JP4627201B2 - Hard coating - Google Patents

Hard coating Download PDF

Info

Publication number
JP4627201B2
JP4627201B2 JP2005069379A JP2005069379A JP4627201B2 JP 4627201 B2 JP4627201 B2 JP 4627201B2 JP 2005069379 A JP2005069379 A JP 2005069379A JP 2005069379 A JP2005069379 A JP 2005069379A JP 4627201 B2 JP4627201 B2 JP 4627201B2
Authority
JP
Japan
Prior art keywords
film
hard
atomic ratio
hard coating
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005069379A
Other languages
Japanese (ja)
Other versions
JP2006249527A (en
Inventor
兼司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005069379A priority Critical patent/JP4627201B2/en
Priority to DE102006004394A priority patent/DE102006004394B4/en
Priority to US11/348,373 priority patent/US7442247B2/en
Priority to KR1020060014770A priority patent/KR100674773B1/en
Priority to CN2009101297264A priority patent/CN101509121B/en
Publication of JP2006249527A publication Critical patent/JP2006249527A/en
Priority to US12/196,826 priority patent/US7651792B2/en
Application granted granted Critical
Publication of JP4627201B2 publication Critical patent/JP4627201B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は硬質皮膜に関する技術分野に属するものであり、特には、チップ、ドリル、エンドミル等の切削工具あるいは鍛造金型、打ち抜きパンチ等の治工具の耐摩耗性を向上するための硬質皮膜に関する技術分野に属するものである。 The present invention belongs to the technical field concerning the hard skin layer, in particular, chip, drill, cutting tool or forging dies such as an end mill, hard coating for improving the wear resistance of the tools, such as punch Belongs to the technical field.

従来から超硬合金、サーメットや高速度工具鋼を基材とする切削工具の耐摩耗性を向上させることを目的に、TiNやTiCN、TiAlN等の硬質皮膜をコーティングすることが行われている。特に、特許第2644710 号公報に開示されるようなTiとAlの複合窒化皮膜(以下、TiAlN皮膜ともいう)が、優れた耐摩耗性を示すことから、前記チタンの窒化物や炭化物、炭窒化物等からなる皮膜に代わって、高速切削用や焼き入れ鋼等の高硬度材切削用の切削工具に適用されつつある。しかしながら、近年の被削材高硬度化や切削速度の高速度化に伴い、更に耐摩耗性の高められた硬質皮膜が求められている。   Conventionally, a hard film such as TiN, TiCN, TiAlN or the like has been coated for the purpose of improving the wear resistance of a cutting tool based on cemented carbide, cermet or high-speed tool steel. In particular, since the composite nitride film of Ti and Al (hereinafter also referred to as TiAlN film) as disclosed in Japanese Patent No. 2644710 shows excellent wear resistance, the titanium nitride, carbide, carbonitride Instead of coatings made of materials, etc., it is being applied to cutting tools for cutting high-hardness materials such as high-speed cutting and hardened steel. However, with the recent increase in the hardness of the work material and the increase in the cutting speed, a hard coating with further improved wear resistance is required.

また、TiAlNにCrあるいはVを添加することで、結晶構造を高硬度の立方晶構造に保ちながらAl濃度を高め、耐酸化性を向上させた皮膜も提案されている(特開2003-71610号公報、特開2003-34858号公報)。また、Tiを含有しないCrAlVNよりなる皮膜も提案されている。しかし、これらよりも更に耐酸化性および耐摩耗性に優れた硬質皮膜の出現が望まれる。
特許第2644710 号公報 特開2003-71610号公報 特開2003-34858号公報
In addition, a film has also been proposed in which Cr or V is added to TiAlN to increase the Al concentration and improve the oxidation resistance while keeping the crystal structure in a hard cubic structure (Japanese Patent Laid-Open No. 2003-71610). Publication, Unexamined-Japanese-Patent No. 2003-34858). A film made of CrAlVN not containing Ti has also been proposed. However, the appearance of a hard coating having further excellent oxidation resistance and wear resistance is desired.
Japanese Patent No.26444710 JP 2003-71610 A JP 2003-34858 JP

本発明はこのような事情に鑑みてなされたものであって、その目的は、従来の硬質皮膜であるTiAlN皮膜やTiCrAlN皮膜よりも耐酸化性に優れ、且つ、硬度の高い硬質皮膜を提供しようとするものである。 The present invention was made in view of such circumstances, and its object is excellent in oxidation resistance than TiAlN film or TiCrAlN film is a conventional hard coating, and, providing a high hardness hard skin layer It is something to try.

本発明者らは、上記目的を達成するため、鋭意検討した結果、本発明を完成するに至った。本発明によれば上記目的を達成することができる。   As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. According to the present invention, the above object can be achieved.

このようにして完成され上記目的を達成することができた本発明は、硬質皮膜に係わり、請求項1記載の硬質皮膜であり、それは次のような構成としたものである。 Thus it is completed the present invention which can achieve the above object relates to a hard skin layer, a hard film of claim 1, wherein it is obtained by the following configuration.

即ち、請求項1記載の硬質皮膜は、(Cra Tab AlC )Nからなる硬質皮膜であって、下記の式(1) 、(5) 、(6) 、(9) を満たすことを特徴とする硬質皮膜である。
a+b+c=1 --------------------------式(1)
0.05≦b --------------------------式(5)
0.5≦c≦0.73 ------------------- 式(6)
0.05≦a --------------------------式(9)
但し、上記式(1) 、(5) 、(6) 、(9) において、aはCrの原子比、bはTaの原子比、cはAlの原子比を示すものである。
That is, the hard film of claim 1, wherein the, (Cr a Ta b Al C ) a hard film consisting of N, the following equation (1), (5), (6), that satisfy (9) It is a characteristic hard film.
a + b + c = 1 --------------------------------------- Formula (1)
0.05 ≦ b -------------------------- Equation (5)
0.5 ≦ c ≦ 0.73 ------------------- Equation (6)
0.05 ≦ a -------------------------- Formula (9)
In the above formulas (1), (5), (6) and (9) , a represents the atomic ratio of Cr, b represents the atomic ratio of Ta, and c represents the atomic ratio of Al.

本発明によれば、従来の硬質皮膜であるTiAlN皮膜やTiCrAlN皮膜よりも耐酸化性に優れ、且つ、硬度の高い硬質皮膜が得られる。即ち、本発明に係る硬質皮膜は、従来の硬質皮膜であるTiAlN皮膜やTiCrAlN皮膜よりも、耐酸化性に優れ、且つ、硬度が高く、工具や金型等の硬質皮膜として好適に用いることができ、それらの耐久性の向上がはかれる According to the present invention, it is possible to obtain a hard film having superior oxidation resistance and higher hardness than TiAlN film and TiCrAlN film, which are conventional hard films. That is, the hard skin layer according to the present invention, than conventional TiAlN coating and TiCrAlN film is hard film excellent in oxidation resistance and a high hardness, suitably used as a hard coating tools and dies, etc. And the durability of those can be improved .

本発明者らは、前述の目的を達成すべく、皮膜の硬度と耐酸化性を両立させるためにTiAlN、TiCrAlN、TiVAlN、CrAlNやCrAlVNのTi、Cr、Vに着目して鋭意検討した結果、これら皮膜にNb、TaをTi、Cr、Vのいずれかの一部を置換する形で添加することにより、より硬度が高く且つ耐酸化性に優れたものとなることを見いだした。また、更にAlの一部をSi、Bあるいはその両方で置換することにより、より硬度が高く且つ耐酸化性に優れたものとなることを見いだした。   In order to achieve the above-mentioned object, the present inventors have conducted intensive studies focusing on TiAlN, TiCrAlN, TiVAlN, CrAlN, and CrAlVN Ti, Cr, V in order to achieve both the hardness and oxidation resistance of the film. It has been found that by adding Nb and Ta to these films in a form that substitutes a part of any one of Ti, Cr, and V, the film has higher hardness and excellent oxidation resistance. Further, it has been found that by replacing a part of Al with Si, B or both, the hardness is higher and the oxidation resistance is improved.

かかる知見に基づき本発明のベースとなる技術(以下、基本技術)および参考技術1〜3を創出し、そして、本発明を完成させた。この基本技術に係る硬質皮膜は、〔(Cr,V)a (Nb,Ta)b (Al,Si,B)C 〕(C1-x x )からなる硬質皮膜であって、下記の式(1) 〜(8) を満たすことを特徴とする硬質皮膜である。参考技術1に係る硬質皮膜は、〔(Ti,Cr,V)a (Nb,Ta)b (Al,Si,B)C 〕(C1-x x )からなる硬質皮膜であって、下記の式(1A)〜(10A) を満たすことを特徴とする硬質皮膜である。これらの硬質皮膜は、基本技術に係るものも、参考技術1に係るものも、従来の硬質皮膜であるTiAlN皮膜やTiCrAlN皮膜よりも、耐酸化性に優れ、且つ、硬度が高く、工具や金型等の硬質皮膜として好適に用いることができ、それらの耐久性の向上がはかれる。
a+b+c=1 --------------------------式(1)
Cr +a V =a --------------------------式(2)
Nb +b Ta =b --------------------------式(3)
Al +c Si +c B =c ------------------- 式(4)
0.05≦b --------------------------式(5)
0.5≦c≦0.73 ------------------- 式(6)
0≦c Si +c B ≦0.15 ----------------式(7)
0.4≦x≦1.0 ------------------- 式(8)
但し、上記式(1) 〜(8) において、a Cr はCrの原子比、a V はVの原子比、b Nb はNbの原子比、b Ta はTaの原子比、c Al はAlの原子比、c Si はSiの原子比、c B はBの原子比、xはNの原子比を示すものである。
a+b+c=1 --------------------------式(1A)
Ti +a Cr +a V =a --------------------式(2A)
Nb +b Ta =b --------------------------式(3A)
Al +c Si +c B =c ------------------- 式(4A)
0.05≦b --------------------------式(5A)
0.5≦c≦0.73 ------------------- 式(6A)
0≦c Si +c B ≦0.15 ----------------式(7A)
Ti >0 ------------------------------式(8A)
Cr +a V +c Si +c B >0 --------------式(9A)
0.4≦x≦1.0 ------------------- 式(10A)
但し、上記式(1A)〜(10A) において、a Ti はTiの原子比、a Cr はCrの原子比、a V はVの原子比、b Nb はNbの原子比、b Ta はTaの原子比、c Al はAlの原子比、c Si はSiの原子比、c B はBの原子比、xはNの原子比を示すものである。
Based on this knowledge, a technology (hereinafter referred to as basic technology) and reference technologies 1 to 3 as a basis of the present invention were created, and the present invention was completed. Hard film according to the basic technique is a hard film comprising [(Cr, V) a (Nb , Ta) b (Al, Si, B) C ] (C 1-x N x) , the following equation (1) Ru the hard coating der characterized by satisfying to (8). Hard film according to the reference technique 1 is a hard film comprising [(Ti, Cr, V) a (Nb, Ta) b (Al, Si, B) C ] (C 1-x N x) , the following hard coating der characterized by satisfying the formula (1A) ~ (10A) Ru. These hard coatings, both those related to the basic technology and those related to Reference Technology 1 , have superior oxidation resistance and higher hardness than conventional hard coatings such as TiAlN coatings and TiCrAlN coatings. It can be suitably used as a hard film such as a mold, and their durability can be improved.
a + b + c = 1 --------------------------------------- Formula (1)
a Cr + a V = a ------------------------- Formula (2)
b Nb + b Ta = b -------------------------- Equation (3)
c Al + c Si + c B = c ------------------- Equation (4)
0.05 ≦ b -------------------------- Equation (5)
0.5 ≦ c ≦ 0.73 ------------------- Equation (6)
0 ≦ c Si + c B ≦ 0.15 ---------------- Equation (7)
0.4 ≦ x ≦ 1.0 ------------------- Equation (8)
In the above formulas (1) to (8), aCr is the atomic ratio of Cr, aV is the atomic ratio of V , bNb is the atomic ratio of Nb, bTa is the atomic ratio of Ta , and cAl is Al. The atomic ratio, c Si represents the atomic ratio of Si, c B represents the atomic ratio of B, and x represents the atomic ratio of N.
a + b + c = 1 ---------------------- Formula (1A)
a Ti + a Cr + a V = a -------------------- Formula (2A)
b Nb + b Ta = b -------------------------- Formula (3A)
c Al + c Si + c B = c ------------------- Equation (4A)
0.05 ≦ b -------------------------- Formula (5A)
0.5 ≦ c ≦ 0.73 ------------------- Equation (6A)
0 ≦ c Si + c B ≦ 0.15 ---------------- Equation (7A)
a Ti > 0 -----------------------------------------------------------------
a Cr + a V + c Si + c B > 0 -------------- Formula (9A)
0.4 ≦ x ≦ 1.0 ------------------- Equation (10A)
In the above formulas (1A) to (10A), a Ti is an atomic ratio of Ti, a Cr is an atomic ratio of Cr, a V is an atomic ratio of V, b Nb is an atomic ratio of Nb, and b Ta is Ta. The atomic ratio, c Al is the atomic ratio of Al, c Si is the atomic ratio of Si, c B is the atomic ratio of B, and x is the atomic ratio of N.

基本技術および参考技術1に係る硬質皮膜について、成分の作用効果、数値限定理由等を以下説明する。 About the hard film which concerns on a basic technique and the reference technique 1 , the effect of a component, the reason for numerical limitation, etc. are demonstrated below.

TiAlN膜が高耐酸化性を示すのは高温酸化雰囲気においてAlが優先的に酸化され保護性の高いAl酸化皮膜を再表面に形成するためである。しかしながら、さらに温度が高くなると保護性の低いTi酸化物の形成が優先的に生じ、酸化が急激に開始する。Crの添加により、この特性は改善されるが、まだ不十分である。更なる改善のためにはTaやNbを上記元素(Ti)に代えて添加するとよく、これにより耐酸化性が向上する。   The reason why the TiAlN film exhibits high oxidation resistance is that Al is preferentially oxidized in a high-temperature oxidation atmosphere to form a highly protective Al oxide film on the resurface. However, when the temperature is further increased, formation of Ti oxide with low protection preferentially occurs, and oxidation starts abruptly. Addition of Cr improves this property, but is still insufficient. For further improvement, Ta or Nb may be added in place of the element (Ti), thereby improving the oxidation resistance.

Vは酸化特性を劣化させる元素である。Vが酸化特性を劣化させるのは、形成されたVの酸化物は低融点であるために酸化皮膜の保護性を低下させるためである。V含有膜に対してもNb、Taを添加することにより、耐酸化性を改善させることができる。また、Nb、Taを添加することにより、皮膜硬度も増加させることができる。その理由は下記の通りである。即ち、TiAlN、TiCrAlN、TiVAlN、CrAlNやCrAlVNといった窒化物皮膜は、格子定数が0.41〜0.42nmであるTiN、VN、CrN、AlNの複合窒化物であり、その格子定数も0.41〜0.42nmの間の値をとる。これに対して、Ta、Nbの窒化物の格子定数は0.44nmで上記窒化物より大きな値を有することから、Nb、Taを添加することにより格子歪みによる高硬度化をはかることが可能である。   V is an element that deteriorates oxidation characteristics. The reason why V deteriorates the oxidation characteristic is that the formed oxide of V has a low melting point, and thus lowers the protective property of the oxide film. The oxidation resistance can be improved by adding Nb and Ta also to the V-containing film. Moreover, film hardness can also be increased by adding Nb and Ta. The reason is as follows. That is, a nitride film such as TiAlN, TiCrAlN, TiVAlN, CrAlN, and CrAlVN is a composite nitride of TiN, VN, CrN, and AlN having a lattice constant of 0.41 to 0.42 nm, and its lattice constant is also 0.41. It takes a value between ˜0.42 nm. On the other hand, since the lattice constant of nitrides of Ta and Nb is 0.44 nm, which is larger than the above nitride, it is possible to increase the hardness by lattice distortion by adding Nb and Ta. is there.

Ta、Nbの添加量b(=bNb+bTa)は、十分な格子歪みによる高硬度化および耐酸化性の向上のために0.05(原子比)以上が必要である。即ち、式(5) や式(5A)を満たすことが必要である。ただし、Ti、Cr、Vの合計の添加量を大きく超えてNb、Taを添加すると格子歪みによる硬化が小さくなることから、bはTi、Cr、V添加量a(=aTi+aCr+aV )(Tiを含まない場合、a=aCr+aV )の1.2倍以下であることが好ましい。Ti、Cr、Vはこれらの窒化物は立方晶AlNに近く、このため、これら元素の添加により、高硬度の立方晶構造を保ちつつ耐酸化性を向上させるAlを高濃度まで添加させることができる。特にCr、Vの窒化物はAlNとほぼ格子定数が等しく、その効果は顕著である。よって、これらの元素の合計添加量は0.05(原子比)以上が好ましく、より好ましくは0.15(原子比)以上である。 The added amount b (= b Nb + b Ta ) of Ta and Nb needs to be 0.05 (atomic ratio) or more in order to increase the hardness by sufficient lattice distortion and improve the oxidation resistance. That is, it is necessary to satisfy the expressions (5) and (5A). However, if Nb and Ta are added exceeding the total amount of addition of Ti, Cr and V, hardening due to lattice strain is reduced, so b is the amount of Ti, Cr and V added a (= a Ti + a Cr + a V ) (if not including Ti, it is preferably not more than 1.2 times the a = a Cr + a V) . Ti, Cr, and V are such that these nitrides are close to cubic AlN. Therefore, by adding these elements, it is possible to add Al to a high concentration to improve oxidation resistance while maintaining a high hardness cubic structure. it can. In particular, the nitrides of Cr and V have substantially the same lattice constant as AlN, and the effect is remarkable. Therefore, the total addition amount of these elements is preferably 0.05 (atomic ratio) or more, more preferably 0.15 (atomic ratio) or more.

また、Al、Si、B合計量c(=cAl+cSi+cB )は0.5(原子比)以上であることが必要である。0.5(原子比)未満では耐酸化性、硬度ともに不十分である。ただし、cが0.73を超えると低硬度相である六方晶が皮膜中の優勢な結晶構造となるために、cは0.73以下であることが必要である。即ち、式(6) や式(6A)を満たすことが必要である。 Further, the total amount c (= c Al + c Si + c B ) of Al, Si, and B needs to be 0.5 (atomic ratio) or more. If it is less than 0.5 (atomic ratio), both oxidation resistance and hardness are insufficient. However, if c exceeds 0.73, the hexagonal crystal, which is a low hardness phase, has a dominant crystal structure in the film, so that c needs to be 0.73 or less. That is, it is necessary to satisfy Expression (6) and Expression (6A).

前述のように、さらに耐酸化性を向上させるためにはAlの一部をSi、Bで置換することが良いことを見いだした。また、Si、Bの添加により皮膜の結晶粒が微細化し、高硬度となる効果もある。ただし、SiとBの添加量(cSi+cB )が0.15(原子比)超の場合には皮膜が非晶質化し、硬度低下が認められることから、この添加量は0.15(原子比)以下とする。即ち、式(7) や式(7A)を満たすことを要件とする。この添加量が0.01(原子比)未満では添加の効果が小さいことから、この添加量は0.01(原子比)以上とすることが望ましい。即ち、SiとBの添加量は0.01〜0.15(原子比)とすることが望ましい。より好ましくは0.03〜0.1(原子比)の範囲である。 As described above, it has been found that a part of Al is preferably substituted with Si and B in order to further improve the oxidation resistance. In addition, the addition of Si and B has the effect of reducing the crystal grains of the film and increasing the hardness. However, when the amount of addition of Si and B (c Si + c B ) exceeds 0.15 (atomic ratio), the film becomes amorphous and a decrease in hardness is observed, so this addition amount is 0.15 ( Atomic ratio) or less. That is, it is a requirement to satisfy Expression (7) and Expression (7A). If the addition amount is less than 0.01 (atomic ratio), the effect of addition is small, and therefore the addition amount is desirably 0.01 (atomic ratio) or more. That is, the addition amount of Si and B is preferably 0.01 to 0.15 (atomic ratio). More preferably, it is the range of 0.03-0.1 (atomic ratio).

Tiを含む場合、硬度不足から、より硬度の高いCrまたはVを含むか、あるいは、TiSiNまたはTiBN等といった高硬度化合物を形成させるためにSiまたはBを含む必要がある。即ち、式(9A)を満たすことが必要である。   When Ti is contained, it is necessary to contain Cr or V having a higher hardness due to insufficient hardness, or Si or B to form a high hardness compound such as TiSiN or TiBN. That is, it is necessary to satisfy the formula (9A).

次に、皮膜中のC、Nの比率であるが、Cを添加することにより高硬度のVC化合物を形成し、皮膜全体の硬度を高めてやることができるが、過度のC添加は不安定なAl−C化合物の形成につながることから、Cの添加量はVと同程度を目安とする。このような点から、N量x(原子比)の下限値を0.4とした。即ち、式(8) や式(10A) を満たすことを要件とした。このx(原子比)は0.6以上であることが望ましく、0.8以上であることは更に望ましい。
本発明に係る硬質皮膜は、請求項1記載の硬質皮膜であり、それは(Cra Tab AlC )Nからなる硬質皮膜であって、下記の式(1) 、(5) 、(6) 、(9) を満たすことを特徴とする硬質皮膜である。
a+b+c=1 --------------------------式(1)
0.05≦b --------------------------式(5)
0.5≦c≦0.73 ------------------- 式(6)
0.05≦a --------------------------式(9)
但し、上記式(1) 、(5) 、(6) 、(9) において、aはCrの原子比、bはTaの原子比、cはAlの原子比を示すものである。
Next, it is the ratio of C and N in the film. By adding C, a high hardness VC compound can be formed and the hardness of the entire film can be increased, but excessive addition of C is unstable. Therefore, the amount of C added is approximately the same as V. From such a point, the lower limit value of the N amount x (atomic ratio) was set to 0.4. In other words, the requirement is to satisfy Equation (8) and Equation (10A). This x (atomic ratio) is desirably 0.6 or more, and more desirably 0.8 or more.
Hard film according to the present invention is a hard film of claim 1, wherein it (Cr a Ta b Al C) a hard film consisting of N, the following equation (1), (5), (6) (9) A hard film characterized by satisfying (9) .
a + b + c = 1 --------------------------------------- Formula (1)
0.05 ≦ b -------------------------- Equation (5)
0.5 ≦ c ≦ 0.73 ------------------- Equation (6)
0.05 ≦ a -------------------------- Formula (9)
In the above formulas (1), (5), (6) and (9) , a represents the atomic ratio of Cr, b represents the atomic ratio of Ta, and c represents the atomic ratio of Al.

参考技術2に係る硬質皮膜は、〔(Ti,Cr,V)a (Nb,Ta)b (Al,Si,B)C 〕(C1-x x )からなる硬質皮膜であって下記の式(1B)〜(8B)を満たす硬質皮膜Aと、〔(Ti,Cr,V)a (Nb,Ta)b (Al,Si,B)C 〕(C1-x x )からなる硬質皮膜であって下記の式(1C)〜(8C)を満たす硬質皮膜Bとを、合計で2層以上交互に積層したことを特徴とする硬質皮膜である。
a+b+c=1 --------------------------式(1B)
Ti +a Cr +a V =a --------------------式(2B)
Nb +b Ta =b --------------------------式(3B)
Al +c Si +c B =c ------------------- 式(4B)
0.05≦b --------------------------式(5B)
0.5≦c≦0.73 ------------------- 式(6B)
0≦c Si +c B ≦0.15 ----------------式(7B)
0.4≦x≦1.0 ------------------- 式(8B)
a+b+c=1 --------------------------式(1C)
Ti +a Cr +a V =a --------------------式(2C)
Nb +b Ta =b --------------------------式(3C)
Al +c Si +c B =c ------------------- 式(4C)
0.05≦b --------------------------式(5C)
0.5≦c≦0.8 ------------------- 式(6C)
0.15≦c Si +c B ≦0.5 ------------式(7C)
0.4≦x≦1.0 ------------------- 式(8C)
但し、上記式(1B)〜(8B)、(1C)〜(8C)において、a Ti はTiの原子比、a Cr はCrの原子比、a V はVの原子比、b Nb はNbの原子比、b Ta はTaの原子比、c Al はAlの原子比、c Si はSiの原子比、c B はBの原子比、xはNの原子比を示すものである。
Hard film according to the reference technique 2 [(Ti, Cr, V) a (Nb, Ta) b (Al, Si, B) C ] (C 1-x N x) from comprising a hard film below A hard film A satisfying the formulas (1B) to (8B) and a hard film composed of [(Ti, Cr, V) a (Nb, Ta) b (Al, Si, B) C ] (C 1-x N x ) a hard film B a film that satisfies the following formula (1C) ~ (8C), a hard coating, characterized in that alternately laminated two or more layers in total.
a + b + c = 1 -------------------------- Formula (1B)
a Ti + a Cr + a V = a -------------------- Formula (2B)
b Nb + b Ta = b -------------------------------------------- Formula (3B)
c Al + c Si + c B = c ------------------- Equation (4B)
0.05 ≦ b -------------------------- Formula (5B)
0.5 ≦ c ≦ 0.73 ------------------- Equation (6B)
0 ≦ c Si + c B ≦ 0.15 ---------------- Equation (7B)
0.4 ≦ x ≦ 1.0 ------------------- Equation (8B)
a + b + c = 1 -------------------------- Formula (1C)
a Ti + a Cr + a V = a -------------------- Formula (2C)
b Nb + b Ta = b -------------------------- Formula (3C)
c Al + c Si + c B = c ------------------- Equation (4C)
0.05 ≦ b -------------------------- Formula (5C)
0.5 ≦ c ≦ 0.8 ------------------- Equation (6C)
0.15 ≦ c Si + c B ≦ 0.5 ------------ Formula (7C)
0.4 ≦ x ≦ 1.0 ------------------- Equation (8C)
However, in the above formulas (1B) to (8B) and (1C) to (8C), a Ti is an atomic ratio of Ti, a Cr is an atomic ratio of Cr, a V is an atomic ratio of V, and b Nb is Nb. The atomic ratio, b Ta is the atomic ratio of Ta, c Al is the atomic ratio of Al, c Si is the atomic ratio of Si, c B is the atomic ratio of B, and x is the atomic ratio of N.

この硬質皮膜において、硬質皮膜A自体は参考技術1に係る硬質皮膜と同様の組成のものである。硬質皮膜Aのc=cAl+cSi+cB (原子比)は、式(6A)に示すように、0.5≦c≦0.73であり、cSi+cB (原子比)は、式(7A)に示すように、0≦cSi+cB ≦0.15であるのに対し、硬質皮膜Bのc=cAl+cSi+cB (原子比)は、式(6C)に示すように、0.5≦c≦0.8であり、cSi+cB (原子比)は、式(7C)に示すように、0.15≦cSi+cB ≦0.5である。 In this hard coating, the hard coating A itself has the same composition as the hard coating according to Reference Technique 1 . C = c Al + c Si + c B (atomic ratio) of the hard coating A is 0.5 ≦ c ≦ 0.73, and c Si + c B (atomic ratio) is expressed by the formula: 6A As shown in (7A), 0 ≦ c Si + c B ≦ 0.15, whereas c = c Al + c Si + c B (atomic ratio) of the hard coating B is as shown in the formula (6C). 0.5 ≦ c ≦ 0.8, and c Si + c B (atomic ratio) is 0.15 ≦ c Si + c B ≦ 0.5, as shown in Formula (7C).

このように、硬質皮膜Bは、硬質皮膜Aに比較してSi量+B量(cSi+cB )およびAl量+Si量+B量(cAl+cSi+cB )が多くなっている。このため、硬質皮膜Bは六方晶あるいは非晶質構造をとり、硬質皮膜Aに比較すると硬度は低い。しかしながら、硬質皮膜Bは、Si量+B量およびAl量+Si量+B量を増加させたために、硬質皮膜Aに比較して耐酸化性は高くなっている。よって、硬質皮膜Aと硬質皮膜Bとを合計で2層以上交互に積層することにより、硬度ならびに耐酸化性を兼ね備えた硬質皮膜とすることができる。従って、参考技術2に係る硬質皮膜は、参考技術1に係る硬質皮膜に比較し、硬度と耐酸化性とを総合してみた場合の水準が高く、総合的特性に優れている。即ち、参考技術2に係る硬質皮膜と参考技術1に係る硬質皮膜とを、例えば同一硬度にした場合、参考技術2に係る硬質皮膜の方が耐酸化性に優れたものとすることができ、例えば同一水準の耐酸化性にした場合、参考技術2に係る硬質皮膜の方が硬度の高いものとすることができる。 Thus, the hard coating B has a larger amount of Si + B (c Si + c B ) and Al + Si amount + B (c Al + c Si + c B ) than the hard coating A. For this reason, the hard coating B has a hexagonal or amorphous structure, and the hardness is lower than that of the hard coating A. However, the hard coating B has higher oxidation resistance than the hard coating A because the Si amount + B amount and the Al amount + Si amount + B amount are increased. Therefore, a hard film having both hardness and oxidation resistance can be obtained by alternately laminating two or more layers of the hard film A and the hard film B in total. Therefore, the hard film according to the reference technique 2 has a higher level when the hardness and oxidation resistance are combined as compared with the hard film according to the reference technique 1 , and is excellent in overall characteristics. That is, when the hard coating according to Reference Technology 2 and the hard coating according to Reference Technology 1 are made to have the same hardness, for example, the hard coating according to Reference Technology 2 can have better oxidation resistance, For example, in the case of the same level of oxidation resistance, the hard coating according to Reference Technique 2 can have a higher hardness.

参考技術2に係る硬質皮膜において、高硬度を維持するために硬質皮膜A層と硬質皮膜B層の膜厚比は2/1以上(硬質皮膜A層の厚みが硬質皮膜B層の厚みの2倍以上)であることが望ましい。また、積層の効果を発揮するために、積層周期厚み(任意の硬質皮膜A層の厚みと該層に隣接する硬質皮膜B層の厚みとの和)>10nmとすることが望ましく、また、硬質皮膜A層の厚みが5nm以上であると共に硬質皮膜B層の厚みが1nm以上であることが望ましい。積層の効果をより高度に発揮するために、硬質皮膜A層の厚みが10nm以上であると共に硬質皮膜B層の厚みが2nm以上であることが更に望ましい。ただし、各々の層厚を大きくしすぎると積層の効果が大幅に減少し、ほぼ失われることから、硬質皮膜A層の厚み:100nm以下、硬質皮膜B層の厚み:10nm以下であることが好ましい。硬質皮膜A層の厚み:50nm以下、硬質皮膜B層の厚み:5nm以下であることは更に好ましい。全体の膜厚は、用途にもよるが、切削工具の場合で1〜10μm程度を目安とする。 In the hard coating according to Reference Technology 2 , in order to maintain high hardness, the film thickness ratio of the hard coating A layer and the hard coating B layer is 2/1 or more (the thickness of the hard coating A layer is 2 of the thickness of the hard coating B layer). It is desirable to be more than twice. Further, in order to exert the effect of lamination, it is desirable that the lamination cycle thickness (the sum of the thickness of the arbitrary hard coating A layer and the thickness of the hard coating B layer adjacent to the layer)> 10 nm, It is desirable that the thickness of the coating A layer is 5 nm or more and the thickness of the hard coating B layer is 1 nm or more. In order to exhibit the effect of lamination more highly, it is more desirable that the thickness of the hard coating A layer is 10 nm or more and the thickness of the hard coating B layer is 2 nm or more. However, if the thickness of each layer is too large, the effect of lamination is greatly reduced and almost lost, and therefore the thickness of the hard coating A layer: 100 nm or less and the thickness of the hard coating B layer: 10 nm or less are preferable. . More preferably, the thickness of the hard coating A layer is 50 nm or less, and the thickness of the hard coating B layer is 5 nm or less. The total film thickness is about 1 to 10 μm in the case of a cutting tool, although it depends on the application.

参考技術3は、参考技術2に係る硬質皮膜の形成方法であって、アーク蒸発源を有すると共にスパッタ蒸発源を有する成膜装置を用い、被処理体をアーク蒸発源とスパッタ蒸発源の前方を交互に通過させ、硬質皮膜Aをカソード放電型アークイオンプレーティング法にて形成し、硬質皮膜Bをスパッタリング法にて形成することを特徴とする硬質皮膜の形成方法である。この形成方法は、参考技術2に係る硬質皮膜を形成する際に好適に用いることができる。 Reference technique 3 is a method of forming a hard coating according to reference technique 2, and uses a film forming apparatus having an arc evaporation source and a sputtering evaporation source, and the object to be processed is placed in front of the arc evaporation source and the sputtering evaporation source. alternately passed, to form a hard film a by cathode discharge type arc ion plating, Ru forming method der of hard film and forming a hard film B by sputtering. This forming method can be suitably used when forming the hard film according to Reference Technique 2 .

即ち、硬質皮膜B層の皮膜は高Si、Bである(Si量+B量が多い)であるため、硬質皮膜Bの形成用のターゲットは機械的強度が低く、このため、硬質皮膜Bをアークイオンプレーティング法にて形成しようとすると、アーク放電時にターゲットが破損する可能性がある。また、硬質皮膜B層の好ましい範囲は10nm以下であり、特に1〜10nmの間であるが、アーク蒸発源は成膜レートが極めて速いので、このような膜厚の精密制御が困難である。これに対し、硬質皮膜Bをスパッタリング法にて形成すれば、上記のようなターゲット破損の問題がなく、また、上記のような膜厚の精密制御が容易である。従って、硬質皮膜Aはカソード放電型アークイオンプレーティング法にて形成し、硬質皮膜Bはスパッタリング法にて形成するとよい。そして、これを交互に連続して行うようにすると、参考技術2に係る硬質皮膜を簡便に形成することができる。 That is, since the film of the hard film B layer is high Si and B (the amount of Si + B is large), the target for forming the hard film B has a low mechanical strength. If an ion plating method is used to form the target, the target may be damaged during arc discharge. Further, the preferable range of the hard coating B layer is 10 nm or less, and particularly between 1 and 10 nm. However, since the arc evaporation source has a very high film forming rate, it is difficult to precisely control the film thickness. On the other hand, if the hard coating B is formed by a sputtering method, there is no problem of target damage as described above, and precise control of the film thickness as described above is easy. Therefore, the hard coating A is preferably formed by a cathode discharge arc ion plating method, and the hard coating B is formed by a sputtering method. And if this is performed alternately and continuously, the hard film which concerns on the reference technique 2 can be formed simply.

参考技術3に係る硬質皮膜の形成方法においては、アーク蒸発源を有すると共にスパッタ蒸発源を有する成膜装置を用い、被処理体をアーク蒸発源とスパッタ蒸発源の前方を交互に通過させ、硬質皮膜Aをカソード放電型アークイオンプレーティング法にて形成し、硬質皮膜Bをスパッタリング法にて形成するようにしているので、アークイオンプレーティング法による硬質皮膜Aの形成とスパッタリング法による硬質皮膜Bの形成とを交互に連続して行うことができ、参考技術2に係る硬質皮膜を簡便に形成することができる。また、この際、上記のようなターゲット破損の問題がなく、また、膜厚の精密制御を容易にすることができる。従って、参考技術3に係る硬質皮膜の形成方法は、参考技術2に係る硬質皮膜を形成する際に好適に用いることができる。 In the method of forming a hard film according to Reference Technology 3 , a film forming apparatus having an arc evaporation source and a sputter evaporation source is used, and the object to be processed is passed alternately in front of the arc evaporation source and the sputter evaporation source, thereby forming a hard film. Since the coating A is formed by the cathode discharge arc ion plating method and the hard coating B is formed by the sputtering method, the formation of the hard coating A by the arc ion plating method and the hard coating B by the sputtering method. Can be performed alternately and continuously, and the hard film according to the reference technique 2 can be easily formed. At this time, there is no problem of target damage as described above, and precise control of the film thickness can be facilitated. Therefore, the method for forming the hard film according to Reference Technology 3 can be suitably used when the hard film according to Reference Technology 2 is formed.

参考技術3に係る硬質皮膜の形成方法を遂行するための装置の例を図1に示す。この装置はアーク蒸発源とスパッタ蒸発源とを同一真空容器内に各々2台有する成膜装置である。この装置においては、チャンバー8内に基板1 を4個対称に回転盤9上に配置し、その周囲に円周状(円周上)に、スパッタリング蒸発源2、3とアーク蒸発源5、6とを、スパッタリング蒸発源2、3同士、アーク蒸発源5、6同士、各々対向して配置している。スパッタリング蒸発源とアーク蒸発源とは、互いに隣り合うように交互に配置されている。 An example of an apparatus for performing the method of forming a hard film according to Reference Technology 3 is shown in FIG. This apparatus is a film forming apparatus having two arc evaporation sources and two sputtering evaporation sources in the same vacuum container. In this apparatus, four substrates 1 are symmetrically arranged on a rotating disk 9 in a chamber 8 and are formed in a circumferential shape (circumferentially) around the sputtering evaporation sources 2 and 3 and arc evaporation sources 5 and 6. Are arranged opposite to each other, and the sputtering evaporation sources 2 and 3 and the arc evaporation sources 5 and 6 are opposed to each other. The sputtering evaporation source and the arc evaporation source are alternately arranged so as to be adjacent to each other.

そして、回転盤9の回転により、各基板1を回動させて、基板1が交互にアーク蒸発源5、6とスパッタリング蒸発源2、3の前を通過するようにしている。この場合、回転盤9や基板1の方を回転させずに、アーク蒸発源5、6とスパッタリング蒸発源2、3の方を、基板1の回りを回転するようにしても良い。また、他の態様として、スパッタリング蒸発源2、3とアーク蒸発源5、6とを、チャンバー8内に、円周状には配置せず、直線状など直列的に交互に配列し、成膜する基板を、前記アーク蒸発源とスパッタリング蒸発源との間で、順次相対的に移動させても良い。   Then, each substrate 1 is rotated by the rotation of the turntable 9 so that the substrates 1 alternately pass in front of the arc evaporation sources 5 and 6 and the sputtering evaporation sources 2 and 3. In this case, the arc evaporation sources 5 and 6 and the sputtering evaporation sources 2 and 3 may be rotated around the substrate 1 without rotating the turntable 9 or the substrate 1. Further, as another aspect, the sputtering evaporation sources 2 and 3 and the arc evaporation sources 5 and 6 are not arranged circumferentially in the chamber 8 but are alternately arranged in series such as a straight line to form a film. The substrate to be moved may be sequentially moved between the arc evaporation source and the sputtering evaporation source.

アーク蒸発源5、6として硬質皮膜Aと同様組成のターゲットを装着し、スパッタリング蒸発源2、3として硬質皮膜Bと同様組成のターゲットを装着し、反応性ガスを含む雰囲気(例えば、アルゴン−窒素雰囲気あるいはアルゴン−窒素−メタン雰囲気)中にて両蒸発源を同時放電させる。そうすると、アーク蒸発源5、6を用いて硬質皮膜A層の成分を、スパッタリング蒸発源2、3を用いて硬質皮膜B層の成分を、各々蒸発させて、交互にかつ順次基板1上に積層させ、参考技術2に係る硬質皮膜を形成することができる。 A target having the same composition as the hard film A is mounted as the arc evaporation sources 5 and 6, a target having the same composition as the hard film B is mounted as the sputtering evaporation sources 2 and 3, and an atmosphere containing a reactive gas (for example, argon-nitrogen) In the atmosphere or argon-nitrogen-methane atmosphere). Then, the components of the hard coating A layer are vaporized using the arc evaporation sources 5 and 6 and the components of the hard coating B layer are vaporized using the sputtering evaporation sources 2 and 3, respectively, and are laminated on the substrate 1 alternately and sequentially. Thus, the hard film according to the reference technique 2 can be formed.

なお、図1 に示す成膜装置においては、アーク蒸発源およびスパッタリング蒸発源ともに、各々具備する磁場印加機構11により発生および制御される磁場10を利用している。即ち、図1 に示した成膜装置は、磁場印加機構11により発生および制御される両蒸発源の磁場10同士が、お互いにつながるように成膜する態様となっている。   In the film forming apparatus shown in FIG. 1, both the arc evaporation source and the sputtering evaporation source use the magnetic field 10 generated and controlled by the magnetic field applying mechanism 11 provided therein. That is, the film forming apparatus shown in FIG. 1 has a mode in which the magnetic fields 10 of both evaporation sources generated and controlled by the magnetic field applying mechanism 11 are formed so as to be connected to each other.

このように、両蒸発源の磁場10同士がお互いにつながっている場合、両蒸発源からのイオンの指向性が向上し、基板へのイオン照射を増加させ、より特性に優れた皮膜を形成することが可能となる。即ち、同一成膜チャンバ8内の磁場10(磁力線)は閉じた状態(閉磁場構造)となっている。このため、前記蒸発源からの放出電子が、この閉磁場構造内にトラップされ、基板1と同じくアノードとなるチャンバ8に安易に誘導されない。この結果、放出電子の濃度が高まり、スパッタリングガスや反応性ガスとの衝突が多くなり、高効率でガスのイオン化を実施することができる。   In this way, when the magnetic fields 10 of both evaporation sources are connected to each other, the directivity of ions from both evaporation sources is improved, the ion irradiation to the substrate is increased, and a film with better characteristics is formed. It becomes possible. That is, the magnetic field 10 (lines of magnetic force) in the same film forming chamber 8 is closed (closed magnetic field structure). For this reason, the emitted electrons from the evaporation source are trapped in the closed magnetic field structure and are not easily guided to the chamber 8 serving as the anode like the substrate 1. As a result, the concentration of emitted electrons increases, collisions with sputtering gas and reactive gas increase, and gas ionization can be performed with high efficiency.

これに対し、両蒸発源の磁場10同士がお互いにつながらず、独立している場合、同一成膜チャンバ8内の磁場10(磁力線)は開いた状態(開磁場構造)となっており、前記蒸発源からの放出電子は、各々の磁場10(磁力線)の方向に沿って、速やかに(安易に)、チャンバ8に安易に誘導さる。この結果、放出電子の濃度が薄まり、スパッタリングガスや反応性ガスとの衝突が少なくなり、ガスのイオン化効率が低くなる。即ち、両蒸発源からのイオンの指向性が緩慢となって、基板へのイオン照射量が減り、皮膜特性あるいは成膜効率を阻害する可能性が高くなる。   On the other hand, when the magnetic fields 10 of both evaporation sources are not connected to each other and are independent, the magnetic field 10 (lines of magnetic force) in the same film forming chamber 8 is in an open state (open magnetic field structure). The emitted electrons from the evaporation source are easily and easily guided to the chamber 8 quickly (easily) along the direction of each magnetic field 10 (lines of magnetic force). As a result, the concentration of emitted electrons is reduced, collision with the sputtering gas or reactive gas is reduced, and the ionization efficiency of the gas is reduced. That is, the directivity of ions from both evaporation sources becomes slow, the amount of ion irradiation to the substrate is reduced, and the possibility of hindering film properties or film formation efficiency increases.

本発明の実施例および比較例を以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.

〔例A〕
前記図1に示す成膜装置のアーク蒸発源5および6に(Ti,Cr,V)a (Nb,Ta)b (Al,Si,B)C からなる合金ターゲットを取り付け、更に支持台(回転盤)9上に被処理体(基板)1として超硬合金製チップ、超硬合金製ボールエンドミル(直径10mm、2枚刃)または酸化試験用の白金箔(30×5×0.1mmt)を取り付けた後、チャンバー8内を真空状態にした。その後、チャンバー8内にあるヒーターで被処理体1を温度500℃に加熱し、窒素ガスを導入してチャンバー内の圧力を2.7Paにしてアーク放電を開始し、基板(被処理体)1の表面に膜厚3μmの皮膜を形成した。なお、成膜中にアース電位に対して基板(被処理体)1がマイナス電位となるよう20〜100Vのバイアス電圧を基板(被処理体)1に印加した。回転盤9は回転させず、固定したままとした。
[Example A]
An alloy target made of (Ti, Cr, V) a (Nb, Ta) b (Al, Si, B) C is attached to the arc evaporation sources 5 and 6 of the film forming apparatus shown in FIG. Board) As an object to be processed (substrate) 1, a cemented carbide chip, a cemented carbide ball end mill (diameter 10 mm, two blades) or an oxidation test platinum foil (30 × 5 × 0.1 mmt) After the attachment, the chamber 8 was evacuated. Thereafter, the object to be processed 1 is heated to a temperature of 500 ° C. with a heater in the chamber 8, nitrogen gas is introduced, the pressure in the chamber is set to 2.7 Pa, and arc discharge is started, and the substrate (object to be processed) 1 A film having a thickness of 3 μm was formed on the surface of the film. Note that a bias voltage of 20 to 100 V was applied to the substrate (object to be processed) 1 so that the substrate (object to be processed) 1 had a negative potential with respect to the ground potential during film formation. The turntable 9 was not rotated and remained fixed.

成膜終了後、膜中の金属成分組成、膜の結晶構造、ビッカース硬度を調べた。膜中の金属元素の成分組成はEPMAにより測定した。膜の結晶構造はX線回折により同定した。なお、皮膜中の金属元素および窒素以外の不純物元素量は、酸素、炭素各々が5at%以下のレベルであった。   After film formation, the metal component composition in the film, the crystal structure of the film, and Vickers hardness were examined. The component composition of the metal element in the film was measured by EPMA. The crystal structure of the film was identified by X-ray diffraction. The amount of impurity elements other than metal elements and nitrogen in the film was at a level of 5 at% or less for oxygen and carbon.

また、耐摩耗性を評価すべく、硬質皮膜を形成したエンドミルを用い、以下の条件で切削試験を行って刃中部分の摩耗幅を測定した。   Further, in order to evaluate the wear resistance, a wear test was performed under the following conditions using an end mill on which a hard film was formed, and the wear width of the middle part of the blade was measured.

〔切削試験条件〕
・被削材:SKD11(HRC60)
・切削速度:150m/分
・刃送り:0.04mm/刃
・軸切り込み:4.5mm
・径方向切り込み:0.2mm
・切削長:10m
・その他:ダウンカット、エアブローのみ
[Cutting test conditions]
-Work material: SKD11 (HRC60)
・ Cutting speed: 150 m / min ・ Blade feed: 0.04 mm / blade ・ Shaft cutting: 4.5 mm
・ Diameter cut: 0.2mm
・ Cutting length: 10m
・ Others: Down cut, air blow only

上記試験(調査、測定)の結果を表1に示す。この表1からわかるように、No.4、7 、12、16、20の皮膜(比較例)は、従来例に比べて、耐酸化性あるいは硬度が高く、摩耗幅が小さいが、十分ではない。   The results of the above test (investigation, measurement) are shown in Table 1. As can be seen from Table 1, the films No. 4, 7, 12, 16, and 20 (comparative examples) have higher oxidation resistance or hardness and smaller wear width than the conventional examples, but are not sufficient. .

これに比べて、No.5、6 、8 〜11、13〜15、17〜19、21の皮膜は、耐酸化性、硬度が高く、摩耗幅が小さい。   Compared with this, the films of Nos. 5, 6, 8 to 11, 13 to 15, 17 to 19 and 21 have high oxidation resistance and hardness, and a small wear width.

〔例B〕
前記図1に示す成膜装置のアーク蒸発源5及び6に表2に示す層Aの金属成分からなるターゲット〔No.4〜13の層Aの組成:(Ti0.27Nb0.15Al0.56Si0.02)N〕を取り付け、スパッタ蒸発源2及び3に表2に示す層Bの金属成分からなる合金ターゲットを取り付け、更に、支持台(回転盤)9上に被処理体(基板)1として超硬合金製チップ、超硬合金製ボールエンドミル(直径10mm、2枚刃)または酸化試験用の白金箔(30×5×0.1mmt)を取り付けた後、チャンバー8内を真空状態にした。その後、チャンバー8内にあるヒーターで被処理体1を温度500℃に加熱し、チャンバー8内に窒素−アルゴン混合ガス(混合比1:1)を導入してチャンバー内の圧力を2.7Paにしてアーク放電、スパッタ放電を同時に開始し、回転盤9の回転により被処理体(基板)1を回転させながら基板(被処理体)1の表面に膜厚3μmの皮膜を形成した。なお、成膜中にアース電位に対して基板(被処理体)1がマイナス電位となるよう20〜100Vのバイアス電圧を基板(被処理体)1に印加した。
[Example B]
Targets composed of the metal components of layer A shown in Table 2 in the arc evaporation sources 5 and 6 of the film forming apparatus shown in FIG. 1 [No. 4 to 13 composition of layer A: (Ti 0.27 Nb 0.15 Al 0.56 Si 0.02 ) N], an alloy target made of the metal component of layer B shown in Table 2 is attached to the sputter evaporation sources 2 and 3, and a cemented carbide as the object to be processed (substrate) 1 on the support base (rotary disc) 9 A chip 8, a cemented carbide ball end mill (diameter 10 mm, 2 blades) or an oxidation test platinum foil (30 × 5 × 0.1 mmt) was attached, and the chamber 8 was evacuated. Thereafter, the workpiece 1 is heated to a temperature of 500 ° C. with a heater in the chamber 8, and a nitrogen-argon mixed gas (mixing ratio 1: 1) is introduced into the chamber 8 to bring the pressure in the chamber to 2.7 Pa. Then, arc discharge and sputter discharge were started simultaneously, and a film having a thickness of 3 μm was formed on the surface of the substrate (target object) 1 while rotating the target object (substrate) 1 by rotation of the turntable 9. Note that a bias voltage of 20 to 100 V was applied to the substrate (object to be processed) 1 so that the substrate (object to be processed) 1 had a negative potential with respect to the ground potential during film formation.

成膜終了後、前記例Aの場合と同様の方法により、膜中の金属成分組成、膜の結晶構造およびビッカース硬度を調べた。また、耐摩耗性を評価すべく、硬質皮膜を形成したエンドミルを用い、前記例Aの場合と同様の条件で切削試験を行って刃中部分の摩耗幅を測定した。   After the film formation was completed, the metal component composition in the film, the crystal structure of the film, and the Vickers hardness were examined by the same method as in Example A above. Further, in order to evaluate the wear resistance, an end mill having a hard film formed thereon was used, and a cutting test was performed under the same conditions as in Example A to measure the wear width of the middle part of the blade.

上記試験(調査、測定)の結果を表2に示す。この表2からわかるように、No.7の皮膜は、従来例に比べると、耐酸化性、硬度が高く、摩耗幅も小さいが、十分ではない。   The results of the above test (investigation, measurement) are shown in Table 2. As can be seen from Table 2, the film of No. 7 has higher oxidation resistance and hardness and smaller wear width than the conventional example, but is not sufficient.

これに比べて、No.4〜6 、8 〜14の皮膜は、耐酸化性、硬度がより高く、摩耗性幅も小さい。   Compared with this, the films of Nos. 4 to 6 and 8 to 14 have higher oxidation resistance and hardness, and a smaller wear width.

また、No.4〜6 、8 〜14の皮膜は、表1の基本技術例、参考技術1例よりも硬度、耐酸化性が高く、摩耗性幅も小さい。 In addition, the films Nos. 4 to 6 and 8 to 14 have higher hardness and oxidation resistance than the basic technique examples and one reference technique example in Table 1, and the wear width is also small.

Figure 0004627201
Figure 0004627201

Figure 0004627201
Figure 0004627201

本発明に係る硬質皮膜は、従来の硬質皮膜であるTiAlN皮膜やTiCrAlN皮膜よりも、耐酸化性に優れ、且つ、硬度が高いので、工具や金型等のコーティング皮膜(硬質皮膜)として好適に用いることができ、それらの耐久性の向上がはかれて有用である。   The hard coating according to the present invention is more suitable as a coating film (hard coating) for tools, dies, etc., because it has better oxidation resistance and higher hardness than TiAlN and TiCrAlN coatings, which are conventional hard coatings. They can be used and are useful in improving their durability.

参考技術3に係る硬質皮膜の形成方法を遂行するための装置の例を示す模式図である。It is a schematic diagram which shows the example of the apparatus for performing the formation method of the hard film which concerns on the reference technique 3 .

1--基板、2--スパッタリング蒸発源、3--スパッタリング蒸発源、 5--アーク蒸発源、6--アーク蒸発源、8--チャンバー、9--回転盤、10--磁場、11--磁場印加機構。   1--substrate, 2--sputtering evaporation source, 3--sputtering evaporation source, 5--arc evaporation source, 6--arc evaporation source, 8--chamber, 9--turn table, 10--magnetic field, 11 -Magnetic field application mechanism.

Claims (1)

(Cra Tab AlC )Nからなる硬質皮膜であって、下記の式(1) 、(5) 、(6) 、(9) を満たすことを特徴とする硬質皮膜。
a+b+c=1 --------------------------式(1)
0.05≦b --------------------------式(5)
0.5≦c≦0.73 ------------------- 式(6)
0.05≦a --------------------------式(9)
但し、上記式(1) 、(5) 、(6) 、(9) において、aはCrの原子比、bはTaの原子比、cはAlの原子比を示すものである。
A (Cr a Ta b Al C) consisting of N hard film, the following equation (1), (5), (6), the hard film and satisfies the (9).
a + b + c = 1 ---------------------------------------
0.05 ≦ b -------------------------- Equation (5)
0.5 ≦ c ≦ 0.73 ------------------- Equation (6)
0.05 ≦ a -------------------------- Formula (9)
In the above formulas (1), (5), (6) and (9) , a represents the atomic ratio of Cr, b represents the atomic ratio of Ta, and c represents the atomic ratio of Al.
JP2005069379A 2005-02-16 2005-03-11 Hard coating Expired - Fee Related JP4627201B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005069379A JP4627201B2 (en) 2005-03-11 2005-03-11 Hard coating
DE102006004394A DE102006004394B4 (en) 2005-02-16 2006-01-31 Hard film, multilayer hard film and manufacturing method therefor
US11/348,373 US7442247B2 (en) 2005-02-16 2006-02-07 Hard films, multilayer hard films, and production methods thereof
KR1020060014770A KR100674773B1 (en) 2005-02-16 2006-02-15 Hard films, multilayer hard films, and production methods thereof
CN2009101297264A CN101509121B (en) 2005-02-16 2006-02-16 Hard films, multilayer hard films, and production methods thereof
US12/196,826 US7651792B2 (en) 2005-02-16 2008-08-22 Hard films, multilayer hard films, and production methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005069379A JP4627201B2 (en) 2005-03-11 2005-03-11 Hard coating

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010023752A Division JP5261413B2 (en) 2010-02-05 2010-02-05 Hard coating and method for forming the same

Publications (2)

Publication Number Publication Date
JP2006249527A JP2006249527A (en) 2006-09-21
JP4627201B2 true JP4627201B2 (en) 2011-02-09

Family

ID=37090323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069379A Expired - Fee Related JP4627201B2 (en) 2005-02-16 2005-03-11 Hard coating

Country Status (1)

Country Link
JP (1) JP4627201B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721281B2 (en) * 2006-04-27 2011-07-13 日立ツール株式会社 Oxidation resistant film and member coated with the film
JP5318052B2 (en) * 2010-06-23 2013-10-16 株式会社神戸製鋼所 Arc type evaporation source having high film forming speed, film manufacturing method and film forming apparatus using this arc type evaporation source
JP5640242B2 (en) * 2011-02-01 2014-12-17 住友電工ハードメタル株式会社 Surface coated cutting tool
JP5640243B2 (en) * 2011-02-01 2014-12-17 住友電工ハードメタル株式会社 Surface coated cutting tool
JP7402790B2 (en) * 2020-12-17 2023-12-21 株式会社リケン Coating and piston rings

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034859A (en) * 2001-07-23 2003-02-07 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor, and target for forming hard coating

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627094B1 (en) * 2003-04-28 2018-10-24 Oerlikon Surface Solutions AG, Pfäffikon Workpiece comprising an alcr-containing hard material layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034859A (en) * 2001-07-23 2003-02-07 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor, and target for forming hard coating

Also Published As

Publication number Publication date
JP2006249527A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4713413B2 (en) Hard coating and method for producing the same
JP5060714B2 (en) Hard coating excellent in wear resistance and oxidation resistance, and target for forming the hard coating
JP4950499B2 (en) Hard coating and method for forming the same
JP5138892B2 (en) Hard coating
JP5234926B2 (en) Hard film and hard film forming target
JP5443403B2 (en) Hard coating excellent in high temperature lubricity and wear resistance and target for forming the hard coating
JP2008240079A (en) Coated member
JP4824989B2 (en) Hard coating
JP5261413B2 (en) Hard coating and method for forming the same
JP3963354B2 (en) Coated cutting tool
JP4627201B2 (en) Hard coating
JP2008290163A (en) Coating film, cutting tool and coating film making method
WO2015076220A1 (en) Hard coating film and target for forming hard coating film
JP4253169B2 (en) Hard coating with excellent wear resistance, method for producing the same, cutting tool, and target for forming hard coating
JP4676780B2 (en) Hard coating, laminated hard coating and method for producing the same
JP3454428B2 (en) Wear-resistant film-coated tools
WO2019188967A1 (en) Surface-coated cutting tool
JP2009148856A (en) Surface-coated cutting tool
JP2002337005A (en) Abrasive-resistant coating coated tool
JP6043192B2 (en) Laminated coating with excellent wear resistance
JP2005177952A (en) Compound hard film coated tool and its manufacturing method
JP2009191370A (en) Oxide coating film, material coated with oxide coating film, and method for forming oxide coating film
JP2009035784A (en) Oxide coating film, material coated with oxide coating film, and method for formation of oxide coating film
JP2002254228A (en) Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting
JP3699004B2 (en) Wear-resistant coated tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees