若干大きい鋼製I桁を用い、上側フランジ20に添接板用のボルト孔21を設けている。横梁12はH形鋼や箱桁としてもよい。
【0048】
また、横梁12の側面には、間隔をおいて垂直補剛材22が設けられ、下側フランジ23には、合成パネル1の端部型枠を嵌め込む板材(図示を省略)が設けられている。
【0049】
合成パネル1の縦桁3端部の上端には橋軸方向(横梁に向けて)にせん断部材25が突設されており、このせん断部材25は横梁12上にパネル1をセットする際に受け材として使用され、完成後はせん断力伝達材とされる。
【0050】
また、パネル縦桁3端部の上側フランジ26には多数のボルト孔31が設けられ前記横梁12のフランジ20に設けられたボルト孔21との間に上下に配置する添接板27がボルト結合(ボルトの図示を省略した)される。
【0051】
添接板27は、せん断部材25と干渉する部分を切り抜いた形状としてもよいが、図示例では、せん断部材25の両側に平面ほぼ台形形状の添接板27を配置する形態としている。
ボルト結合された添接板27は、支点の負曲げモーメントによって発生する引張り力に抵抗して横梁12と縦桁3を連結する。
【0052】
縦桁3下端部には、横梁12の側面に向けてブラケット28で補強した支圧板10が固定されている。この支圧板10は、周りの充填コンクリートが硬化後、支点の負曲げモーメントにより生じる圧縮力に抵抗する。また、縦桁3のウエブ端部の側面には、多数の孔9が明けられている。この孔9は、充填コンクリートとの一体化を図るため鉄筋30を貫通させる結合手段である。
【0053】
縦桁3の上端から下端に向けて斜め状に設けた板は、コンクリート充填用の型枠11であって、コンクリート硬化後もそのままとされる。11aは側面型枠である。
【0054】
図5は連続桁橋梁の支点構造の斜視図であって、横梁12の側面の橋軸前後方向の両側に、合成パネル1の端部を付き合わせ、縦桁3上端から突設したせん断部材25を横梁12上端に支持させ、横梁12のフランジ20と合成パネル1における縦桁3の上側フランジ26を添接板27でボルト結合(ボルトの図示は省略した)している。また、縦桁3のウエブ端部の側面に明けた孔9にはコンクリートと一体化(結合)するため鉄筋30を貫通させている。縦桁3下端部には支圧板10を設けている。
【0055】
この図5には充填コンクリートを示していないが、型枠11,11aをセットした状態で横梁12側部(点線で示す)にはコンクリートが充填される。
【0056】
図6はコンクリートを充填した後の連続化支点構造の断面図であって、パネル橋梁19の中間支点の橋脚18上に横梁12が設置され、この横梁12上端の橋軸前後方向の両側にパネルの縦桁端部のせん断部材25が支持され上端が添接板27で結合され、下部の支圧板10および側部に設けた結合手段の周りにコンクリートが充填されている。また、横梁12及び縦桁3上部には前記せん断部材25を埋没するように床版コンクリート5が打設される。なお、図中の符号8は配力筋である。また、符号39は支承である。
【0057】
以上、連続桁橋梁の中間支点P2、P3の連続構造を説明したが、橋梁端部支点P1、P4は片側しか合成パネル1が存在しないため、図7に示すように横梁12との結合は片面となる。
【0058】
次に本発明に係る合成パネル1を用いた連続合成桁橋梁19の施工方法について、主として中間橋脚部の連続化について説明する。
【0059】
本発明の合成パネルを用いた連続合成桁橋の施工方法は、以下の手順で施工する。
▲1▼橋梁の中間支点の橋脚18上に、上フランジ20に添接板用ボルト孔21を有し、結合手段を備えた前記横梁12を配設し、
▲2▼縦桁3の上端にせん断部材25を突設し、上側フランジ26に添接板用ボルト孔31を設け、下端部に支圧板10を設け、縦桁3のウエブ側面に設けた孔9等の結合手段を備えた合成パネル1を用いて、各横梁12上端の橋軸方向の前後に、合成パネル1の端部のせん断部材25を係止して載置し、
▲3▼次に、横梁12の上端と合成パネル1の上端部に添接板27を配置してボルト結合し、結合手段の孔9に鉄筋30を通し、
▲4▼各合成パネル1を単純梁の支持状態で、各合成パネル1の底鋼板2上の床版コンクリート5および支点部の横梁側面と合成パネル端部間にコンクリート33を充填して、縦桁3の下端部に設けた支圧板10と横梁12の側部と合成パネル1の端部に設けた結合手段の周りを一体化して、橋軸方向に横梁12と各合成パネル1を連続桁とする。
【0060】
他の中間橋脚18も同様な手順で連続化の施工を行う。また、橋梁端部の橋脚(橋台)18は、図7に示すように、横梁12の一方のみに合成パネル1の端部が結合される。
【0061】
なお、合成パネル1を横梁12上に載置する施工手段において、分割パネル15を用いる場合、支点上に設置した横梁12の幅員方向のいずれか片側に分割パネル15を載置し、せん断部材25の下に設けた仮設のスライド機構(ローラー、スライド板等)によって横梁12の上面を順次移動させて所定の位置に移動する横取り手段を用いることができる。中間パネル16は分割パネル15と同様に片側で載置して移動するか、または後で分割パネル15間に挿入するようにしてもよい。
【0062】
上記手段とすれば、横梁12上に分割パネル1を吊り上げるクレーンの作業半径を小さくできるため大重量クレーンを使用しないで済む。
【0063】
本発明では、床版コンクリート5および支点部の横梁12の側面と合成パネル1の端部間にコンクリート33を打設する際、支点上で合成パネル1をせん断部材25と添接板27のボルト結合(ヒンジ)とした単純梁の状態としているため、支点部に負の曲げモーメントが生じなく床版コンクリート5に引張り力が働かないためひび割れが発生しない。また、橋梁完成後は支点部のコンクリートが硬化して連続桁構造となっているが車両荷重(活荷重)による支点上の負曲げモーメントは小さく、且つ縦桁下部の支圧板で圧縮力に抵抗することができる。
【0064】
図8(a)〜(d)は本発明に係る合成パネル1を用いたパネル橋梁19の適用例を示すものであって、(a)は方杖ラーメン橋、(b)は連続ラーメン橋、(c)は外ケーブル38を備えた逆斜張橋、(d)はトラス橋に適用した側面図を示す。この他、吊り橋やアーチ橋にも適用することができる。
【0065】
上記適用例のうち、(d)のトラス橋においては、合成パネル1の支点Pを橋脚や橋台18以外のトラス架構造を構成する下弦材34、鉛直材、斜材35の格点部Kとする。また、吊り橋やアーチ橋では橋軸方向の両側大縦桁37の間に大縦桁37を結ぶ中間横桁36で合成パネル1を支持する形態となる。
【0066】
【発明の効果】
本発明の合成パネルは、底鋼板の下面に配置した複数の縦桁の上面が固定され、該底鋼板の上面に前記縦桁と直交方向に複数の横リブが固定配置され、該横リブを埋没するように床版コンクリートを充填して一体化された構造としているため、横リブで底鋼板を補剛し、且つコンクリートと一体化した高い剛性を有する合成パネル構造としている。
【0067】
また、橋梁や他の構造物に設置する際に合成パネルの縦桁が主桁の役割を担っているため別に主桁を架設する必要がなく架設工程を省略し、しかも桁下の作業足場が不要である。また、縦桁上面が直交方向に複数の横リブを固定配置して剛性を高めた底鋼板の下面に固定されているため、縦桁間の横倒れ座屈防止材を不要としており、この部材と取付け作業を省略化出来る。さらに底鋼板は型枠を兼用しているため床版コンクリート打設時に型枠設置の必要がない。
このため、現地での合成パネルの設置作業の工期短縮やコスト削減に大きな効果を奏する。
【0068】
また、輸送等の制約から合成パネルを分割する場合においても、縦桁直交方向に分割した分割パネルを中間パネルの底鋼板上面に固定した横リブを介して床版コンクリートの付着で結合しているので、分割パネルの結合作業が底鋼板上から極めて簡単に出来ると共に完成後に溶接部の疲労欠陥が生じる問題もない。
【0069】
本発明の合成パネルの縦桁を主桁として用い、縦桁端部に横梁を固定したものを橋脚や橋台に設置するのみで極めて短工期、且つ容易にパネル橋梁を構築できる。
【0070】
特に片側車線を供用しながら既設橋梁を架け替える工法において、前記分割パネルを用いると既設橋梁の一方の片側車線を供用しながら他方の片側車線分を解体撤去して、支点橋脚間に分割パネルと中間パネルを設置し床版コンクリートを打設して短工期で片側車線毎に橋梁の架け替えを行うことができる。
【0071】
また、多径間の橋梁における複数の合成パネルを用いた連続桁橋梁において、中間支点上に配設された横梁上端で合成パネルの縦桁上端に設けた橋軸方向に突出するせん断部材を支持し、横梁上端と縦桁上端を添接板で結合して引張り力に抵抗させることができる。また、縦桁下端部に支圧板および横梁の側部と合成パネルの端部に結合手段を設け、周りにコンクリートを充填して一体化した結合としているため、中間支点上では横梁と合成パネルが上端部で、せん断部材と添接板でヒンジ連結された単純梁の状態でコンクリートを打設するため、施工時において負曲げモーメントによるコンクリート上部のひび割れの心配がない。
【0072】
また、橋梁完成後における車両の活荷重による中間支点の負曲げモーメントに対してはコンクリートに埋め込まれた縦桁下端部の支圧板が圧縮力に抵抗する。このため、従来から課題とされていた連続桁のコンクリート打設時における中間支点部の負曲げモーメントに対するコンクリート打設順の制約や支点持上げコンクリート打設等の対策を不要とすることが出来る。
【図面の簡単な説明】
【図1】本発明に係る合成パネル構造の実施形態を示す斜視図。
【図2】本発明に係る合成パネルを橋軸直角方向に分割した分割パネル(a)と結合用の中間パネル(b)の斜視図。
【図3】本発明に係る合成パネルを用いた3径間連続桁橋梁のパネル橋梁構造の実施形態の側面図。
【図4】橋梁支点の横梁と合成パネルの結合部を分解して示した斜視図。
【図5】本発明に係る連続桁橋梁の支点構造の斜視図。
【図6】連続桁橋梁の中間支点構造の一部縦断面図。
【図7】端部支点構造の一部縦断面図。
【図8】(a)〜(d)は、本発明のパネル橋梁の適用例を示す図。
【符号の説明】
1 合成パネル
2 底鋼板
3 縦桁
4 横リブ
5 床版コンクリート
6 孔
7 側板
8 配力筋
9 孔
10 支圧板
11 型枠
12 横梁
13 上面
15 分割パネル
16 中間パネル
17 受け材
18 橋脚(橋台)
19 パネル橋梁(または連続合成桁橋梁)
20 上側フランジ
21 ボルト孔
22 垂直補剛材
23 下側フランジ
25 せん断部材
26 上側フランジ
27 添接板
28 ブラケット
29 孔
30 鉄筋
31 ボルト孔
33 コンクリート
34 下弦材
35 斜材
36 中間横桁
37 大縦桁
38 外ケーブル
39 支承
P 支点
K 格点部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel / concrete composite panel structure integrating a floor slab and a stringer, which is applied to the construction or replacement of a road bridge, viaduct, pedestrian bridge, railway bridge, and the like, and a panel bridge structure using the composite panel, The present invention relates to a method of constructing a continuous composite girder bridge using composite panels.
[0002]
[Prior art]
Conventionally, precast concrete bridges such as a pretension type simple slab bridge (pretend slab bridge) and a simple T-girder bridge (pretend T-girder bridge) have been known for relatively small span road bridges and railway bridges. I have. As a steel bridge, there is an H-shaped steel bridge using a sheet girder or a main girder made of an H-shaped steel.
[0003]
These bridges are characterized in terms of structure, workability, maintainability, etc., but H-shaped steel bridges can be assembled on a main girder using standardized rolled H-shaped steel products. This is advantageous in that it is simple, the construction period can be shortened, and the weight can be reduced.
[0004]
Plate girder bridges and H-shaped steel bridges are composed of a main structure such as a main girder and a horizontal girder and a floor slab structure, and the floor slabs disposed on the main girder are reinforced concrete floor slabs or steel formwork to be constructed locally. There is a grating slab in which a reinforcing steel material is prefabricated.
[0005]
However, a conventional sheet girder bridge is composed of many main structural members, and the amount of processing is large, which causes an increase in cost. In addition, since the erection of the main structure is connected by high-strength bolts and welding on site using supports and scaffolds, special skills and quality control are required. It is common practice to check the shape after the completion of the erection process and then proceed to floor slab construction. In some cases, the features of steel bridges that can shorten the on-site construction period cannot be utilized. Particularly in the case of reinforced concrete slabs that require formwork, a considerable construction period is required. Grating slabs, composite slabs, steel slab girders, etc. are used when the need for shortening the construction period is large, such as when rebuilding a bridge or constructing an urban area.
[0006]
Recently, there have been proposed many composite floor slab bridges made of concrete and steel such as a shape steel or a truss.
[0007]
For example, one disclosed in Japanese Patent Application Laid-Open No. 11-166208 (Patent Document 1) discloses a method in which a steel plate upper surface plate and a lower surface plate are connected at predetermined intervals via inner ribs inside a floor slab steel shell. Concrete is filled to form a composite slab, and the composite slab is a bridge fastened to the upper surface of the girder assembly with fastening bolts. The girder set includes a main girder and a horizontal girder for preventing the main girder from falling sideways and buckling and dispersing the floor slab load to the vertical girder.
[0008]
Further, the bridge disclosed in Japanese Patent Application Laid-Open No. 2002-4221 (Patent Document 2) includes a reinforcing material (flat steel plate) arranged on a top surface of a bottom steel plate in a direction perpendicular to the bridge axis, between two main girders. The reinforcing material located has a convex curved shape (arch) facing upward, and a space is formed between the bottom steel plate and the reinforcing material so that cracks are hardly generated in the floor slab concrete. In this bridge, the main girder is also connected by horizontal girder.
[0009]
In a normal bridge, a composite slab manufactured separately from the main girder is mounted on the main girder, and there is a slab bridge using only the slab.
[0010]
A conventional example of a floor slab bridge is disclosed, for example, in Japanese Patent Application Laid-Open No. 9-221717 (Patent Document 3). This is to connect a steel panel in which a plurality of H-beams or CT-beams are joined on the bottom plate of a straight steel sheet pile and a side plate (frame) provided in the straight steel sheet pile with PC steel or the like, It was constructed by casting cast-in-place concrete.
[0011]
[Patent Document 1]
JP-A-11-166208
[Patent Document 2]
JP-A-2002-4221
[Patent Document 3]
JP-A-9-221717
[0012]
[Problems to be solved by the invention]
The sheet girder bridge in the prior art has many constituent members, and uses a support and a scaffold at the time of erection, so that the construction period is long and the cost is high. In addition, since the main girder made of H-shaped steel and the floor slab are separate from each other in the combination of the H-shaped steel bridge and the composite slab, the floor slab is installed after the main girder is erected between the abutments (or piers) at the time of construction. Two steps were required for installation.
[0013]
Further, the composite floor slab disclosed in Japanese Patent Application Laid-Open No. H11-166208 is designed to fill concrete in the steel shells of the upper steel plate and the lower steel plate. Since the composite slab needs to be fastened to the upper surface of the girder set consisting of the main girder and the horizontal girder with fastening bolts, three steps are required: main girder installation, horizontal girder joining, and composite slab fastening. There was also a problem that a work scaffold was required under the girder when assembling the cross girder.
[0014]
The composite floor slab disclosed in Japanese Patent Application Laid-Open No. 2002-4221 is limited to a structure using two main girders, and the horizontal girder is used to prevent the main girders from falling over sideways and dispersing the floor slab load. Since it is used and is separate from the main girder as in the case of the composite floor slab, there are problems that the number of construction steps is increased and that a work scaffold is required below the girder when assembling the cross girder.
[0015]
The floor slab bridge exemplified in JP-A-9-221717 has the advantage that the main girder is incorporated in the floor slab and integrated, so that the installation process is completed in one step. Due to its thickness and heavy weight, its use is limited to small bridges of about several meters or bridges that are limited by under-girder space.
[0016]
In addition, as a form of the bridge structure of multiple spans, it is more advantageous in terms of cost to use a continuous composite girder bridge in which the floor slab shares the main girder action. However, in the case of a continuous girder bridge, it is necessary to achieve continuity that exhibits high bonding strength at the bridge fulcrum and to prevent cracking of the slab concrete due to the negative bending moment. For this reason, in the prior art, a method of placing concrete at the fulcrum part in advance and curing (solidifying) the fulcrum part concrete, or a method of temporarily jacking up the fulcrum part main girder at the time of concrete placement. For example, there has been adopted a method of placing concrete in a slab in a continuous girder bridge using, a method of introducing a prestress above a main girder at a fulcrum, or a method of arranging a large number of reinforcing bars.
[0017]
The continuation means according to these conventional techniques has a problem that the construction period becomes long or that large-scale facilities need to be prepared, which leads to an increase in construction costs.
[0018]
The present invention provides a composite panel structure made of steel / concrete having required rigidity and reduced manufacturing cost, and a composite panel bridge and composite panel using the composite panel to shorten the on-site construction period and simplify the construction. It is an object of the present invention to provide a construction method of a continuous composite girder bridge used.
[0019]
[Means for Solving the Problems]
The gist of the configuration of the present invention is as follows.
According to the invention of claim 1, an upper surface of a plurality of stringers arranged at intervals on a lower surface of a bottom steel plate is fixed, and a plurality of horizontal ribs are spaced on the upper surface of the bottom steel plate in a direction orthogonal to the stringers. A composite panel structure fixedly disposed and filled with floor slab concrete so as to bury the lateral ribs.
[0020]
According to a second aspect of the present invention, the composite panel according to the first aspect is composed of a divided panel and an intermediate panel divided into a plurality of sections in a direction orthogonal to the longitudinal beam direction, and each of the divided panels has a longitudinal beam, The intermediate panel having no girder is a composite panel in which horizontal ribs fixed to the upper surface of the bottom steel plate project toward the split panels on both sides, and the split panel and the intermediate panel are connected with floor slab concrete via the horizontal ribs. Structure.
[0021]
According to a third aspect of the present invention, the vertical girder of the composite panel according to the first or second aspect is used as a bridge main girder, and a cross beam supported on a fulcrum such as an abutment or a pier of the bridge is fixed to an end of the vertical girder. This is a panel bridge structure using composite panels.
[0022]
The invention according to claim 4 is a continuous girder bridge in which a plurality of composite panels are arranged between fulcrums in the bridge axis direction, wherein the composite panels are arranged before and after in the bridge axis direction adjacent to a cross beam arranged on the fulcrum. The composite panel is supported by the cross beam with a shear member and an attachment plate provided at the upper end of the main girder and protruding in the bridge axis direction, and the side of the support plate and the cross beam provided at the lower end of the girder. 3. The composite according to claim 1, wherein the cross beam and the composite panel end are integrally connected to each other by a concrete filling around the portion and the coupling means provided at the end of the composite panel to form a continuous girder. Panel bridge structure using panels.
[0023]
The invention of claim 5 is a method of constructing a continuous girder type composite panel bridge according to the invention of claim 4,
(1) Arrange a cross beam on the fulcrum of the bridge,
(2) Before and after the upper end of each cross beam in the direction of the bridge axis, the shear members protruding in the direction of the bridge axis provided at the upper end of the main girder are locked and the composite panel is placed.
(3) Next, the upper end of the cross beam and the upper end of the composite panel are connected by an attachment plate.
(4) While each composite panel is supported by a simple beam, concrete is placed between the slab concrete on the bottom steel plate of each composite panel and the lateral beam side of the fulcrum, and the end of the composite panel provided with the support plate and the connecting means. This is a method of constructing a continuous composite girder bridge using a composite panel that is filled, and a cross beam and a composite panel end are integrally joined to form a continuous girder.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a perspective view showing an embodiment in which a composite panel structure according to the present invention is applied as a floor slab for a bridge. FIG. 2 is a perspective view of an embodiment in which the composite panel is composed of a divided panel (a) and an intermediate panel (b) obtained by dividing the composite panel in a direction perpendicular to the longitudinal beam direction (width direction).
[0025]
The composite panel 1 according to the present invention includes a bottom steel plate 2 and a plurality of vertical girders 3 arranged at intervals on the lower surface thereof, and horizontal ribs 4 arranged on the upper surface of the bottom steel plate 2 in a direction orthogonal to the vertical girders 3. The floor slab concrete 5 cast on the upper part of the bottom steel plate 2 has a basic configuration.
[0026]
The vertical girder 3 is mainly made of an H-beam (rolled material / built H), and also uses an I-girder or a box girder made of a shape steel such as a large channel steel, an I-beam, a CT steel, or a thick plate. You can do it. The dimensions and number of the stringers 3 are determined according to the span of the support point, dead load and live load.
[0027]
The horizontal rib 4 also serves as a stiffener for the floor slab and a dowel for the composite girder, and is made of various shaped steels (for example, H-shaped steel, channel steel, I-shaped steel, CT steel) smaller than the vertical girder 3. , Steel strip, etc.). When holes 6 are provided on the side surfaces of the lateral ribs 4 at an appropriate pitch, the filling property of the floor slab concrete 5 can be improved, and the effect of synthesizing steel / concrete can be enhanced by the dowel action.
[0028]
The bottom steel plate 2 sandwiched between the vertical girder 3 and the horizontal ribs 4 also serves as a formwork when the concrete slab 5 is cast, and itself fixes the vertical girder 3 and the horizontal ribs 4 as main girder. It is an important structural member that becomes a bonding material and adheres to the floor slab concrete 5 to form the composite panel 1.
[0029]
The concrete 5 on the bottom steel plate 2 may be cast on site or precast at a factory. Reference numeral 7 in the figure denotes a side plate at the end of the width, which serves as a side frame when the floor slab concrete 5 is cast on the bottom steel plate 2, and the reinforcing bars arranged on the horizontal ribs 4 are arranged. It is the power line 8. The holes 9, the supporting plates 10, and the formwork 11 provided at the web ends of the girder 3 are members for connecting to the cross beams 12 (see FIG. 4) installed at the fulcrums of the bridge.
[0030]
The vertical girder 3 arranged on the lower surface of the bottom steel plate 2 has an upper surface (flange) 13 fixed to the lower surface of the bottom steel plate 2 by welding, and the horizontal ribs 4 arranged on the upper surface of the bottom steel plate 2 are similarly fixed by fillet welding. Have been. The floor slab concrete 5 above the bottom steel plate 2 is cast in such a manner that the horizontal ribs 4 and the force distribution bars 8 arranged perpendicularly to the horizontal ribs 4 are buried and filled with necessary cover.
[0031]
It is not necessary to divide a small composite panel, but in the case of a large composite panel, it is necessary to divide the panel and transport it due to restrictions in shape and weight during transportation, and combine them on site.
[0032]
Conventional composite panels and steel slabs were separate from the girder, so panels (steel slabs) divided in the girder direction (bridge axis direction) were lined up and joined on the pre-installed girder. In the composite panel 1 according to the present invention, as in this embodiment, the divided panels 15 divided into a plurality in the direction orthogonal to the longitudinal beam direction are joined together using an intermediate panel 16 on site.
[0033]
The divided panel 15 preferably has two or more longitudinal beams 3 as a structural member, and the intermediate panel 16 connects the divided panels 15 on both sides. The connecting means of the intermediate panel 16 is such that the horizontal ribs 4 fixed to the upper surface of the bottom steel plate 2 of the intermediate panel 16 protrude and extend to the upper surface of the bottom steel plate 2 of the split panels 15 on both sides, and the floor slab concrete 5 is adhered.
[0034]
FIG. 2 shows the split panel 15 and the intermediate panel 16 in an exploded state. Each divided panel 15 fixes the upper ends of two or more stringers 3 to the lower surface of the bottom steel plate 2, and fixes the horizontal ribs 4 to the upper surface of the bottom steel plate 2 at intervals in the orthogonal direction to the stringers 3. I have.
[0035]
The receiving member 17 provided at the end of the bottom steel plate 2 covers a gap with the end of the intermediate panel 16 and is sealed so as not to leak when the concrete slab 5 is cast.
[0036]
The intermediate panel 16 does not have the longitudinal beams 3, and the lateral ribs 4 are fixed to the upper surface of the bottom steel plate 2 having a width that can be accommodated between the adjacent divided panels 15 so as to project in the direction of the divided panels on both sides.
[0037]
The horizontal ribs 4 fixed to the intermediate panel 16 are provided at positions shifted from the positions of the horizontal ribs 4 of the split panels 15 on both sides. The intermediate panel 16 is inserted between the adjacent split panels 15 after the split panels 15 are installed, and is connected to the floor slab concrete 5 via the horizontal ribs 4 extending to the split panels 15 on both sides provided on the upper surface of the bottom steel plate 2. And the divided panels 15 on both sides are joined and integrated.
[0038]
If the length of the panel in the bridge axis direction (span) exceeds the transportable length, transport it by dividing it in the bridge axis direction, then weld the panels divided in the bridge axis direction at the erection point and connect them with bolts After that, it is lifted by a crane and placed on the cross beam 12.
[0039]
In the composite panel structure of the present invention, if the cross beams 12 are fixed to both ends of the girder and the cross beams 12 are supported on the fulcrum of the abutment or pier 18, a panel bridge 19 using the girder 3 as a main girder is obtained. Hereinafter, in the panel bridge 19, the vertical girder 3 of the composite panel 1 is the main girder of the bridge, but is described as the vertical girder 3.
[0040]
In a small span bridge of a simple girder type, a panel bridge can be constructed only by mounting the composite panel 1 on the abutment 18. In this case, it can be constructed by simply fixing the cross beam 12 having a higher girder height than the vertical girder 3 to the end of the vertical girder (main girder) 3 of the composite panel by welding or bolting, and placing it on the pier or abutment 18. The connecting between the cross beam 12 and the composite panel 1 may be performed by using a concrete connecting means described later (a connecting means between the horizontal beam 12 at the bridge fulcrum and the composite panel 1 shown in FIG. 4).
[0041]
Further, the panel panel 19 can be constructed by connecting the divided panels 15 divided in the width direction with the intermediate panel 16. When the floor slab is constructed after the conventional main girder and cross girder is erected, a shoring and a hanging scaffold are required. However, in the panel bridge 19 of the present invention, the joining work between the divided panels 15 and the fulcrum of the bridge All the fixing work with the installed cross beam 12 can be performed on the bridge surface.
[0042]
In addition, even in the case of continuous girder, the panel 1 can be installed and the concrete slab 5 can be installed alone for each span. If the entire main girder and horizontal girder are not completed like the conventional continuous girder bridge, the slab A major feature is that it does not require construction management that does not allow construction, making it suitable for rapid construction.
[0043]
The panel bridge 19 of the present invention is particularly advantageous, for example, when replacing an existing bridge while partially using an overpass, an urban viaduct, or a lane in which it is necessary to reduce the work time under the girder. In this case, while dismantling and removing one lane part of the existing bridge while using one lane of the existing bridge, installing the cross beam 12 on the fulcrum pier 18, installing the split panel 15 and the intermediate panel 16, and installing the floor slab Concrete 5 can be cast to partially complete the bridge for one lane. After that, the operating lane is switched and one side lane is dismantled and removed. Similarly, the split panel 15 and the intermediate panel 16 are installed, the concrete slab 5 is cast, and the partially completed bridge is integrated with the full width bridge. Complete the replacement.
[0044]
Next, in a multi-span bridge, a continuous girder type bridge structure using the composite panel 1 according to the present invention will be described. In the conventional continuous girder bridge, there was a problem in the construction of continuity, but in the composite panel 1 of the present invention, the continuation construction can be easily performed.
[0045]
FIG. 3 is a side view showing an embodiment of a panel bridge structure of a three-span continuous girder bridge using the composite panel 1 according to the present invention. The composite panel 1 supported by the piers 18 of P1 to P4 is P2. , P3, the composite panel 1 of both diameters is formed into a continuous girder structure via the cross beam 12 supported on the intermediate pier (fulcrum) 18 of the pier.
[0046]
FIG. 4 is an exploded perspective view showing a joint between the cross beam 12 at the bridge fulcrum and the composite panel 1. The composite panel 1 joins the above-mentioned split panel 15 with the intermediate panel 16 and therefore will not be described, and the connection between the end panel and the cross beam 12 will be described in detail.
[0047]
The cross beam 12 supported by the pier (fulcrum) 18 of the bridge uses a steel I-girder slightly larger than the girder height of the composite panel 1, and has a bolt hole 21 for an attachment plate in the upper flange 20. The cross beam 12 may be an H-beam or a box girder.
[0048]
Further, a vertical stiffener 22 is provided on the side surface of the cross beam 12 at intervals, and a plate material (not shown) is provided on the lower flange 23 for fitting the end frame of the composite panel 1. I have.
[0049]
A shear member 25 is projected from the upper end of the stringer 3 end of the composite panel 1 in the bridge axis direction (toward the cross beam), and the shear member 25 is received when the panel 1 is set on the cross beam 12. It is used as a material and after completion it is used as a shear force transmitting material.
[0050]
Also, a number of bolt holes 31 are provided in the upper flange 26 at the end of the panel vertical girder 3, and an attachment plate 27 vertically arranged between the bolt holes 21 provided in the flange 20 of the cross beam 12 is bolted. (The illustration of bolts is omitted).
[0051]
The attachment plate 27 may have a shape in which a portion that interferes with the shear member 25 is cut out. In the illustrated example, the attachment plate 27 having a substantially trapezoidal planar shape is arranged on both sides of the shear member 25.
The bolted attachment plate 27 connects the cross beam 12 and the longitudinal beam 3 against the tensile force generated by the negative bending moment of the fulcrum.
[0052]
A support plate 10 reinforced with a bracket 28 toward the side surface of the cross beam 12 is fixed to the lower end of the vertical girder 3. This support plate 10 resists the compressive force generated by the negative bending moment of the fulcrum after the surrounding concrete is hardened. In addition, a number of holes 9 are formed in the side surface of the web end of the stringer 3. This hole 9 is a connecting means for penetrating the reinforcing bar 30 for integration with the filled concrete.
[0053]
The plate provided obliquely from the upper end to the lower end of the stringer 3 is a form 11 for filling concrete, and is left as it is after hardening of concrete. 11a is a side mold.
[0054]
FIG. 5 is a perspective view of a fulcrum structure of a continuous girder bridge. Is supported at the upper end of the cross beam 12, and the flange 20 of the cross beam 12 and the upper flange 26 of the longitudinal beam 3 of the composite panel 1 are bolted together by a contact plate 27 (bolts are not shown). In addition, a reinforcing bar 30 is passed through a hole 9 formed in the side surface of the web end of the stringer 3 in order to integrate (join) with concrete. A support plate 10 is provided at the lower end of the vertical girder 3.
[0055]
Although FIG. 5 does not show the filled concrete, the side portions (shown by dotted lines) of the cross beams 12 are filled with the concrete in a state where the formwork 11 and 11a are set.
[0056]
FIG. 6 is a cross-sectional view of the continuous fulcrum structure after the concrete is filled. A cross beam 12 is installed on a pier 18 at an intermediate fulcrum of a panel bridge 19, and panels are provided on both ends of the upper end of the cross beam 12 in the longitudinal direction of the bridge axis. The shear member 25 at the end of the vertical girder is supported, the upper end is joined by the attachment plate 27, and the concrete is filled around the lower supporting plate 10 and the joining means provided on the side. The floor slab concrete 5 is cast on the cross beam 12 and the upper part of the girder 3 so as to bury the shear member 25 therein. Note that reference numeral 8 in the drawing is a distribution muscle. Reference numeral 39 denotes a bearing.
[0057]
As described above, the continuous structure of the intermediate fulcrums P2 and P3 of the continuous girder bridge has been described. However, since the bridge end fulcrums P1 and P4 have the composite panel 1 on only one side, the connection with the cross beam 12 is one side as shown in FIG. It becomes.
[0058]
Next, a method of constructing the continuous composite girder bridge 19 using the composite panel 1 according to the present invention will be described mainly on the continuation of the intermediate pier.
[0059]
The construction method of the continuous composite girder bridge using the composite panel of the present invention is performed in the following procedure.
{Circle around (1)} On the pier 18 at the intermediate fulcrum of the bridge, the cross beam 12 having an attachment plate bolt hole 21 in the upper flange 20 and provided with coupling means is provided,
{Circle around (2)} The shear member 25 is projected from the upper end of the stringer 3, the bolt hole 31 for the attachment plate is provided on the upper flange 26, the supporting plate 10 is provided on the lower end, and the hole provided on the web side surface of the stringer 3. 9, the shear members 25 at the ends of the composite panel 1 are locked and placed before and after the upper end of each cross beam 12 in the direction of the bridge axis using the composite panel 1 provided with coupling means such as 9.
{Circle around (3)} Next, an attachment plate 27 is disposed at the upper end of the cross beam 12 and the upper end of the composite panel 1 and bolted together, and a reinforcing bar 30 is passed through the hole 9 of the coupling means.
(4) Each composite panel 1 is supported by a simple beam, and concrete 33 is filled between the slab concrete 5 on the bottom steel plate 2 of each composite panel 1 and the lateral beam side of the fulcrum and the composite panel end, and The support plate 10 provided at the lower end of the girder 3, the side of the cross beam 12 and the connecting means provided at the end of the composite panel 1 are integrated, and the cross beam 12 and each composite panel 1 are continuously connected in the bridge axis direction. And
[0060]
The other intermediate piers 18 are also constructed in a similar procedure. Further, as shown in FIG. 7, the pier (abutment) 18 at the end of the bridge has the end of the composite panel 1 connected to only one of the cross beams 12.
[0061]
When the split panel 15 is used in the construction means for mounting the composite panel 1 on the cross beam 12, the split panel 15 is mounted on one side in the width direction of the cross beam 12 installed on the fulcrum, and the shear member 25 is mounted. It is possible to use intercepting means for sequentially moving the upper surface of the cross beam 12 to a predetermined position by a temporary slide mechanism (a roller, a slide plate, or the like) provided below. The intermediate panel 16 may be placed and moved on one side similarly to the divided panel 15, or may be inserted between the divided panels 15 later.
[0062]
With the above means, the working radius of the crane that lifts the split panel 1 on the cross beam 12 can be reduced, so that a heavy-weight crane is not required.
[0063]
In the present invention, when the concrete 33 is cast between the side of the floor slab 5 and the lateral beam 12 of the fulcrum and the end of the composite panel 1, the composite panel 1 is bolted to the shear member 25 and the attachment plate 27 on the fulcrum. Since it is in the state of a simple beam as a joint (hinge), no negative bending moment is generated at the fulcrum portion, and no tensile force acts on the floor slab concrete 5, so that no cracking occurs. After completion of the bridge, the concrete at the fulcrum is hardened to form a continuous girder structure, but the negative bending moment on the fulcrum due to the vehicle load (live load) is small, and the supporting plate at the lower part of the girder resists the compressive force. can do.
[0064]
8 (a) to 8 (d) show an application example of a panel bridge 19 using the composite panel 1 according to the present invention, wherein (a) is a bridge-shaped ramen bridge, (b) is a continuous ramen bridge, (C) shows a reverse cable-stayed bridge provided with an outer cable 38, and (d) shows a side view applied to a truss bridge. In addition, the present invention can be applied to a suspension bridge or an arch bridge.
[0065]
In the above-mentioned application example, in the truss bridge of (d), in the truss bridge of the composite panel 1, the fulcrum P of the lower chord material 34, the vertical material, and the diagonal material 35 which constitute the truss structure other than the pier and the abutment 18 are used. I do. Further, in the case of a suspension bridge or an arch bridge, the composite panel 1 is supported by an intermediate horizontal girder 36 connecting the large vertical girder 37 between both large vertical girder 37 in the bridge axis direction.
[0066]
【The invention's effect】
In the composite panel of the present invention, the upper surfaces of the plurality of stringers arranged on the lower surface of the bottom steel plate are fixed, and a plurality of horizontal ribs are fixedly arranged on the upper surface of the bottom steel plate in a direction orthogonal to the stringers. Since the floor slab is filled with concrete so as to be buried and integrated, the horizontal ribs stiffen the bottom steel plate and have a high rigidity composite panel structure integrated with concrete.
[0067]
In addition, when installing on bridges or other structures, the girder of the composite panel plays the role of the main girder, so there is no need to separately install the main girder, so the erection process is omitted, and the work scaffold below the girder is Not required. In addition, since the upper surface of the stringers is fixed to the lower surface of the bottom steel plate having increased rigidity by fixedly arranging a plurality of horizontal ribs in the orthogonal direction, it is not necessary to prevent a lateral buckling buckling member between the stringers. And installation work can be omitted. Furthermore, since the bottom steel plate also serves as a formwork, there is no need to install a formwork when slab concrete is cast.
For this reason, it has a great effect on shortening the construction period of the installation work of the composite panel on site and reducing costs.
[0068]
Also, in the case where the composite panel is divided due to restrictions on transportation, etc., the divided panels divided in the direction perpendicular to the longitudinal girder are joined by attaching floor slab concrete via horizontal ribs fixed to the upper surface of the bottom steel plate of the intermediate panel. Therefore, the joining operation of the divided panels can be extremely easily performed from the bottom steel plate, and there is no problem that a fatigue defect of a weld portion occurs after completion.
[0069]
A panel bridge can be constructed very easily with only a short construction period simply by installing the stringer of the composite panel of the present invention as a main girder and fixing a cross beam at the end of the girder to a pier or abutment.
[0070]
In particular, in the construction method of replacing an existing bridge while using one lane, when the split panel is used, one of the existing lanes is used while one lane of the existing bridge is dismantled and removed. Intermediate panels can be installed and concrete slabs can be cast in the bridge to replace the bridge in each lane in a short period of time.
[0071]
In addition, in a continuous girder bridge using multiple composite panels in a multi-span bridge, the upper end of the cross beam provided on the intermediate fulcrum supports the shear member projecting in the bridge axis direction provided at the upper end of the vertical girder of the composite panel. Then, the upper end of the cross beam and the upper end of the vertical girder can be connected by an attachment plate to resist the tensile force. In addition, connecting means are provided at the lower end of the girder and at the side of the support plate and the cross beam and at the end of the composite panel, and the surroundings are filled with concrete to form an integrated connection. At the upper end, concrete is poured in a state of a simple beam hinged by a shearing member and an attachment plate, so that there is no fear of cracking of the upper part of the concrete due to a negative bending moment during construction.
[0072]
In addition, the bearing plate at the lower end of the girder embedded in the concrete resists the compressive force against the negative bending moment of the intermediate fulcrum due to the live load of the vehicle after the bridge is completed. For this reason, it is possible to obviate the countermeasures such as the restriction of the concrete placing order with respect to the negative bending moment of the intermediate fulcrum portion at the time of concrete placing of the continuous girder and the placing of the fulcrum lifting concrete, which have conventionally been problems.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a composite panel structure according to the present invention.
FIG. 2 is a perspective view of a divided panel (a) obtained by dividing a composite panel according to the present invention in a direction perpendicular to a bridge axis and an intermediate panel (b) for connection.
FIG. 3 is a side view of an embodiment of a panel bridge structure of a three span continuous girder bridge using the composite panel according to the present invention.
FIG. 4 is an exploded perspective view showing a connecting portion between a cross beam of a bridge fulcrum and a composite panel.
FIG. 5 is a perspective view of a fulcrum structure of a continuous girder bridge according to the present invention.
FIG. 6 is a partial longitudinal sectional view of an intermediate fulcrum structure of a continuous girder bridge.
FIG. 7 is a partial longitudinal sectional view of an end fulcrum structure.
FIGS. 8A to 8D are views showing application examples of the panel bridge of the present invention.
[Explanation of symbols]
1 composite panel
2 bottom steel plate
3 stringers
4 horizontal ribs
5 concrete floor
6 holes
7 Side plate
8 Distributors
9 holes
10 Support plate
11 Formwork
12 Cross beam
13 Top
15 split panel
16 Intermediate panel
17 Materials
18 Pier (Abutment)
19 Panel bridge (or continuous composite girder bridge)
20 Upper flange
21 bolt holes
22 Vertical stiffener
23 Lower flange
25 Shear members
26 Upper flange
27 Attaching plate
28 Bracket
29 holes
30 rebar
31 bolt hole
33 concrete
34 Lower chord material
35 diagonal
36 Intermediate horizontal girder
37 Large Column
38 Outside cable
39 bearing
P fulcrum
K rating

Claims (5)

  1. 底鋼板の下面に間隔をおいて配置した複数の縦桁の上面が固定され、該底鋼板の上面に前記縦桁と直交方向に複数の横リブが間隔をおいて固定配置され、該横リブを埋没するように床版コンクリートが充填されていることを特徴とする合成パネル構造。The upper surface of the plurality of stringers arranged at intervals on the lower surface of the bottom steel plate is fixed, and the plurality of horizontal ribs are fixedly arranged on the upper surface of the bottom steel plate in the direction orthogonal to the stringers, Composite panel structure characterized by being filled with floor slab concrete so as to bury the interior.
  2. 合成パネルが縦桁方向と直交方向に複数に分割された分割パネルと中間パネルで構成されており、前記各分割パネルは縦桁を有し、縦桁を有しない中間パネルは底鋼板上面に固定された横リブが両側の分割パネルに向かって突出されており、各分割パネルと中間パネルが前記横リブを介して床版コンクリートで結合されていることを特徴とする請求項1記載の合成パネル構造。The composite panel is composed of a divided panel and an intermediate panel that are divided into a plurality of pieces in a direction orthogonal to the stringer direction, and each of the divided panels has a stringer, and the intermediate panel without the stringer is fixed to the bottom steel plate upper surface. 2. The composite panel according to claim 1, wherein the divided horizontal ribs project toward the divided panels on both sides, and each divided panel and the intermediate panel are connected to each other with floor slab concrete via the horizontal ribs. Construction.
  3. 合成パネルの縦桁が橋梁主桁として用いられ、縦桁端部に橋梁の支点に支持された横梁が固定されていることを特徴とする請求項1または請求項2記載の合成パネルを用いたパネル橋梁構造。The composite panel according to claim 1 or 2, wherein the vertical beam of the composite panel is used as a main beam of the bridge, and a horizontal beam supported on a fulcrum of the bridge is fixed to an end of the vertical beam. Panel bridge structure.
  4. 複数の合成パネルを橋軸方向の支点間に配置した連続桁橋であって、支点上に配設された横梁に隣接して橋軸方向の前後に合成パネルが配設され、該合成パネルは主桁となる縦桁上端に設けた橋軸方向に突出するせん断部材と添接板で前記横梁に支持され、且つ縦桁下端部に設けた支圧板および横梁の側部と合成パネルの端部に設けた結合手段と周りに充填されているコンクリートで横梁と合成パネル端部が一体的に結合されて連続桁とされていることを特徴とする請求項1または請求項2記載の合成パネルを用いたパネル橋梁構造。A continuous girder bridge in which a plurality of composite panels are arranged between fulcrums in the bridge axis direction, wherein composite panels are arranged in front and rear in the bridge axis direction adjacent to cross beams arranged on the fulcrums, A shear member provided at the upper end of the girder serving as the main girder and a shearing member protruding in the direction of the bridge axis and an abutment plate are supported by the cross beam, and the side portions of the support plate and the cross beam provided at the lower end of the girder and the end of the composite panel The composite panel according to claim 1 or 2, wherein the cross beam and the end of the composite panel are integrally connected to each other by a connecting means provided in the above and the concrete filled therearound to form a continuous girder. Panel bridge structure used.
  5. 請求項4記載の連続桁橋梁の施工方法であって、
    ▲1▼橋梁の支点上に横梁を配設し、
    ▲2▼各横梁上端の橋軸方向の前後に、主桁となる縦桁上端に設けた橋軸方向に突出するせん断部材を係止して合成パネルを載置し、
    ▲3▼次に、横梁上端と合成パネル上端部を添接板で連結し、
    ▲4▼各合成パネルを単純梁の支持状態で、各合成パネルの底鋼板上の床版コンクリートおよび支点部の横梁側面と、支圧板および結合手段を設けた合成パネルの端部間にコンクリートを充填し、横梁と合成パネル端部を一体的に結合して連続桁とすることを特徴とする合成パネルを用いた連続合成桁橋の施工方法。
    It is a construction method of the continuous girder bridge according to claim 4,
    (1) Arrange a cross beam on the fulcrum of the bridge,
    (2) Before and after the upper end of each cross beam in the direction of the bridge axis, the shear members protruding in the direction of the bridge axis provided at the upper end of the main girder are locked and the composite panel is placed.
    (3) Next, the upper end of the cross beam and the upper end of the composite panel are connected by an attachment plate.
    (4) While each composite panel is supported by a simple beam, concrete is placed between the slab concrete on the bottom steel plate of each composite panel and the lateral beam side of the fulcrum, and the end of the composite panel provided with the support plate and the connecting means. A method of constructing a continuous composite girder bridge using a composite panel, characterized in that a continuous girder is formed by filling and connecting a cross beam and an end of a composite panel integrally.
JP2002300882A 2002-10-15 2002-10-15 Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge Active JP3908642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300882A JP3908642B2 (en) 2002-10-15 2002-10-15 Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300882A JP3908642B2 (en) 2002-10-15 2002-10-15 Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006290588A Division JP4059909B2 (en) 2006-10-26 2006-10-26 Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge

Publications (2)

Publication Number Publication Date
JP2004137686A true JP2004137686A (en) 2004-05-13
JP3908642B2 JP3908642B2 (en) 2007-04-25

Family

ID=32449440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300882A Active JP3908642B2 (en) 2002-10-15 2002-10-15 Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge

Country Status (1)

Country Link
JP (1) JP3908642B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132046A (en) * 2005-11-09 2007-05-31 Jfe Engineering Kk Composite rigid-frame bridge
JP2010196294A (en) * 2009-02-24 2010-09-09 Ihi Infrastructure Systems Co Ltd Repair construction method for i-shaped girder bridge
JP2010196380A (en) * 2009-02-25 2010-09-09 Ihi Infrastructure Systems Co Ltd Reinforcing method for main girder end part and main girder end part reinforcing member used in this method
JP2010275829A (en) * 2009-06-01 2010-12-09 Taisei Corp Main girder, bridge, and bridge construction method
CN102425099A (en) * 2011-09-30 2012-04-25 李勇 Large cantilever wave-purlin combined PC bridge and manufacture method thereof
KR101168763B1 (en) 2009-12-01 2012-07-26 선문대학교 산학협력단 Composite bridge construction method
CN102877417A (en) * 2012-10-26 2013-01-16 中铁上海设计院集团有限公司 Anchoring method of girder suspender of continuous camber composite bridge
CN104233958A (en) * 2014-08-27 2014-12-24 中铁大桥勘测设计院集团有限公司 Construction method of beam end horizontal linkage device of ballastless track multi-line steel bridge
JP6375079B1 (en) * 2018-05-15 2018-08-15 新日鉄住金エンジニアリング株式会社 Joint structure of precast composite floor slab perpendicular to the bridge axis and its construction method
JP6425848B1 (en) * 2018-05-15 2018-11-21 株式会社横河住金ブリッジ Bridge replacement method
WO2021063225A1 (en) * 2019-09-30 2021-04-08 比亚迪股份有限公司 Guide rail beam of rail vehicle, rail beam unit and rail beam
WO2021063226A1 (en) * 2019-09-30 2021-04-08 比亚迪股份有限公司 Guide rail beam of railway vehicle, rail beam unit, and rail beam

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196599A (en) * 2018-05-08 2019-11-14 日鉄エンジニアリング株式会社 Synthetic panel structure
CN110409319B (en) * 2019-08-16 2021-02-23 中铁十四局集团第三工程有限公司 Bracket for large-span steel-concrete composite beam cast-in-place bridge deck and construction method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132046A (en) * 2005-11-09 2007-05-31 Jfe Engineering Kk Composite rigid-frame bridge
JP4548311B2 (en) * 2005-11-09 2010-09-22 Jfeエンジニアリング株式会社 Abutment structure of composite ramen bridge
JP2010196294A (en) * 2009-02-24 2010-09-09 Ihi Infrastructure Systems Co Ltd Repair construction method for i-shaped girder bridge
JP2010196380A (en) * 2009-02-25 2010-09-09 Ihi Infrastructure Systems Co Ltd Reinforcing method for main girder end part and main girder end part reinforcing member used in this method
JP2010275829A (en) * 2009-06-01 2010-12-09 Taisei Corp Main girder, bridge, and bridge construction method
KR101168763B1 (en) 2009-12-01 2012-07-26 선문대학교 산학협력단 Composite bridge construction method
CN102425099A (en) * 2011-09-30 2012-04-25 李勇 Large cantilever wave-purlin combined PC bridge and manufacture method thereof
CN102425099B (en) * 2011-09-30 2013-12-25 李勇 Large cantilever wave-purlin combined PC bridge and manufacture method thereof
CN102877417A (en) * 2012-10-26 2013-01-16 中铁上海设计院集团有限公司 Anchoring method of girder suspender of continuous camber composite bridge
CN104233958A (en) * 2014-08-27 2014-12-24 中铁大桥勘测设计院集团有限公司 Construction method of beam end horizontal linkage device of ballastless track multi-line steel bridge
CN104233958B (en) * 2014-08-27 2016-05-25 中铁大桥勘测设计院集团有限公司 The construction method of the beam-ends transverse linkage device of the multi-thread steel bridge of non-fragment orbit
JP6375079B1 (en) * 2018-05-15 2018-08-15 新日鉄住金エンジニアリング株式会社 Joint structure of precast composite floor slab perpendicular to the bridge axis and its construction method
JP6425848B1 (en) * 2018-05-15 2018-11-21 株式会社横河住金ブリッジ Bridge replacement method
JP2019199711A (en) * 2018-05-15 2019-11-21 株式会社横河Nsエンジニアリング Method for rebuilding bridge
WO2021063225A1 (en) * 2019-09-30 2021-04-08 比亚迪股份有限公司 Guide rail beam of rail vehicle, rail beam unit and rail beam
WO2021063226A1 (en) * 2019-09-30 2021-04-08 比亚迪股份有限公司 Guide rail beam of railway vehicle, rail beam unit, and rail beam

Also Published As

Publication number Publication date
JP3908642B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP2004137686A (en) Composite panel structure, panel bridge structure and construction method for continuous composite girder bridge
JP4059909B2 (en) Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge
US7461427B2 (en) Bridge construction system and method
KR20040006564A (en) Composite Deck having Frame and Concrete
JP4002771B2 (en) Continuous girder structure of existing simple girder bridges
JP3737475B2 (en) Box girder bridge structure and construction method
JP2006009449A (en) Truss panel girder and precast truss panel
KR100565384B1 (en) Structure of continuous PSC beam with connection member and steel cross beam and bridge construction method using the same
JP2004285738A (en) Box girder bridge structure and method of constructing the same
KR101007708B1 (en) Semi-hinge rahman bridge and method for constructing the same
KR100839439B1 (en) Moment connection structure combining a superstructure with substructure in the prefabricated rahmen bridge and method constructing rahmen bridge with the structure
KR101998822B1 (en) Composite rahmen bridge, steel girder for that and construction method of composite rahmen bridge
JP2006112086A (en) Structure of bridge and method for rebuilding bridge
OA13227A (en) Modular metal bridge and its production method.
US20120222375A1 (en) Method to Compress Prefabricated Deck Units by Tensioning Elements at Intermediate Supports
KR20140065338A (en) The continuous hybrid girder consist of concrete block and steel block which is can add prestress by gap difference between top and bottom of connection face of blocks
KR100480471B1 (en) Connecting Structure and Connecting Method of Honeycomb Type Composite Beam Stiffened with Prestressed Concrete Panel
JP2000017613A (en) Connection of corrugated steel plate web girder
JPH11229329A (en) Constructing method for steel-concrete composite floor board bridge
KR100691847B1 (en) Prefabricated beams reinforced with connecting steel boxes
JP4585614B1 (en) Method for constructing synthetic steel slab bridge, ribbed steel slab, and synthetic steel slab bridge
JP2002206209A (en) Bridge having upper-lower section integral structure and its execution method
KR20000054500A (en) Construction method that introduces compressive stress to bottom plate concrete and bottom moment flange of parent section by using and adjusting the descending and rising process of end point in short span and multi span composite structures
KR20120022285A (en) Composite steel continuous bridge using concrete cross beams and its construction method
JP3922952B2 (en) Bridge floor slab and replacement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060711

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R151 Written notification of patent or utility model registration

Ref document number: 3908642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250