JP2005177952A - Compound hard film coated tool and its manufacturing method - Google Patents

Compound hard film coated tool and its manufacturing method Download PDF

Info

Publication number
JP2005177952A
JP2005177952A JP2003425401A JP2003425401A JP2005177952A JP 2005177952 A JP2005177952 A JP 2005177952A JP 2003425401 A JP2003425401 A JP 2003425401A JP 2003425401 A JP2003425401 A JP 2003425401A JP 2005177952 A JP2005177952 A JP 2005177952A
Authority
JP
Japan
Prior art keywords
hard
hard film
film
coating
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003425401A
Other languages
Japanese (ja)
Inventor
Tsugunori Sato
嗣紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2003425401A priority Critical patent/JP2005177952A/en
Publication of JP2005177952A publication Critical patent/JP2005177952A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool covered with a hard film capable of cutting at high speed/in high performance and excellent in abrasion resistance. <P>SOLUTION: This hard film coated tool is constituted by covering at least one layer each of a hard film A which is a hard film made of (Ti<SB>a</SB>, Al<SB>b</SB>, M<SB>c</SB>)(C<SB>1-d</SB>N<SB>d</SB>) in which M is one or more than two kinds of metal and semimetal elements, (a), (b) and (c) respectively show atomic ratios of Ti, Al and M, (d) shows an atomic ratio of N and of a composition of 0.02≤a ≤0.2, 0.8≤b ≤0.95, a+b+c=1 0.5≤d≤1, and a hard film B made of vanadium carbonitride. The hard film B is applied on the base material side rather than the hard film A. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、チップ、ドリル、タップ、エンドミル、ホブ、ブローチ等の切削工具の耐摩耗性を向上するための複合硬質皮膜被覆工具及びその製造方法に関する。   The present invention relates to a composite hard film coated tool for improving the wear resistance of a cutting tool such as a tip, a drill, a tap, an end mill, a hob, and a broach, and a method for manufacturing the same.

従来、超硬合金、サーメットまたは高速度工具鋼を基材とする切削工具の耐摩耗性を向上させることを目的に、TiN やTiCN、TiAlN 等の硬質皮膜をコーティングすることが行われている。特に、TiとAlの複合窒化皮膜( 以下、TiAlN と記す) が、優れた耐摩耗性を示すことから、前記チタンの窒化物や炭化物、炭窒化物等からなる皮膜に代わって高速切削や焼き入れ鋼等の高硬度材切削用の切削工具に適用されてきた。前記TiAlN 皮膜は、Alを添加することによって膜の硬度が上昇し、耐摩耗性が向上することが知られているが、特許文献1には、TiAlN を(Al x , Ti1-x )Nと表現した場合のAlの組成比x が0.7 以上でZnS 型の軟質AlN が析出していることが示されている。また特許文献1には、「Al量(x) が0.75を越える場合は、硬質皮膜がAlN に近似してくる結果、皮膜の軟質化を招き、十分な硬度が得られなくなり、フランク摩耗を容易に引き起こす」ことが記述されている。更に同特許文献1の図3には、Al組成比と膜硬度の関係が示され、Al組成が 0.6を越えた付近から硬度が低下しているが、これはAl組成比x が 0.6〜0.7 の間でZnS 型のAlN が析出し始め、Alの組成比増加とともにZnS 型AlN の析出が増加して、膜硬度が低下することを示唆している。更に同特許には、耐酸化性について、Al組成比x が0.56以上で酸化開始温度が 800℃以上となり、前記x 値の増加に伴い酸化開始温度も上昇していく傾向が示されているが、硬度を考慮して規定しているAl組成比の上限:0.75においては 850℃程度である。また、特許文献2ではTiAlN にCrを添加することで岩塩構造型AlN の割合を増加させて硬度を高め、且つ耐酸化性も向上させることができると記載されているが、ここでのAl組成比の上限は 0.8にとどまっている。 Conventionally, hard coatings such as TiN, TiCN, and TiAlN have been applied for the purpose of improving the wear resistance of cutting tools based on cemented carbide, cermet, or high-speed tool steel. In particular, since a composite nitride film of Ti and Al (hereinafter referred to as TiAlN) exhibits excellent wear resistance, high-speed cutting and baking can be used in place of the titanium nitride, carbide and carbonitride films. It has been applied to cutting tools for cutting hard materials such as steel inserts. The TiAlN film is known to increase the hardness of the film and improve the wear resistance by adding Al. However, Patent Document 1 discloses that TiAlN is (Al x , Ti 1-x ) N. It is shown that ZnS-type soft AlN is precipitated when the Al composition ratio x is 0.7 or more. Patent Document 1 states that “If the amount of Al (x) exceeds 0.75, the hard film approximates to AlN, resulting in softening of the film, resulting in insufficient hardness and easy flank wear. To cause. " Further, FIG. 3 of Patent Document 1 shows the relationship between the Al composition ratio and the film hardness, and the hardness decreases from the vicinity where the Al composition exceeds 0.6. This is because the Al composition ratio x is 0.6 to 0.7. During this time, ZnS-type AlN began to precipitate, and as the Al composition ratio increased, the precipitation of ZnS-type AlN increased, suggesting that the film hardness decreased. Furthermore, the same patent shows that with regard to oxidation resistance, when the Al composition ratio x is 0.56 or more and the oxidation start temperature is 800 ° C. or more, the oxidation start temperature tends to increase as the x value increases. The upper limit of the Al composition ratio specified in consideration of hardness is about 850 ° C. at 0.75. Patent Document 2 describes that by adding Cr to TiAlN, the proportion of the rock salt structure type AlN can be increased to increase the hardness and improve the oxidation resistance. The upper limit of the ratio is only 0.8.

即ち従来の方法では、Alの組成比を増加させて硬度を高めるにも限界があるため硬度と耐酸化性を同時に高めていくことができず、結果として耐摩耗性の向上にも限界があった。しかしながら、近年では、切削工具の使用条件としてより高速化・高能率化が要求されており、この様な切削工具を実現するため、更に優れた耐摩耗性を発揮する切削工具用複合硬質皮膜が求められている。そこで、発明者らは溶融蒸発型イオンプレーティング法(以下、溶解法)を用いてTiA lMN 膜について研究を重ねた結果、Alが80% を超えても硬さが低下せず、耐酸化性の良好な皮膜を得ることができた(出願人の未公開の特許文献3)。しかし、本方法では2μm 以上の膜厚を得ることが難しく、切削条件によっては切削工具として十分な性能を発揮するためにTiCNなどの下地皮膜を必要とした。
特許第2644710 号 特開2003-71610号公報 特許出願第2003-325406 号(未公開)
That is, in the conventional method, there is a limit to increase the hardness by increasing the Al composition ratio, so the hardness and oxidation resistance cannot be increased at the same time. As a result, there is a limit to improving the wear resistance. It was. However, in recent years, there has been a demand for higher speed and higher efficiency as the usage conditions of cutting tools, and in order to realize such cutting tools, composite hard coatings for cutting tools that exhibit even better wear resistance have been developed. It has been demanded. Therefore, the inventors conducted research on the TiAlMn film using the melt evaporation type ion plating method (hereinafter referred to as the dissolution method). As a result, even if Al exceeds 80%, the hardness does not decrease, and the oxidation resistance A good film (Applicant's unpublished Patent Document 3). However, with this method, it is difficult to obtain a film thickness of 2 μm or more, and depending on the cutting conditions, an undercoating film such as TiCN is required to exhibit sufficient performance as a cutting tool.
Japanese Patent No.26444710 JP 2003-71610 A Patent application No. 2003-325406 (unpublished)

本発明の課題は、高速・高能率切削が可能な、耐摩耗性に優れた硬質皮膜を被覆した切削工具及びその製造方法を提供することにある。   The subject of this invention is providing the cutting tool which coat | covered the hard film | membrane excellent in the abrasion resistance which can perform high-speed and highly efficient cutting, and its manufacturing method.

このため本発明は、超硬合金、サーメットまたは高速度工具鋼を基材とする切削工具の基材上に、(Ti a ,Al b ,Mc )(C 1-d N d ) からなる硬質皮膜であって、M は1種または2種以上の金属および半金属元素であり、a 、b 、c はそれぞれTi、Al、M の原子比を示し、d はN の原子比を示し、
0.02≦a ≦0.2 、 0.8 ≦b ≦0.95、 a+b+c=1 0.5 ≦d ≦1
の組成の硬質皮膜Aと、バナジウム炭窒化物からなる硬質皮膜Bを、少なくとも1 層ずつ被覆してなる硬質皮膜被覆工具であって、前記硬質皮膜Bを前記硬質皮膜Aよりも基材側に被覆したことを特徴とする硬質皮膜被覆工具によって上記した課題を解決した。
Therefore, the present invention provides a hard tool made of (Ti a , Al b , M c ) (C 1-d N d ) on a base material of a cutting tool based on cemented carbide, cermet or high-speed tool steel. A film, wherein M is one or more metal and metalloid elements, a, b and c are atomic ratios of Ti, Al and M, respectively, d is an atomic ratio of N,
0.02 ≦ a ≦ 0.2, 0.8 ≦ b ≦ 0.95, a + b + c = 1 0.5 ≦ d ≦ 1
A hard film coating tool formed by coating at least one layer each of a hard film A having the following composition and a hard film B made of vanadium carbonitride, wherein the hard film B is closer to the substrate than the hard film A is. The above-mentioned problems have been solved by a hard film-coated tool characterized by being coated.

上記した本発明は、2μm 以上の膜厚を得ることが容易で、高速・高能率切削が可能な、耐摩耗性に優れた硬質皮膜を被覆した硬質皮膜被覆工具を提供するものとなった。
本発明者らは、より優れた耐摩耗性を発揮する切削工具用硬質皮膜の実現を目指して鋭意研究を進めた結果、1原子当たりのプラズマエネルギーを高くすることにより、Al比率が0.8 を越える被膜においても硬度が低下しないことを見出した。そして、その手段として溶解法に着目して研究を進めた結果、Al比率0.8 〜0.95の皮膜は硬度および耐酸化性が向上し、結果として耐摩耗性が飛躍的に向上することを突き止め、前記ターゲット成分比および相対密度、ならびにプラズマエネルギーの制御について更に研究を重ねた結果、上記硬質皮膜Aに想到した。さらに発明者らはTiAlMN膜に最適な下地膜として、バナジウム炭窒化物皮膜に着目し、研究を進めた結果、初期金属バナジウムの膜厚、窒素および炭化水素ガスの分圧、基盤バイアス等を適切に設定することにより、密着性、耐摩耗性、潤滑性の上でチタン系皮膜よりも優れたバナジウム炭窒化物皮膜である前記硬質皮膜Bを得ることに成功した。
The above-described present invention provides a hard film-coated tool that is easy to obtain a film thickness of 2 μm or more, is capable of high-speed and high-efficiency cutting, and is coated with a hard film excellent in wear resistance.
As a result of diligent research aimed at realizing a hard coating for a cutting tool that exhibits better wear resistance, the inventors have increased the Al ratio to more than 0.8 by increasing the plasma energy per atom. It was found that the hardness does not decrease even in the coating. And as a result of conducting research focusing on the dissolution method as a means, the film having an Al ratio of 0.8 to 0.95 is improved in hardness and oxidation resistance, and as a result, it has been found that the wear resistance is dramatically improved. As a result of further research on control of target component ratio and relative density, and plasma energy, the hard coating A was conceived. Furthermore, the inventors focused on the vanadium carbonitride film as the optimum base film for the TiAlMN film, and as a result of research, we found that the initial metal vanadium film thickness, nitrogen and hydrocarbon gas partial pressure, base bias, etc. Thus, the hard coating B, which is a vanadium carbonitride coating superior to the titanium-based coating in terms of adhesion, wear resistance, and lubricity, was successfully obtained.

好ましくは、前記バナジウム炭窒化物はVC1-e N e で、e はN の原子比で表した場合、0.5 ≦e ≦1 であることが好ましい。また、前記元素M がSi、Cr又はNiであることが好ましい。 Preferably, the vanadium carbonitride is VC 1-e N e , and e is preferably 0.5 ≦ e ≦ 1 in terms of the atomic ratio of N 2. Further, the element M is preferably Si, Cr or Ni.

さらに好ましくは、前記硬質皮膜Aの膜厚が0.5 μm 以上2μm以下であるか、又は前記硬質皮膜Bの膜厚が0.5 μm以上5μm 以下であることがより好ましい。硬質皮膜Aの膜厚が0.5 μm 未満、硬質皮膜Bの膜厚が0.5 μm未満では切削における耐摩耗性の効果は期待できず、硬質皮膜Aの膜厚が2μmを越えると、硬質皮膜Bの膜厚が5μm を越えると、セラミック硬質膜層での微少チッピングが発生しやすくなるためこの範囲に限定した。
より好ましくは、前記硬質皮膜の前記基材と逆側に、NiO x 、DLC 、MoS 2 又はBNの潤滑機能皮膜を形成することにより、より耐摩耗性に優れた硬質皮膜を被覆した硬質皮膜被覆工具を提供することができる。
More preferably, the film thickness of the hard coating A is 0.5 μm or more and 2 μm or less, or the film thickness of the hard coating B is 0.5 μm or more and 5 μm or less. If the film thickness of the hard film A is less than 0.5 μm and the film thickness of the hard film B is less than 0.5 μm, the effect of wear resistance in cutting cannot be expected, and if the film thickness of the hard film A exceeds 2 μm, If the film thickness exceeds 5 μm, minute chipping is likely to occur in the ceramic hard film layer, so it was limited to this range.
More preferably, a hard film coating in which a hard film with more excellent wear resistance is formed by forming a lubricating functional film of NiO x , DLC, MoS 2 or BN on the opposite side of the base of the hard film. A tool can be provided.

本発明を実施するための最良の形態の硬質皮膜被覆工具は、超硬合金、サーメットまたは高速度工具鋼を基材とする切削工具の基材上に、(Ti a ,Al b ,Mc )(C 1-d N d ) からなる硬質皮膜であって、M は1種または2種以上の金属および半金属元素であり、a 、b 、c はそれぞれTi、Al、M の原子比を示し、d はN の原子比を示し、
0.02≦a ≦0.2 、 0.8 ≦b ≦0.95、 a+b+c=1 0.5 ≦d ≦1
の組成の硬質皮膜Aと、バナジウム炭窒化物からなる硬質皮膜Bを、少なくとも1 層ずつ被覆してなる硬質皮膜被覆工具であって、前記硬質皮膜Bを前記硬質皮膜Aよりも基材側に被覆したことを特徴とする硬質皮膜被覆工具である。なお、バナジウム炭窒化物はVC1-e N e (e はN の原子比)で表した場合、0.5 ≦e ≦1 であるのが望ましい。
The best mode hard coat coated tool for carrying out the present invention is (Ti a , Al b , M c ) on the base material of a cutting tool based on cemented carbide, cermet or high speed tool steel. (C 1-d N d ) Hard film, where M is one or more metals and metalloid elements, and a, b, and c represent the atomic ratios of Ti, Al, and M, respectively. , D represents the atomic ratio of N,
0.02 ≦ a ≦ 0.2, 0.8 ≦ b ≦ 0.95, a + b + c = 1 0.5 ≦ d ≦ 1
A hard film coating tool formed by coating at least one layer each of a hard film A having the following composition and a hard film B made of vanadium carbonitride, wherein the hard film B is closer to the substrate than the hard film A is. A hard-coated tool characterized by being coated. In addition, when vanadium carbonitride is expressed by VC 1-e N e (e is an atomic ratio of N), it is desirable that 0.5 ≦ e ≦ 1.

本発明は、上記切削工具用硬質皮膜を形成する方法も規定するものであって、成膜ガス雰囲気中で金属を蒸発させイオン化して、前記金属とともに成膜ガスのプラズマ化を促進しつつ成膜することを要旨としている。また、ホローカソード放電による電子ビームを用いてターゲットを構成する金属を蒸発およびイオン化して被処理体上に本発明で規定する皮膜を形成する溶融蒸発型イオンプレーティング法(以下溶解法と略記する)において成膜することを好ましい形態とする。尚、この場合に前記被処理体に印加するバイアス電位は、アース電位に対して-50V〜 -300Vとすることが好ましい。また、成膜時の被処理体温度(以下、基板温度ということがある)は 300℃以上で 800℃以下の範囲内とすることが望ましく、成膜時の反応ガスの分圧または全圧を0.05Pa以上1Pa以下とすることが望ましい。尚、本発明における上記反応ガスとは、窒素ガス、メタンガス、エチレン、アセチレン、アンモニア、水素、またはこれら2種以上を混合させた皮膜の成分組成に必要な元素を含むガスをいい、これら以外に用いられるArなどの様な希ガス等をアシストガスといい、これらをあわせて成膜ガスということとする。   The present invention also prescribes a method for forming the hard film for a cutting tool described above, and vaporizes and ionizes a metal in a film-forming gas atmosphere, and promotes plasma formation of the film-forming gas together with the metal. The gist is to film. Further, a melt evaporation type ion plating method (hereinafter abbreviated as a melting method) in which a metal constituting a target is evaporated and ionized by using an electron beam by hollow cathode discharge to form a film defined by the present invention on a workpiece. ) Is preferably formed. In this case, the bias potential applied to the object to be processed is preferably -50V to -300V with respect to the ground potential. In addition, the temperature of the object to be processed during film formation (hereinafter sometimes referred to as substrate temperature) is preferably within the range of 300 ° C to 800 ° C, and the partial pressure or total pressure of the reaction gas during film formation is It is desirable to set it to 0.05 Pa or more and 1 Pa or less. In addition, the said reaction gas in this invention means nitrogen gas, methane gas, ethylene, acetylene, ammonia, hydrogen, or the gas containing the element required for the component composition of the film | membrane which mixed these 2 or more types other than these. A rare gas such as Ar used is called an assist gas, and these are collectively referred to as a film forming gas.

坩堝交換機能、即ち真空雰囲気中で少なくとも2個以上のるつぼの1個を使用した後で真空状態を保持したまま他のるつぼの1個に自動的に切替えできる機能、を有する溶融蒸発型イオンプレーティング装置を用い、グラファイトるつぼの一つに100gの金属バナジウムを入れ、別のるつぼにTi65Al35at% の混合粉末30g をφ40の円筒形金型を用いて2GPaにて成形した圧粉成型体を設置した。加熱およびクリーニングを行った後に約 0.1Paのアルゴン窒素混合雰囲気中で、HCD ガンを用いて金属バナジウムを溶融蒸発させ、約30gを蒸発させながらC:N=3:7 となるよう段階的に炭化水素ガスを導入し、VCN 皮膜を超硬エンドミル基材上に成膜した。続いてるつぼを切り替え、約 0.1Paのアルゴン窒素混合雰囲気中で、圧粉成形体上面のプラズマビーム径が10mm程度となるよう収束させたHCD ガンを用いて溶融蒸発させ、TiAlN 被膜を成膜した。この時のプラズマ出力は3000W から8000W まで毎分500Wずつ上昇させた。
同様にTi60Al35Si5at%、Ti60Al35Ni5at%、Ti60Al35Cr5at%の圧粉整形体を用いて超硬エンドミルにVCN+TiAlSiN 、VCN+TiAlNiN 、VCN+TiAlCrN 皮膜を成膜した。
同様に、グラファイトるつぼの一つに95g の金属バナジウムと5 gの金属チタンを入れ、別のるつぼにTi65Al35at% の圧粉成型体を設置し、VTiCN+TiAlN 皮膜を超硬エンドミル基材上に成膜した。このときのVTiCN 層の金属成分はV:Ti=93:7at% であった。
得られたエンドミルよる切削試験結果を表1に示す。
超硬エンドミルは切削長50m 時での逃げ面摩耗幅を測定した。切削諸元を次に示す。超硬エンドミルではアーク法により成膜したTiAlN膜と比較して同等以上の耐摩耗性を示した。
( 超硬エンドミル切削条件)
工具:φ10超硬6 枚刃スクェアエンドミル
切削方法:側面切削ダウンカット
被削材:SKD61(硬さ53HRC)
切り込み:軸方向10mm、径方向0.2mm
切削速度:785m/min、送り:0.07mm/ 刃
切削長:50m、潤滑剤:無し(エアーブロー)
A melt evaporation type ion plate having a crucible exchange function, that is, a function capable of automatically switching to one of other crucibles while maintaining a vacuum state after using one of at least two crucibles in a vacuum atmosphere. A compacting body in which 100g of metal vanadium was placed in one of the graphite crucibles and 30g of mixed powder of Ti65Al35at% was molded at 2GPa using a φ40 cylindrical mold was placed in another crucible. . After heating and cleaning, the metal vanadium is melted and evaporated using an HCD gun in an argon / nitrogen mixed atmosphere of about 0.1 Pa, and carbonized stepwise to C: N = 3: 7 while evaporating about 30 g. Hydrogen gas was introduced to form a VCN film on the carbide end mill substrate. Subsequently, the crucible was switched and melted and evaporated using an HCD gun converged so that the plasma beam diameter on the upper surface of the green compact became about 10 mm in an argon-nitrogen mixed atmosphere of about 0.1 Pa to form a TiAlN film. . At this time, the plasma power was increased from 3000W to 8000W by 500W per minute.
Similarly, VCN + TiAlSiN, VCN + TiAlNiN, and VCN + TiAlCrN films were formed on a carbide end mill using compacted bodies of Ti60Al35Si5at%, Ti60Al35Ni5at%, and Ti60Al35Cr5at%.
Similarly, 95g of metal vanadium and 5g of metal titanium are placed in one of the graphite crucibles, and a compacted compact of Ti65Al35at% is placed in another crucible, and a VTiCN + TiAlN coating is formed on the carbide end mill substrate. Filmed. The metal component of the VTiCN layer at this time was V: Ti = 93: 7 at%.
Table 1 shows the results of the cutting test using the obtained end mill.
The carbide end mill measured the flank wear width when the cutting length was 50m. The cutting specifications are shown below. Carbide end mills showed wear resistance equal to or better than TiAlN films formed by the arc method.
(Carbide end mill cutting conditions)
Tool: φ10 carbide 6 flute square end mill Cutting method: Side cut Downcut Workpiece material: SKD61 (hardness 53HRC)
Cutting depth: 10mm in the axial direction, 0.2mm in the radial direction
Cutting speed: 785m / min, Feed: 0.07mm / Blade cutting length: 50m, Lubricant: None (Air blow)

Figure 2005177952
Figure 2005177952

AlN(アーク法) 、TiAlSiN(アーク法) 、VCN+TiAlCrN(圧粉体溶解法) を被覆した超硬インサートを大気中で1000℃まで加熱し、1時間保持したあと冷却した。試料表面のカロテスト法により酸化深さを測定した。結果を表2に示す。   A cemented carbide insert coated with AlN (arc method), TiAlSiN (arc method) and VCN + TiAlCrN (compact melting method) was heated to 1000 ° C. in the atmosphere, held for 1 hour, and then cooled. The oxidation depth was measured by the Calotest method on the sample surface. The results are shown in Table 2.

Figure 2005177952
Figure 2005177952

実施例1と同様な方法で、坩堝交換機能を有する溶融蒸発型イオンプレーティング装置を用い、AIP 法により、VCN 皮膜を超硬エンドミル基材上に成膜し、続いてるつぼを切り替え、TiAlN 被膜を超硬エンドミル基材上に成膜し、さらに最上層に、NiO x の潤滑機能皮膜を形成し、実施例1と同様な超硬エンドミルによる切削試験を行ったところ、表1のVC+TiAlN の本発明品より、エンドミル逃げ面摩耗は約2.5%少なかった。
〔本発明の最良の実施形態の効果〕
In the same manner as in Example 1, using a melt evaporation type ion plating apparatus with a crucible exchange function, the ACN method is used to form a VCN film on a carbide end mill substrate, and then the crucible is switched to a TiAlN film. Was formed on a carbide end mill substrate, and a lubricating functional film of NiO x was formed on the uppermost layer. A cutting test using a carbide end mill similar to Example 1 was conducted. The end mill flank wear was about 2.5% less than the inventive product.
[Effect of Best Embodiment of the Present Invention]

上記の本発明の最良の実施形態から、本発明の硬質皮膜被覆工具は、2μm 以上の膜厚を得ることが容易で、高速・高能率切削が可能な、耐摩耗性に優れた硬質皮膜を被覆した硬質皮膜被覆工具を提供するものとなった。   From the above-mentioned best embodiment of the present invention, the hard film coated tool of the present invention is a hard film excellent in wear resistance, capable of obtaining a film thickness of 2 μm or more, capable of high speed and high efficiency cutting. A coated hard-coated tool was provided.

好ましくは、前記バナジウム炭窒化物はVC1-e N e で、e はN の原子比で表した場合、0.5 ≦e ≦1 であることが好ましい。また、前記元素M がSi、Cr又はNiであることが好ましい。 Preferably, the vanadium carbonitride is VC 1-e N e , and e is preferably 0.5 ≦ e ≦ 1 in terms of the atomic ratio of N 2. Further, the element M is preferably Si, Cr or Ni.

さらに好ましくは、前記硬質皮膜Aの膜厚が0.5 μm 以上2μm以下であるか、又は前記硬質皮膜Bの膜厚が0.5 μm以上5μm 以下であることがより好ましい。硬質皮膜Aの膜厚が0.5 μm 以下、硬質皮膜Bの膜厚が0.5 μm以下では切削における耐摩耗性の効果は期待できず、硬質皮膜Aの膜厚が2μm以上、硬質皮膜Bの膜厚が5μm 以上ではセラミック硬質膜層での微少チッピングが発生しやすくなるためこの範囲に限定した。   More preferably, the film thickness of the hard coating A is 0.5 μm or more and 2 μm or less, or the film thickness of the hard coating B is 0.5 μm or more and 5 μm or less. When the film thickness of the hard film A is 0.5 μm or less and the film thickness of the hard film B is 0.5 μm or less, the effect of wear resistance in cutting cannot be expected, and the film thickness of the hard film A is 2 μm or more. However, if the thickness is 5 μm or more, minute chipping is likely to occur in the ceramic hard film layer.

Claims (9)

超硬合金、サーメットまたは高速度工具鋼を基材とする切削工具の基材上に、(Ti a ,Al b ,Mc )(C 1-d N d ) からなる硬質皮膜であって、M は1種または2種以上の金属および半金属元素であり、a 、b 、c はそれぞれTi、Al、M の原子比を示し、d はN の原子比を示し、
0.02≦a ≦0.2 、 0.8 ≦b ≦0.95、 a+b+c=1 0.5 ≦d ≦1
の組成の硬質皮膜Aと、バナジウム炭窒化物からなる硬質皮膜Bを、少なくとも1 層ずつ被覆してなる硬質皮膜被覆工具であって、前記硬質皮膜Bを前記硬質皮膜Aよりも基材側に被覆したことを特徴とする硬質皮膜被覆工具。
A hard coating made of (Ti a , Al b , M c ) (C 1-d N d ) on a base material of a cutting tool based on cemented carbide, cermet or high-speed tool steel, Is one or more metal and metalloid elements, a, b and c are the atomic ratios of Ti, Al and M, respectively, d is the atomic ratio of N,
0.02 ≦ a ≦ 0.2, 0.8 ≦ b ≦ 0.95, a + b + c = 1 0.5 ≦ d ≦ 1
A hard film coating tool formed by coating at least one layer each of a hard film A having the following composition and a hard film B made of vanadium carbonitride, wherein the hard film B is closer to the substrate than the hard film A is. A hard coating tool characterized by being coated.
前記バナジウム炭窒化物はVC1-e N e で、e はN の原子比で表した場合、0.5 ≦e ≦1 である請求項1記載の硬質皮膜被覆工具。 2. The hard film-coated tool according to claim 1, wherein the vanadium carbonitride is VC 1-e N e and e is expressed as an atomic ratio of N, and 0.5 ≦ e ≦ 1. d の値が1である請求項1又は請求項2記載の硬質皮膜被覆工具。 The hard-coated tool according to claim 1 or 2, wherein the value of d is 1. 前記元素M がSi、Cr又はNiである請求項1乃至請求項3のいずれか1に記載の硬質皮膜被覆工具。 The hard film-coated tool according to any one of claims 1 to 3, wherein the element M is Si, Cr, or Ni. 前記硬質皮膜Aの膜厚が0.5 μm 以上2μm以下である請求項1乃至請求項4のいずれか1に記載の硬質皮膜被覆工具。 The hard film-coated tool according to any one of claims 1 to 4, wherein the film thickness of the hard film A is 0.5 µm or more and 2 µm or less. 前記硬質皮膜Bの膜厚が0.5 μm以上5μm 以下である請求項1乃至請求項5のいずれか1に記載の硬質皮膜被覆工具。 The hard film-coated tool according to any one of claims 1 to 5, wherein the film thickness of the hard film B is 0.5 µm or more and 5 µm or less. 前記硬質皮膜Bがバナジウム以外の窒化物構成元素を含む硬質皮膜であって、バナジウム以外の金属成分がバナジウムに対して原子比率で10%以下であることを特徴とする請求項1乃至請求項6のいずれか1に記載の硬質皮膜被覆工具。 The hard coating B is a hard coating containing a nitride constituent element other than vanadium, and a metal component other than vanadium is 10% or less in atomic ratio with respect to vanadium. The hard film coating tool according to any one of the above. 前記硬質皮膜の最上層に、NiO x 、DLC 、MoS 2 又はBNの潤滑機能皮膜を形成した請求項1乃至請求項7のいずれか1に記載の硬質皮膜被覆工具。 The hard film-coated tool according to any one of claims 1 to 7, wherein a lubricating functional film of NiO x , DLC, MoS 2 or BN is formed on the uppermost layer of the hard film. 超硬合金、サーメットまたは高速度工具鋼を基材とする切削工具の基材上に、坩堝交換機能、即ち真空雰囲気中で少なくとも2個以上のるつぼの1個を使用した後で真空状態を保持したまま他のるつぼの1個に自動的に切替えできる機能、を有する溶融蒸発型イオンプレーティング装置を用い、第1のるつぼに金属バナジウムを蒸発原料とし、溶融蒸発型イオンプレーティング法により請求項1の前記硬質皮膜Bを成膜する工程1と、真空状態を保持したまま第2のるつぼにアルミニウムを含む焼結体あるいは圧粉整形体を蒸発源に自動的に切替えし、同じく溶融蒸発型イオンプレーティング法により前記請求項1の前記硬質皮膜Bを成膜する工程2を連続的に行うことを特徴とする複合硬質皮膜被覆工具の製造方法。 Maintain a vacuum after using one of at least two crucibles in a vacuum atmosphere on the base of a cutting tool based on cemented carbide, cermet or high speed tool steel in a vacuum atmosphere And using a melt evaporation type ion plating apparatus having a function capable of automatically switching to one of the other crucibles, and using a metal vanadium as an evaporation material in the first crucible and claiming by a melt evaporation type ion plating method. 1 in which the hard coating B is formed, and the sintered body or the compacted body containing aluminum in the second crucible is automatically switched to the evaporation source while maintaining the vacuum state. A method for producing a composite hard coating-coated tool, comprising continuously performing the step 2 of forming the hard coating B of claim 1 by an ion plating method.
JP2003425401A 2003-12-22 2003-12-22 Compound hard film coated tool and its manufacturing method Pending JP2005177952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003425401A JP2005177952A (en) 2003-12-22 2003-12-22 Compound hard film coated tool and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003425401A JP2005177952A (en) 2003-12-22 2003-12-22 Compound hard film coated tool and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005177952A true JP2005177952A (en) 2005-07-07

Family

ID=34785292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425401A Pending JP2005177952A (en) 2003-12-22 2003-12-22 Compound hard film coated tool and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005177952A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081683A (en) * 2014-08-26 2015-04-27 大同工業株式会社 Pin for chain
KR20150045897A (en) * 2013-10-21 2015-04-29 다이도고교가부시키가이샤 Chain bearing, chain pin, and chain
CN112359321A (en) * 2020-10-27 2021-02-12 蚌埠市利锋五金制品有限公司 Kitchen cutter and forming method of hard film of cutter
CN113388798A (en) * 2021-05-14 2021-09-14 王念贵 Corrosion-resistant aluminum alloy coating material
CN113574201A (en) * 2019-03-20 2021-10-29 日立金属株式会社 Coated mold, method for producing coated mold, and target for forming hard coating
CN113699498A (en) * 2021-08-20 2021-11-26 中国科学院宁波材料技术与工程研究所 Carbonized VAlN hard solid lubricating coating and preparation method thereof
US11643717B2 (en) * 2019-02-01 2023-05-09 Oerlikon Surface Solutions Ag, Pfäffikon High performance tool coating for press hardening of coated and uncoated ultrahigh strength steel sheet metals

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045897A (en) * 2013-10-21 2015-04-29 다이도고교가부시키가이샤 Chain bearing, chain pin, and chain
US9353829B2 (en) 2013-10-21 2016-05-31 Daido Kogyo Co., Ltd. Chain bearing, chain pin, and chain
KR102254912B1 (en) * 2013-10-21 2021-05-25 다이도고교가부시키가이샤 Chain bearing, chain pin, and chain
JP2015081683A (en) * 2014-08-26 2015-04-27 大同工業株式会社 Pin for chain
US11643717B2 (en) * 2019-02-01 2023-05-09 Oerlikon Surface Solutions Ag, Pfäffikon High performance tool coating for press hardening of coated and uncoated ultrahigh strength steel sheet metals
CN113574201A (en) * 2019-03-20 2021-10-29 日立金属株式会社 Coated mold, method for producing coated mold, and target for forming hard coating
CN112359321A (en) * 2020-10-27 2021-02-12 蚌埠市利锋五金制品有限公司 Kitchen cutter and forming method of hard film of cutter
CN112359321B (en) * 2020-10-27 2023-03-28 蚌埠市利锋五金制品有限公司 Kitchen cutter and forming method of hard film of cutter
CN113388798A (en) * 2021-05-14 2021-09-14 王念贵 Corrosion-resistant aluminum alloy coating material
CN113699498A (en) * 2021-08-20 2021-11-26 中国科学院宁波材料技术与工程研究所 Carbonized VAlN hard solid lubricating coating and preparation method thereof
CN113699498B (en) * 2021-08-20 2023-09-29 中国科学院宁波材料技术与工程研究所 Carbonized VAlN hard solid lubricating coating and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4062583B2 (en) Hard coating for cutting tool, method for producing the same, and target for forming hard coating
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP5234926B2 (en) Hard film and hard film forming target
JP2007204820A (en) Hard coating and method for depositing the same
JP4753281B2 (en) Hard film forming target
JP2006175569A5 (en)
JP4253169B2 (en) Hard coating with excellent wear resistance, method for producing the same, cutting tool, and target for forming hard coating
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
JP5261413B2 (en) Hard coating and method for forming the same
JP2005177952A (en) Compound hard film coated tool and its manufacturing method
JP2008279563A (en) Surface-coated cutting tool
JP5995091B2 (en) Surface coated cutting tool with excellent adhesion strength and chipping resistance
JP2006249527A (en) Hard coating, and its forming method
JP4346020B2 (en) Hard coating tool
JP2011104737A (en) Surface coated cutting tool
JP2005088130A (en) Hard film coated tool and target for hard film formation
JP5629291B2 (en) Hard film and hard film forming target
JP4998304B2 (en) Target for hard film formation by melting method using electron beam
WO2014115846A1 (en) Laminated coating film having excellent abrasion resistance
JP2011161590A (en) Surface coated cutting tool
JP2009028799A (en) Surface coated cutting tool
JP2006289537A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high hardness steel
JP2005238402A (en) Hard coating film-coated tool and its manufacturing method
JP2011161585A (en) Surface coated cutting tool
JP2009119550A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408