JP2004262976A - Polymer gel composite and production method therefor - Google Patents

Polymer gel composite and production method therefor Download PDF

Info

Publication number
JP2004262976A
JP2004262976A JP2003038046A JP2003038046A JP2004262976A JP 2004262976 A JP2004262976 A JP 2004262976A JP 2003038046 A JP2003038046 A JP 2003038046A JP 2003038046 A JP2003038046 A JP 2003038046A JP 2004262976 A JP2004262976 A JP 2004262976A
Authority
JP
Japan
Prior art keywords
water
polymer gel
polymer
gel composite
soluble organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003038046A
Other languages
Japanese (ja)
Other versions
JP3914501B2 (en
Inventor
Kazutoshi Haraguchi
和敏 原口
Kan Takehisa
敢 武久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2003038046A priority Critical patent/JP3914501B2/en
Priority to PCT/JP2004/000020 priority patent/WO2004072138A1/en
Priority to EP04700526A priority patent/EP1595899B1/en
Priority to DE602004024288T priority patent/DE602004024288D1/en
Priority to US10/545,311 priority patent/US20060148958A1/en
Publication of JP2004262976A publication Critical patent/JP2004262976A/en
Application granted granted Critical
Publication of JP3914501B2 publication Critical patent/JP3914501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer gel composite having a swellability controlled low, a high elastic modulus or strengths, and an excellent biocompatibility, and a production method therefor. <P>SOLUTION: The polymer gel composite comprises hydroxyapatite and a polymer gel consisting of a water-swellable clay mineral and a polymer prepared from a water-soluble organic monomer. The production method for the polymer gel composite is characterized in that the hydroxyapatite is formed in the polymer gel consisting of the water-swellable clay mineral and the polymer prepared from the water-soluble organic monomer, by impregnating the polymer gel with an aqueous alkali-metal phosphate solution and with an aqueous calcium salt solution, alternately each at least once. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高分子ゲルとヒドロキシアパタイトとからなる高分子ゲル複合材およびその製造法に関するものである。
【0002】
【従来の技術】
高分子ゲルは有機高分子の三次元架橋物が水または有機溶媒を含んで膨潤したものであり、膨潤性やゴム状弾性を有するソフトマテリアルとして、医療・医薬、食品、土木、バイオエンジニアリング、スポーツ関連などの分野で広く用いられている(例えば、非特許文献1参照)。
これまでに本発明者らは、水溶性有機高分子と層状粘土鉱物とが複合化して形成された三次元網目を有する高分子ゲルが、優れた吸水性や極めて高い伸張性などの特徴を有することについて報告した(例えば特許文献1参照)。
しかし、用途によっては、かかる高い吸水性や高い伸張性が必要で無い場合があり、例えば、脆くないゲルの性質は保持しつつ、水中でも低く安定した膨潤性を示すものや、より高い弾性率や強度を有するように改良すること、もしくは高分子ゲルに生体適合性などの機能性を付与することなどが要求されている。上記高分子ゲルにおいては、これらの特性を十分に達成することはできなかった。
【特許文献1】特開2002−53629号公報
【非特許文献1】「ゲルハンドブック」p226〜727、長田義仁、梶原莞爾編:エヌ・ティー・エヌ株式会社、1997年
【0003】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、低く制御された膨潤性、及び高い弾性率もしくは強度を有し、更には生体適合性に優れた性能を有する高分子ゲル材料を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究に取り組んだ結果、特定の高分子ゲル中にヒドロキシアパタイトを微細に含ませることにより、優れた力学物性と低く制御された膨潤性を有し、且つ生体適合性に優れた高分子ゲル材料が得られることを見出し本発明を完成するに至った。
すなわち、本発明は、水溶性有機モノマーから得られる重合体と水膨潤性粘土鉱物とからなる高分子ゲル中にヒドロキシアパタイトを含有することを特徴とする高分子ゲル複合材に関する。
【0005】
【発明の実施の形態】
本発明の高分子ゲル複合材は、水溶性有機モノマーから得られる重合体(以下、水溶性有機モノマー重合体という)と層状に剥離した粘土鉱物とが分子レベルで複合化(橋架け)することによりなるゲル中に、ヒドロキシアパタイト(以下、HApと称す)を微細に形成させ複合化したものである。
【0006】
本発明の高分子ゲル複合材を形成する水溶性有機モノマー重合体は、水溶性有機モノマーから得られるものであり、水膨潤性粘土鉱物と何等かの相互作用により実質的に三次元網目を形成していると考えられる。この点については、水溶性有機モノマー重合体と水膨潤性粘土鉱物とからなる高分子ゲルが水又は親水性有機溶剤により膨潤し、且つ該ゲルを20℃で500時間以上処理しても殆どの水膨潤性粘土鉱物及び水溶性有機モノマー重合体が抽出してこないことからほぼ推認することができる。
【0007】
水溶性有機モノマーは、水に溶解する性質を有し、水に均一分散可能な水膨潤性粘土鉱物と相互作用を有するものが好ましく、例えば、粘土鉱物と水素結合、イオン結合、配位結合、共有結合等を形成できる官能基を有するものが好ましい。これらの官能基を有する水溶性有機モノマーとしては、具体的には、アミド基、アミノ基、エステル基、水酸基、テトラメチルアンモニウム基、シラノール基、エポキシ基などを有する重合性不飽和基含有水溶性有機モノマーが挙げられ、なかでもアミド基やエステル基を有する重合性不飽和基含有水溶性有機モノマーが好ましい。なお、本発明で言う水には、水単独以外に、水と混和する有機溶媒をとの混合溶媒で水を主成分とするものが含まれる。
【0008】
アミド基を有する重合性不飽和基含有水溶性有機モノマーの具体例としては、N−アルキルアクリルアミド、N,N−ジアルキルアクリルアミド、アクリルアミド等のアクリルアミド類、または、N−アルキルメタクリルアミド、N,N−ジアルキルメタクリルアミド、メタクリルアミド等のメタクリルアミド類が挙げられる。ここでアルキル基としては炭素数が1〜4のものが特に好ましく選択される。またエステル基を有する重合性不飽和基含有水溶性有機モノマーの具体例としては、メトキシエチルアクリレート、エトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレートなどがあげられる。
かかる水溶性有機モノマー重合体としては、例えば、ポリ(N−メチルアクリルアミド)、ポリ(N−エチルアクリルアミド)、ポリ(N−シクロプロピルアクリルアミド)、ポリ(N−イソプロピルアクリルアミド)、ポリ(アクリロイルモルフォリン)、ポリ(メタクリルアミド)、ポリ(N−メチルメタクリルアミド)、ポリ(N−シクロプロピルメタクリルアミド)、ポリ(N−イソプロピルメタクリルアミド)、ポリ(N,N−ジメチルアクリルアミド)、ポリ(N,N−ジメチルアミノプロピルアクリルアミド)、ポリ(N−メチル−N−エチルアクリルアミド)、ポリ(N−メチル−N−イソプロピルアクリルアミド)、ポリ(N−メチル−N−n−プロピルアクリルアミド)、ポリ(N,N−ジエチルアクリルアミド)、ポリ(N−アクリロイルピロリディン)、ポリ(N−アクリロイルピペリディン)、ポリ(N−アクリロイルメチルホモピペラディン)、ポリ(N−アクリロイルメチルピペラディン)、ポリ(アクリルアミド)、ポリ(メトキシエチルアクリレート)、ポリ(エトキシエチルアクリレート)、ポリ(メトキシエチルメタクリレート)、ポリ(エトキシエチルメタクリレート)が例示される。また水溶性有機モノマー重合体としては、以上のような単一の重合性不飽和基含有水溶性有機モノマーからの重合体の他、これらから選ばれる複数の異なる重合性不飽和基含有水溶性有機モノマーを重合して得られる共重合体を用いることも有効である。また上記水溶性有機モノマーとそれ以外の有機溶媒可溶性重合性不飽和基含有有機モノマーとの共重合体も、得られた重合体が水溶性や親水性を示すものであれば使用することができる。
【0009】
本発明における水溶性有機モノマー重合体は、水溶性または水を吸湿する性質を有する親水性(両親媒性を含む)を有するものであり、その内、熱、pHや光に応答する等といった機能性や、生体吸収性を含む生体適合性や生分解性などの特性を有しているものが、用途に応じてより好ましく用いられる。例えば、水溶液中でのポリマー物性(例えば親水性と疎水性)が下限臨界共溶温度(Lower Critical Solution Temperature:LCST)前後のわずかな温度変化により大きく変化する特性を有する水溶性有機モノマー重合体などであり、具体的にはポリ(N−イソプロピルアクリルアミド)やポリ(N,N−ジエチルアクリルアミド)などが挙げられる。また生体適合性に優れたものとしては、ポリ(メトキシエチルアクリレート)やポリ(メタクリルアミド)などがあげられる。
【0010】
本発明の高分子ゲル複合材に用いる粘土鉱物は、水に膨潤性を有するものであり、好ましくは水によって層間が膨潤する性質を有するものが用いられる。より好ましくは少なくとも一部が水中で層状に剥離して分散できるものであり、特に好ましくは水中で1ないし10層以内の厚みの層状に剥離して均一分散できる層状粘土鉱物である。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、より具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。
【0011】
本発明の高分子ゲル複合材に用いる溶媒は、水であるが、目的とする高分子ゲル複合材が調製できる限り、水と混和する有機溶剤を含んでいても良い。また、塩などを含む水溶液も使用可能である。なお、高分子ゲル複合材調製後に水と混和する有機溶剤に全体を置換することも可能である。水と混和する有機溶剤としては、メタノール、エタノール、プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド及びそれらの混合溶媒が挙げられる。
【0012】
本発明において高分子ゲル複合材に含まれる水または溶媒の量は、目的に応じて設定され一概には規定されないが、好ましくは高分子ゲル複合体中の固形分に対しする水(溶媒)の質量比が0〜100である。特にHApとの複合化により弾性率や強度の向上を目指す場合には、水または溶媒の量はかかる質量比が0〜30が好ましく、更に好ましくは0〜10である。なお、かかる水の量は、HApとの複合体形成による平衡膨潤率の低下によるほか、高分子ゲル複合材調製後に、水の一部または全部を乾燥により除去する方法によっても制御される。
【0013】
本発明の高分子ゲル複合材に用いるHApは、Ca10(PO(OH)の構造式で表されるリン酸カルシウム化合物であり、例えば、水酸化カルシウム懸濁液とリン酸水溶液を混合撹拌することや、カルシウム塩水溶液とリン酸水素アルカリ金属塩水溶液との混合撹拌などにより得られる。特に、リン酸水素ナトリウム水溶液と塩化カルシウム水溶液に高分子ゲルを交互に浸漬する方法は有効に用いられる。HApは動物の骨などに含まれ、細胞接着性などの生体適合性に優れていることが知られている。なお、高分子ゲル複合材中のHApの含有は広角X線測定により、また含有量は熱重量分析により評価される。更に、HApの分散状況は、高分子ゲル複合体またはその乾燥物の走査型電子顕微鏡または透過型電子顕微鏡測定により観察される。
【0014】
本発明の高分子ゲル複合材において、HApは等方的な高分子ゲル中に均一に含ませるだけでなく、高分子ゲルを配向させた状態で含ませたり、場所により含有率が異なるように含ませることができる。例えば、水溶性有機モノマー重合体と粘土鉱物からなるゲルの少なくとも一部を、一軸もしくは多軸方向に高度に配向させた状態でHApを含ませた高分子ゲル複合材が得られる。この場合、高分子ゲルの構成高分子鎖(3次元網目)が伸びた状態でHApと複合体を形成する他、含まれるHApも高分子ゲル中で延伸方向に配向した状態で得られる場合があり、力学物性や生体適合性の制御に有効である。更に、HApを高分子ゲルの場所により異なるように導入すること、例えば表面部から内部へ傾斜的に濃度を変化させるように含ませることも可能であり、物性の制御に有効である。
【0015】
HApは、例えば10〜500mmol/L濃度のリン酸アルカリ金属塩水溶液とカルシウム塩水溶液を混合・撹拌することにより得られるリン酸カルシウム化合物であり、動物の骨などに含まれ、細胞接着性などの生体適合性に優れている。かかるHApを、水溶性有機モノマー重合体と水膨潤性粘土鉱物とからなる高分子ゲル中に含有する方法としては、特に限定されないが、例えば、水溶性有機モノマー重合体と水膨潤性粘土鉱物とからなる高分子ゲルに、リン酸アルカリ金属塩水溶液を含浸し、次いでカルシウム塩水溶液を含浸する、或いはカルシウム塩水溶液を含浸し、次いでリン酸アルカリ金属塩水溶液を含浸することにより高分子ヒドロゲル中にHApを形成することを特徴とする高分子ゲル複合材の製造法が好ましい。より好ましくは、リン酸アルカリ金属塩水溶液とカルシウム塩水溶液への含浸を交互に複数回、繰り返し行う製造法が用いられる。また、後述する水溶性有機モノマー重合体と水膨潤性粘土鉱物とからなる高分子ゲルを形成する際に極めて微細に粉砕したHApを予め分散しておくことにより高分子ゲル複合体を形成することもできる。更に、予め微細なHApを含有しさせて高分子ゲルを調製後、該高分子ゲルをリン酸アルカリ金属塩水溶液とカルシウム塩水溶液に含浸してさらにHApを形成させる方法もHApの含有率増加に対して有効に用いられる。
かかるリン酸アルカリ金属塩としては、リン酸水素二ナトリウムやリン酸水素二カリウムなどがあげられ、また、カルシウム塩としては、塩化カルシウムや炭酸カルシウムなどがあげられる。
【0016】
また、本発明の高分子ゲル複合材には、HApの他、生体吸収性または生体親和性を有する高分子をゲル中に均一に含ませておくことができ、生体適合性の向上の点からより有効である。生体吸収性または生体親和性を有する高分子としては、例えばコラーゲン、ゼラチン、フィブリノーゲン、血清アルブミン、グルテンなどのタンパク質やペプチド、デオキシリボ核酸やリボ核酸などの核酸、キチン、キトサン、ヒアルロン酸、アルギン酸、ペクチン酸、デンプン、デキストラン、プルランなどの多糖類、ポリリンゴ酸やポリーβーヒドロキシ酪酸などのエステル、ポリ乳酸などが用いられ、特に水中または水と有機溶媒との混合溶媒中で可溶または微細分散するものが好ましく用いられる。
【0017】
本発明の高分子ゲル複合材の製造方法としては、例えば、水溶性有機モノマーと水膨潤性粘土鉱物と水を含む、もしくは更に生体吸収性高分子を含む均一溶液または均一分散液を調製した後、水溶性有機モノマーを重合させることで高分子ゲルを調製する。ここで、層状に剥離した水膨潤性粘土鉱物が架橋剤の働きをすることにより水膨潤性粘土鉱物を含む水溶性有機モノマー重合体の三次元網目が形成されると考えられる。次いで、得られた高分子ゲルの三次元網目の中に微細にHApを形成させることにより高分子ゲル複合材を得ることができる。
この製造方法のHAp形成過程で高分子ゲルを延伸、圧縮、曲げなどにより変形させておくことにより、ゲルの少なくとも一部が少なくとも一軸方向に配向した状態の高分子ゲル複合体が調製できる。またその結果、含まれるHApや生体吸収性高分子を配向させたり、それらの旦持状態を変化させることも可能である。なお、有機架橋剤で架橋して得られる高分子ゲルを用いた場合は、かかる延伸、曲げなどの変形下でのHApの導入は困難であり、且つ脆い物性のものしか得られない。更に、HApの調製条件(例えば、水溶液組成や浸漬温度、時間など)を変化させることにより、例えば表面部と内部へ傾斜的なHAp濃度変化を有する高分子ゲル複合材を調製することも可能である。
【0018】
また、本発明の高分子ゲル複合材には、得られた高分子ゲル複合材を慣用の方法で乾燥し、溶媒の一部もしくは全部を除去した高分子ゲル複合材及びその乾燥物を得ることも含まれる。高分子ゲル複合材乾燥物は、水または水と混和する有機溶媒などの溶媒を再び含ませることにより、可逆的に高分子ゲル複合材を再生することができる。
【0019】
以下に本発明の高分子ゲル複合材の製造方法をより詳細に述べる。まず、水溶性有機モノマーの重合反応は例えば、過酸化物の存在、加熱または紫外線照射など慣用の方法を用いたラジカル重合により行わせることができる。ラジカル重合開始剤および触媒としては、慣用のラジカル重合開始剤および触媒のうちから適宜選択して用いることができる。好ましくは水に分散性を有し、系全体に均一に含まれるものが用いられる。特に好ましくは層状に剥離した粘土鉱物と強い相互作用を有するカチオン系ラジカル重合開始剤である。具体的には、重合開始剤として水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えば、和光純薬工業株式会社製のVA−044、V−50、V−501などが好ましく用いられる。その他、ポリエチレンオキシド鎖を有する水溶性のラジカル開始剤なども用いられる。
また触媒としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンやβ−ジメチルアミノプロピオニトリルなどが好ましく用いられる。重合温度は、用いる水溶性有機高分子、重合触媒および開始剤の種類などに合わせて0℃〜100℃の範囲に設定する。重合時間も触媒、開始剤、重合温度、重合溶液量(厚み)などの重合条件によって異なり、一概に規定できないが、一般に数十秒〜十数時間の間で行う。
【0020】
本発明の高分子ゲル複合材の製造においては、力学物性が高く取り扱い性に優れているため、重合容器の形状を変化させたり、重合後のゲルを切削加工することなどで種々の大きさや形状をもった高分子ゲル複合材を調製できる。例えば、繊維状、棒状、平板状、円柱状、らせん状、球状など任意の形状を有する高分子ゲル複合材が調製可能である。また上記の重合反応において更に慣用の界面活性剤を共存させる等の方法で、得られる高分子ゲル複合材を微粒子形態で製造することも可能である。
【0021】
高分子ゲル複合材を構成する水溶性有機モノマー重合体と水膨潤性粘土鉱物とHApとは、水溶性有機モノマー重合体と粘土鉱物とからなる三次元網目を有するゲル構造体が調製され、その三次元網目の中にHApが含有されれば良い。それらの配合比率は、用いる水溶性有機モノマーや水膨潤性粘土鉱物の種類によっても異なり、必ずしも限定されるものではないが、ゲル合成やHApの形成が容易であることや均一性に優れることなどから、水溶性有機モノマー重合体に対する水膨潤性粘土鉱物の質量比が0.01〜10であることが好ましく、より好ましくは0.03〜2.0、特に好ましくは0.1〜1.0である。かかる質量比がかかる範囲であれば得られるゲル複合体の特性が十分となり、ゲル複合体の製造が容易で、また得られるゲル複合体の剛性が高くなる。一方、水溶性有機モノマー重合体に対するHApの質量比は0.01〜10であることが好ましく、より好ましくは0.05〜5、特に好ましくは0.1〜3である。また高分子ゲル複合材に含有することができる生体吸収性または生体親和性を有する高分子の量は目的に応じて変化でき、またその種類によっても大きく異なり、一概に規定されない。一方、高分子ゲル複合材に含まれる溶媒の量も、組成または目的に応じて変化され、一概には規定されないが、好ましくは高分子ゲル複合体中の固形分に対して質量比が0〜100である。特にHApとの複合化により弾性率や強度の向上を目指す場合は、かかる質量比は30以下であることが好ましい。
【0022】
而して、本発明の高分子ゲル複合材は、優れた力学物性、膨潤安定性、また生体適合性を有する。力学物性においては、有機架橋ゲルにおけるような脆さは無く、且つ高い弾性率や強度を有する他、力学安定性などに優れる。また、膨潤性については、過度の膨潤をせず、水中でも安定した膨潤度を保つ特徴を有する。
更に、生体適合性においても、ヒドロキシアパタイトの有する細胞接着性などで特徴を有する。
従って、かかる高分子ゲル複合材は、種々の特徴を有することにより、各種の用途へ適用できるが、特に振動吸収材料、吸着材料、細胞培養基材、バイオリアクター用材料、及び骨、軟骨などの再生材料や代替材料などに有用である。
【0023】
【実施例】
次いで本発明を実施例により、より具体的に説明するが、もとより本発明は、以下に示す実施例にのみ限定されるものではない。
【0024】
(実施例1)
水膨潤性粘土鉱物には、[Mg5.34Li0.66Si20(OH)]Na 0.66の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG、日本シリカ株式会社製)を、水溶性有機モノマーには、ジメチルアクリルアミド(DMAA:興人株式会社製)を用いた。DMAAは重合禁止剤を取り除いてから使用した。
重合開始剤は、ペルオキソ二硫酸カリウム(KPS:関東化学株式会社製)をKPS/水=0.40/20(g/g)の割合で水溶液にして使用した。触媒は、N,N,N’,N’−テトラメチルエチレンジアミン(TEMED:和光純薬工業株式会社製)を使用した。
【0025】
20℃の恒温室において、平底ガラス容器に、純水19.02gと0.66gのラポナイトXLGを加え、無色透明の溶液を調製した。これにDMAA1.76gを加えて無色透明溶液を得た。次にKPS水溶液1.0gとTEMED16μlを攪拌しながら加え、この溶液の一部を底の閉じた内径5.5mm、長さ150mmの容器3本に酸素にふれないようにして移した後、20℃の恒温水槽中で20時間静置して重合を行った。また、残りの溶液は、縦、横が1cm、長さ5cmの容器に移した後、同様に20℃の恒温水槽中で20時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から20時間後に、容器内に有機高分子と粘土鉱物からなる無色透明で均一な円柱状、及び棒状の高分子ゲルが生成しており、この容器から注意深く取り出した。この高分子ゲルは、大きな延伸性(引っ張り最大伸び=1350%)を有するゴム的な力学物性や、また大きな膨潤性(20℃での平衡膨潤率(=平衡膨潤時のゲル重量/乾燥ゲル重量)=87)を示し、水溶性有機モノマー重合物と粘土鉱物が三次元網目を形成したものと結論された。
次に、ヒドロキシアパタイト形成溶液2種類の調製を以下の要領で行った。まず,トリスヒドロキシメチルアミノメタン(シグマアルドリッチ社製)1.22gを純水200mlに加え溶解させた。そこに5N塩酸水溶液(和光純薬工業株式会社製)を適当量加え溶液のpHを7.4に調整した。この溶液に,塩化カルシウム(無水)(和光純薬工業株式会社製)4.44gを加え溶解させることにより、溶液−1を調製した。また、リン酸水素二ナトリウム・12水和物(和光純薬工業株式会社製)8.6gを純水192mlに加え溶解させることにより、溶液−2を調製した。
【0026】
高分子ゲルへのヒドロキシアパタイト形成は以下の手順で行った。まず、5cmの長さの円柱、及び1cm四方の立方体になるように切り取ったゲルの重量を秤量後、それぞれを1つずつ平底ガラス容器に入れ、溶液−1を30ml加えて、37℃の恒温水槽内に静置した(工程1)。2時間後、平底ガラス容器から高分子ゲルを取り出し、重量を秤量してから、直ちに50mlの純水が入った別の平底ガラス容器に移し替え、ゲルの外面に付着した過剰の溶液−1を取り除いた(工程2)。得られたゲルは最初の高分子ゲルと同様、無色透明で均一なゲルであった。さらに、このゲルを平底ガラス容器に入れ、溶液−2を30ml加えて、37℃の恒温水槽内に静置した(工程3)。2時間後、ゲルを取り出し、重量を秤量してから、純水が入ったガラス容器に移し替え、ゲルの外面に付着した過剰の溶液−2を取り除いた(工程4)。得られたゲルは均一な薄い白色でやや不透明であった。このゲルを、再び新たな溶液−1に浸漬して、上の工程1〜工程4を繰り返し行い、各工程を合計5回ずつ行った。得られたゲルは、固く、また完全に白色不透明であったが、不均一な凝集等は観察されなかった。このゲルを大気中で24時間、引き続き100℃減圧下にて乾燥して、水分を除いたゲル乾燥体を得た。このゲル乾燥体の熱重量分析(セイコー電子工業株式会社製TG−DTA220を使用:空気流通下、10℃/分で600℃まで昇温)を行ったところ、(粘土鉱物+ヒドロキシアパタイト)÷有機高分子=1.53(質量比)となり、粘土鉱物以外に、無機化合物が導入されたことが確認された。また、このゲル乾燥体の広角X線回折(理学機器株式会社製、X線回折装置RINTULTIMAを使用)及びフーリエ変換赤外線吸収スペクトル(FT−IR)測定(日本分光株式会社製フーリエ変換赤外分光光度計FT/IR−550を使用)を行うことにより、この導入された無機化合物がヒドロキシアパタイトであることが確認された。図1に広角X線回折図を示す。また、ゲル中に含有されたヒドロキシアパタイトの量は、熱重量分析の結果から、水溶性有機モノマー重合物に対して質量比で0.48であった。以上、本実施例により、水溶性有機モノマー重合物と粘土鉱物が水中で三次元網目を形成してなる高分子ゲル中に、ヒドロキシアパタイトが均一に形成された高分子ゲル複合材が得られたと結論された。
また得られた立方体形状の高分子ゲル複合材を用い圧縮試験(株式会社島津製作所製、卓上型万能試験機AGS−H仕様、圧縮速度0.5mm/秒、圧縮率=50%)を行った。その結果、弾性率=14kPa、50%変形時の強度=400kPaの値が得られた。また、20℃水中で測定した平衡膨潤率(=平衡膨潤時のゲル重量/乾燥ゲル重量)は25であった。これらの結果より、比較例1のヒドロキシアパタイト導入前の高分子ゲルと比較して、高分子ゲル複合材は高い弾性率及び強度、また低い水中平衡膨潤率を達成していることが確認された。
【0027】
(実施例2)
水溶性有機モノマーとして、DMAAの代わりに、N−イソプロピルアクリルアミド(NIPA:興人株式会社製)を用いること以外は実施例1と同様にして、有機高分子と粘土鉱物からなる無色透明で均一な円柱状、及び立方体状の高分子ゲルを調製した。この高分子ゲルは、実施例1と同様に、大きな延伸性(引っ張り最大伸び=950%)を有するゴム的な力学物性や、また大きな膨潤性(20℃での平衡膨潤率=48)を示した。この高分子ゲルを用い繰り返し回数を2回とする以外は、実施例1と同様にしてヒドロキシアパタイトを高分子ゲル中に形成させることにより、高分子ゲル複合材を調製した。得られた高分子ゲル複合材はヒドロキシアパタイトを均一に含有する白色ゲルであり、含まれるヒドロキシアパタイトのポリ(N−イソプロピルアクリルアミド)に対する質量比は0.28であった。実施例1と同様にして高分子ゲル複合材の圧縮試験を行った結果、弾性率=14kPa、50%変形時の強度=330kPaの値が得られた。また、20℃水中で測定した平衡膨潤率は15であった。
【0028】
(実施例3)
実施例1と同様にして調製した均一透明な高分子ゲルフィルム(厚み1mm)を用い、繰り返し回数を10回とする以外は、実施例1と同様にしてヒドロキシアパタイトを高分子ゲル中に形成させ、高分子ゲル複合材を調製した。得られた高分子ゲル複合材(フィルム)はヒドロキシアパタイトを均一に含有する白色ゲルであり、含まれたヒドロキシアパタイトのポリ(N、N−ジメチルアクリルアミド)に対する質量比は2.1であった。
【0029】
(実施例4)
実施例1で得られた円柱状の均一透明な高分子ゲルを元の長さの7倍まで一軸延伸し、延伸した状態で長さを固定すること以外は、実施例1と同様にしてヒドロキシアパタイトを高分子ゲル中に形成させた。得られた高分子ゲル複合体では、延伸された状態のまま高分子ゲル中にヒドロキシアパタイトが形成されており、固定ジグを取り外しても、元の長さに戻ることはなく、ゲルは延伸された状態のままであった。このことより、ヒドロキシアパタイトは延伸された三次元網目の中で形成されていると結論された。含まれたヒドロキシアパタイトのポリ(N、N−ジメチルアクリルアミド)に対する質量比は0.78であった。
【0030】
(実施例5)
水溶性有機モノマーとして、DMAAの代わりに、メタクリルアミド(MA:シグマアルドリッチ株式会社製)を用いること以外は実施例1と同様にして、有機高分子と粘土鉱物からなる白色均一な円柱状、及び立方体状の高分子ゲルを調製した。この高分子ゲルを用い、実施例1と同様にしてヒドロキシアパタイトを高分子ゲル中に形成させることにより、高分子ゲル複合材を調製した。得られた高分子ゲル複合材はヒドロキシアパタイトを均一に含有する白色ゲルであり、含まれるヒドロキシアパタイトのポリ(メタクリルアミド)に対する質量比は0.55であった。実施例1と同様にして高分子ゲル複合材の圧縮試験を行った結果、弾性率=85kPa、50%変形時の強度=1.5MPaの値が得られた。また、20℃水中で測定した平衡膨潤率は8.3であった。
【0031】
(実施例6)
水溶性有機モノマーとして、DMAAの代わりに、メトキシエチルアクリレート(MEA:和光純薬工業株式会社製)を用いること以外は実施例1と同様にして、有機高分子と粘土鉱物からなる無色透明な均一な円柱状、及び立方体状の高分子ゲルを調製した。この高分子ゲルを用い、実施例1と同様にしてヒドロキシアパタイトを高分子ゲル中に形成させることにより、高分子ゲル複合材を調製した。得られた高分子ゲル複合材はヒドロキシアパタイトを均一に含有する白色ゲルであり、含まれるヒドロキシアパタイトのポリ(メトキシエチルアクリレート)に対する質量比は0.55であった。実施例1と同様にして高分子ゲル複合材の圧縮試験を行った結果、弾性率=67kPa、50%変形時の強度=500kPaの値が得られた。また、20℃水中で測定した平衡膨潤率は4.2であった。
【0032】
(実施例7)
実施例1で得られた高分子ゲル複合材から乾燥により、ゆっくりと水分を除去し、水分含有率(=ゲル複合材重量/ゲル複合材中の固形分重量)を0.5と
した。実施例1と同様にして高分子ゲル複合材の圧縮試験を行った結果、弾性率=1MPa、10%変形時の強度=10MPaの値が得られた。
【0033】
(比較例1、2)
実施例1及び2で得られた立方体状の高分子ゲルについて、実施例1と同様にして圧縮試験を行った(比較例1及び2)ところ、圧縮弾性率が1.5kPa(比較例1)、3.1kPa(比較例2)、圧縮率50%での強度が200kPa(比較例1)、260kPa(比較例2)であった。また、20℃水中での平衡膨潤率は87(比較例1)、48(比較例2)であった。
【0034】
【発明の効果】
本発明の高分子ゲル複合材は、優れた力学物性、膨潤安定性、また生体適合性を有し、一般的な有機架橋ゲルにおけるような脆さは無く、且つ高い弾性率や強度を有し、力学安定性などに優れ、また過度の膨潤をせず、水中でも安定した膨潤度を保ち、更に、ヒドロキシアパタイトの有する細胞接着性などでも特徴を有する。
【図面の簡単な説明】
【図1】実施例1で得られた高分子ゲル複合材の乾燥物の広角X線回折測定結果を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer gel composite comprising a polymer gel and hydroxyapatite, and a method for producing the same.
[0002]
[Prior art]
A polymer gel is a three-dimensional crosslinked product of an organic polymer swollen in water or an organic solvent, and as a soft material having swelling properties and rubber-like elasticity, is used in medical and pharmaceutical products, food, civil engineering, bioengineering, and sports. It is widely used in related fields (for example, see Non-Patent Document 1).
Heretofore, the present inventors have found that a polymer gel having a three-dimensional network formed by complexing a water-soluble organic polymer and a layered clay mineral has characteristics such as excellent water absorption and extremely high extensibility. (For example, see Patent Document 1).
However, depending on the application, such high water absorption and high extensibility may not be necessary.For example, while maintaining the properties of a gel that is not brittle, those exhibiting low and stable swelling in water, and a higher elastic modulus It is required to improve the polymer gel so as to have high strength, or to impart functionality such as biocompatibility to the polymer gel. In the above-mentioned polymer gel, these properties could not be sufficiently achieved.
[Patent Document 1] JP-A-2002-53629
[Non-patent Document 1] "Gel Handbook", p.226-727, edited by Yoshihito Nagata and Kanji Kajiwara: NTN Corporation, 1997
[0003]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a polymer gel material having low controlled swelling property, high elastic modulus or strength, and excellent performance in biocompatibility.
[0004]
[Means for Solving the Problems]
The present inventors have worked diligently to solve the above problems, and as a result, by including hydroxyapatite finely in a specific polymer gel, it has excellent mechanical properties and low controlled swelling. The present inventors have found that a polymer gel material having excellent biocompatibility can be obtained, and have completed the present invention.
That is, the present invention relates to a polymer gel composite material comprising hydroxyapatite in a polymer gel comprising a polymer obtained from a water-soluble organic monomer and a water-swellable clay mineral.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
In the polymer gel composite of the present invention, a polymer obtained from a water-soluble organic monomer (hereinafter, referred to as a water-soluble organic monomer polymer) and a clay mineral that has been exfoliated in a layer form are complexed (bridged) at a molecular level. In this gel, hydroxyapatite (hereinafter, referred to as HAp) is finely formed and composited.
[0006]
The water-soluble organic monomer polymer forming the polymer gel composite of the present invention is obtained from a water-soluble organic monomer, and forms a substantially three-dimensional network by any interaction with the water-swellable clay mineral. it seems to do. Regarding this point, the polymer gel composed of the water-soluble organic monomer polymer and the water-swellable clay mineral swells with water or a hydrophilic organic solvent, and most of the gel is treated at 20 ° C. for 500 hours or more. It can be almost inferred from the fact that the water-swellable clay mineral and the water-soluble organic monomer polymer are not extracted.
[0007]
The water-soluble organic monomer has a property of dissolving in water, and preferably has an interaction with a water-swellable clay mineral that can be uniformly dispersed in water, for example, a hydrogen bond with a clay mineral, an ionic bond, a coordination bond, Those having a functional group capable of forming a covalent bond or the like are preferable. Specific examples of the water-soluble organic monomer having these functional groups include a polymerizable unsaturated group-containing water-soluble compound having an amide group, an amino group, an ester group, a hydroxyl group, a tetramethylammonium group, a silanol group, and an epoxy group. Organic monomers are mentioned, and among them, a water-soluble organic monomer having a polymerizable unsaturated group having an amide group or an ester group is preferable. In addition, the water referred to in the present invention includes not only water alone but also a mixture of an organic solvent miscible with water and water as a main component.
[0008]
Specific examples of the polymerizable unsaturated group-containing water-soluble organic monomer having an amide group include acrylamides such as N-alkylacrylamide, N, N-dialkylacrylamide and acrylamide, or N-alkylmethacrylamide, N, N- And methacrylamides such as dialkyl methacrylamide and methacrylamide. Here, an alkyl group having 1 to 4 carbon atoms is particularly preferably selected. Specific examples of the polymerizable unsaturated group-containing water-soluble organic monomer having an ester group include methoxyethyl acrylate, ethoxyethyl acrylate, methoxyethyl methacrylate, and ethoxyethyl methacrylate.
Examples of such a water-soluble organic monomer polymer include poly (N-methylacrylamide), poly (N-ethylacrylamide), poly (N-cyclopropylacrylamide), poly (N-isopropylacrylamide), and poly (acryloylmorpholine). ), Poly (methacrylamide), poly (N-methylmethacrylamide), poly (N-cyclopropylmethacrylamide), poly (N-isopropylmethacrylamide), poly (N, N-dimethylacrylamide), poly (N, N-dimethylaminopropylacrylamide), poly (N-methyl-N-ethylacrylamide), poly (N-methyl-N-isopropylacrylamide), poly (N-methyl-Nn-propylacrylamide), poly (N, N-diethylacrylamide), (N-acryloylpyrrolidin), poly (N-acryloylpiperidin), poly (N-acryloylmethylhomopiperadin), poly (N-acryloylmethylpiperadin), poly (acrylamide), poly (methoxyethyl acrylate) , Poly (ethoxyethyl acrylate), poly (methoxyethyl methacrylate), and poly (ethoxyethyl methacrylate). In addition, as the water-soluble organic monomer polymer, in addition to the polymer from the single polymerizable unsaturated group-containing water-soluble organic monomer as described above, a plurality of different polymerizable unsaturated group-containing water-soluble organic It is also effective to use a copolymer obtained by polymerizing a monomer. Copolymers of the above water-soluble organic monomers and other organic solvent-soluble polymerizable unsaturated group-containing organic monomers can also be used as long as the obtained polymer shows water solubility or hydrophilicity. .
[0009]
The water-soluble organic monomer polymer in the present invention has hydrophilicity (including amphiphilicity) having a water-soluble or water-absorbing property, and among them, functions such as responding to heat, pH and light. Those having properties such as biocompatibility and biocompatibility including bioabsorbability and biodegradability are more preferably used depending on the application. For example, a water-soluble organic monomer polymer having the property that the polymer physical properties (for example, hydrophilicity and hydrophobicity) in an aqueous solution largely changes due to a slight temperature change around a lower critical solution temperature (LCST). And specific examples thereof include poly (N-isopropylacrylamide) and poly (N, N-diethylacrylamide). Examples of materials having excellent biocompatibility include poly (methoxyethyl acrylate) and poly (methacrylamide).
[0010]
The clay mineral used in the polymer gel composite material of the present invention has a swelling property in water, and preferably has a property of swelling between layers by water. More preferably, at least a part of the layered clay mineral can be exfoliated and dispersed in water, and particularly preferably, a layered clay mineral which can be exfoliated and uniformly dispersed in water in a layer having a thickness of 1 to 10 layers or less. For example, water-swellable smectite and water-swellable mica are used, and more specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica, and the like. Is mentioned.
[0011]
The solvent used for the polymer gel composite of the present invention is water, but may contain an organic solvent miscible with water as long as the desired polymer gel composite can be prepared. Further, an aqueous solution containing a salt or the like can also be used. In addition, it is also possible to replace the whole with an organic solvent miscible with water after preparing the polymer gel composite material. Examples of the organic solvent that is miscible with water include methanol, ethanol, propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dimethylacetamide, dimethylformamide, dimethylsulfoxide, and a mixed solvent thereof.
[0012]
In the present invention, the amount of water or the solvent contained in the polymer gel composite material is set according to the purpose and is not specified unconditionally, but preferably, the amount of water (solvent) relative to the solid content in the polymer gel composite material is determined. The mass ratio is 0 to 100. In particular, when the elasticity and strength are to be improved by complexing with HAp, the mass ratio of water or solvent is preferably 0 to 30, more preferably 0 to 10. The amount of the water is controlled not only by the reduction of the equilibrium swelling ratio due to the formation of the complex with HAp, but also by a method of removing a part or all of the water by drying after preparing the polymer gel composite material.
[0013]
HAp used in the polymer gel composite of the present invention is Ca10(PO4)6(OH)2A calcium phosphate compound represented by the following structural formula, for example, obtained by mixing and stirring a calcium hydroxide suspension and an aqueous solution of phosphoric acid, or by mixing and stirring an aqueous solution of a calcium salt and an aqueous solution of an alkali metal hydrogenphosphate. . In particular, a method of alternately immersing the polymer gel in an aqueous solution of sodium hydrogen phosphate and an aqueous solution of calcium chloride is effectively used. HAp is known to be contained in animal bones and the like and has excellent biocompatibility such as cell adhesion. The content of HAp in the polymer gel composite is evaluated by wide-angle X-ray measurement, and the content is evaluated by thermogravimetric analysis. Further, the state of dispersion of HAp is observed by scanning electron microscope or transmission electron microscope measurement of the polymer gel composite or a dried product thereof.
[0014]
In the polymer gel composite material of the present invention, the HAp is not only contained uniformly in the isotropic polymer gel, but also contained in an oriented state of the polymer gel, so that the content varies depending on the location. Can be included. For example, a polymer gel composite material containing HAp in a state where at least a part of a gel composed of a water-soluble organic monomer polymer and a clay mineral is highly oriented in a uniaxial or multiaxial direction can be obtained. In this case, in addition to forming a complex with HAp in a state where the constituent polymer chains (three-dimensional network) of the polymer gel are extended, the contained HAp may be obtained in a state of being oriented in the stretching direction in the polymer gel. It is effective for controlling mechanical properties and biocompatibility. Furthermore, it is also possible to introduce HAp differently depending on the location of the polymer gel, for example, to include the HAp so as to change the concentration from the surface portion to the inside, which is effective for controlling the physical properties.
[0015]
HAp is a calcium phosphate compound obtained by mixing and stirring an aqueous solution of an alkali metal phosphate and an aqueous solution of calcium salt at a concentration of, for example, 10 to 500 mmol / L, and is contained in animal bones and the like, and is biocompatible such as cell adhesion. Excellent in nature. The method for containing such HAp in a polymer gel composed of a water-soluble organic monomer polymer and a water-swellable clay mineral is not particularly limited, and examples thereof include, but are not limited to, a water-soluble organic monomer polymer and a water-swellable clay mineral. Impregnated with an aqueous solution of an alkali metal phosphate, and then impregnated with an aqueous solution of a calcium salt, or impregnated with an aqueous solution of a calcium salt, and then impregnated with an aqueous solution of an alkali metal phosphate, to thereby form a polymer hydrogel. A method for producing a polymer gel composite material characterized by forming HAp is preferred. More preferably, a production method in which the impregnation with an aqueous solution of an alkali metal phosphate and an aqueous solution of calcium salt is alternately repeated a plurality of times is used. Further, when forming a polymer gel composed of a water-soluble organic monomer polymer and a water-swellable clay mineral, which will be described later, extremely finely ground HAp is dispersed in advance to form a polymer gel composite. You can also. Further, a method of preliminarily containing fine HAp to prepare a polymer gel, and then impregnating the polymer gel with an aqueous solution of an alkali metal phosphate and an aqueous solution of calcium salt to further form HAp is also effective in increasing the content of HAp. It is used effectively.
Examples of the alkali metal phosphate include disodium hydrogen phosphate and dipotassium hydrogen phosphate. Examples of the calcium salt include calcium chloride and calcium carbonate.
[0016]
In addition, the polymer gel composite material of the present invention can uniformly contain a bioabsorbable or biocompatible polymer in addition to HAp in the gel, thereby improving biocompatibility. More effective. Examples of the bioabsorbable or biocompatible polymer include proteins such as collagen, gelatin, fibrinogen, serum albumin, and gluten, nucleic acids such as deoxyribonucleic acid and ribonucleic acid, chitin, chitosan, hyaluronic acid, alginic acid, and pectin. Acids, polysaccharides such as starch, dextran and pullulan, esters such as polymalic acid and poly-β-hydroxybutyric acid, and polylactic acid are used, particularly those which are soluble or finely dispersed in water or a mixed solvent of water and an organic solvent. Is preferably used.
[0017]
As a method for producing the polymer gel composite of the present invention, for example, after preparing a uniform solution or uniform dispersion containing a water-soluble organic monomer and a water-swellable clay mineral and water, or further containing a bioabsorbable polymer A polymer gel is prepared by polymerizing a water-soluble organic monomer. Here, it is considered that the three-dimensional network of the water-soluble organic monomer polymer containing the water-swellable clay mineral is formed when the water-swellable clay mineral that has been exfoliated in a layer acts as a crosslinking agent. Next, a polymer gel composite can be obtained by forming HAp finely in the three-dimensional network of the obtained polymer gel.
By deforming the polymer gel by stretching, compression, bending or the like in the process of forming the HAp in this production method, a polymer gel composite in which at least a part of the gel is at least uniaxially oriented can be prepared. As a result, it is also possible to orient the contained HAp or bioabsorbable polymer or to change their holding state. When a polymer gel obtained by crosslinking with an organic crosslinking agent is used, it is difficult to introduce HAp under such deformations as stretching and bending, and only brittle physical properties can be obtained. Furthermore, by changing the preparation conditions of HAp (for example, aqueous solution composition, immersion temperature, time, etc.), it is also possible to prepare a polymer gel composite material having, for example, a gradient change in HAp concentration between the surface and the inside. is there.
[0018]
Further, the polymer gel composite of the present invention is obtained by drying the obtained polymer gel composite by a conventional method to obtain a polymer gel composite obtained by removing a part or all of a solvent and a dried product thereof. Is also included. The dried polymer gel composite material can reversibly regenerate the polymer gel composite material by reconstituting a solvent such as water or an organic solvent miscible with water.
[0019]
Hereinafter, the method for producing the polymer gel composite material of the present invention will be described in more detail. First, the polymerization reaction of the water-soluble organic monomer can be carried out, for example, by radical polymerization using a conventional method such as the presence of a peroxide, heating or irradiation with ultraviolet rays. The radical polymerization initiator and the catalyst can be appropriately selected from conventional radical polymerization initiators and catalysts. Preferably, those having dispersibility in water and uniformly contained in the whole system are used. Particularly preferred is a cationic radical polymerization initiator having a strong interaction with the clay mineral exfoliated in layers. Specifically, a water-soluble peroxide such as potassium peroxodisulfate or ammonium peroxodisulfate as a polymerization initiator, a water-soluble azo compound, for example, VA-044, V-50 manufactured by Wako Pure Chemical Industries, Ltd. V-501 and the like are preferably used. In addition, a water-soluble radical initiator having a polyethylene oxide chain is also used.
As the catalyst, tertiary amine compounds such as N, N, N ', N'-tetramethylethylenediamine and β-dimethylaminopropionitrile are preferably used. The polymerization temperature is set in the range of 0 ° C. to 100 ° C. in accordance with the type of the water-soluble organic polymer used, the polymerization catalyst and the initiator. The polymerization time also varies depending on the polymerization conditions such as the catalyst, initiator, polymerization temperature, and amount (thickness) of the polymerization solution, and cannot be specified unconditionally.
[0020]
In the production of the polymer gel composite material of the present invention, since the mechanical properties are high and the handleability is excellent, the size and shape of the polymerization vessel are changed by changing the shape of the polymerization vessel or cutting the gel after polymerization. A polymer gel composite having the following can be prepared. For example, a polymer gel composite having an arbitrary shape such as a fiber shape, a rod shape, a flat plate shape, a columnar shape, a spiral shape, and a spherical shape can be prepared. It is also possible to produce the resulting polymer gel composite in the form of fine particles by, for example, coexisting a conventional surfactant in the polymerization reaction.
[0021]
The water-soluble organic monomer polymer, the water-swellable clay mineral and the HAp constituting the polymer gel composite material are prepared as a gel structure having a three-dimensional network composed of the water-soluble organic monomer polymer and the clay mineral. It is sufficient that HAp is contained in the three-dimensional network. The mixing ratio thereof differs depending on the type of the water-soluble organic monomer and the water-swellable clay mineral used, and is not necessarily limited. For example, gel synthesis and HAp formation are easy and uniformity is excellent. Therefore, the mass ratio of the water-swellable clay mineral to the water-soluble organic monomer polymer is preferably 0.01 to 10, more preferably 0.03 to 2.0, and particularly preferably 0.1 to 1.0. It is. If the mass ratio is within such a range, the properties of the obtained gel composite will be sufficient, the production of the gel composite will be easy, and the rigidity of the obtained gel composite will be high. On the other hand, the weight ratio of HAp to the water-soluble organic monomer polymer is preferably 0.01 to 10, more preferably 0.05 to 5, and particularly preferably 0.1 to 3. In addition, the amount of the bioabsorbable or biocompatible polymer that can be contained in the polymer gel composite material can be changed according to the purpose, and varies greatly depending on the type thereof, and is not specified unconditionally. On the other hand, the amount of the solvent contained in the polymer gel composite is also changed depending on the composition or purpose and is not generally defined, but preferably the mass ratio is 0 to the solid content in the polymer gel composite. 100. In particular, when aiming to improve the elastic modulus and strength by combining with HAp, such a mass ratio is preferably 30 or less.
[0022]
Thus, the polymer gel composite of the present invention has excellent mechanical properties, swelling stability, and biocompatibility. The mechanical properties are not brittle as in organic cross-linked gels, have high elastic modulus and strength, and are excellent in mechanical stability and the like. In addition, the swelling property is such that it does not excessively swell and maintains a stable swelling degree in water.
Furthermore, it is also characterized by its biocompatibility, such as the cell adhesion of hydroxyapatite.
Therefore, such a polymer gel composite material can be applied to various uses by having various characteristics, but in particular, a vibration absorbing material, an adsorbing material, a cell culture substrate, a material for a bioreactor, and a bone, a cartilage, etc. It is useful for recycled materials and alternative materials.
[0023]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples described below.
[0024]
(Example 1)
Water-swellable clay minerals include [Mg5.34Li0.66Si8O20(OH)4] Na+ 0.66Water-swellable synthetic hectorite (trade name: Laponite XLG, manufactured by Nippon Silica Co., Ltd.) having the following composition, and dimethylacrylamide (DMAA: manufactured by Kojin Co., Ltd.) was used as the water-soluble organic monomer. DMAA was used after removing the polymerization inhibitor.
As the polymerization initiator, potassium peroxodisulfate (KPS: manufactured by Kanto Chemical Co., Ltd.) was used as an aqueous solution at a ratio of KPS / water = 0.40 / 20 (g / g). As the catalyst, N, N, N ', N'-tetramethylethylenediamine (TEMED: manufactured by Wako Pure Chemical Industries, Ltd.) was used.
[0025]
In a constant temperature room at 20 ° C., 19.02 g of pure water and 0.66 g of Laponite XLG were added to a flat-bottomed glass container to prepare a colorless and transparent solution. To this was added 1.76 g of DMAA to obtain a colorless and transparent solution. Next, 1.0 g of an aqueous KPS solution and 16 μl of TEMED were added with stirring, and a part of this solution was transferred to three containers having a closed bottom of 5.5 mm inside diameter and 150 mm length without touching oxygen. The polymerization was carried out by allowing the mixture to stand in a constant temperature water bath at 20 ° C. for 20 hours. The remaining solution was transferred to a vessel having a length and width of 1 cm and a length of 5 cm, and then left standing in a water bath at 20 ° C. for 20 hours to carry out polymerization. The operations from the solution preparation to the polymerization were all performed in a nitrogen atmosphere in which oxygen was cut off. Twenty hours after the start of the polymerization, a colorless, transparent, uniform, columnar or rod-shaped polymer gel composed of an organic polymer and a clay mineral was formed in the container, and was carefully removed from the container. This polymer gel has rubber-like mechanical properties having large stretchability (maximum tensile elongation = 1350%) and large swellability (equilibrium swelling ratio at 20 ° C. (= gel weight at equilibrium swelling / dry gel weight). ) = 87), and it was concluded that the water-soluble organic monomer polymer and the clay mineral formed a three-dimensional network.
Next, two types of hydroxyapatite forming solutions were prepared in the following manner. First, 1.22 g of trishydroxymethylaminomethane (manufactured by Sigma-Aldrich) was dissolved in 200 ml of pure water. An appropriate amount of a 5N aqueous hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto to adjust the pH of the solution to 7.4. To this solution, 4.44 g of calcium chloride (anhydrous) (manufactured by Wako Pure Chemical Industries, Ltd.) was added and dissolved to prepare Solution-1. In addition, 8.6 g of disodium hydrogen phosphate dodecahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 192 ml of pure water and dissolved to prepare solution-2.
[0026]
Hydroxyapatite formation on the polymer gel was performed according to the following procedure. First, after weighing the weights of gels cut into a 5 cm long column and a 1 cm square cube, put each of them in a flat bottom glass container, add 30 ml of Solution-1 and add a constant temperature of 37 ° C. It was left still in a water tank (step 1). Two hours later, the polymer gel was taken out of the flat-bottomed glass container, weighed, immediately transferred to another flat-bottomed glass container containing 50 ml of pure water, and excess solution-1 adhering to the outer surface of the gel was removed. Removed (Step 2). The obtained gel was a colorless, transparent and uniform gel, like the first polymer gel. Further, the gel was placed in a flat-bottomed glass container, 30 ml of solution-2 was added, and the mixture was allowed to stand in a constant temperature water bath at 37 ° C. (Step 3). Two hours later, the gel was taken out, weighed, and then transferred to a glass container containing pure water to remove excess solution-2 adhering to the outer surface of the gel (Step 4). The resulting gel was uniform, pale white and slightly opaque. The gel was immersed again in a new solution-1, and the above steps 1 to 4 were repeated, and each step was performed 5 times in total. The obtained gel was hard and completely white and opaque, but non-uniform aggregation was not observed. This gel was dried in the air for 24 hours under reduced pressure at 100 ° C. to obtain a dried gel from which water was removed. A thermogravimetric analysis of the dried gel (using TG-DTA220 manufactured by Seiko Denshi Kogyo Co., Ltd .: raising the temperature to 600 ° C. at a rate of 10 ° C./min under air flow) gave (clay mineral + hydroxyapatite) ÷ organic. Polymer = 1.53 (mass ratio), and it was confirmed that an inorganic compound was introduced in addition to the clay mineral. Also, wide-angle X-ray diffraction (using an X-ray diffractometer RINTULTIMA manufactured by Rigaku Corporation) and Fourier transform infrared absorption spectrum (FT-IR) measurement (Fourier transform infrared spectrophotometer manufactured by JASCO Corporation) of the dried gel body Total FT / IR-550), it was confirmed that the introduced inorganic compound was hydroxyapatite. FIG. 1 shows a wide-angle X-ray diffraction diagram. In addition, the amount of hydroxyapatite contained in the gel was 0.48 in terms of mass ratio to the water-soluble organic monomer polymer from the result of thermogravimetric analysis. As described above, according to this example, a polymer gel composite material in which hydroxyapatite was uniformly formed was obtained in a polymer gel in which a water-soluble organic monomer polymer and a clay mineral formed a three-dimensional network in water. Concluded.
A compression test was performed using the obtained cubic polymer gel composite material (Shimadzu Corporation, tabletop universal tester AGS-H specification, compression speed 0.5 mm / sec, compression ratio = 50%). . As a result, a value of elastic modulus = 14 kPa and strength at the time of 50% deformation = 400 kPa were obtained. The equilibrium swelling ratio (= gel weight at equilibrium swelling / dry gel weight) measured in water at 20 ° C. was 25. From these results, it was confirmed that the polymer gel composite material achieved higher elastic modulus and strength and lower equilibrium swelling ratio in water as compared with the polymer gel before the introduction of hydroxyapatite of Comparative Example 1. .
[0027]
(Example 2)
Except for using N-isopropylacrylamide (NIPA: manufactured by Kojin Co., Ltd.) in place of DMAA as the water-soluble organic monomer, a colorless, transparent and uniform color mixture composed of an organic polymer and a clay mineral was obtained in the same manner as in Example 1. Columnar and cubic polymer gels were prepared. As in Example 1, this polymer gel exhibits rubber-like mechanical properties having large stretchability (maximum tensile elongation = 950%) and large swellability (equilibrium swelling ratio at 20 ° C. = 48). Was. A polymer gel composite was prepared by forming hydroxyapatite in the polymer gel in the same manner as in Example 1 except that the number of repetitions was set to 2 using this polymer gel. The obtained polymer gel composite material was a white gel containing hydroxyapatite uniformly, and the contained hydroxyapatite had a mass ratio of 0.28 to poly (N-isopropylacrylamide). As a result of performing a compression test of the polymer gel composite in the same manner as in Example 1, a value of elastic modulus = 14 kPa and strength at the time of 50% deformation = 330 kPa were obtained. The equilibrium swelling ratio measured in water at 20 ° C. was 15.
[0028]
(Example 3)
A hydroxyapatite was formed in a polymer gel in the same manner as in Example 1 except that a uniform transparent polymer gel film (1 mm thick) prepared in the same manner as in Example 1 was used and the number of repetitions was changed to 10. A polymer gel composite was prepared. The resulting polymer gel composite (film) was a white gel containing hydroxyapatite uniformly, and the mass ratio of the contained hydroxyapatite to poly (N, N-dimethylacrylamide) was 2.1.
[0029]
(Example 4)
The same procedure as in Example 1 was repeated except that the columnar uniform transparent polymer gel obtained in Example 1 was uniaxially stretched to 7 times the original length and the length was fixed in the stretched state. Apatite was formed in the polymer gel. In the obtained polymer gel composite, hydroxyapatite is formed in the polymer gel in the stretched state, and even if the fixing jig is removed, the gel does not return to its original length, and the gel is stretched. It remained in the state. From this, it was concluded that hydroxyapatite was formed in the stretched three-dimensional network. The mass ratio of the contained hydroxyapatite to poly (N, N-dimethylacrylamide) was 0.78.
[0030]
(Example 5)
Except for using methacrylamide (MA: manufactured by Sigma-Aldrich Co., Ltd.) instead of DMAA as the water-soluble organic monomer in the same manner as in Example 1, a white uniform column made of an organic polymer and a clay mineral, and A cubic polymer gel was prepared. Using this polymer gel, hydroxyapatite was formed in the polymer gel in the same manner as in Example 1 to prepare a polymer gel composite material. The obtained polymer gel composite was a white gel containing hydroxyapatite uniformly, and the weight ratio of hydroxyapatite to poly (methacrylamide) was 0.55. A compression test of the polymer gel composite material was performed in the same manner as in Example 1. As a result, a modulus of elasticity = 85 kPa and a strength at the time of 50% deformation = 1.5 MPa were obtained. The equilibrium swelling ratio measured in water at 20 ° C. was 8.3.
[0031]
(Example 6)
Except for using methoxyethyl acrylate (MEA: manufactured by Wako Pure Chemical Industries, Ltd.) in place of DMAA as the water-soluble organic monomer, a colorless, transparent, uniform, organic polymer and clay mineral was used in the same manner as in Example 1. Various cylindrical and cubic polymer gels were prepared. Using this polymer gel, hydroxyapatite was formed in the polymer gel in the same manner as in Example 1 to prepare a polymer gel composite material. The obtained polymer gel composite material was a white gel containing hydroxyapatite uniformly, and the mass ratio of hydroxyapatite to poly (methoxyethyl acrylate) was 0.55. As a result of performing a compression test of the polymer gel composite in the same manner as in Example 1, a value of elastic modulus = 67 kPa and strength at the time of 50% deformation = 500 kPa were obtained. The equilibrium swelling ratio measured in water at 20 ° C. was 4.2.
[0032]
(Example 7)
The moisture was slowly removed from the polymer gel composite obtained in Example 1 by drying to reduce the water content (= weight of gel composite / weight of solids in gel composite) to 0.5.
did. As a result of performing a compression test of the polymer gel composite material in the same manner as in Example 1, a value of elastic modulus = 1 MPa, strength at 10% deformation = 10 MPa was obtained.
[0033]
(Comparative Examples 1 and 2)
Compression tests were performed on the cubic polymer gels obtained in Examples 1 and 2 in the same manner as in Example 1 (Comparative Examples 1 and 2), and the compression modulus was 1.5 kPa (Comparative Example 1). The strength at a compression ratio of 3.1 kPa (Comparative Example 2) and a compression ratio of 50% was 200 kPa (Comparative Example 1) and 260 kPa (Comparative Example 2). The equilibrium swelling ratio in water at 20 ° C. was 87 (Comparative Example 1) and 48 (Comparative Example 2).
[0034]
【The invention's effect】
The polymer gel composite material of the present invention has excellent mechanical properties, swelling stability, and biocompatibility, does not have the brittleness of general organic crosslinked gels, and has a high elastic modulus and strength. It is excellent in mechanical stability and the like, does not excessively swell, maintains a stable swelling degree in water, and has characteristics such as cell adhesion of hydroxyapatite.
[Brief description of the drawings]
FIG. 1 is a view showing the results of wide-angle X-ray diffraction measurement of a dried product of a polymer gel composite material obtained in Example 1.

Claims (7)

水溶性有機モノマーから得られる重合体と水膨潤性粘土鉱物とからなる高分子ゲル中にヒドロキシアパタイトを含有することを特徴とする高分子ゲル複合材。A polymer gel composite material characterized by containing hydroxyapatite in a polymer gel comprising a polymer obtained from a water-soluble organic monomer and a water-swellable clay mineral. 高分子ゲルが水で膨潤するものである請求項1記載の高分子ゲル複合材。The polymer gel composite according to claim 1, wherein the polymer gel swells with water. 高分子ゲル複合材中の固形分に対する水の質量比が0〜30である請求項項1又は2に記載の高分子ゲル複合材。3. The polymer gel composite according to claim 1, wherein the mass ratio of water to solid content in the polymer gel composite is 0 to 30. 4. 水溶性有機モノマーから得られる重合体がアミド基またはエステル基を有する水溶性有機モノマーから得られるものであり、且つ水膨潤性粘土鉱物が水膨潤性スメクタイトである請求項1から3のいずれか一つに記載の高分子ゲル複合材。4. The polymer according to claim 1, wherein the polymer obtained from the water-soluble organic monomer is obtained from a water-soluble organic monomer having an amide group or an ester group, and the water-swellable clay mineral is a water-swellable smectite. 4. The polymer gel composite according to any one of the above. 水溶性有機モノマーから得られる重合体とヒドロキシアパタイトとの質量比が0.01〜10である請求項項1から4のいずれか一つに記載の高分子ゲル複合材。The polymer gel composite according to any one of claims 1 to 4, wherein the mass ratio of the polymer obtained from the water-soluble organic monomer to hydroxyapatite is 0.01 to 10. 一軸方向または多軸方向に延伸してなる請求項1から5のいずれか一つに記載の高分子ゲル複合材。The polymer gel composite according to any one of claims 1 to 5, which is stretched in a uniaxial direction or a multiaxial direction. 水溶性有機モノマーから得られる重合体と水膨潤性粘土鉱物とからなる高分子ゲルに、リン酸アルカリ金属塩水溶液とカルシウム塩水溶液とを一回以上交互に含浸することにより高分子ヒドロゲル中にヒドロキシアパタイトを形成することを特徴とする高分子ゲル複合材の製造法。A polymer gel comprising a polymer obtained from a water-soluble organic monomer and a water-swellable clay mineral is alternately impregnated with an aqueous solution of an alkali metal phosphate and an aqueous solution of a calcium salt one or more times to form a hydroxy in the polymer hydrogel. A method for producing a polymer gel composite, comprising forming apatite.
JP2003038046A 2003-02-17 2003-02-17 Polymer gel composite and method for producing the same Expired - Fee Related JP3914501B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003038046A JP3914501B2 (en) 2003-02-17 2003-02-17 Polymer gel composite and method for producing the same
PCT/JP2004/000020 WO2004072138A1 (en) 2003-02-17 2004-01-07 Polymer gel containing biocompatible material, dry gel, and process for producing polymer gel
EP04700526A EP1595899B1 (en) 2003-02-17 2004-01-07 Polymer gel containing biocompatible material, dry gel, and process for producing polymer gel
DE602004024288T DE602004024288D1 (en) 2003-02-17 2004-01-07 POLYMER GEL WITH BIOKOMPATIBLE MATERIAL, DRY GEL AND PRODUCTION PROCESS FOR POLYMER GEL
US10/545,311 US20060148958A1 (en) 2003-02-17 2004-01-07 Polymer gel containing biocompatible material, dry gel, and process for producing polymer gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038046A JP3914501B2 (en) 2003-02-17 2003-02-17 Polymer gel composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004262976A true JP2004262976A (en) 2004-09-24
JP3914501B2 JP3914501B2 (en) 2007-05-16

Family

ID=33112053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038046A Expired - Fee Related JP3914501B2 (en) 2003-02-17 2003-02-17 Polymer gel composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3914501B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147001A (en) * 2005-11-29 2007-06-14 Yokohama National Univ Liquid feed system
JP2007204527A (en) * 2006-01-31 2007-08-16 Kawamura Inst Of Chem Res Polymer-composited gel and its production method
JP2008074924A (en) * 2006-09-20 2008-04-03 Kawamura Inst Of Chem Res Amino group-containing organic/inorganic composite hydrogel and method for producing the same
KR100828096B1 (en) * 2006-12-28 2008-05-08 금오공과대학교 산학협력단 Method for producing composite gel of hydroxyapatite and polyacrylamide
JP2008237088A (en) * 2007-03-27 2008-10-09 Kawamura Inst Of Chem Res Base medium and method for cell culture
JP2008247961A (en) * 2007-03-29 2008-10-16 Kawamura Inst Of Chem Res Polymer gel complex and method for producing the same
US7558498B2 (en) 2004-09-30 2009-07-07 Seiko Epson Corporation Fixing unit for an image forming apparatus controlling plural coils in rotating heating bodies
JP2010001354A (en) * 2008-06-19 2010-01-07 Kawamura Inst Of Chem Res Organic/inorganic composite material including liquid crystalline compound
JP2010001353A (en) * 2008-06-19 2010-01-07 Kawamura Inst Of Chem Res Organic/inorganic composite material including liquid crystalline compound
JP2011504518A (en) * 2007-09-27 2011-02-10 エスセーアー・ハイジーン・プロダクツ・アーベー New physical forms of clay-linked polymer gels, methods for forming them, and uses thereof
JP2011518913A (en) * 2008-04-25 2011-06-30 ネーデルランドセ オルガニサティエ フォール トエゲパストナトールヴェテンシャッペリク オンデルゾエク ティエヌオー Liquid composition containing polymer chains and inorganic particles in liquid
JP2013176402A (en) * 2013-06-20 2013-09-09 Kawamura Institute Of Chemical Research Cell culture substrate and cell culture method
JP2013194084A (en) * 2012-03-16 2013-09-30 Kawamura Institute Of Chemical Research Organic/inorganic composite hydrogel
JP2015180230A (en) * 2015-07-14 2015-10-15 Dic株式会社 Cell culture substrate and cell culture method
KR20200028972A (en) * 2017-07-12 2020-03-17 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. Hydroxyapatite / gelatin composite materials and uses thereof, especially artificial ivory and methods for making the same
CN114736480A (en) * 2022-03-30 2022-07-12 华中科技大学 Photoresponse nanocomposite material, preparation method and micro-nano 4D printing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7558498B2 (en) 2004-09-30 2009-07-07 Seiko Epson Corporation Fixing unit for an image forming apparatus controlling plural coils in rotating heating bodies
JP2007147001A (en) * 2005-11-29 2007-06-14 Yokohama National Univ Liquid feed system
JP4625959B2 (en) * 2005-11-29 2011-02-02 国立大学法人横浜国立大学 Liquid feeding system
JP2007204527A (en) * 2006-01-31 2007-08-16 Kawamura Inst Of Chem Res Polymer-composited gel and its production method
JP2008074924A (en) * 2006-09-20 2008-04-03 Kawamura Inst Of Chem Res Amino group-containing organic/inorganic composite hydrogel and method for producing the same
KR100828096B1 (en) * 2006-12-28 2008-05-08 금오공과대학교 산학협력단 Method for producing composite gel of hydroxyapatite and polyacrylamide
JP2008237088A (en) * 2007-03-27 2008-10-09 Kawamura Inst Of Chem Res Base medium and method for cell culture
JP2008247961A (en) * 2007-03-29 2008-10-16 Kawamura Inst Of Chem Res Polymer gel complex and method for producing the same
JP2011504518A (en) * 2007-09-27 2011-02-10 エスセーアー・ハイジーン・プロダクツ・アーベー New physical forms of clay-linked polymer gels, methods for forming them, and uses thereof
JP2011518913A (en) * 2008-04-25 2011-06-30 ネーデルランドセ オルガニサティエ フォール トエゲパストナトールヴェテンシャッペリク オンデルゾエク ティエヌオー Liquid composition containing polymer chains and inorganic particles in liquid
JP2010001353A (en) * 2008-06-19 2010-01-07 Kawamura Inst Of Chem Res Organic/inorganic composite material including liquid crystalline compound
JP2010001354A (en) * 2008-06-19 2010-01-07 Kawamura Inst Of Chem Res Organic/inorganic composite material including liquid crystalline compound
JP2013194084A (en) * 2012-03-16 2013-09-30 Kawamura Institute Of Chemical Research Organic/inorganic composite hydrogel
JP2013176402A (en) * 2013-06-20 2013-09-09 Kawamura Institute Of Chemical Research Cell culture substrate and cell culture method
JP2015180230A (en) * 2015-07-14 2015-10-15 Dic株式会社 Cell culture substrate and cell culture method
KR20200028972A (en) * 2017-07-12 2020-03-17 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. Hydroxyapatite / gelatin composite materials and uses thereof, especially artificial ivory and methods for making the same
KR102419601B1 (en) 2017-07-12 2022-07-11 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. Hydroxyapatite/gelatin composite material and uses thereof, in particular artificial ivory and manufacturing method thereof
CN114736480A (en) * 2022-03-30 2022-07-12 华中科技大学 Photoresponse nanocomposite material, preparation method and micro-nano 4D printing method
CN114736480B (en) * 2022-03-30 2023-09-19 华中科技大学 Light response nanocomposite, preparation method and micro-nano 4D printing method

Also Published As

Publication number Publication date
JP3914501B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP3914501B2 (en) Polymer gel composite and method for producing the same
Li et al. Ultrastiff, thermoresponsive nanocomposite hydrogels composed of ternary polymer–clay–silica networks
Serafim et al. One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design
EP1595899B1 (en) Polymer gel containing biocompatible material, dry gel, and process for producing polymer gel
JP4861681B2 (en) Polymer gel laminate and method for producing the same
Cui et al. Robust dual physically cross-linked hydrogels with unique self-reinforcing behavior and improved dye adsorption capacity
CN110437471B (en) Adhesive composite hydrogel and preparation method and application thereof
JP2009127035A (en) Method for production of organic and inorganic composite hydrogel
JP3914489B2 (en) Polymer composite, stretched product thereof, and method for producing polymer composite
JP2005232402A (en) Polymer composite, its stretched product and process for producing polymer composite
JP2009149759A (en) Preparation of cationic organic-inorganic composite hydrogel
JP5285839B2 (en) Method for producing polymer composite gel
WO2002057368A1 (en) Low friction hydrogel having straight chain polymer and method for preparation thereof
JP2011001482A (en) Polymer gel, polymer gel dispersion, polymer gel composite, and method for producing the same
US7365120B2 (en) Polymer composite, stretched product thereof and production processes therefor
JP2005000182A (en) Blood compatible material
JP5000122B2 (en) SEWING MEMBER AND SEWING METHOD
JP4840747B2 (en) Organic-inorganic composite gel foam and method for producing the same
JP2009256629A (en) Organic-inorganic composite hydrogel and method for producing the same
JP2011213793A (en) Method for producing organic-inorganic composite hydrogel
JP5187711B2 (en) Antithrombogenic material and composition for antithrombogenic material
JP2005113080A (en) Multiple-crosslinked polymer gel and method for producing the same
JP3795842B2 (en) Protein-containing gel, dried protein-containing gel, and method for producing protein-containing gel
JP5435835B2 (en) Polymer gel and method for producing the same
JP2009046553A (en) Method for producing organic inorganic composite hydrogel having carboxylic acid group or sulfonic acid group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Ref document number: 3914501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees