JP2013194084A - Organic/inorganic composite hydrogel - Google Patents

Organic/inorganic composite hydrogel Download PDF

Info

Publication number
JP2013194084A
JP2013194084A JP2012060192A JP2012060192A JP2013194084A JP 2013194084 A JP2013194084 A JP 2013194084A JP 2012060192 A JP2012060192 A JP 2012060192A JP 2012060192 A JP2012060192 A JP 2012060192A JP 2013194084 A JP2013194084 A JP 2013194084A
Authority
JP
Japan
Prior art keywords
water
organic
clay mineral
inorganic composite
swellable clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012060192A
Other languages
Japanese (ja)
Other versions
JP5880181B2 (en
Inventor
Noriko Santo
典子 山東
Kazutoshi Haraguchi
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2012060192A priority Critical patent/JP5880181B2/en
Publication of JP2013194084A publication Critical patent/JP2013194084A/en
Application granted granted Critical
Publication of JP5880181B2 publication Critical patent/JP5880181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic/inorganic composite hydrogel which ensures easy cell adhesion and growth on the surface thereof, and to provide a method for producing the organic/inorganic composite hydrogel.SOLUTION: An organic/inorganic composite hydrogel includes water (C) in a three-dimensional network structure formed by a polymer of a water-soluble radically polymerizable organic monomer (A) and a water-swellable clay mineral (B), wherein the organic/inorganic composite hydrogel is characterized by having a layer consisting mainly of the water-swellable clay mineral (B) on a part of the surface of the hydrogel or on the entire surface thereof. The greatest feature of the organic/inorganic composite hydrogel and a method for producing the organic/inorganic composite hydrogel is the fact that the water-swellable clay mineral (B) serving also as a constituent of the hydrogel is adsorbed to the outermost surface of the hydrogel, and by adsorption of cell adhesion factors and protein to the adsorbed water-swellable clay mineral layer, the organic/inorganic composite hydrogel bears the adhesion and growth of a cell.

Description

本発明は、表面が水膨潤性粘土鉱物で被覆された有機無機複合ヒドロゲルに関し、具体的には、表面で細胞を容易に接着、増殖可能な有機無機複合ヒドロゲル、及びその製造方法に関する。   The present invention relates to an organic-inorganic composite hydrogel whose surface is coated with a water-swellable clay mineral, and specifically relates to an organic-inorganic composite hydrogel capable of easily adhering and proliferating cells on the surface, and a method for producing the same.

高分子ヒドロゲルは有機高分子の三次元架橋物が水を含んで膨潤したものであり、膨潤性やゴム状弾性を有するソフトマテリアルとして、医療・医薬、食品、土木、バイオエンジニアリング、スポーツ関連などの分野で広く用いられている(例えば、非特許文献1参照)。これまでに本発明者らは、水溶性有機高分子と層状粘土鉱物とが複合化して形成された三次元網目を有する高分子ヒドロゲルが、優れた吸水性や極めて高い伸張性などの特徴を有することについて報告した(例えば特許文献1および2参照)。   Polymer hydrogels are organic polymer three-dimensional cross-linked products that contain water and swell, and as soft materials with swelling and rubber-like elasticity, such as medical / medicine, food, civil engineering, bioengineering, sports-related, etc. Widely used in the field (for example, see Non-Patent Document 1). To date, the present inventors have found that a polymer hydrogel having a three-dimensional network formed by combining a water-soluble organic polymer and a layered clay mineral has characteristics such as excellent water absorption and extremely high extensibility. (For example, refer to Patent Documents 1 and 2).

さらに、本発明者らは、上記水溶性有機高分子のうち、下限臨界共溶温度(LCST)以下のポリN-イソプロピルアクリルアミドや疎水性高分子であるポリ2−メトキシエチルアクリレートなどと層状粘土鉱物とが複合化して形成された三次元網目を有する高分子ヒドロゲルが、優れた細胞培養特性を有することについて報告した(例えば特許文献3および4参照)。しかし、ジメチルアクリルアミド、アクリロイルモルホリン、ポリエチレングリコールなどの親水性高分子と層状粘土鉱物とが複合化して形成された三次元網目を有する高分子ヒドロゲル表面で細胞を接着増殖させる技術についてはこれまでに開示されていなかった。   Furthermore, the present inventors, among the above water-soluble organic polymers, poly N-isopropylacrylamide having a lower critical solution temperature (LCST) or lower, poly-2-methoxyethyl acrylate which is a hydrophobic polymer, and layered clay minerals. It has been reported that a polymer hydrogel having a three-dimensional network formed by combining and has excellent cell culture characteristics (see, for example, Patent Documents 3 and 4). However, the technology to adhere and proliferate cells on the surface of a polymer hydrogel with a three-dimensional network formed by combining a hydrophilic polymer such as dimethylacrylamide, acryloylmorpholine, and polyethylene glycol with a layered clay mineral has been disclosed. Was not.

一方、培養足場への細胞接着を促進させる目的で、コラーゲンやフィブロネクチン等の細胞接着因子を足場表面にコーティングする手法(1)がプラスチック製容器表面で広く行われている。   On the other hand, for the purpose of promoting cell adhesion to the culture scaffold, a technique (1) for coating the surface of the scaffold with a cell adhesion factor such as collagen or fibronectin is widely performed on the surface of the plastic container.

しかし、(1)の手法を水溶性有機高分子と層状粘土鉱物とが複合化して形成された三次元網目を有する高分子ヒドロゲルに応用すると、コラーゲンやフィブロネクチンをゲルの内部に吸収することが出来ても、ヒドロゲル表面に固定化出来ない為、結果として細胞を接着増殖させることは困難であった。   However, when the method (1) is applied to a polymer hydrogel having a three-dimensional network formed by combining a water-soluble organic polymer and a layered clay mineral, collagen and fibronectin can be absorbed into the gel. However, since it cannot be immobilized on the surface of the hydrogel, it was difficult to cause the cells to adhere and proliferate.

また、アクリルアミドゲルの表面にカルボジイミドやスクシンイミドなどのクロスリンカーを用いて、コラーゲンを化学的に固定化して細胞培養する手法(2)が開発されており、ゲル表面への細胞培養でも応用されている(例えば非特許文献2参照)。但し、(2)の手法は水溶性高分子がOH基を有さない場合は有効ではなく、OH基を有さない水溶性有機高分子と層状粘土鉱物とが複合化して形成された三次元網目を有する高分子ヒドロゲルに応用することはできない。   In addition, a method (2) has been developed in which collagen is chemically immobilized using a crosslinker such as carbodiimide or succinimide on the surface of an acrylamide gel, and is applied to cell culture on the gel surface. (For example, refer nonpatent literature 2). However, the method (2) is not effective when the water-soluble polymer does not have OH groups, and is a three-dimensional structure formed by combining a water-soluble organic polymer having no OH groups and a layered clay mineral. It cannot be applied to a polymer hydrogel having a network.

一方、これまでに本発明者らは、水膨潤性粘土鉱物を含有する培養床が各種細胞に対して良好な培養性を示すことを見いだしてきた(例えば特許文献5参照)。しかし、この特許では、ヒドロゲル表面にタンパクが吸着したり、細胞が接着増殖したりするような有機無機複合ヒドロゲルおよび有機無機複合ヒドロゲルの製造方法については開示されていない。   On the other hand, the present inventors have found that a culture bed containing a water-swellable clay mineral exhibits good culturing properties for various cells (for example, see Patent Document 5). However, this patent does not disclose an organic-inorganic composite hydrogel or a method for producing an organic-inorganic composite hydrogel in which protein is adsorbed on the surface of the hydrogel or cells adhere and proliferate.

以上のように、水溶性高分子のうち、特にジメチルアクリルアミド、アクリロイルモルホリン、ポリエチレングリコールなどの親水性高分子と層状粘土鉱物とが複合化して形成された三次元網目を有する高分子ヒドロゲルは、透明性や強度等、物性に優れているが、その表面に細胞が接着増殖させることは実現されていなかった。   As described above, among the water-soluble polymers, a polymer hydrogel having a three-dimensional network formed by combining a hydrophilic polymer such as dimethylacrylamide, acryloylmorpholine, and polyethylene glycol with a layered clay mineral is particularly transparent. Although it is excellent in physical properties such as property and strength, it has not been realized that cells adhere to and proliferate on the surface.

特開2002−53629号公報JP 2002-53629 A 米国特許676710号US Pat. No. 6,767,710 特開2005−110604号公報JP 2005-110604 A 特開2008−237088号公報JP 2008-237088 A 特願2011−196012Japanese Patent Application No. 2011-196012

Adv. Mater., 14, 1120-1124 (2002)Adv. Mater., 14, 1120-1124 (2002) Proc. Natl. Acad. Sci. USA、vol. 94, pp13661-13665, (1997)Proc. Natl. Acad. Sci. USA, vol. 94, pp13661-13665, (1997)

本発明が解決しようとする課題は、上記従来技術の問題点を解決し、表面で細胞を容易に接着、増殖させる有機無機複合ヒドロゲル、及びその製造方法を提供することにある。   The problem to be solved by the present invention is to solve the above-mentioned problems of the prior art and to provide an organic-inorganic composite hydrogel that allows cells to adhere and grow easily on the surface, and a method for producing the same.

本発明者等は、上記課題を解決すべく鋭意研究した結果、特に水溶性有機モノマーの重合物と層状剥離した粘土鉱物と媒体からなるゲルにおいて、ゲル表面を粘土鉱物または粘土鉱物とタンパク質の混合体で被覆することより、ゲルの高い伸縮性、透明性、および圧縮性を維持しながら、柔軟性が広範囲に制御され、且つ、各種細胞に対する良好な培養性を有する、ゲル材料が得られることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the inventors of the present invention have found that the gel surface is a mixture of clay mineral or clay mineral and protein, particularly in a gel composed of a polymer of a water-soluble organic monomer and a layered exfoliated clay mineral and medium. By covering with the body, a gel material is obtained in which the flexibility is controlled over a wide range and the culturing property to various cells is good while maintaining the high stretchability, transparency and compressibility of the gel. As a result, the present invention has been completed.

即ち、本発明は、水溶性のラジカル重合性有機モノマー(A)の重合体と水膨潤性粘土鉱物(B)により形成される三次元網目構造中に水(C)を包含する有機無機複合ヒドロゲルであって、該ヒドロゲルの表面の一部または全面に水膨潤性粘土鉱物(B)を主成分とする層を有することを特徴とする有機無機複合ヒドロゲルを提供する。   That is, the present invention relates to an organic-inorganic composite hydrogel comprising water (C) in a three-dimensional network structure formed by a polymer of a water-soluble radically polymerizable organic monomer (A) and a water-swellable clay mineral (B). An organic-inorganic composite hydrogel comprising a layer mainly composed of a water-swellable clay mineral (B) on a part or the whole of the surface of the hydrogel.

また、本発明は、上記の有機無機複合ヒドロゲルの製造方法であって、
(1)水溶性のラジカル重合性有機モノマー(A)の重合体と水膨潤性粘土鉱物(B)により形成される三次元網目構造中に水(C)を包含する有機無機複合ヒドロゲルを製造する工程、
(2)水膨潤性粘土鉱物(B)を水中に分散して、水膨潤性粘土鉱物(B)の分散液を製造する工程、
(3)前記分散液中に前記ヒドロゲルを浸漬することにより、又は前記分散液を前記ヒドロゲル表面に塗布することにより、前記ヒドロゲルの表面の一部または全面に前記水膨潤性粘土鉱物(B)を主成分とする層を形成する工程、
を含むことを特徴とする有機無機複合ヒドロゲルの製造方法を提供する。
The present invention also provides a method for producing the above organic-inorganic composite hydrogel,
(1) An organic-inorganic composite hydrogel containing water (C) in a three-dimensional network structure formed by a water-soluble radical polymerizable organic monomer (A) polymer and a water-swellable clay mineral (B) is produced. Process,
(2) Dispersing the water-swellable clay mineral (B) in water to produce a water-swellable clay mineral (B) dispersion;
(3) The water-swellable clay mineral (B) is applied to a part or the entire surface of the hydrogel by immersing the hydrogel in the dispersion or by applying the dispersion to the surface of the hydrogel. Forming a layer having a main component;
The manufacturing method of the organic inorganic composite hydrogel characterized by including this.

本発明の有機無機複合ヒドロゲルおよび有機無機複合ヒドロゲルの製造方法の最大の特徴は、ヒドロゲルの構成成分でもある上記水膨潤性粘土鉱物(B)がヒドロゲル最表面に吸着し、吸着した水膨潤性粘土鉱物層に細胞接着因子やタンパクが吸着することで細胞の接着と増殖を担うことにある。   The greatest feature of the organic-inorganic composite hydrogel and the method for producing the organic-inorganic composite hydrogel of the present invention is that the water-swellable clay mineral (B), which is also a constituent of the hydrogel, is adsorbed on the outermost surface of the hydrogel and adsorbed. It is responsible for cell adhesion and proliferation by adsorbing cell adhesion factors and proteins to the mineral layer.

本発明は、高伸縮性や高圧縮性を有し、柔軟性が広範囲に制御され、且つ、細胞接着因子や培養液中のタンパク質成分を表面に多く吸着でき、続いて細胞の良好な接着・伸展・増殖(高培養性)、また、生体組織の接着を可能にできる有機無機複合ゲルを提供する。得られた有機無機複合ゲルは、細胞の高培養性の他に優れた力学物性、調湿性、難燃性などを併せ持つことができる。また、得られた有機無機複合ゲルは、表面の一部が細胞接着性、その他の部分が細胞非接着性を持つように制御することができる。   The present invention has high stretchability and high compressibility, flexibility is controlled over a wide range, and a large amount of cell adhesion factors and protein components in the culture solution can be adsorbed on the surface, followed by good cell adhesion / Provided is an organic-inorganic composite gel capable of extending / proliferating (highly cultivated) and adhering biological tissues. The obtained organic-inorganic composite gel can have excellent mechanical properties, humidity control, flame retardancy, and the like in addition to high cell culture properties. Moreover, the obtained organic-inorganic composite gel can be controlled so that part of the surface has cell adhesiveness and the other part has cell non-adhesiveness.

以上の有機無機複合ヒドロゲルおよび有機無機複合ヒドロゲルの製造方法は円柱状、棒状、フィルム状、糸状を初めとした各種形状の有機無機複合ヒドロゲルで可能である。本発明の有機無機複合ヒドロゲルは、細胞培養用足場としての理化学材料として、さらに医療・医薬品分野、特に、角膜、水晶体、軟骨、腱、骨などの再生医療材料として使用することが出来る。また、生体適合性、柔軟性に優れた人工弁、人工血管、人工軟骨などの人工臓器用材料や、カテーテルなどの治療用材料、としても有効に用いられる。さらに、各種工業材料として農業・工業・電子材料・土木建築・包装資材などの分野でも用いられる。   The organic-inorganic composite hydrogel and the method for producing the organic-inorganic composite hydrogel can be organic-inorganic composite hydrogels of various shapes including a columnar shape, a rod shape, a film shape, and a thread shape. The organic-inorganic composite hydrogel of the present invention can be used as a physicochemical material as a scaffold for cell culture, and further in the medical / pharmaceutical field, particularly as a regenerative medical material such as cornea, lens, cartilage, tendon, bone. Further, it is also effectively used as a material for artificial organs such as artificial valves, artificial blood vessels, and artificial cartilages excellent in biocompatibility and flexibility, and a therapeutic material such as catheters. Furthermore, it is also used in various fields such as agriculture, industry, electronic materials, civil engineering, and packaging materials as various industrial materials.

本発明は、水溶性有機モノマーの重合物と膨潤性粘土鉱物と媒体からなるヒドロゲルを形成し、その表面に水膨潤性粘土鉱物を塗布することにより、水膨潤性粘土鉱物が表面に密着し、タンパク質や細胞、及び組織接着性を持った表面を持つ有機無機複合ゲルが得られることを見出した点にある。これに対して水膨潤性粘土鉱物塗布を行わないゲルは、細胞培養性及び組織接着性に問題が残った。   The present invention forms a hydrogel composed of a polymer of a water-soluble organic monomer, a swellable clay mineral, and a medium, and the water-swellable clay mineral adheres to the surface by coating the surface with the water-swellable clay mineral. It is found that an organic-inorganic composite gel having a surface with protein, cell, and tissue adhesiveness can be obtained. On the other hand, the gel in which the water-swellable clay mineral was not applied remained a problem in cell culture and tissue adhesion.

本発明に言う、有機無機複合ヒドロゲルとは、水溶性有機モノマーの重合物(以下、単に重合体(A)という)と、水に均一分散可能な水膨潤性粘土鉱物(B)とが複合化して形成された三次元網目の中に水(C)が包含されており、表面に水膨潤性粘土鉱物(B)の薄層を有するヒドロゲルのことである。   The organic-inorganic composite hydrogel referred to in the present invention is a composite of a water-soluble organic monomer polymer (hereinafter simply referred to as polymer (A)) and a water-swellable clay mineral (B) that can be uniformly dispersed in water. Water (C) is contained in the three-dimensional network formed in this way, and is a hydrogel having a thin layer of water-swellable clay mineral (B) on the surface.

本発明で使用する水溶性有機モノマーの重合体(A)としては、水膨潤性粘土鉱物(B)と相互作用により三次元網目を形成可能なものであり、好ましくはアミド基、アミノ基、エステル基、水酸基、カチオン基の一つ又は複数を側鎖又は主鎖に含有し、親水性又は両親媒性を示すものであり、特に好ましくは水又は水と有機溶剤との混合溶媒に膨潤したり溶解する性質を有するものである。かかる重合体(A)の好ましいものとしては、水溶性アクリルアミド誘導体の重合体やそれを少なくとも一部含む共重合体があげられる。水溶性アクリルアミド誘導体としては、例えば炭素数1以上のアルキル基を有する水溶性のN−アルキルアクリルアミド又はN,N−ジアルキルアクリルアミドが例示される。   The water-soluble organic monomer polymer (A) used in the present invention is capable of forming a three-dimensional network by interaction with the water-swellable clay mineral (B), preferably an amide group, amino group, ester. Containing one or more of a group, a hydroxyl group and a cationic group in the side chain or main chain and exhibiting hydrophilicity or amphiphilicity, particularly preferably swelled in water or a mixed solvent of water and an organic solvent. It has the property of dissolving. Preferable examples of such a polymer (A) include a polymer of a water-soluble acrylamide derivative and a copolymer containing at least a part thereof. Examples of the water-soluble acrylamide derivative include water-soluble N-alkyl acrylamide or N, N-dialkyl acrylamide having an alkyl group having 1 or more carbon atoms.

重合体(A)に用いられる水溶性有機モノマーとしては、前記アクリルアミド誘導体の他、例えばアクリルアミド、メタクリルアミド、炭素数1以上のアルキル基を有するアルキルメタクリルアミド、アルキルアクリレートの中から選択される一つ又は複数が用いられる。ここでN−アルキルアクリルアミド、N,N−ジアルキルアクリルアミド、アルキルメタクリルアミド、アルキルアクリレートの具体例としては、N−メチルアクリルアミド、N−エチルアクリルアミド、N−シクロプロピルアクリルアミド、N−イソプロピルアクリルアミド、N−メチルメタクリルアミド、N−シクロプロピルメタクリルアミド、N−イソプロピルメタクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N−メチル−N−エチルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N,N−ジエチルアクリルアミド、N−アクリロイルピロリディン、N−アクリロイルピペリディン、N−アクリロイルメチルホモピペラディン、N−アクリロイルメチルピペラディン、2−メトキシエチルアクリレートなどが例示される。またこれらモノマーにその他の有機モノマーをあわせて用いることも、本発明にいう有機無機複合ゲルが形成される限りにおいて可能である。   The water-soluble organic monomer used in the polymer (A) is one selected from acrylamide, methacrylamide, alkyl methacrylamide having an alkyl group having 1 or more carbon atoms, and alkyl acrylate in addition to the acrylamide derivative. Or a plurality is used. Here, specific examples of N-alkylacrylamide, N, N-dialkylacrylamide, alkylmethacrylamide, and alkylacrylate include N-methylacrylamide, N-ethylacrylamide, N-cyclopropylacrylamide, N-isopropylacrylamide, and N-methyl. Methacrylamide, N-cyclopropylmethacrylamide, N-isopropylmethacrylamide, N, N-dimethylacrylamide, N, N-dimethylaminopropylacrylamide, N-methyl-N-ethylacrylamide, N-methyl-N-isopropylacrylamide, N-methyl-Nn-propylacrylamide, N, N-diethylacrylamide, N-acryloylpyrrolidine, N-acryloylpiperidine, N-acryloylmethylphospho Piperadin, N- acryloyl methylpiperazinyl Laden, such as 2-methoxyethyl acrylate are exemplified. In addition, it is possible to use these monomers together with other organic monomers as long as the organic-inorganic composite gel referred to in the present invention is formed.

さらに下記の化学式(1)を主成分とし、化学式(2)および(3)を共重合した重合体と層状粘土鉱物とが複合化して形成された三次元網目を有する高屈折率高分子ヒドロゲルなどが挙げられる。   Further, a high refractive index polymer hydrogel having a three-dimensional network formed by combining a polymer obtained by copolymerizing chemical formulas (2) and (3) and a layered clay mineral, the main component being the following chemical formula (1) Is mentioned.

Figure 2013194084
Figure 2013194084

本発明における水膨潤性粘土鉱物(B)としては、水又は水溶液中で膨潤するものであることが好ましく、より好ましくは水溶性有機モノマーを含む溶液中で層状剥離し、微細且つ均一に分散可能なものであり、更には、かかる微細且つ均一に分散した状態が水中でも保たれるものが特に好ましい。本発明の有機無機複合ゲルにおいて、膨潤性粘土鉱物(B)は好ましくは10層以下、より好ましくは3層以下、特に好ましくは1層又は2層のナノメーターレベル(の厚み)で分散しているものである。かかる膨潤性粘土鉱物の分散は発泡ゲルを乾燥したものの超薄切片を透過型電子顕微鏡により観察することによって確認されるほか、同様な試料を用いた小角X線回折測定によっても確認され、回折角(2θ)が好ましくは3度〜8度で、より好ましくは2度〜8度で、特に好ましくは1度〜8度で粘土鉱物の積層に基づく明確な回折ピークが観測されないことによって確認される。また、本発明における水膨潤性粘土鉱物(B)は、水溶性有機モノマーの重合物(A)と三次元網目を形成できるものであることが好ましく、より好ましくはメチレンビスアクリルアミド等の有機架橋剤を用いないで(A)(B)からなる三次元網目を形成できるものである。更に好ましくは、形成した三次元網目構造が水中でも維持されるものである。かかる水膨潤性粘土鉱物(B)としては、例えば、水膨潤性スメクタイトや水膨潤性雲母などの水中で膨潤し、層状剥離した状態で微分散することが可能な膨潤性の無機粘土鉱物が用いられ、具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。また、水溶性有機モノマーと共に溶媒中で層状剥離可能であれば、界面活性剤などにより部分的に有機化した粘土鉱物を用いることもできる。   The water-swellable clay mineral (B) in the present invention is preferably one that swells in water or an aqueous solution, and more preferably can be exfoliated and dispersed finely and uniformly in a solution containing a water-soluble organic monomer. Further, it is particularly preferable that such a fine and uniformly dispersed state is maintained even in water. In the organic-inorganic composite gel of the present invention, the swellable clay mineral (B) is preferably dispersed at a nanometer level (thickness) of 10 layers or less, more preferably 3 layers or less, particularly preferably 1 layer or 2 layers. It is what. The dispersion of the swellable clay mineral was confirmed by observing an ultrathin section of the dried foam gel with a transmission electron microscope, as well as by small-angle X-ray diffraction measurement using a similar sample. (2θ) is preferably 3 ° to 8 °, more preferably 2 ° to 8 °, and particularly preferably 1 ° to 8 °, which is confirmed by the fact that no clear diffraction peak based on clay mineral lamination is observed. . The water-swellable clay mineral (B) in the present invention is preferably one that can form a three-dimensional network with the water-soluble organic monomer polymer (A), more preferably an organic crosslinking agent such as methylenebisacrylamide. It is possible to form a three-dimensional network composed of (A) and (B) without using. More preferably, the formed three-dimensional network structure is maintained even in water. As the water-swellable clay mineral (B), for example, a swellable inorganic clay mineral that swells in water such as water-swellable smectite or water-swellable mica and can be finely dispersed in a layered state is used. Specific examples thereof include water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, and water-swellable synthetic mica. In addition, if the layer can be peeled in a solvent together with the water-soluble organic monomer, a clay mineral partially organicized with a surfactant or the like can be used.

一方、水溶性有機モノマーの重合物(A)と水膨潤性粘土鉱物(B)からなる三次元網目形成に加えて、少量の化学架橋を同時に含ませることは、繰り返し圧縮および延伸試験におけるヒステリシスの減少、初期弾性率の増加などを行わせるのに有効に用いられる。用いる化学架橋度は、架橋剤の濃度がモノマーの0.3モル%以下、より好ましくは0.2モル%以下、特に好ましくは0.01〜0.1モル%である。   On the other hand, in addition to the formation of a three-dimensional network composed of a polymer (A) of a water-soluble organic monomer and a water-swellable clay mineral (B), the simultaneous inclusion of a small amount of chemical cross-linking can reduce the hysteresis in repeated compression and stretching tests. Effectively used to decrease, increase initial elastic modulus, etc. The degree of chemical crosslinking used is such that the concentration of the crosslinking agent is 0.3 mol% or less of the monomer, more preferably 0.2 mol% or less, and particularly preferably 0.01 to 0.1 mol%.

本発明における有機無機複合ゲルにおいては、ゲルを構成する(無機)粘土鉱物の比率を広い範囲で設定でき、特に低〜高の広い粘土鉱物比率を有する有機無機複合ゲルが得られることが特徴である。本発明の有機無機複合ゲルに含まれる水溶性有機モノマーの重合物(A)と膨潤性粘土鉱物(B)の量比は、水中で両者が三次元網目を形成する範囲が好ましく、(B)/(A)の質量比として0.01〜3、好ましくは0.1〜3、特に好ましくは0.3〜2.5である。(B)/(A)の質量比が0.01未満では、有効な(A)と(B)の三次元網目を形成することが困難となり、一方、3を越えると均一な(B)の層状剥離した分散が困難となる場合が多い。   In the organic-inorganic composite gel in the present invention, the ratio of the (inorganic) clay mineral constituting the gel can be set in a wide range, and in particular, an organic-inorganic composite gel having a low to high wide clay mineral ratio is obtained. is there. The amount ratio of the polymer (A) of the water-soluble organic monomer and the swellable clay mineral (B) contained in the organic-inorganic composite gel of the present invention is preferably within the range in which both form a three-dimensional network in water, (B) The mass ratio of / (A) is 0.01 to 3, preferably 0.1 to 3, particularly preferably 0.3 to 2.5. When the mass ratio of (B) / (A) is less than 0.01, it is difficult to form an effective three-dimensional network of (A) and (B), while when it exceeds 3, the uniform (B) In many cases, delamination dispersion becomes difficult.

本発明では、水溶性有機モノマーの重合物(A)と水膨潤性粘土鉱物(B)の三次元網目形成には、(B)の表面と(A)の末端の相互作用や、(B)の表面と(A)の主鎖又は側鎖の官能基との相互作用などが単独又は組み合わせて用いられる。相互作用の種類としては(A)と(B)との種類、組み合わせにより種々のものが選択可能であり、例えば、イオン相互作用、配位結合、水素結合、共有結合、疎水相互作用などの単独又は複数が組み合わせて用いられる。   In the present invention, for the formation of a three-dimensional network of the polymer (A) of the water-soluble organic monomer and the water-swellable clay mineral (B), the interaction between the surface of (B) and the terminal of (A), or (B) The interaction between the surface of and the functional group of the main chain or side chain of (A) is used alone or in combination. Various types of interaction can be selected depending on the types and combinations of (A) and (B). For example, ionic interaction, coordination bond, hydrogen bond, covalent bond, hydrophobic interaction, etc. alone Or a plurality are used in combination.

本発明における媒体(C)としては、水、または、他の機能性分子(例えば、三次元網目を補強する効果を持ったり、薬効を有する有機化合物や有機又は無機の塩など)を併せて含む水が用いられる。   As the medium (C) in the present invention, water or other functional molecules (for example, organic compounds or organic or inorganic salts having an effect of reinforcing a three-dimensional network or having medicinal effects) are included. Water is used.

本発明における表面被覆用の水膨潤性粘土鉱物(B)としては、有機無機複合ゲル表面に効果的に密着して、表面細胞接着性及び組織接着性を与えるものが用いられる。特に好ましくは水中で分子状(単一層)またはそれに近いレベルで均一分散可能な無機粘土鉱物が用いられる。具体的にはナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリライト、水膨潤性サポナイト、水膨潤性合成雲母、等が挙げられる。これらの粘土鉱物を混合して用いても良い。   As the water-swellable clay mineral (B) for surface coating in the present invention, those that effectively adhere to the surface of the organic-inorganic composite gel and give surface cell adhesion and tissue adhesion are used. Particularly preferably, an inorganic clay mineral that can be uniformly dispersed in water at a molecular level (single layer) or at a level close thereto is used. Specific examples include water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, and water-swellable synthetic mica. You may mix and use these clay minerals.

水膨潤性粘土鉱物(B)を表面に被覆する際の形態は、特に限定されないが、好ましくは10層以下、より好ましくは3層以下、特に好ましくは1層又は2層のナノメーターレベル(の厚み)で水などの媒体に分散させるのが望ましい。媒体中の水膨潤性粘土鉱物(B)量は、媒体との質量比で0.025以下、好ましくは0.015以下、更に好ましくは0.01以下が望ましい。水膨潤性粘土鉱物(B)の水媒体に対する質量比が上記であると、良好な分散液が得られ、表面への塗布が容易で、平滑で均一な薄い塗膜が得られ、好ましい。   The form of coating the surface of the water-swellable clay mineral (B) is not particularly limited, but is preferably 10 layers or less, more preferably 3 layers or less, and particularly preferably 1 layer or 2 layers of nanometer level (of (Thickness) is preferably dispersed in a medium such as water. The amount of the water-swellable clay mineral (B) in the medium is 0.025 or less, preferably 0.015 or less, more preferably 0.01 or less, by mass ratio with the medium. When the mass ratio of the water-swellable clay mineral (B) to the aqueous medium is as described above, a good dispersion can be obtained, and the coating onto the surface is easy, and a smooth and uniform thin coating film can be obtained.

表面を被覆する水膨潤性粘土鉱物(B)の分散液中には、相互作用により凝集・沈殿を起こさない範囲で水溶性有機化合物、例えば防腐剤や抗菌剤、着色料、香料、酵素、たんぱく質、合成ペプチド類、糖類、アミノ酸類、ビタミン類、細胞、DNA類、塩類、水溶性有機溶剤類、界面活性剤、高分子化合物、レベリング剤などを含むことができる。好ましくはアルカリ処理コラーゲン、アルカリ処理ゼラチンを含むことができる。これらの水溶性有機化合物の量は、水膨潤性粘土鉱物との質量比が5以下、好ましくは2以下、更に好ましくは1以下で含有させることが望ましい。   In the water-swellable clay mineral (B) dispersion that covers the surface, water-soluble organic compounds, such as preservatives, antibacterial agents, coloring agents, fragrances, enzymes, proteins, to the extent that no aggregation or precipitation occurs due to interaction , Synthetic peptides, saccharides, amino acids, vitamins, cells, DNAs, salts, water-soluble organic solvents, surfactants, polymer compounds, leveling agents and the like. Preferably, alkali-treated collagen and alkali-treated gelatin can be included. The amount of these water-soluble organic compounds is desirably such that the mass ratio to the water-swellable clay mineral is 5 or less, preferably 2 or less, more preferably 1 or less.

ゲル表面での被覆厚みとしては、ゲル表面の細胞接着性が向上し、より好ましくは細胞増殖性を示すようになる厚みで、且つ、ゲル表面から脱離されない範囲の厚みが用いられる。具体的には、好ましくは3μm以下、より好ましくは2μm以下、更に好ましくは1μm以下の範囲が、水膨潤性粘土鉱物(B)の種類によって選択して用いられる。3μm以上であると有機無機複合ヒドロゲルは表面に亀裂を生じ、水膨潤性粘土鉱物を含む層が脱落する可能性がある。前述の厚みであればヒドロゲル表面の水膨潤性粘土鉱物が膨潤で亀裂や脱落することなく、かつ細胞接着と増殖に効果がある。本発明で用いる水膨潤性粘土鉱物(B)は、有機無機複合ゲルに密着して、その表面細胞接着性を与えることができれば良く、必ずしもその粒子径は限定されないが、好ましくは、0.05〜1000nm、より好ましくは0.5〜300nm、特に好ましくは1〜50μmである。   As the coating thickness on the gel surface, a thickness that improves cell adhesion on the gel surface, more preferably exhibits cell proliferation, and is in a range that does not desorb from the gel surface is used. Specifically, a range of preferably 3 μm or less, more preferably 2 μm or less, and even more preferably 1 μm or less is selected and used depending on the type of the water-swellable clay mineral (B). If it is 3 μm or more, the organic-inorganic composite hydrogel may crack on the surface, and the layer containing the water-swellable clay mineral may fall off. With the above-mentioned thickness, the water-swellable clay mineral on the surface of the hydrogel does not swell and crack or fall off, and is effective for cell adhesion and proliferation. The water-swellable clay mineral (B) used in the present invention is not limited as long as it can adhere to the organic-inorganic composite gel and give its surface cell adhesion. ˜1000 nm, more preferably 0.5 to 300 nm, particularly preferably 1 to 50 μm.

本発明において、水膨潤性粘土鉱物(B)による表面被覆は、有機無機複合ゲルの表面全体に対して行っても良く、好ましくは、目的に応じて部分的に行うことである。例えば、フィルム状の有機無機複合ゲルの片面のみを水膨潤性粘土鉱物(B)で被覆することにより、下面が細胞非接着性を有し、上面が細胞接着性を有するゲルとすることができる。また、有機無機複合ゲルフィルムの表面を格子状又は短冊状の区画にわけ、その一部を水膨潤性粘土鉱物(B)で被覆することにより、表面細胞接着性が制御された有機無機複合ゲルが得られる。これにより、浮遊系細胞、例えばマクロファージやリンパ球、と接着細胞、例えば血管内皮細胞や間葉系幹細胞、などとの共培養、接着細胞同士の共培養、細胞をシート状で剥離させることも可能になる。   In the present invention, the surface coating with the water-swellable clay mineral (B) may be performed on the entire surface of the organic-inorganic composite gel, and is preferably performed partially according to the purpose. For example, by coating only one surface of a film-like organic-inorganic composite gel with a water-swellable clay mineral (B), it is possible to obtain a gel whose lower surface has cell non-adhesiveness and whose upper surface has cell-adhesive properties. . Moreover, the organic-inorganic composite gel whose surface cell adhesion is controlled by dividing the surface of the organic-inorganic composite gel film into grid-like or strip-like sections and coating a part thereof with the water-swellable clay mineral (B) Is obtained. This makes it possible to co-culture suspension cells, such as macrophages and lymphocytes, and adherent cells, such as vascular endothelial cells and mesenchymal stem cells, co-culture of adherent cells, and peel cells in sheet form. become.

水膨潤性粘土鉱物(B)で被覆された表面は、タンパク質を吸着しやすいので、I型コラーゲン、IV型コラーゲン、フィブロネクチン、ビトロネクチン、ラミニン等の細胞接着因子を吸着させることが可能である。これらの生体由来細胞接着因子の他に、細胞接着因子として用いられるポリ-L-リジンやポリアミン、ポリエチレンイミン、RGD(アルギニン-グリシン-アスパラギン酸)配列を含む合成高分子であってもよい。また、生体由来細胞接着因子と合成高分子を混合させたものでもよい。これらの水媒体に対する濃度(質量%)は、細胞が接着増殖するのに有効であれば特に限定はされないが、5%以下、好ましくは1%、更に好ましくは0.1%以下であれば、良好に細胞が接着増殖する。   Since the surface coated with the water-swellable clay mineral (B) is easy to adsorb proteins, it is possible to adsorb cell adhesion factors such as type I collagen, type IV collagen, fibronectin, vitronectin and laminin. In addition to these living cell-derived cell adhesion factors, poly-L-lysine, polyamine, polyethyleneimine, or a synthetic polymer containing an RGD (arginine-glycine-aspartic acid) sequence may be used. Moreover, what mixed the biological origin cell adhesion factor and the synthetic polymer may be used. The concentration (mass%) with respect to these aqueous media is not particularly limited as long as it is effective for the cells to adhere and proliferate, but it is 5% or less, preferably 1%, more preferably 0.1% or less. Cells adhere and grow well.

本発明で培養する細胞としては、接着性の細胞であれば特に限定されないが、好ましくはヒトあるいはヒト以外の動物に由来する細胞が挙げられる。接着性の細胞としては、例えば、線維芽細胞、骨格筋細胞、筋芽細胞、筋管細胞、角膜内皮細胞、角膜上皮細胞、網膜色素上皮細胞、水晶体上皮細胞、血管内皮細胞、リンパ管内皮細胞、平滑筋細胞、心筋細胞、表皮角化細胞、気道上皮細胞、乳腺上皮細胞、粘膜上皮細胞、間葉系幹細胞、ストローマ細胞、ES細胞、iPS細胞、骨芽細胞、骨細胞、軟骨細胞、脂肪細胞、神経細胞、腎細胞、膀胱細胞、前立腺細胞、毛根細胞、歯髄幹細胞、膵ベータ細胞、肝実質細胞等が挙げられる。なお、本発明において細胞とは、個々の細胞を意味するほか、生体から採取されて組織を構成している状態の細胞を含んでいる。   The cells cultured in the present invention are not particularly limited as long as they are adherent cells, but preferably include cells derived from humans or animals other than humans. Examples of adhesive cells include fibroblasts, skeletal muscle cells, myoblasts, myotube cells, corneal endothelial cells, corneal epithelial cells, retinal pigment epithelial cells, lens epithelial cells, vascular endothelial cells, lymphatic endothelial cells Smooth muscle cells, cardiomyocytes, epidermal keratinocytes, respiratory epithelial cells, mammary epithelial cells, mucosal epithelial cells, mesenchymal stem cells, stromal cells, ES cells, iPS cells, osteoblasts, bone cells, chondrocytes, fat Examples include cells, nerve cells, kidney cells, bladder cells, prostate cells, hair root cells, dental pulp stem cells, pancreatic beta cells, and liver parenchymal cells. In addition, in the present invention, a cell means an individual cell, and includes a cell that is collected from a living body and constitutes a tissue.

これらの細胞は、ヒトなどを対象とした組織工学及び再生医療等における利用を考慮したとき、自家細胞を用いることが好ましいが、許容される免疫適合性を備える限り異種動物由来の細胞であってもよいし、同種細胞における他家細胞であってもよい。   These cells are preferably autologous cells in view of their use in tissue engineering and regenerative medicine for humans, etc., but are cells derived from different animals as long as they have acceptable immunocompatibility. Alternatively, it may be an allogeneic cell in the same type of cell.

細胞を有機無機複合ヒドロゲルに播種する方法は、特に限定されないが、好ましくは組織から摘出された初代接着細胞を直接播種する方法が挙げられる。さらに好ましくはトリプシン処理などにより単一細胞集団にとなった接着細胞を播種する方法が挙げられる。さらに好ましくは、シャーレなどに培養された接着細胞を細胞間接着を維持したまま播種する方法が挙げられる。    The method of seeding the cells on the organic-inorganic composite hydrogel is not particularly limited, but preferably includes a method of directly seeding the primary adherent cells removed from the tissue. More preferred is a method of seeding adherent cells that have become a single cell population by trypsin treatment or the like. More preferably, a method of seeding adherent cells cultured in a petri dish or the like while maintaining intercellular adhesion can be mentioned.

本発明の有機無機複合ゲルの製造法については以下の方法が用いられる。
(1)水溶性のラジカル重合性有機モノマー(A)の重合体と水膨潤性粘土鉱物(B)により形成される三次元網目構造中に水(C)を包含する有機無機複合ヒドロゲルを製造する工程、
(2)水膨潤性粘土鉱物(B)を水中もしくはコラーゲンまたはゼラチンを含む水中に分散して、水膨潤性粘土鉱物(B)の分散液を製造する工程、
(3)前記分散液中に前記ヒドロゲルを浸漬することにより、又は前記分散液を前記ヒドロゲル表面に塗布することにより、前記ヒドロゲルの表面の一部または全面に前記水膨潤性粘土鉱物(B)を主成分とする層を形成する工程、
必要に応じて(4)前記ヒドロゲルをコラーゲン又はフィブロネクチンの水溶液中に浸漬することにより、又はコラーゲン又はフィブロネクチンの水溶液を表面の一部又は全面に塗布することにより、前記水膨潤性粘土鉱物(B)を主成分とする層上に、コラーゲン又はフィブロネクチンを含有する層を形成する工程、
である。
The following method is used for the method for producing the organic-inorganic composite gel of the present invention.
(1) An organic-inorganic composite hydrogel containing water (C) in a three-dimensional network structure formed by a water-soluble radical polymerizable organic monomer (A) polymer and a water-swellable clay mineral (B) is produced. Process,
(2) Dispersing the water-swellable clay mineral (B) in water or water containing collagen or gelatin to produce a water-swellable clay mineral (B) dispersion;
(3) The water-swellable clay mineral (B) is applied to a part or the entire surface of the hydrogel by immersing the hydrogel in the dispersion or by applying the dispersion to the surface of the hydrogel. Forming a layer having a main component;
If necessary, (4) the water-swellable clay mineral (B) by immersing the hydrogel in an aqueous solution of collagen or fibronectin, or by applying an aqueous solution of collagen or fibronectin to a part of or the entire surface. Forming a layer containing collagen or fibronectin on the layer mainly composed of
It is.

水と水膨潤性粘土鉱物と水溶性有機モノマーを含む溶液を調製後、それらの共存下で水溶性有機モノマーを重合させ、水溶性有機モノマー重合物と層状剥離した粘土鉱物からなる三次元網目を形成させる。なお、水溶性有機モノマーを含有するために必要な重合開始剤又は重合条件により必要となる触媒は、予め溶液に添加しておく。   After preparing a solution containing water, a water-swellable clay mineral and a water-soluble organic monomer, the water-soluble organic monomer is polymerized in the presence of them to form a three-dimensional network composed of the water-soluble organic monomer polymer and the layered exfoliated clay mineral. Let it form. A polymerization initiator necessary for containing a water-soluble organic monomer or a catalyst required depending on polymerization conditions is added to the solution in advance.

この三次元網目を形成した構造体を水膨潤性粘土鉱物または水膨潤性粘土鉱物とゼラチン又はコラーゲン等との混合体で表面を被覆する。水膨潤性粘土鉱物による構造体の表面被覆は、構造体の合成直後でも、水などの媒体を膨潤させた後でもかまわない。必要に応じて、さらにコラーゲンまたはフィブロネクチンで構造体を被覆する。   The surface of the structure formed with the three-dimensional network is covered with a water-swellable clay mineral or a mixture of water-swellable clay mineral and gelatin or collagen. The surface coating of the structure with the water-swellable clay mineral may be performed immediately after the structure is synthesized or after a medium such as water is swollen. If necessary, the structure is further coated with collagen or fibronectin.

構造体への水膨潤性粘土鉱物または水膨潤性粘土鉱物とゼラチン、コラーゲン等との混合体を表面に被覆する方法は、公知慣用の方法でよい。例えば、分散液を有機無機複合ヒドロゲルに流延させる方法や、構造体を分散液に浸漬させる方法、バーコーターやスピンコーターによるコーター法、または噴霧などのスプレー法、模様のあるゴム版に分散液をつけてから支持体に転写する方法、また構造体に塗布しない部分を予め遮蔽して塗布後遮蔽部分を取り除くパターン状塗布や、インクジェットプリンター方式による分散液の塗布方法が挙げられる。好ましくは、構造体を分散液に浸漬させる方法が挙げられる。   The method for coating the surface with a water-swellable clay mineral or a mixture of water-swellable clay mineral and gelatin, collagen or the like on the surface may be a known and conventional method. For example, a method in which the dispersion is cast into an organic-inorganic composite hydrogel, a method in which the structure is immersed in the dispersion, a coater method using a bar coater or a spin coater, or a spray method such as spraying, a dispersion on a patterned rubber plate And a method of transferring to a support after applying the coating, a pattern coating method in which a portion not coated on the structure is shielded in advance and the shielding portion is removed after coating, and a dispersion coating method using an ink jet printer method. Preferably, a method of immersing the structure in the dispersion liquid is used.

具体的な重合開始剤としては、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えば、和光純薬工業株式会社製のVA−044、V−50、V−501などが好ましく用いられる。その他、ポリエチレンオキシド鎖を有する水溶性のラジカル開始剤なども用いられる。また触媒としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンやβ−ジメチルアミノプロピオニトリルなどが好ましく用いられる。重合温度は、用いる水溶性有機高分子、重合触媒および開始剤の種類などに合わせて0℃〜100℃の範囲に設定される。重合時間も触媒、開始剤、重合温度、重合溶液量(厚み)などの重合条件によって異なり、一概に規定できないが、一般に数十秒〜十数時間の間で行う。   Specific examples of the polymerization initiator include water-soluble peroxides such as potassium peroxodisulfate and ammonium peroxodisulfate, water-soluble azo compounds such as VA-044 and V-50 manufactured by Wako Pure Chemical Industries, Ltd. V-501 or the like is preferably used. In addition, a water-soluble radical initiator having a polyethylene oxide chain is also used. As the catalyst, tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine and β-dimethylaminopropionitrile are preferably used. The polymerization temperature is set in the range of 0 ° C. to 100 ° C. according to the type of water-soluble organic polymer, polymerization catalyst and initiator used. The polymerization time also varies depending on the polymerization conditions such as the catalyst, initiator, polymerization temperature, polymerization solution amount (thickness) and cannot be generally defined, but it is generally carried out in the range of several tens of seconds to several tens of hours.

なお、水膨潤性粘土鉱物を含有しないで有機架橋剤により架橋された従来の有機架橋型ゲルにおいて同様な調製を行っても、伸縮性および強度に優れたゲルを得ることはできないなどの欠点を有する。例えば、水膨潤性粘土鉱物を含まず、代わりにメチレンビスアクリルアミドを水溶性有機モノマーの1モル%を添加して調製される有機架橋型ゲルの場合、密度によらず、弱く且つ脆い力学的性質を示す。   In addition, even if the same preparation is performed on a conventional organic cross-linked gel that is cross-linked by an organic cross-linking agent without containing a water-swellable clay mineral, it is difficult to obtain a gel excellent in stretchability and strength. Have. For example, in the case of an organic cross-linked gel that does not contain a water-swellable clay mineral and is prepared by adding 1 mol% of a water-soluble organic monomer instead of methylenebisacrylamide, the mechanical properties are weak and brittle regardless of density. Indicates.

本発明における有機無機複合ゲルは、水膨潤性粘土鉱物(B)で表面被覆をすることにより、表面細胞接着性を示すようになる。なお、表面粘着性以外の特性、例えば、伸縮性、圧縮性などの機械的性質は、重合物(A)と水膨潤性粘土鉱物(B)の種類、及び両者の比率、また媒体の種類とその比率(例えば、低揮発性媒体と水の比率)およびそれらの量などにより異なり、目的に応じて設定することが可能である。   The organic-inorganic composite gel in the present invention exhibits surface cell adhesion by surface coating with a water-swellable clay mineral (B). In addition, characteristics other than surface adhesiveness, for example, mechanical properties such as stretchability and compressibility, are the types of the polymer (A) and the water-swellable clay mineral (B), the ratio of both, and the type of medium. The ratio varies depending on the ratio (for example, the ratio of the low-volatile medium and water) and the amount thereof, and can be set according to the purpose.

以下、実施例により本発明を具体的に説明するが、本発明の範囲がこれらの実施例にのみ限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited only to these Examples.

(実施例1)
この実施例は有機・無機複合ヒドロゲル表面を改質する例である。
[有機無機複合ヒドロゲル(被覆前)の作製]
粘土鉱物として、[Mg5.34 Li0.66 Si0 (OH) ]Na 0.66 の組成を有する水膨潤性合成ヘクトライト(商標Laponite XLG(Rockwood Additives Ltd.社製))を100℃で2時間真空乾燥して用いた。有機モノマーは、N,N−ジメチルアクリルアミド(DMAA:和光純薬工業株式会社)を使用し、シリカゲルカラム(メルク社製)を有機モノマー100mlに対して80mlの容積で用いて重合禁止剤を取り除いてから使用した。
Example 1
In this example, the surface of the organic / inorganic composite hydrogel is modified.
[Preparation of organic-inorganic composite hydrogel (before coating)]
As a clay mineral, a water-swellable synthetic hectorite having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 (trademark Laponite XLG (manufactured by Rockwood Additives Ltd.)) ) Was used after vacuum drying at 100 ° C. for 2 hours. As the organic monomer, N, N-dimethylacrylamide (DMAA: Wako Pure Chemical Industries, Ltd.) was used, and the polymerization inhibitor was removed using a silica gel column (manufactured by Merck) in a volume of 80 ml with respect to 100 ml of the organic monomer. Used from.

重合開始剤は、ペルオキソ二硫酸カリウム(PPS:関東化学株式会社製)をPPS/水=0.384/20(g/g)の割合で純水にて希釈し、水溶液にして使用した。水はイオン交換水を蒸留した純水を用いた。水は全て高純度窒素を予め3時間以上バブリングさせ含有酸素を除去してから使用した。   As the polymerization initiator, potassium peroxodisulfate (PPS: manufactured by Kanto Chemical Co., Inc.) was diluted with pure water at a ratio of PPS / water = 0.384 / 20 (g / g) and used as an aqueous solution. As the water, pure water obtained by distilling ion-exchanged water was used. All water was used after bubbling high-purity nitrogen in advance for 3 hours or more to remove oxygen.

20℃の恒温室において、内部を窒素置換した平底ガラス容器に、純水100gとテフロン(登録商標)製攪拌子を入れ、攪拌しながら1.6gのラポナイトXLGを気泡が入らないように注意しながら少量ずつ加え、無色透明の溶液を調製した。これにDMAA9.9gを加え無色透明溶液になるまで攪拌した。   In a constant temperature room at 20 ° C, put 100 g of pure water and a Teflon (registered trademark) stirrer into a flat bottom glass container with nitrogen inside, and be careful not to let air bubbles into 1.6 g of Laponite XLG while stirring. While adding a small amount, a colorless and transparent solution was prepared. To this was added 9.9 g of DMAA and stirred until a colorless transparent solution was obtained.

これにPPS水溶液0.1gを攪拌して加え、5分間攪拌して無色透明溶液を得た。この溶液をあらかじめ窒素雰囲気中に静置して容器内の酸素を除去しておいたガラス製容器(9cm×15cm)に酸素にふれないようにして移した後、密栓をし、20℃の恒温水槽中で20時間静置して重合を行った。   To this was added 0.1 g of an aqueous PPS solution, and the mixture was stirred for 5 minutes to obtain a colorless transparent solution. This solution was left in a nitrogen atmosphere and transferred to a glass container (9 cm × 15 cm) from which oxygen in the container had been removed so as not to come into contact with oxygen, and then sealed and sealed at a constant temperature of 20 ° C. The polymerization was carried out by standing in a water bath for 20 hours.

重合開始から20時間後に、ガラス製容器内にほぼ無色透明で均一なシート状のヒドロゲルが得られた。このシート状のヒドロゲルを、50℃の生理食塩水に15分間浸漬してから直径10mmのポンチでくり抜き、純水で一晩膨潤させた。該ヒドロゲルを表面被覆に用いた。
[水膨潤性粘土鉱物(B)を含む分散液の調製]
水膨潤性粘土鉱物(B)としてLaponite XLG(Rockwood Additives Ltd.社製)0.08g、水20g、を均一に混合して分散液(L)を調製した。
[水膨潤性粘土鉱物(B)を含む水溶液の塗布]
分散液(L)を2mL入れた細胞培養用6ウェルプレート(ファルコン353046)にヒドロゲルを入れ、37℃で3時間静置した。純水で3回洗浄後、水膨潤性粘土鉱物(B)を含む水溶液を塗布した有機無機複合ヒドロゲル(被覆後)を培養試験に用いた。
[培養試験]
培養する細胞は、正常ヒト真皮線維芽細胞(DSファーマバイオメディカル株式会社製)を使用した。培養は、ウシ胎児血清(バイオウエスト社製)を10%含有するダルベッコ変法ミニマム・エッセンシャル・イーグル培地(和光純薬製)を使用して、5%二酸化炭素含有37℃恒温器内で行った。播種細胞数は一枚のゲルあたり2万細胞を播種した。培地の播種量は4mlとした。播種してから1日後、4日後、7日後、有機無機複合ヒドロゲルの表面を光学顕微鏡にて観察したところ、細胞が有機無機複合ヒドロゲル上に接着して、また十分に増殖していた様子が鮮明に確認することが出来た。
(実施例2)
水膨潤性粘土鉱物(B)を含む分散液の調製にアルカリ処理コラーゲン(新田ゼラチン株式会社製)0.01gを追加して添加する以外は、実施例1と同様に実験した。
(実施例3)
実施例1と同様に作製した有機無機複合ヒドロゲル(被覆前)に、水膨潤性粘土鉱物(B)を含む分散液を塗布し、続いて酸処理コラーゲン(新田ゼラチン株式会社製)0.1gを20gの水(pH3)に溶解させた溶液を100μL塗布した。実施例1と同様に培養試験を行った。
(実施例4)
実施例1と同様に作製した有機無機複合ヒドロゲル(被覆前)に、水膨潤性粘土鉱物(B)とアルカリ処理コラーゲンを含む分散液を塗布し、続いて酸処理コラーゲン(新田ゼラチン株式会社製)0.1gを20gの水(pH3)に溶解させた溶液を100μL塗布した。実施例1と同様に培養試験を行った。
(実施例5)
実施例1と同様に作製した有機無機複合ヒドロゲル(被覆前)に、水膨潤性粘土鉱物(B)とアルカリ処理コラーゲンを含む分散液を塗布し、続いてフィブロネクチン(ベクトン・ディッキンソン株式会社製)を水に溶解させて50μg/mLに調整した溶液を100μL塗布した。実施例1と同様に培養試験を行った。
(比較例1)
実施例1と同様に有機無機複合ヒドロゲル(被覆前)を作製し、水膨潤性粘土鉱物(B)を含む水溶液の塗布を行わずに、実施例1と同様に培養試験を行った。
(比較例2)
実施例1と同様に有機無機複合ヒドロゲル(被覆前)を作製し、アルカリ処理コラーゲン(新田ゼラチン株式会社製)0.1gを水20gに均一に混合した分散液(水膨潤性粘土鉱物を含まない)を100μL塗布した有機無機複合ヒドロゲルを用いて、実施例1と同様に培養試験を行った。
(比較例3)
実施例1と同様に有機無機複合ヒドロゲル(被覆前)を作製し、酸処理コラーゲン(新田ゼラチン株式会社製)0.1gを水20gに均一に混合した分散液(水膨潤性粘土鉱物を含まない)を100μL塗布した有機無機複合ヒドロゲルを用いて、実施例1と同様に培養試験を行った。
Twenty hours after the start of polymerization, a substantially colorless and transparent sheet-like hydrogel was obtained in a glass container. The sheet-like hydrogel was immersed in physiological saline at 50 ° C. for 15 minutes, then punched out with a punch having a diameter of 10 mm, and swollen overnight with pure water. The hydrogel was used for surface coating.
[Preparation of dispersion containing water-swellable clay mineral (B)]
As a water-swellable clay mineral (B), 0.08 g of Laponite XLG (manufactured by Rockwood Additives Ltd.) and 20 g of water were uniformly mixed to prepare a dispersion (L).
[Application of aqueous solution containing water-swellable clay mineral (B)]
The hydrogel was placed in a 6-well plate for cell culture (Falcon 353046) containing 2 mL of the dispersion (L), and allowed to stand at 37 ° C. for 3 hours. After washing with pure water three times, an organic-inorganic composite hydrogel (after coating) coated with an aqueous solution containing a water-swellable clay mineral (B) was used for the culture test.
[Culture test]
As cells to be cultured, normal human dermal fibroblasts (DS Pharma Biomedical Co., Ltd.) were used. Cultivation was performed in a 37 ° C. incubator containing 5% carbon dioxide using Dulbecco's modified minimum essential eagle medium (Wako Pure Chemical Industries) containing 10% fetal bovine serum (Bio West). . The number of cells to be seeded was 20,000 cells per gel. The seeding amount of the medium was 4 ml. 1 day, 4 days, and 7 days after seeding, the surface of the organic-inorganic composite hydrogel was observed with an optical microscope, and it was clear that the cells adhered and grew sufficiently on the organic-inorganic composite hydrogel. I was able to confirm.
(Example 2)
Experiments were conducted in the same manner as in Example 1 except that 0.01 g of alkali-treated collagen (Nitta Gelatin Co., Ltd.) was added to the preparation of the dispersion containing the water-swellable clay mineral (B).
(Example 3)
A dispersion containing a water-swellable clay mineral (B) was applied to an organic-inorganic composite hydrogel (before coating) produced in the same manner as in Example 1, followed by 0.1 g of acid-treated collagen (Nitta Gelatin Co., Ltd.). 100 μL of a solution in which 20 g of water was dissolved in water (pH 3) was applied. A culture test was conducted in the same manner as in Example 1.
Example 4
A dispersion containing a water-swellable clay mineral (B) and alkali-treated collagen was applied to the organic-inorganic composite hydrogel (before coating) produced in the same manner as in Example 1, followed by acid-treated collagen (manufactured by Nitta Gelatin Co., Ltd.). 100 μL of a solution prepared by dissolving 0.1 g in 20 g of water (pH 3) was applied. A culture test was conducted in the same manner as in Example 1.
(Example 5)
A dispersion containing a water-swellable clay mineral (B) and alkali-treated collagen was applied to the organic-inorganic composite hydrogel (before coating) produced in the same manner as in Example 1, followed by fibronectin (Becton Dickinson Co., Ltd.). 100 μL of a solution dissolved in water and adjusted to 50 μg / mL was applied. A culture test was conducted in the same manner as in Example 1.
(Comparative Example 1)
An organic-inorganic composite hydrogel (before coating) was prepared in the same manner as in Example 1, and a culture test was conducted in the same manner as in Example 1 without applying an aqueous solution containing the water-swellable clay mineral (B).
(Comparative Example 2)
An organic-inorganic composite hydrogel (before coating) was prepared in the same manner as in Example 1, and a dispersion (containing a water-swellable clay mineral) in which 0.1 g of alkali-treated collagen (Nitta Gelatin Co., Ltd.) was uniformly mixed with 20 g of water A culture test was carried out in the same manner as in Example 1 using an organic-inorganic composite hydrogel coated with 100 μL of No).
(Comparative Example 3)
An organic-inorganic composite hydrogel (before coating) was prepared in the same manner as in Example 1, and a dispersion (containing a water-swellable clay mineral) in which 0.1 g of acid-treated collagen (Nitta Gelatin Co., Ltd.) was uniformly mixed with 20 g of water A culture test was carried out in the same manner as in Example 1 using an organic-inorganic composite hydrogel coated with 100 μL of No).

実施例1〜5、および比較例1〜3の培養1日後、4日後、1週間後の細胞数を計測するために、まず、リン酸緩衝生理食塩水(PBS,和光純薬製)2mLで培養表面を洗浄した。次いで細胞溶解液A(ケモメテック社製)を0.2mL添加し、続けて中和液B(ケモメテック社製)を0.2mL添加した。この溶液を細胞計測用カセット(ヌクレオカセット、ケモメテック社製)で採取し、細胞数計測装置(ヌクレオカウンターTM、ケモメテック社製)で細胞数を計測した。 In order to count the number of cells after 1 day, 4 days, and 1 week after culturing in Examples 1 to 5 and Comparative Examples 1 to 3, first, 2 ml of phosphate buffered saline (PBS, manufactured by Wako Pure Chemical Industries, Ltd.) The culture surface was washed. Subsequently, 0.2 mL of cell lysate A (manufactured by Chemometech) was added, and then 0.2 mL of neutralizing liquid B (manufactured by Chemometech) was added. This solution was collected with a cell counting cassette (Nucleo Cassette, manufactured by Chemometech), and the number of cells was measured with a cell number measuring device (Nucleo Counter , manufactured by Chemometech).

培養試験での細胞数計測結果を表−1に示す。   Table 1 shows the results of cell number measurement in the culture test.

Figure 2013194084
Figure 2013194084

表1に示されるように、有機無機複合ヒドロゲル(被覆前)(比較例1)では細胞が接着増殖することはなかった。さらに、アルカリ処理(比較例2)を有機無機複合ヒドロゲル(被覆前)に塗布するだけでは細胞が接着増殖することはなかった。また、酸処理(比較例3)コラーゲンを有機無機複合ヒドロゲル(被覆前)に塗布すると、細胞播種翌日(1日目)は細胞接着が確認されたが、4日目には接着細胞は確認できなかった。しかしながら、有機無機複合ヒドロゲル(被覆前)表面にクレイ溶液(実施例1)、アルカリ処理コラーゲンとクレイの混合溶液(実施例2)、実施例2にさらに酸処理コラーゲンを塗布(実施例3)した場合、細胞が接着及び増殖する効果を出すことが実現できた。   As shown in Table 1, cells did not adhere and proliferate in the organic-inorganic composite hydrogel (before coating) (Comparative Example 1). Furthermore, the cells did not adhere and proliferate only by applying the alkali treatment (Comparative Example 2) to the organic-inorganic composite hydrogel (before coating). In addition, when acid treatment (Comparative Example 3) collagen was applied to the organic-inorganic composite hydrogel (before coating), cell adhesion was confirmed the day after cell seeding (day 1), but adherent cells could be confirmed on day 4. There wasn't. However, a clay solution (Example 1), a mixed solution of alkali-treated collagen and clay (Example 2) was applied to the surface of the organic-inorganic composite hydrogel (before coating), and acid-treated collagen was further applied to Example 2 (Example 3). In some cases, it was possible to achieve the effect of cell adhesion and proliferation.

つまり、有機無機複合ヒドロゲル(被覆前)の表面に水膨潤性粘土鉱物を含む溶液を塗布することで、細胞が良好に増殖させられることが表−1で明らかとなった。











































That is, it was clarified in Table 1 that cells can be proliferated well by applying a solution containing a water-swellable clay mineral on the surface of the organic-inorganic composite hydrogel (before coating).











































本発明の有機無機複合ヒドロゲルおよび有機無機複合ヒドロゲルの製造方法を行えば、細胞接着因子やタンパク質成分を有機無機複合ヒドロゲル表面に多く吸着でき、続いて細胞及び生体組織の良好な接着・伸展・増殖(高培養性)を可能にできる特徴を有する。   If the organic-inorganic composite hydrogel and the method for producing an organic-inorganic composite hydrogel of the present invention are performed, a large amount of cell adhesion factors and protein components can be adsorbed on the surface of the organic-inorganic composite hydrogel, and then good adhesion, extension, and proliferation of cells and living tissues (High cultureability) is possible.

本発明の有機無機複合ヒドロゲルは医療・医薬品分野、特に、角膜、水晶体、軟骨、腱、骨などの再生医療材料として使用することが出来る。また、生体適合性、柔軟性に優れた人工弁、人工血管、人工軟骨などの人工臓器用材料や、カテーテルなどの治療用材料、としても有効に用いられる。さらに、各種工業材料として農業・工業・電子材料・土木建築・包装資材などの分野でも用いられる。   The organic-inorganic composite hydrogel of the present invention can be used as a regenerative medical material such as cornea, lens, cartilage, tendon and bone, particularly in the medical / pharmaceutical field. Further, it is also effectively used as a material for artificial organs such as artificial valves, artificial blood vessels, and artificial cartilages excellent in biocompatibility and flexibility, and a therapeutic material such as catheters. Furthermore, it is also used in various fields such as agriculture, industry, electronic materials, civil engineering, and packaging materials as various industrial materials.

Claims (8)

水溶性のラジカル重合性有機モノマー(A)の重合体と水膨潤性粘土鉱物(B)により形成される三次元網目構造中に水(C)を包含する有機無機複合ヒドロゲルであって、該ヒドロゲルの表面の一部または全面に水膨潤性粘土鉱物(B)を主成分とする層を有することを特徴とする有機無機複合ヒドロゲル。   An organic-inorganic composite hydrogel comprising water (C) in a three-dimensional network structure formed by a polymer of a water-soluble radically polymerizable organic monomer (A) and a water-swellable clay mineral (B), An organic-inorganic composite hydrogel comprising a layer mainly composed of a water-swellable clay mineral (B) on a part or the whole of the surface. 前記水膨潤性粘土鉱物(B)を主成分とする層が、ゼラチン、およびコラーゲンから選択される1種以上を含有する請求項1又は2記載の有機無機複合ヒドロゲル。   The organic-inorganic composite hydrogel according to claim 1 or 2, wherein the layer mainly composed of the water-swellable clay mineral (B) contains at least one selected from gelatin and collagen. 前記ゼラチン及びコラーゲンがアルカリ処理されている請求項3記載の有機無機複合ヒドロゲル。   The organic-inorganic composite hydrogel according to claim 3, wherein the gelatin and collagen are treated with an alkali. 前記水膨潤性粘土鉱物(B)を主成分とする層上に、更に、コラーゲン又はフィブロネクチンを含有する層を有する請求項1〜4のいずれかに記載の有機無機複合ヒドロゲル。   The organic-inorganic composite hydrogel according to any one of claims 1 to 4, further comprising a layer containing collagen or fibronectin on the layer mainly composed of the water-swellable clay mineral (B). 請求項1〜5のいずれかに記載の有機無機複合ヒドロゲルの製造方法であって、
(1)水溶性のラジカル重合性有機モノマー(A)の重合体と水膨潤性粘土鉱物(B)により形成される三次元網目構造中に水(C)を包含する有機無機複合ヒドロゲルを製造する工程、
(2)水膨潤性粘土鉱物(B)を水中に分散して、水膨潤性粘土鉱物(B)の分散液を製造する工程、
(3)前記分散液中に前記ヒドロゲルを浸漬することにより、又は前記分散液を前記ヒドロゲル表面に塗布することにより、前記ヒドロゲルの表面の一部または全面に前記水膨潤性粘土鉱物(B)を主成分とする層を形成する工程、
を含むことを特徴とする有機無機複合ヒドロゲルの製造方法。
A method for producing the organic-inorganic composite hydrogel according to claim 1,
(1) An organic-inorganic composite hydrogel containing water (C) in a three-dimensional network structure formed by a water-soluble radical polymerizable organic monomer (A) polymer and a water-swellable clay mineral (B) is produced. Process,
(2) Dispersing the water-swellable clay mineral (B) in water to produce a water-swellable clay mineral (B) dispersion;
(3) The water-swellable clay mineral (B) is applied to a part or the entire surface of the hydrogel by immersing the hydrogel in the dispersion or by applying the dispersion to the surface of the hydrogel. Forming a layer having a main component;
The manufacturing method of the organic inorganic composite hydrogel characterized by including.
前記水膨潤性粘土鉱物(B)を主成分とする層を形成させるために、ゼラチン、コラーゲンから選択される1種以上を含有する水溶液中で水膨潤性粘土鉱物(B)を分散させることにより、水膨潤性粘土鉱物(B)の分散液を製造する工程を有する、請求項6記載の有機無機複合ヒドロゲルの製造方法。   In order to form a layer mainly composed of the water-swellable clay mineral (B), the water-swellable clay mineral (B) is dispersed in an aqueous solution containing at least one selected from gelatin and collagen. The manufacturing method of the organic inorganic composite hydrogel of Claim 6 which has the process of manufacturing the dispersion liquid of a water-swellable clay mineral (B). 前記ゼラチン及びコラーゲンがアルカリ処理されている請求項7記載の有機無機複合ヒドロゲルの製造方法。   The method for producing an organic-inorganic composite hydrogel according to claim 7, wherein the gelatin and collagen are alkali-treated. 前記ヒドロゲルの表面の一部または全面に前記水膨潤性粘土鉱物(B)を主成分とする層を形成する工程を行った後に、
前記ヒドロゲルをコラーゲン又はフィブロネクチンの水溶液中に浸漬することにより、又はコラーゲン又はフィブロネクチンの水溶液を表面の一部又は全面に塗布することにより、
前記水膨潤性粘土鉱物(B)を主成分とする層上に、コラーゲン又はフィブロネクチンを含有する層を形成する工程、
を行う請求項6〜8のいずれかに記載の有機無機複合ヒドロゲルの製造方法。
After performing a step of forming a layer mainly composed of the water-swellable clay mineral (B) on a part or the entire surface of the hydrogel,
By immersing the hydrogel in an aqueous solution of collagen or fibronectin, or by applying an aqueous solution of collagen or fibronectin to a part of or the entire surface,
Forming a layer containing collagen or fibronectin on the water-swellable clay mineral (B) as a main component;
The manufacturing method of the organic inorganic composite hydrogel in any one of Claims 6-8 performed.
JP2012060192A 2012-03-16 2012-03-16 Organic inorganic composite hydrogel Active JP5880181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060192A JP5880181B2 (en) 2012-03-16 2012-03-16 Organic inorganic composite hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060192A JP5880181B2 (en) 2012-03-16 2012-03-16 Organic inorganic composite hydrogel

Publications (2)

Publication Number Publication Date
JP2013194084A true JP2013194084A (en) 2013-09-30
JP5880181B2 JP5880181B2 (en) 2016-03-08

Family

ID=49393451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060192A Active JP5880181B2 (en) 2012-03-16 2012-03-16 Organic inorganic composite hydrogel

Country Status (1)

Country Link
JP (1) JP5880181B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138192A (en) * 2014-01-23 2015-07-30 株式会社リコー Organ model for manipulation training
JP2017026818A (en) * 2015-07-22 2017-02-02 株式会社リコー Solid shaped object and manufacturing method for the same
JP2017026791A (en) * 2015-07-22 2017-02-02 株式会社リコー Solid shaped model, technique practice organ model, and method for manufacturing the models
JP2017149057A (en) * 2016-02-25 2017-08-31 国立研究開発法人産業技術総合研究所 Anti-fogging film and composition for forming anti-fogging film
WO2018116905A1 (en) * 2016-12-22 2018-06-28 Dic株式会社 Cell culture scaffold material
KR20190096967A (en) * 2016-12-22 2019-08-20 디아이씨 가부시끼가이샤 Cell culture substrate
US10442181B2 (en) 2015-07-22 2019-10-15 Ricoh Company, Ltd. Hydrogel object and method of manufacturing hydrogel object
CN110773134A (en) * 2019-12-02 2020-02-11 烟台大学 Montmorillonite-collagen composite hydrogel adsorption material and preparation method thereof
JP2020059813A (en) * 2018-10-11 2020-04-16 三洋化成工業株式会社 Absorbent resin particle, absorber containing the same, and absorbent article
JP2021000839A (en) * 2015-07-06 2021-01-07 株式会社リコー Liquid set for three-dimensional modeling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053629A (en) * 2000-05-29 2002-02-19 Kawamura Inst Of Chem Res Organic/inorganic complex hydrogel and method for producing the same
JP2004262976A (en) * 2003-02-17 2004-09-24 Kawamura Inst Of Chem Res Polymer gel composite and production method therefor
JP2006325461A (en) * 2005-05-25 2006-12-07 Kawamura Inst Of Chem Res Cell culture substrate comprising clay hydrogel
WO2011021706A1 (en) * 2009-08-19 2011-02-24 国立大学法人東北大学 Sheet for corneal transplants
JP2011144236A (en) * 2010-01-13 2011-07-28 Kawamura Institute Of Chemical Research Organic inorganic composite dispersion and process for producing the same
JP2012039947A (en) * 2010-08-19 2012-03-01 Osaka Prefecture Univ Substrate for cell culture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053629A (en) * 2000-05-29 2002-02-19 Kawamura Inst Of Chem Res Organic/inorganic complex hydrogel and method for producing the same
JP2004262976A (en) * 2003-02-17 2004-09-24 Kawamura Inst Of Chem Res Polymer gel composite and production method therefor
JP2006325461A (en) * 2005-05-25 2006-12-07 Kawamura Inst Of Chem Res Cell culture substrate comprising clay hydrogel
WO2011021706A1 (en) * 2009-08-19 2011-02-24 国立大学法人東北大学 Sheet for corneal transplants
JP2011144236A (en) * 2010-01-13 2011-07-28 Kawamura Institute Of Chemical Research Organic inorganic composite dispersion and process for producing the same
JP2012039947A (en) * 2010-08-19 2012-03-01 Osaka Prefecture Univ Substrate for cell culture

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138192A (en) * 2014-01-23 2015-07-30 株式会社リコー Organ model for manipulation training
JP7031110B2 (en) 2015-07-06 2022-03-08 株式会社リコー Liquid set for 3D modeling
JP2021000839A (en) * 2015-07-06 2021-01-07 株式会社リコー Liquid set for three-dimensional modeling
US10442181B2 (en) 2015-07-22 2019-10-15 Ricoh Company, Ltd. Hydrogel object and method of manufacturing hydrogel object
US11904058B2 (en) 2015-07-22 2024-02-20 Ricoh Company, Ltd. Hydrogel object and method of manufacturing hydrogel object
JP2017026818A (en) * 2015-07-22 2017-02-02 株式会社リコー Solid shaped object and manufacturing method for the same
JP2017026791A (en) * 2015-07-22 2017-02-02 株式会社リコー Solid shaped model, technique practice organ model, and method for manufacturing the models
JP2017149057A (en) * 2016-02-25 2017-08-31 国立研究開発法人産業技術総合研究所 Anti-fogging film and composition for forming anti-fogging film
US11441120B2 (en) 2016-12-22 2022-09-13 Fujifilm Corporation Cell culture substrate
KR20190096967A (en) * 2016-12-22 2019-08-20 디아이씨 가부시끼가이샤 Cell culture substrate
KR20190096968A (en) * 2016-12-22 2019-08-20 디아이씨 가부시끼가이샤 Cell culture substrate
WO2018116905A1 (en) * 2016-12-22 2018-06-28 Dic株式会社 Cell culture scaffold material
KR102464294B1 (en) * 2016-12-22 2022-11-04 후지필름 가부시키가이샤 cell culture substrate
US11499136B2 (en) 2016-12-22 2022-11-15 Dic Corporation Cell culture substrate
KR102469649B1 (en) * 2016-12-22 2022-11-21 후지필름 가부시키가이샤 cell culture substrate
JPWO2018116905A1 (en) * 2016-12-22 2018-12-20 Dic株式会社 Cell culture substrate
JP2020059813A (en) * 2018-10-11 2020-04-16 三洋化成工業株式会社 Absorbent resin particle, absorber containing the same, and absorbent article
JP7260276B2 (en) 2018-10-11 2023-04-18 三洋化成工業株式会社 Absorbent resin particles, absorbent bodies and absorbent articles containing the same
CN110773134A (en) * 2019-12-02 2020-02-11 烟台大学 Montmorillonite-collagen composite hydrogel adsorption material and preparation method thereof

Also Published As

Publication number Publication date
JP5880181B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
JP5880181B2 (en) Organic inorganic composite hydrogel
US8530564B2 (en) Organic-inorganic composite dispersion, cell culture substrate manufactured using the same, and methods for preparing the same
US7993892B2 (en) Production of organic/inorganic composite hydrogel
EP2854885B1 (en) Micro-engineered hydrogels
JP2008061609A (en) Method for producing cell-culturing container and cell culturing container
CN112552765B (en) Quaternary ammonium salt cation antibacterial antifouling coating and preparation method and application thereof
WO2020080364A1 (en) Cell culture substrate, method for producing cell culture substrate, and method for producing spheroids
US11499136B2 (en) Cell culture substrate
WO2015093393A1 (en) Temperature-responsive cell culture substrate and method for producing same
Tovar-Carrillo et al. Biohydrogels interpenetrated with hydroxyethyl cellulose and wooden pulp for biocompatible materials
JP2008237088A (en) Base medium and method for cell culture
JP2006271252A (en) Substrate for cell culture and method for cell culture
JP2006288251A (en) Cell culture substrate and method for culturing cell
Lai Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid
JP4979199B2 (en) Cell culture substrate and cell culture method
JP2006288217A (en) Cell culture substrate and cell culture method
JP2012231788A (en) Cultural base material of bone marrow-derived cell, culture method, and culture bone marrow-derived cell
Schulte et al. Anodic aluminum oxide nanopore template-assisted fabrication of nanostructured poly (vinyl alcohol) hydrogels for cell studies
JP5929053B2 (en) Selective culture method of adherent cells from blood-derived mononuclear cells
JP2006280206A (en) Substrate for cell culture and method for cell culture
JP6024796B2 (en) Cell culture substrate and cell culture method
EP4190891A1 (en) Method for manufacturing cell mass
JP2023178108A (en) Cell culture substrate
JP2022044175A (en) Cell culture substrate and method for producing the same
Sun et al. Fast-polymerized lubricant and antibacterial hydrogel coatings for medical catheters

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130710

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R151 Written notification of patent or utility model registration

Ref document number: 5880181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250