JP4625959B2 - Liquid feeding system - Google Patents

Liquid feeding system Download PDF

Info

Publication number
JP4625959B2
JP4625959B2 JP2005344113A JP2005344113A JP4625959B2 JP 4625959 B2 JP4625959 B2 JP 4625959B2 JP 2005344113 A JP2005344113 A JP 2005344113A JP 2005344113 A JP2005344113 A JP 2005344113A JP 4625959 B2 JP4625959 B2 JP 4625959B2
Authority
JP
Japan
Prior art keywords
flow rate
polymer gel
flow path
feeding system
liquid feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005344113A
Other languages
Japanese (ja)
Other versions
JP2007147001A5 (en
JP2007147001A (en
Inventor
淳史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2005344113A priority Critical patent/JP4625959B2/en
Publication of JP2007147001A publication Critical patent/JP2007147001A/en
Publication of JP2007147001A5 publication Critical patent/JP2007147001A5/ja
Application granted granted Critical
Publication of JP4625959B2 publication Critical patent/JP4625959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は送液システムさらに詳しくはマイクロマシンへの応用に適した送液システムに関する。   The present invention relates to a liquid delivery system, and more particularly to a liquid delivery system suitable for application to a micromachine.

刺激応答性高分子ゲルは、温度変化、電場印加、光照射、pH変化、化学物質添加等の微小な外部刺激の賦与に応じて膨潤・収縮し、その形状・物性が著しく変化する特性を有する。このような特性を物質分離、エネルギー変換に関連する各種用途に応用することが試みられている。   Stimulus-responsive polymer gels have properties that swell and shrink in response to the application of minute external stimuli such as temperature change, electric field application, light irradiation, pH change, addition of chemical substances, etc., and their shape and physical properties change significantly. . Attempts have been made to apply such characteristics to various uses related to material separation and energy conversion.

送液システム関連でも、特許文献1には、弾性膜を一つの壁とした容積部内に電気応答性あるいは熱応答性の高分子ゲルを設け、その変形により前記弾性膜を弾性変形させ直接あるいはニードルを介して流体流路の面積を調整することを特徴とする流量制御装置が記載されている。   Also in relation to the liquid feeding system, Patent Document 1 discloses that an electrically responsive or thermally responsive polymer gel is provided in a volume part having an elastic film as one wall, and the elastic film is elastically deformed by the deformation to directly or needle The flow rate control device is characterized in that the area of the fluid flow path is adjusted via the.

また、特許文献2には、圧力によって網目孔サイズが変化する高分子ゲルを介して、物質を選択して透過させるまたは透水量を制御するようにした圧力機能性ケミカルバルブが記載されている。   Patent Document 2 describes a pressure-functional chemical valve in which a substance is selectively permeated or the amount of water permeation is controlled through a polymer gel whose mesh pore size changes with pressure.

特開平7−27239号公報JP 7-27239 A 特開2002−147628号公報JP 2002-147628 A

しかしながら、特許文献1記載の装置のように、高分子ゲルの変形により弾性膜を弾性変形させて流路の面積を調整する方式による場合には、物理的な間隙の調整により流路の面積調整を行うので、流速に依存して高分子ゲルの機械的な変形を伴うために、原理的に1マイクロリットル/分あるいはそれ以下の微少流量の精密制御には適用できない。一方、特許文献2記載のバルブのように、高分子ゲルの網目サイズの変化を直接透水量の調整に応用する試みもあったが、いずれもゲルの形態が膜状に限られ、やはり微少流量の精密制御には適用できないものであった。   However, as in the apparatus described in Patent Document 1, in the case where the elastic membrane is elastically deformed by deformation of the polymer gel and the area of the flow path is adjusted, the area of the flow path is adjusted by adjusting the physical gap. Therefore, it is accompanied by mechanical deformation of the polymer gel depending on the flow rate, so that it cannot be applied to precise control of a minute flow rate of 1 microliter / minute or less in principle. On the other hand, as in the valve described in Patent Document 2, there has been an attempt to directly apply the change in the mesh size of the polymer gel to the adjustment of the water permeation amount. It was not applicable to precise control of

本発明の目的は、機械的な制御部材が不要であると同時に微少流量の精密制御が可能であって、マイクロマシンへの応用に適した送液システムを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid feeding system that does not require a mechanical control member and at the same time allows precise control of a minute flow rate and is suitable for application to a micromachine.

上記課題を解決するため、本発明は、賦圧手段、流量制御手段および流量検出手段を有する送液システムにおいて、前記流量制御手段が流路内の一部に流路の管壁に密着して設けられた高分子ゲル層からなり、この層を構成する高分子ゲルが刺激応答性有し、かつ、その層の厚さが流路の相当直径の0.5倍以上である本体と外部刺激賦与手段とからなることを特徴としている。   In order to solve the above-described problems, the present invention provides a liquid delivery system having a pressurizing unit, a flow rate control unit, and a flow rate detection unit, wherein the flow rate control unit is in close contact with a tube wall of the flow channel. A main body and an external stimulus comprising a polymer gel layer provided, the polymer gel constituting this layer has stimulus responsiveness, and the thickness of the layer is not less than 0.5 times the equivalent diameter of the flow path It is characterized by comprising a giving means.

本発明において、前記外部刺激が温度変化であることが好ましく、また、前記高分子ゲルが架橋されたN−アルキルアクリルアミド系ポリマーのヒドロゲルであることが好ましい。   In the present invention, the external stimulus is preferably a temperature change, and the polymer gel is preferably a crosslinked N-alkylacrylamide polymer hydrogel.

本発明はまた、流路が分岐を有し分岐点の先のそれぞれに設けられた流量制御手段本体の高分子ゲル層の刺激応答性が逆であることを特徴としている。   The present invention is also characterized in that the stimulation response of the polymer gel layer of the main body of the flow rate control means provided at each end of the branching point is reversed.

本発明によれば、機械的な制御部材が不要であると同時に10の−1〜−6乗マイクロリットル/分という微少流量域で目的物質(液体)を長期間、制御された任意の速度で注入することが可能で、マイクロマシンへの応用に適した送液システムが提供される。ゲルの孔径はゲルの合成時にできる網目構造により決まるので、合成時の外部環境を制御することにより、網目の不均一性を利用して平均孔径を変化させることができ、流速の絶対値を上記の範囲で制御可能である。   According to the present invention, a mechanical control member is not required, and at the same time, a target substance (liquid) is controlled at an arbitrarily controlled speed for a long period of time in a micro flow rate range of 10 −1 to −6 microliters / minute. A liquid delivery system that can be injected and is suitable for micromachine applications is provided. Since the pore size of the gel is determined by the network structure formed during gel synthesis, by controlling the external environment during synthesis, the average pore size can be changed using the non-uniformity of the network, and the absolute value of the flow rate is It is possible to control within the range.

また、流路が分岐を有し分岐点の先のそれぞれに設けられた流量制御手段本体の高分子ゲル層の刺激応答性が逆である態様においては、両方の流量制御手段本体に同じ外部刺激を付与することにより、主たる流路を反転させる機能も発揮される。   Moreover, in the aspect in which the stimulus responsiveness of the polymer gel layer of the flow rate control means main body provided at each end of the branch point is reversed, the same external stimulus is applied to both flow rate control means main bodies. The function of reversing the main flow path is also exhibited.

本発明においては、流量制御手段の本体が流路内の一部に流路の管壁に密着して設けられた高分子ゲル層からなり、この層を構成する高分子ゲルが刺激応答性を有し、かつ、その層の厚さが流路の相当直径と同等以上、具体的には相当直径の0.5倍以上、好ましくは1〜50倍、特に好ましくは3〜30倍であることが重要である。   In the present invention, the main body of the flow rate control means is composed of a polymer gel layer provided in close contact with the tube wall of the flow channel in a part of the flow channel, and the polymer gel constituting this layer exhibits stimulus responsiveness. And the thickness of the layer is equal to or more than the equivalent diameter of the flow path, specifically 0.5 times or more, preferably 1 to 50 times, particularly preferably 3 to 30 times the equivalent diameter. is important.

こうすることで、外的環境を変化させてゲルに刺激を賦与しても、ゲルが流路に拘束されて体積変化を生じにくく高分子マトリックスの網目密度がほとんど変化しない条件下で作動することになる。流速は印加圧力に比例しゲル合成時の層の厚さに反比例するため、流速と層の厚さに依存する高分子ゲルの機械的な変形は、流速に影響を与えない。ゲルの巨視的な体積変化が抑制されているため、外部刺激により高分子マトリックスに加わる引力が増加する場合には、網目の孔が大きくなる部分(ドメイン)と小さくなる部分(ドメイン)とに相分離する(相分離効果)。このとき大孔径のドメインが層の厚さ方向にパーコレートすると流速は増大する(パーコレート効果)が、そうでないと小孔径のドメインを通過する時間に律速され、流速が減少するようになる。この相分離効果/パーコレート効果のバランスにより、外的環境変化による流速の実効の平均孔径が決まり、巨視的な流速が増加または減少するようになる。   In this way, even if the external environment is changed and the gel is stimulated, the gel is constrained by the flow path and hardly changes in volume, and it operates under conditions where the network density of the polymer matrix hardly changes. become. Since the flow rate is proportional to the applied pressure and inversely proportional to the layer thickness at the time of gel synthesis, the mechanical deformation of the polymer gel depending on the flow rate and the layer thickness does not affect the flow rate. Since the macroscopic volume change of the gel is suppressed, when the attractive force applied to the polymer matrix by an external stimulus increases, the area where the pores of the mesh become larger (domain) and the area where the pore becomes smaller (domain) are compatible. Separate (phase separation effect). At this time, if the large pore diameter domain is percolated in the thickness direction of the layer, the flow velocity increases (percolation effect). Otherwise, the flow velocity is reduced by the rate of passage through the small pore diameter domain. This balance of the phase separation effect / percolate effect determines the effective average pore size of the flow velocity due to changes in the external environment, and increases or decreases the macroscopic flow velocity.

これに対して、ゲルの拘束を解いて体積変化を自由にすると、同じく外部刺激により高分子マトリックスに加わる引力が増加する場合に、相分離により平衡状態では全ての孔径は減少して流速は減少することになり、流量を任意に制御することが不可能となる。   In contrast, when the volume of the gel is released by releasing the constraint of the gel, if the attractive force applied to the polymer matrix is also increased by external stimulation, all pore diameters are reduced and the flow velocity is reduced in the equilibrium state due to phase separation. Therefore, it becomes impossible to arbitrarily control the flow rate.

本発明において、賦圧手段の形式は特に限定されず種々のものが使用可能であるが、部品点数等の面から給液貯槽の水位を調整する方式が好ましく採用可能である。また、流量検出手段としては、流量制御手段通過液の先端面の位置を光学的に検出して、その移動速度を測定する方式が例示される。   In the present invention, the form of the pressurizing means is not particularly limited, and various types can be used. However, a method of adjusting the water level of the liquid supply storage tank from the viewpoint of the number of parts and the like can be preferably employed. Further, as the flow rate detecting means, a method of optically detecting the position of the front end surface of the flow rate control means passing liquid and measuring its moving speed is exemplified.

流路の構成材料としては、ガラスの円管が例示されるが、材質的には金属管あるいはプラスチック管も採用可能であり、また、断面形状も楕円形、角形であってもよい。流路の相当直径も特に限定されないが、所要流量の面から通常0.1〜10mm程度に設定される。   Although the glass circular tube is exemplified as the constituent material of the flow path, a metal tube or a plastic tube can be adopted as the material, and the cross-sectional shape may be elliptical or rectangular. The equivalent diameter of the flow path is not particularly limited, but is usually set to about 0.1 to 10 mm from the aspect of the required flow rate.

外部刺激としては、温度変化、電場印加、光照射、pH変化、化学物質添加等種々の形態があり得るが、被送液の組成に対する影響、賦与手段の構成の簡易性等の面から温度変化が好ましく採用される。温度変化の賦与手段としては、流量制御手段全体を包み込む槽内に温度調節された熱媒を流通させるようにした構成が例示される。   There are various forms of external stimuli such as temperature change, electric field application, light irradiation, pH change, chemical substance addition, etc., but temperature change in terms of the influence on the composition of the liquid to be delivered, the simplicity of the configuration of the applying means, etc. Is preferably employed. Examples of the temperature change providing means include a configuration in which a temperature-controlled heating medium is circulated in a tank that encloses the entire flow rate control means.

本発明において、高分子ゲルの組成は加える外部刺激の種類、所要流量等に応じて適宜選定されるが、外部刺激として温度変化を採用し、微少流量の精密制御を図る場合には、相転移温度域、入手の容易性の面から、架橋されたN−アルキルアクリルアミド系ポリマーのヒドロゲルが好ましく採用される。アルキル部分の種類を選択することにより、相転移温度を変化させることが可能で、作動温度を5〜50℃の範囲で選択できる。 In the present invention, the composition of the polymer gel is appropriately selected according to the type of external stimulus to be applied, the required flow rate, etc., but when adopting a temperature change as the external stimulus and achieving precise control of a minute flow rate, the phase transition From the viewpoint of temperature range, availability, etc. , a crosslinked N-alkylacrylamide polymer hydrogel is preferably employed. By selecting the type of the alkyl moiety, the phase transition temperature can be changed, and the operating temperature can be selected in the range of 5 to 50 ° C.

高分子ゲルを流路の管壁に密着させる方法としては、構成材料が透明な場合に適用可能な方法として、流路内面の所定部分をシランカップリング剤等で処理してから、処理部分の一部にモノマー混合物および光重合開始剤の溶液(ヒドロゲルの場合には水溶液)を充填し外部から所定の光照射を行う方法が例示される。   As a method for bringing the polymer gel into close contact with the tube wall of the flow path, as a method applicable when the constituent material is transparent, a predetermined portion on the inner surface of the flow path is treated with a silane coupling agent and the like, An example is a method in which a monomer mixture and a photopolymerization initiator solution (in the case of hydrogel, an aqueous solution) are partially filled and predetermined light irradiation is performed from the outside.

本発明においては、ゲルの網目構造をゲルの合成時に制御し、外的環境を適切に設定して、溶媒の性質に対応した網目の平均流径を変化させることにより、流量を制御するものである。   In the present invention, the flow rate is controlled by controlling the gel network structure during the synthesis of the gel, setting the external environment appropriately, and changing the average flow diameter of the network corresponding to the nature of the solvent. is there.

本発明の構成例を図1に示す。賦圧手段1として、本例では給液貯槽11の水位を調整し、送水圧Δpを加える方式が採られている。流量制御手段2は、流路内壁に密着して形成された熱応答性の高分子ゲル層21からなる本体と、この部分を覆うように設置された恒温槽22からなる外部刺激賦与手段とを有している。恒温槽22には温度制御された熱媒の入口23とその出口24とが設けられている。流量検出部3においては、流量制御手段通過液の先端面31の位置を光学的に検出してその移動速度を測定する方式が採用されるが、検出手段の図示は省略されている。   A configuration example of the present invention is shown in FIG. As the pressurizing means 1, in this example, a method of adjusting the water level of the liquid supply storage tank 11 and applying the water supply pressure Δp is adopted. The flow rate control means 2 includes a main body made of a thermoresponsive polymer gel layer 21 formed in close contact with the inner wall of the flow path, and an external stimulus applying means made of a thermostatic chamber 22 installed so as to cover this portion. Have. The constant temperature bath 22 is provided with an inlet 23 and an outlet 24 for the heat medium whose temperature is controlled. In the flow rate detection unit 3, a method of optically detecting the position of the tip surface 31 of the flow rate control means passage liquid and measuring the moving speed thereof is shown, but the detection means is not shown.

流路に分岐がある場合の態様を図2により説明する。分岐点4の先の流路の一方に昇温により流量が減少する高分子ゲル層211を、他方に昇温により流量が増加する高分子ゲル層212をそれぞれ設けておき、その両方を覆うように設置された恒温槽221に低温度の熱媒を供給して送液すると、211側が主たる流路となるが、熱媒温度を上げて所定の値にすると、主たる流路が212側に切り換わる。以下に、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   An embodiment in the case where there is a branch in the flow path will be described with reference to FIG. A polymer gel layer 211 whose flow rate decreases with increasing temperature is provided on one of the flow paths ahead of the branch point 4, and a polymer gel layer 212 whose flow rate increases with increasing temperature is provided on the other side so as to cover both of them. When a low-temperature heating medium is supplied to the thermostatic chamber 221 installed in the tank, the main flow path is the 211 side, but when the heating medium temperature is raised to a predetermined value, the main flow path is cut to the 212 side. Change. EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

シランカップリング剤(γ−メタクリロキシプロピルトリメトキシシラン)で内面処理した内径1.35mmのガラス円管の中間部に、N−イソプロピルアクリルアミド(NIPA)700mM、N,N´−メチレンビスアクリルアミド(BIS)8.6mM、光重合開始剤(VA−086:2,2´−アゾビス[2−メチル−N(2−ヒドロキシエチル)プロピオンアミド])1mM水溶液を長さが1.5mmとなるように注入し、0℃で、紫外線源(波長365nm、強度275W/平方m)から10cmの距離で30分間光照射してゲル化させた。   N-isopropylacrylamide (NIPA) 700 mM, N, N′-methylenebisacrylamide (BIS) is placed in the middle of a glass tube having an inner diameter of 1.35 mm which is internally treated with a silane coupling agent (γ-methacryloxypropyltrimethoxysilane). ) 8.6 mM, photopolymerization initiator (VA-086: 2,2′-azobis [2-methyl-N (2-hydroxyethyl) propionamide]) 1 mM aqueous solution was injected to a length of 1.5 mm. Then, at 0 ° C., gelation was performed by irradiating light for 30 minutes at a distance of 10 cm from an ultraviolet ray source (wavelength 365 nm, intensity 275 W / square m).

このようにして得られた高分子ゲル層を流量制御手段の本体として、図1に示す送液システムを組み立てて、温度30℃、送水圧(Δp)水柱80cmで試験をしたところ、顕微鏡とデジタルマイクロスコープを利用して正確に測定したガラス管中のメニスカスの位置から算出した定常流量は1×10の−6乗ml/分であった。高分子ゲル層に温度変化を加え40℃に昇温すると、定常流量が8×10の−10乗ml/分と3桁低下した。   The polymer gel layer thus obtained was used as the main body of the flow rate control means, and the liquid supply system shown in FIG. 1 was assembled and tested at a temperature of 30 ° C. and a water supply pressure (Δp) water column of 80 cm. The steady flow rate calculated from the position of the meniscus in the glass tube measured accurately using a microscope was 1 × 10 −6 ml / min. When a temperature change was applied to the polymer gel layer and the temperature was raised to 40 ° C., the steady flow rate was reduced by 3 orders of magnitude to 8 × 10 −10 ml / min.

モノマー水溶液の組成および濃度を、NIPA600mM、アクリルアミド(AAm)100mM、BIS8.6mM、ガラス円管内長さを2mmとする以外は実施例1と同様にして、高分子ゲルを生成させた。この場合の実施例1と同様にして測定した定常流量は30℃で1×10の−6乗ml/分であり、65℃への昇温により6×10の−8乗ml/分と2桁低下した。   A polymer gel was produced in the same manner as in Example 1, except that the composition and concentration of the monomer aqueous solution were NIPA 600 mM, acrylamide (AAm) 100 mM, BIS 8.6 mM, and the glass tube length was 2 mm. The steady flow rate measured in the same manner as in Example 1 in this case is 1 × 10 −6 ml / min at 30 ° C., and 6 × 10 −8 ml / min and 2 by raising the temperature to 65 ° C. Decreased by orders of magnitude.

モノマー水溶液の組成および濃度を、NIPA619mM、AAm81mM、BIS 8.6mM、ガラス円管内長さを5mm、重合ゲル化温度を40℃とする以外は実施例1と同様にして、高分子ゲルを生成させた。水柱の高さを10cmとする以外は実施例1と同様にして測定した定常流量は、30℃で5×10の−7乗ml/分であり、40℃に昇温すると9×10の−6乗ml/分とこの場合には1桁増大した。   A polymer gel was produced in the same manner as in Example 1 except that the composition and concentration of the aqueous monomer solution were NIPA 619 mM, AAm 81 mM, BIS 8.6 mM, the glass tube length was 5 mm, and the polymerization gelation temperature was 40 ° C. It was. The steady flow rate measured in the same manner as in Example 1 except that the height of the water column is 10 cm is 5 × 10 −7 ml / min at 30 ° C., and when the temperature is raised to 40 ° C., 9 × 10 − It increased by an order of magnitude to 6 6 ml / min.

モノマー水溶液の組成および濃度を、NIPA620mM、AAM80mM、BIS 8.6mM、ガラス円管内長さを9mm、重合ゲル化温度を40℃とする以外は実施例1と同様にして、高分子ゲルを生成させた。この場合の水柱の高さを1cmとする以外は実施例1と同様にして測定した定常流量は、30℃で8×10の−6乗ml/分であり、40℃に昇温すると2×10の−4乗ml/分とこの場合も1桁増大した。   A polymer gel was produced in the same manner as in Example 1 except that the composition and concentration of the aqueous monomer solution were NIPA 620 mM, AAM 80 mM, BIS 8.6 mM, the glass tube length was 9 mm, and the polymerization gelation temperature was 40 ° C. It was. The steady flow rate measured in the same manner as in Example 1 except that the height of the water column is 1 cm in this case is 8 × 10 −6 ml / min at 30 ° C., and 2 × when the temperature is raised to 40 ° C. This was also increased by an order of magnitude to 10 −4 ml / min.

モノマー水溶液の組成および濃度を、NIPA1050mM、BIS12.9mM、ガラス円管内長さを5mm、重合ゲル化温度を40℃とする以外は実施例1と同様にして、高分子ゲルを生成させた。この場合の水柱の高さを5cmとする以外は実施例1と同様にして測定した定常流量は、30℃で2×10の−4乗ml/分であり、40℃に昇温し水柱2cmで測定した定常流量は8×10の−3乗ml/分であった。   A polymer gel was produced in the same manner as in Example 1 except that the composition and concentration of the monomer aqueous solution were NIPA 1050 mM, BIS 12.9 mM, the glass tube length was 5 mm, and the polymerization gelation temperature was 40 ° C. The steady flow rate measured in the same manner as in Example 1 except that the height of the water column is 5 cm in this case is 2 × 10 −4 ml / min at 30 ° C., the temperature is raised to 40 ° C. and the water column is 2 cm. The steady flow rate measured in was 8 × 10 −3 ml / min.

モノマー水溶液の組成および濃度を、NIPA2100mM、BIS25.8mM、ガラス円管内長さを6mm、重合ゲル化温度を40℃とする以外は実施例1と同様にして、高分子ゲルを生成させた。この場合の水柱の高さを23cmとする以外は実施例1と同様にして測定した定常流量は、30℃で2×10の−4乗ml/分であり、40℃に昇温し水柱9cmで測定した定常流量は1×10の−4乗ml/分であった。   A polymer gel was produced in the same manner as in Example 1 except that the composition and concentration of the monomer aqueous solution were NIPA 2100 mM, BIS 25.8 mM, the glass tube length was 6 mm, and the polymerization gelation temperature was 40 ° C. The steady flow rate measured in the same manner as in Example 1 except that the height of the water column is 23 cm in this case is 2 × 10 −4 ml / min at 30 ° C., the temperature is raised to 40 ° C., and the water column is 9 cm. The steady flow rate measured in was 1 × 10 −4 ml / min.

モノマー水溶液の組成および濃度を、NIPA525mM、BIS175mM、ガラス円管内長さを5mm、重合ゲル化温度を40℃とする以外は実施例1と同様にして、高分子ゲルを生成させた。この場合の水柱の高さを78cmとする以外は実施例1と同様にして測定した定常流量は、23℃で4×10の−7乗ml/分であり、40℃に昇温すると1×10の−7乗ml/分と1/4に低下した。   A polymer gel was produced in the same manner as in Example 1 except that the composition and concentration of the monomer aqueous solution were NIPA 525 mM, BIS 175 mM, the glass tube length was 5 mm, and the polymerization gelation temperature was 40 ° C. The steady flow rate measured in the same manner as in Example 1 except that the height of the water column in this case was 78 cm was 4 × 10 −7 ml / min at 23 ° C., and when the temperature was raised to 40 ° C., 1 × It decreased to 1/4 to 10 −7 ml / min.

モノマー水溶液の組成および濃度を、NIPA525mM、BIS175mM、ガラス円管内長さを2mm、重合ゲル化温度を40℃とする以外は実施例1と同様にして、高分子ゲルを生成させた。この場合の水柱の高さを27cmとする以外は実施例1と同様にして測定した定常流量は、23℃で5×10の−6乗ml/分であり、40℃に昇温すると4×10の−4乗ml/分と2桁増加した。   A polymer gel was produced in the same manner as in Example 1 except that the composition and concentration of the aqueous monomer solution were NIPA 525 mM, BIS 175 mM, the glass tube length was 2 mm, and the polymerization gelation temperature was 40 ° C. The steady flow rate measured in the same manner as in Example 1 except that the height of the water column is 27 cm in this case is 5 × 10 −6 ml / min at 23 ° C., and 4 × when heated to 40 ° C. It increased by 10 digits to the fourth power ml / min.

本発明の送液システムは、機械的な制御部材が不要であると同時に10の−1〜−6乗マイクロリットル/分という微少流量域で目的物質(液体)を長期間、制御された任意の速度で注入することが可能なので、マイクロマシンへ適用し、生産プロセス、環境管理さらには、医療分野での薬物の投与等への応用が期待される。   The liquid feeding system of the present invention does not require a mechanical control member, and at the same time, can arbitrarily control a target substance (liquid) for a long period of time in a minute flow rate range of 10 -1 to -6 microliters / minute. Since it can be injected at a speed, it is expected to be applied to micromachines, production processes, environmental management, and drug administration in the medical field.

本発明の送液システムの構成を示す説明図。Explanatory drawing which shows the structure of the liquid feeding system of this invention. 流路に分岐がある場合の態様の要部を示す模式的平面図。The typical top view which shows the principal part of an aspect when there exists a branch in a flow path.

符号の説明Explanation of symbols

1 賦圧手段
2 流量制御手段
3 流量検出部(検出手段は図示省略)
4 分岐点
11 給液貯槽
21 高分子ゲル層(流量制御手段本体)
22 恒温槽(外部刺激賦与手段)
23、231 熱媒入口
24、241 熱媒出口
31、311,312 流量制御手段通過液の先端面
211 第1の高分子ゲル層
212 第1の高分子ゲル層とは逆の刺激応答特性を有する第2の高分子ゲル層
1 Pressure means
2 Flow rate control means 3 Flow rate detection unit (detection means not shown)
4 Branching point 11 Supply liquid storage tank 21 Polymer gel layer (flow rate control means body)
22 Thermostatic chamber (External stimulus application means)
23, 231 Heat medium inlet 24, 241 Heat medium outlet 31, 311, 312 Front end surface 211 of flow rate control means passage liquid First polymer gel layer 212 Stimulus response characteristics opposite to those of first polymer gel layer Second polymer gel layer

Claims (4)

賦圧手段、流量制御手段および流量検出手段を有する送液システムにおいて、前記流量制御手段が流路内の一部に流路の管壁に密着して設けられた高分子ゲル層からなり、この層を構成する高分子ゲルが刺激応答性を有し、かつ、その層の厚さが流路の相当直径の0.5倍以上である本体と外部刺激賦与手段とからなることを特徴とする送液システム。   In the liquid feeding system having the pressurizing means, the flow rate control means, and the flow rate detection means, the flow rate control means comprises a polymer gel layer provided in close contact with the pipe wall of the flow path in a part of the flow path. The polymer gel constituting the layer is characterized by comprising a main body having stimulus responsiveness, and the thickness of the layer being 0.5 or more times the equivalent diameter of the flow path, and an external stimulus applying means. Liquid delivery system. 外部刺激が温度変化である請求項1記載の送液システム。   The liquid feeding system according to claim 1, wherein the external stimulus is a temperature change. 高分子ゲルが架橋されたN−アルキルアクリルアミド系ポリマーのヒドロゲルである請求項1または2記載の送液システム。   The liquid feeding system according to claim 1 or 2, wherein the polymer gel is a hydrogel of a cross-linked N-alkylacrylamide polymer. 流路が分岐を有し分岐点の先のそれぞれに設けられた流量制御手段本体の高分子ゲル層の刺激応答性が逆である請求項1〜3のいずれか1項記載の送液システム。   The liquid feeding system according to any one of claims 1 to 3, wherein the flow path has a branch and the stimulus responsiveness of the polymer gel layer of the flow rate control means main body provided at each of the ends of the branch points is reversed.
JP2005344113A 2005-11-29 2005-11-29 Liquid feeding system Active JP4625959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344113A JP4625959B2 (en) 2005-11-29 2005-11-29 Liquid feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344113A JP4625959B2 (en) 2005-11-29 2005-11-29 Liquid feeding system

Publications (3)

Publication Number Publication Date
JP2007147001A JP2007147001A (en) 2007-06-14
JP2007147001A5 JP2007147001A5 (en) 2009-01-15
JP4625959B2 true JP4625959B2 (en) 2011-02-02

Family

ID=38208640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344113A Active JP4625959B2 (en) 2005-11-29 2005-11-29 Liquid feeding system

Country Status (1)

Country Link
JP (1) JP4625959B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040176B2 (en) * 2006-05-30 2012-10-03 富士ゼロックス株式会社 Microchannel device
WO2023119467A1 (en) * 2021-12-22 2023-06-29 日本電信電話株式会社 Motion element

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192992A (en) * 1985-02-20 1986-08-27 サンデン株式会社 Piping joint
JPS6374571U (en) * 1986-10-31 1988-05-18
JPH05180352A (en) * 1992-01-06 1993-07-20 Canon Inc Fluid holder and operating method therefor
JPH0727239A (en) * 1993-07-07 1995-01-27 Toshiba Corp Flow control device
JPH11257233A (en) * 1999-01-22 1999-09-21 Japan Science & Technology Corp Liquid micro-pump
JP2000035821A (en) * 1998-07-17 2000-02-02 Horiba Ltd Gas flow rate controller
JP2000179729A (en) * 1998-12-15 2000-06-27 Horiba Ltd Micro-device
JP2001146982A (en) * 1999-11-19 2001-05-29 Fuji Koki Corp Solenoid selector valve
JP2002066999A (en) * 2000-08-30 2002-03-05 Kawamura Inst Of Chem Res Extremely small valve mechanism and manufacturing method of the same
JP2002511559A (en) * 1998-04-09 2002-04-16 カ−テ システム アクチェンゲゼルシャフト Sealing elements for pipelines
JP2002147628A (en) * 2000-11-09 2002-05-22 New Industry Research Organization Pressure-functioning chemical valve
JP2004195289A (en) * 2002-12-16 2004-07-15 Kawamura Inst Of Chem Res Method for selectively separating solute
JP2004225789A (en) * 2003-01-22 2004-08-12 Kawamura Inst Of Chem Res Liquid cutoff mechanism, and micro fluid device
JP2004262976A (en) * 2003-02-17 2004-09-24 Kawamura Inst Of Chem Res Polymer gel composite and production method therefor
JP2005247963A (en) * 2004-03-03 2005-09-15 Kawamura Inst Of Chem Res Method for producing polymer hydrogel
JP2006097812A (en) * 2004-09-30 2006-04-13 Sysmex Corp Stop valve

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192992A (en) * 1985-02-20 1986-08-27 サンデン株式会社 Piping joint
JPS6374571U (en) * 1986-10-31 1988-05-18
JPH05180352A (en) * 1992-01-06 1993-07-20 Canon Inc Fluid holder and operating method therefor
JPH0727239A (en) * 1993-07-07 1995-01-27 Toshiba Corp Flow control device
JP2002511559A (en) * 1998-04-09 2002-04-16 カ−テ システム アクチェンゲゼルシャフト Sealing elements for pipelines
JP2000035821A (en) * 1998-07-17 2000-02-02 Horiba Ltd Gas flow rate controller
JP2000179729A (en) * 1998-12-15 2000-06-27 Horiba Ltd Micro-device
JPH11257233A (en) * 1999-01-22 1999-09-21 Japan Science & Technology Corp Liquid micro-pump
JP2001146982A (en) * 1999-11-19 2001-05-29 Fuji Koki Corp Solenoid selector valve
JP2002066999A (en) * 2000-08-30 2002-03-05 Kawamura Inst Of Chem Res Extremely small valve mechanism and manufacturing method of the same
JP2002147628A (en) * 2000-11-09 2002-05-22 New Industry Research Organization Pressure-functioning chemical valve
JP2004195289A (en) * 2002-12-16 2004-07-15 Kawamura Inst Of Chem Res Method for selectively separating solute
JP2004225789A (en) * 2003-01-22 2004-08-12 Kawamura Inst Of Chem Res Liquid cutoff mechanism, and micro fluid device
JP2004262976A (en) * 2003-02-17 2004-09-24 Kawamura Inst Of Chem Res Polymer gel composite and production method therefor
JP2005247963A (en) * 2004-03-03 2005-09-15 Kawamura Inst Of Chem Res Method for producing polymer hydrogel
JP2006097812A (en) * 2004-09-30 2006-04-13 Sysmex Corp Stop valve

Also Published As

Publication number Publication date
JP2007147001A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
Ter Schiphorst et al. Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications
US7988685B2 (en) Hydrogel compositions, devices, and microscale components
Arndt et al. Application of sensitive hydrogels in flow control
Yasui et al. Electroosmotic flow in microchannels with nanostructures
Li et al. Thermoresponsive gating characteristics of poly (N-isopropylacrylamide)-grafted porous poly (vinylidene fluoride) membranes
Byrne et al. Materials science and the sensor revolution
JP5937114B2 (en) A microfluidic system for controlling the concentration profile of molecules thought to stimulate a target
Ogawa et al. Swelling− shrinking behavior of a polyampholyte gel composed of positively charged networks with immobilized polyanions
Kieviet et al. Stimulus-responsive polymers and other functional polymer surfaces as components in glass microfluidic channels
JP4625959B2 (en) Liquid feeding system
JP5040176B2 (en) Microchannel device
Peng et al. Charge tunable zwitterionic polyampholyte layers formed in cyclic olefin copolymer microchannels through photochemical graft polymerization
Zhao et al. Pressure-sensitive microfluidic gates fabricated by patterning surface free energies inside microchannels
JP2002163022A (en) Method of controlling flow in micro-system
van der Linden et al. Development of stimulus-sensitive hydrogels suitable for actuators and sensors in microanalytical devices
Liu et al. An electric-field responsive microsystem for controllable miniaturised drug delivery applications
US8163834B2 (en) Photoresponsive ionogel
Morones-Ramírez Bioinspired synthesis of optically and thermally responsive nanoporous membranes
JP4572408B2 (en) Photoresponsive gel material, microvalve and microchip
Stauffer et al. Polyelectrolytes layer-by-layer surface modification of PDMS microchips for the production of simple O/W and double W/O/W emulsions: From global to localized treatment
Richter et al. Mechanically adjustable chemostats based on stimuli-responsive polymers
Wahrmund et al. Swelling kinetics of a microgel shell
Saitoh et al. Preparation of poly (N-isopropylacrylamide)-modified glass surface for flow control in microfluidics
Good et al. A water-activated pump for portable microfluidic applications
Lei et al. Integration of hydrogels with hard and soft microstructures

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350