JP2008237088A - Base medium and method for cell culture - Google Patents

Base medium and method for cell culture Download PDF

Info

Publication number
JP2008237088A
JP2008237088A JP2007081389A JP2007081389A JP2008237088A JP 2008237088 A JP2008237088 A JP 2008237088A JP 2007081389 A JP2007081389 A JP 2007081389A JP 2007081389 A JP2007081389 A JP 2007081389A JP 2008237088 A JP2008237088 A JP 2008237088A
Authority
JP
Japan
Prior art keywords
cell culture
polymer
water
culture substrate
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007081389A
Other languages
Japanese (ja)
Inventor
Kan Takehisa
敢 武久
Kazutoshi Haraguchi
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2007081389A priority Critical patent/JP2008237088A/en
Publication of JP2008237088A publication Critical patent/JP2008237088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base medium for cell culture, which is composed of a polymer composite having uniformly and finely dispersed clay mineral in an organic polymer in wide range content rate of clay mineral and having flexible and also tough excellent dynamic physical properties, further capable of recovering cultured cells quickly, without breaking the cells or mixing the base medium on separating and recovering the cultured cells, and to provide a method easily recovering the cultured cells. <P>SOLUTION: This base medium for the cell culture uses the polymer composite (C) having finely dispersed a water swellable clay mineral (B) in a polymer (A) using a water soluble (meth)acrylic acid ester (a) as a monomer. By using the base medium, culturing the cells under a temperature condition that the base medium for cell culture shows bio-adhesion, and then lowering the temperature of the base medium for cell culture so as to make the temperature of the base medium for cell culture show non-bio-adhesion, and it is possible to separate the cultured cells from the base medium for cell culture, without developing the breakage of the cells or mixing of the base medium. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機高分子中に水膨潤性粘土鉱物が微分散している高分子複合体からなる細胞培養基材、及び該高分子複合体からなる細胞培養基材を利用した細胞培養方法と培養細胞分離方法に関する。   The present invention relates to a cell culture substrate comprising a polymer complex in which a water-swellable clay mineral is finely dispersed in an organic polymer, and a cell culture method using the cell culture substrate comprising the polymer complex, The present invention relates to a method for separating cultured cells.

従来、動物組織等の細胞培養基材としては、プラスチックやガラスの容器が使用されていた。これら容器は、培養細胞の接着性を制御するために、その表面にプラズマ処理や、シリコンや細胞接着因子等のコーティングなどの表面処理が施されている。これら細胞培養容器を培養基材として用いた場合には、細胞培養容器上で培養・増殖した細胞が表面処理された容器表面に接着しており、トリプシン等のタンパク質加水分解酵素や化学薬品を用いて、容器表面から剥離する操作を行い、回収されるため、酵素や化学薬品により細胞を剥離する際に、雑菌やDNAあるいはRNA等の不純物が混入する恐れがあった。また、細胞と基材の結合部分が切断されるだけではなく、細胞同士の結合も切断され、細胞が増殖している形状のまま回収できないだけではなく、細胞の性質が変化してしまう問題があった。また、細胞を回収する際にバラバラになり、シート状に取り出すことは困難であった。また、酵素や化学薬品による細胞の剥離は行程が煩雑であった。また、複数種の細胞培養を行う際には、培養液等の種類を交換する必要があるが、容器の交換が出来ないために、容器内部に各種薬品等が残留してしまい、これらが細胞培養に混入するおそれがあった。   Conventionally, plastic or glass containers have been used as cell culture substrates for animal tissues and the like. In order to control the adhesion of cultured cells, these containers are subjected to a surface treatment such as plasma treatment or coating of silicon or cell adhesion factor. When these cell culture vessels are used as the culture substrate, cells cultured and grown on the cell culture vessel are adhered to the surface of the vessel that has been surface-treated, and protein hydrolases such as trypsin and chemicals are used. In this case, since the cells are removed from the surface of the container and collected, impurities such as germs, DNA, or RNA may be mixed when the cells are detached with an enzyme or a chemical. In addition, not only the binding part of the cell and the substrate is cut, but also the bond between the cells is cut, and not only can the cells not be recovered in a proliferating shape, but also the property of the cell changes. there were. Moreover, when cells were collected, they fell apart, and it was difficult to take them out in sheet form. Moreover, the process of detaching cells with enzymes or chemicals was complicated. In addition, when performing multiple types of cell culture, it is necessary to change the type of culture solution, etc., but since the container cannot be replaced, various chemicals and the like remain inside the container, and these are the cells. There was a risk of contamination in the culture.

また、細胞培養容器の表面に温度応答性ポリマーをコーティングした基材を使用して、細胞培養温度ではポリマーを疎水性状態に保持して細胞を接着させ、培養後にポリマーを低温処理してポリマーを親水性状態にすることにより、細胞とポリマーとの接着性を低下させ、細胞を加水分解酵素や化学薬品を使用することなしに基材から細胞をシート状に剥離するという技術が用いられている(例えば特許文献1及び2参照)。しかしながら、上記基材はポリマーの架橋度によって性能が大きく変化し、架橋が不十分な場合は、細胞を剥離する際に、細胞と共にポリマーも基材から一部剥離してしまい、細胞と基材との分離が困難であった。また架橋が十分な場合には、温度応答性の応答速度が非常に悪くなり、ポリマーを親水性にするために長時間を要する問題があり、その間、細胞も低温状態にさらされる問題があった。さらに、該基材を使用した場合には、培養した細胞を次の実験に用いる場合、例えば動物の体内に移植する場合や、他の細胞と共培養を行う場合など、シート状となった細胞を支持体なしで移動させる必要があり、細胞シート自体をポリマーコーティングされた容器から剥離して、細胞シートのみを移動させる必要があり、剥離された、非常に強度の弱い細胞シートを強引に掴んで次の実験位置等に移動させなければならず、細胞シートが傷つきやすかったり、操作性が非常に悪いという問題を有していた。これらのことから、細胞を培養した後、汚染や傷つくことなく完全に分離され、且つ短時間で、且つ任意の場所で細胞シートを取り出し、さらに次の工程に移動させ用いることが必要であった。   In addition, using a base material coated with a temperature-responsive polymer on the surface of the cell culture vessel, the polymer is maintained in a hydrophobic state at the cell culture temperature to adhere the cells, and after the culture, the polymer is treated at a low temperature to remove the polymer. By making it hydrophilic, the adhesion between the cells and the polymer is reduced, and the cells are peeled off from the base material in a sheet form without using hydrolase or chemicals. (For example, refer to Patent Documents 1 and 2). However, the performance of the base material varies greatly depending on the degree of cross-linking of the polymer. When the cross-linking is insufficient, the polymer is partially detached from the base material together with the cells when the cells are peeled off. It was difficult to separate them. In addition, when the crosslinking is sufficient, the response speed of the temperature responsiveness becomes very poor, and there is a problem that it takes a long time to make the polymer hydrophilic, and during that time, there is a problem that the cells are also exposed to a low temperature state. . Further, when the base material is used, when the cultured cells are used for the next experiment, for example, when transplanted into the body of an animal, or when co-cultured with other cells, the sheet-like cells The cell sheet itself must be peeled off from the polymer-coated container, and only the cell sheet needs to be moved, forcibly grabbing the peeled, very weak cell sheet Therefore, the cell sheet has to be moved to the next experimental position, and the cell sheet is easily damaged, and the operability is very poor. From these things, after culturing the cells, it was necessary to completely separate them without contamination or damage, and to take out the cell sheet at an arbitrary place in a short time, and to move to the next step for use. .

一方、有機高分子と無機材料を複合化して得られる高分子複合材料としては、ガラス繊維、炭素繊維などの他、タルクや炭酸カルシウムなどを有機高分子に充填したものが古くから知られている。近年、有機高分子の中にナノメートルスケールの微小サイズの無機成分を分散し複合化することにより、優れた力学物性や熱特性の改良が発現され、有機・無機ナノコンポジット材料として注目されている。   On the other hand, as a polymer composite material obtained by compounding an organic polymer and an inorganic material, a material in which an organic polymer is filled with talc, calcium carbonate, etc. in addition to glass fiber and carbon fiber has been known for a long time. . In recent years, dispersion of nanometer-scale inorganic components in organic polymers and compounding them has resulted in improved mechanical properties and improved thermal properties, attracting attention as organic / inorganic nanocomposite materials. .

近年、本発明者らは、水溶性(メタ)アクリル酸エステルの共重合体、または水溶性(メタ)アクリルアミドとN−置換(メタ)アクリルアミドの少なくとも1種と水溶性(メタ)アクリル酸エステルとの共重合体からなる有機高分子と、水膨潤性粘土鉱物とが三次元網目を形成してなる高分子複合体を開発し、粘土鉱物を含まない重合体または共重合体に比べて、延伸度や強度などの力学物性が顕著に向上することを報告しており(特許文献3参照)、各種分野において有用な材料であるが、細胞培養基材に関する技術は開示されていない。   In recent years, the present inventors have obtained a copolymer of a water-soluble (meth) acrylic acid ester, or at least one of water-soluble (meth) acrylamide and N-substituted (meth) acrylamide and a water-soluble (meth) acrylic acid ester. Developed a polymer composite formed by forming a three-dimensional network of a water-swellable clay mineral with an organic polymer composed of the above copolymer and stretched compared to a polymer or copolymer that does not contain a clay mineral. It has been reported that mechanical properties such as strength and strength are remarkably improved (see Patent Document 3), and although it is a useful material in various fields, a technique relating to a cell culture substrate is not disclosed.

特公平6−104061公報Japanese Patent Publication No. 6-104061 特開平5−192138公報JP-A-5-192138 特開2002−53629号公報JP 2002-53629 A

本発明が解決しようとする課題は、広範囲の粘土鉱物含有率において、粘土鉱物が有機高分子中に均一微細に分散し、柔軟かつ強靱な優れた力学物性を持つ高分子複合体からなる細胞培養基材、さらには培養した細胞を分離回収する際に細胞の破損や基材の混入がなく、迅速に培養した細胞を回収できる細胞培養基材、及び培養した細胞の回収が容易な細胞培養方法を提供することにある   The problem to be solved by the present invention is a cell culture comprising a polymer complex having a wide range of clay mineral content, wherein clay minerals are uniformly and finely dispersed in an organic polymer, and have flexible and tough excellent mechanical properties. Cell culture substrate capable of collecting rapidly cultured cells without cell breakage or substrate contamination when separating and collecting cultured cells and further cultured cells, and cell culture method for easy collection of cultured cells Is to provide

本発明者らは、種々検討したところ、水溶性(メタ)アクリル酸エステルを用いた重合体中に水膨潤性粘土鉱物を微分散させた高分子複合体が、上記課題を解決することができることを見出し、本発明を完成させた。   As a result of various studies, the present inventors have found that a polymer composite in which a water-swellable clay mineral is finely dispersed in a polymer using a water-soluble (meth) acrylic ester can solve the above problems. The present invention was completed.

即ち本発明は、水溶性(メタ)アクリル酸エステル(a)を単量体として用いた重合体(A)中に、水膨潤性粘土鉱物(B)が微分散している高分子複合体(C)を用いたことを特徴とする細胞培養基材を提供する。   That is, the present invention relates to a polymer composite in which a water-swellable clay mineral (B) is finely dispersed in a polymer (A) using a water-soluble (meth) acrylic acid ester (a) as a monomer ( A cell culture substrate characterized by using C) is provided.

更に、本発明は上記の細胞培養基材を使用して、該細胞培養基材が細胞接着性を示す温度条件下で細胞を培養した後、該細胞培養基材の温度を下げ、該細胞培養基材が細胞非接着性を示す温度とすることにより、培養した該細胞を該細胞培養基材から分離することを特徴とする細胞培養方法を提供する。   Furthermore, the present invention uses the above cell culture substrate, and after culturing cells under temperature conditions where the cell culture substrate exhibits cell adhesion, the temperature of the cell culture substrate is lowered, and the cell culture Provided is a cell culture method characterized in that the cultured cells are separated from the cell culture substrate by setting the temperature at which the substrate exhibits cell non-adhesiveness.

本発明の細胞培養基材は、水溶性(メタ)アクリル酸エステルを主に用いた重合体であるため、該重合体中に広い含有比率範囲で水膨潤性粘土鉱物を微細に分散させることができる。そして、粘土鉱物を含まない重合体または共重合体に比べて、その表面上で好適に細胞を培養、増殖させることができ、また培養後の高分子複合体を保持する条件を変えた場合は、細胞との接着性を低下させることができ、培養、増殖させた細胞の破損や、基材の剥離混入を生じることなく、容易かつ迅速に剥離回収することができる。ちなみに、粘土鉱物を含まない(メタ)アクリル酸エステルの重合体、またはその架橋物の表面では、細胞接着性は比較例に示すように観測されなかった。また本発明の細胞培養基材は、柔軟かつ強靱な材料であることから、細胞をその表面上で様々な形状のシート状に培養して、その形状を保った状態で使用することができる。   Since the cell culture substrate of the present invention is a polymer mainly using a water-soluble (meth) acrylic acid ester, it is possible to finely disperse a water-swellable clay mineral in a wide content ratio range in the polymer. it can. And, compared to a polymer or copolymer that does not contain clay minerals, cells can be cultured and propagated on its surface, and if the conditions for holding the polymer complex after culturing are changed The adhesion to the cells can be reduced, and the cells can be easily and quickly peeled and recovered without causing damage to the cultured and proliferated cells or peeling and mixing of the base material. Incidentally, the cell adhesion was not observed on the surface of the polymer of (meth) acrylic acid ester containing no clay mineral or its crosslinked product, as shown in the comparative example. Moreover, since the cell culture substrate of the present invention is a flexible and tough material, it can be used in a state in which cells are cultured in various shapes on the surface and the shape is maintained.

本発明の細胞培養基材は、水膨潤性粘土鉱物をナノメーターレベルで微細且つ均一に、しかも広い濃度範囲で含有することができ、また良好な延伸性と優れた強度と弾性率などの力学物性を有する高分子複合体からなり、高分子複合体の表面の平滑性及び疎水性等を細胞の接着及び伸展に適した状態に制御出来るため、優れた培養性能を有する。また本発明の細胞培養基材は、細胞培養用培地に浸漬することにより、細胞培養に適した含水率を得ることが出来、それらの結果から、様々な種類の細胞に対して、優れた培養特性を示すことが出来る。また、該高分子複合体が外部環境変化にともない細胞接着性と非接着性とが可逆的に変化することが可能である。また、本発明の高分子複合体を膨潤させた時に、優れた柔軟性と強靱さを有することから、培養した細胞を基材ごと移送する際にも形状を保持したまま、安定に培養した細胞を移送できる。さらに最初の細胞培養後に共培養を行う場合等には、培養液や薬品による汚染がなく、再度の培養を行うことが可能である。また、本発明の高分子複合体は、培養基材として使用前に安定して長期間の保存が可能である。   The cell culture substrate of the present invention can contain a water-swellable clay mineral finely and uniformly at a nanometer level and in a wide concentration range, and has good stretchability and dynamics such as excellent strength and elastic modulus. Since it is composed of a polymer composite having physical properties, the smoothness and hydrophobicity of the surface of the polymer composite can be controlled to be in a state suitable for cell adhesion and extension, so that it has excellent culture performance. In addition, the cell culture substrate of the present invention can obtain a moisture content suitable for cell culture by immersing it in a cell culture medium. From these results, excellent culture for various types of cells. The characteristics can be shown. In addition, cell adhesion and non-adhesion of the polymer complex can be reversibly changed with changes in the external environment. In addition, when the polymer composite of the present invention is swollen, it has excellent flexibility and toughness, so that the cultured cells can be stably cultured while maintaining the shape even when the cultured cells are transferred together with the substrate. Can be transported. Further, when co-culture is performed after the initial cell culture, the culture can be performed again without contamination by the culture medium or chemicals. In addition, the polymer composite of the present invention can be stably stored for a long period of time before use as a culture substrate.

細胞接着性と細胞非接着性とが外部環境により可逆的に変化する高分子複合体からなる細胞培養基材は、細胞接着性の条件下では細胞を好適に培養、増殖させることができ、また細胞非接着性条件下では、トリプシン等のタンパク質加水分解酵素や化学薬品を使用せずに細胞を剥離できるため、細胞の破損や、基材の剥離混入を生じることなく、容易に細胞の回収が可能である。さらに、疎水性から親水性、あるいは親水性から疎水性への変化が迅速であるため、温度をはじめとする外部環境を変化させる際に細胞に与える影響が少ない。   A cell culture substrate composed of a polymer complex in which cell adhesion and cell non-adhesiveness reversibly change depending on the external environment can cultivate and proliferate cells appropriately under cell adhesion conditions. Under non-cell-adhesive conditions, cells can be detached without the use of protein hydrolases such as trypsin or chemicals, so that cells can be easily recovered without causing cell damage or substrate contamination. Is possible. Furthermore, since the change from hydrophobic to hydrophilic or from hydrophilic to hydrophobic is rapid, there is little influence on cells when changing the external environment including temperature.

本発明の細胞培養基材は、水溶性(メタ)アクリル酸エステルから得られる重合体、または(メタ)アクリルアミドとN−置換(メタ)アクリルアミドの少なくとも1種と水溶性(メタ)アクリル酸エステルとの共重合体からなる有機高分子(A)中に水膨潤性粘土鉱物(B)が微分散している高分子複合体(C)からなり、延伸性や柔軟性などの優れた力学物性を示す。   The cell culture substrate of the present invention is a polymer obtained from a water-soluble (meth) acrylic acid ester, or at least one of (meth) acrylamide and N-substituted (meth) acrylamide and a water-soluble (meth) acrylic acid ester. It consists of a polymer composite (C) in which a water-swellable clay mineral (B) is finely dispersed in an organic polymer (A) consisting of a copolymer of the above, and has excellent mechanical properties such as stretchability and flexibility. Show.

本発明で用いる水溶性(メタ)アクリル酸エステル、(メタ)アクリルアミド、N−置換(メタ)アクリルアミドは、水または水と有機溶媒との混合溶媒に溶解可能なものが好ましい。一方、これらを重合もしくは共重合して得られる有機高分子(A)は疎水性をより多く有し、水に溶解せず、また過度に吸水して膨潤することはなく、水中でも安定して存在するものが好ましい。即ち、本発明の細胞培養基材を構成する高分子複合体(C)は主として水溶性モノマー及び水膨潤性粘土鉱物から合成されるが、得られた高分子複合体は好ましくは水膨潤性が低く、疎水性の高い材料である。ただし、高分子複合体の親水性と疎水性とのバランスを変化させたり、他の成分との相互作用を強めるために、親水性基、イオン性基及び/または疎水性基などを必要に応じて重合体または共重合体中に導入することも可能である。   The water-soluble (meth) acrylic acid ester, (meth) acrylamide, and N-substituted (meth) acrylamide used in the present invention are preferably soluble in water or a mixed solvent of water and an organic solvent. On the other hand, the organic polymer (A) obtained by polymerizing or copolymerizing these has more hydrophobicity, does not dissolve in water, does not swell due to excessive water absorption, and is stable in water. Those present are preferred. That is, the polymer composite (C) constituting the cell culture substrate of the present invention is synthesized mainly from a water-soluble monomer and a water-swellable clay mineral, but the obtained polymer composite preferably has water-swellability. It is a low and highly hydrophobic material. However, in order to change the balance between hydrophilicity and hydrophobicity of the polymer composite or to strengthen the interaction with other components, hydrophilic groups, ionic groups and / or hydrophobic groups may be added as necessary. It is also possible to introduce it into a polymer or copolymer.

水溶性(メタ)アクリル酸エステル(a)としては、実質的に水に溶解し、重合時に水膨潤性粘土鉱物(B)を微分散しうるものであり、例えばメトキシエチルアクリレート(MEA)、エトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレートなどが挙げられる。本発明の水溶性(メタ)アクリル酸エステル(a)から得られる重合体は、これら(メタ)アクリル酸エステルから選ばれる単独モノマーの重合体または複数モノマーの共重合体を含む。   The water-soluble (meth) acrylic acid ester (a) is substantially soluble in water and can finely disperse the water-swellable clay mineral (B) at the time of polymerization. For example, methoxyethyl acrylate (MEA), ethoxy Examples include ethyl acrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate and the like. The polymer obtained from the water-soluble (meth) acrylic acid ester (a) of the present invention includes a single-monomer polymer or a multi-monomer copolymer selected from these (meth) acrylic acid esters.

(メタ)アクリルアミドとN−置換(メタ)アクリルアミドとしては、(メタ)アクリルアミドとアルキル基の炭素数が1以上のアルキル(メタ)アクリルアミドであり、具体的には、N−メチルアクリルアミド、N−エチルアクリルアミド、N−シクロプロピルアクリルアミド、N−イソプロピルアクリルアミド、N,N−ジメチルアクリルアミド、N−メチル−N−エチルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N,N−ジエチルアクリルアミド、N−エチル−N−イソプロピルアクリルアミド、N−エチル−N−n−プロピルアクリルアミド、N−アクリロイルピロリディン、N−アクリロイルピペリディン、N−アクリロイルモルフォリン、N−アクリロイルメチルホモピペラジン、N−アクリロイルメチルピペラジンまたはN−メチルメタクリルアミドが挙げられる。   (Meth) acrylamide and N-substituted (meth) acrylamide are (meth) acrylamide and alkyl (meth) acrylamide having 1 or more carbon atoms in the alkyl group, specifically, N-methylacrylamide and N-ethyl. Acrylamide, N-cyclopropylacrylamide, N-isopropylacrylamide, N, N-dimethylacrylamide, N-methyl-N-ethylacrylamide, N-methyl-N-isopropylacrylamide, N-methyl-Nn-propylacrylamide, N , N-diethylacrylamide, N-ethyl-N-isopropylacrylamide, N-ethyl-Nn-propylacrylamide, N-acryloylpyrrolidine, N-acryloylpiperidine, N-acryloylmorpholine, N-acryloyl Methyl homopiperazine, N- acryloyl methyl piperazine or N- methyl methacrylamide.

有機高分子(A)が(メタ)アクリルアミドとN−置換(メタ)アクリルアミドの少なくとも1種(b)と水溶性(メタ)アクリル酸エステル(a)との共重合体からなる場合は、前記共重合体の(a)と(b)のモル比((b)/(a))は、得られる高分子複合体の室温での疎水性を保ったまま固さや弾性率を上げるためには、モル比を1以下にすることが好ましく、特に室温での柔軟性が高く、水中での吸水率を低くするためには、モル比で0.5以下が好ましく、より好ましくは0.25以下である。   When the organic polymer (A) comprises a copolymer of (meth) acrylamide and at least one of N-substituted (meth) acrylamide (b) and a water-soluble (meth) acrylate (a), The molar ratio ((b) / (a)) of the polymer (a) and (b) is to increase the hardness and elastic modulus while maintaining the hydrophobic property of the resulting polymer composite at room temperature. The molar ratio is preferably 1 or less, and in particular, in order to have high flexibility at room temperature and to reduce the water absorption rate in water, the molar ratio is preferably 0.5 or less, more preferably 0.25 or less. is there.

有機高分子(A)のガラス転移温度は必ずしも限定されず、広い範囲のものが用いられるが、加工性や室温での延伸性や伸縮性などからは、有機高分子(A)はガラス転移温度が100℃以下であるものが好ましく、より好ましくは30℃以下、特に好ましくは0℃以下のものが用いられる。   The glass transition temperature of the organic polymer (A) is not necessarily limited, and a wide range is used. From the viewpoint of workability, stretchability at room temperature, and stretchability, the organic polymer (A) has a glass transition temperature. Is preferably 100 ° C. or lower, more preferably 30 ° C. or lower, particularly preferably 0 ° C. or lower.

水膨潤性粘土鉱物(B)としては、層状に剥離可能な膨潤性粘土鉱物が用いられ、好ましくは水または水と有機溶媒との混合溶液中で膨潤し均一分散可能な粘土鉱物、特に好ましくは水中で分子状(単一層)又はそれに近いレベルで均一分散可能な無機粘土鉱物が用いられる。より具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。   As the water-swellable clay mineral (B), a swellable clay mineral that can be peeled in layers is used, preferably a clay mineral that can swell and uniformly disperse in water or a mixed solution of water and an organic solvent, particularly preferably. An inorganic clay mineral that can be uniformly dispersed in water at a molecular level (single layer) or a level close thereto is used. More specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica and the like can be mentioned.

用いる開始剤及び触媒としては、公知のラジカル重合開始剤や触媒を適時選択して用いることができる。好ましくは水分散性を有し、系全体に均一に含まれるものが好ましく用いられる。具体的には、重合開始剤として、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム,水溶性のアゾ化合物、例えばVA−044、V−50、V−501(いずれも和光純薬工業株式会社製)の他、鉄イオン(II)と過酸化水素との混合物などが例示される。   As the initiator and catalyst to be used, known radical polymerization initiators and catalysts can be appropriately selected and used. Preferably, those having water dispersibility and uniformly contained in the entire system are preferably used. Specifically, as a polymerization initiator, a water-soluble peroxide such as potassium peroxodisulfate or ammonium peroxodisulfate, a water-soluble azo compound such as VA-044, V-50, V-501 (all of which are Wako Pure Chemical Industries, Ltd.) In addition to Yaku Kogyo Co., Ltd., a mixture of iron ion (II) and hydrogen peroxide is exemplified.

触媒としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンなどは好ましく用いられる。但し、触媒を必ずしも用いなくてもよい。重合温度は、0〜80℃の間で、重合時間は数十秒〜数十時間の間で行うことができる。   As the catalyst, tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine are preferably used. However, a catalyst is not necessarily used. The polymerization temperature is 0 to 80 ° C., and the polymerization time is several tens of seconds to several tens of hours.

また本発明においては、有機架橋剤として少量の多官能有機架橋剤を併用することも可能であり、もっとも代表的にはN,N’−メチレンビスアクリルアミドが例示される。   In the present invention, a small amount of a polyfunctional organic crosslinking agent may be used in combination as the organic crosslinking agent, and representatively N, N'-methylenebisacrylamide is exemplified.

本発明の細胞培養基材を構成する高分子複合体(C)は、有機高分子(A)中に水膨潤性粘土鉱物(B)が微細に分散した構造となっている。   The polymer composite (C) constituting the cell culture substrate of the present invention has a structure in which the water-swellable clay mineral (B) is finely dispersed in the organic polymer (A).

水膨潤性粘土鉱物(B)の微細に分散した状態は、水膨潤性粘土鉱物(B)の濃度や、高分子複合体(C)の合成条件および延伸条件により変化するが、好ましくは、1層または10層以内に層状剥離した水膨潤性粘土鉱物(B)が、高分子複合体(C)中に単独で分散している場合、水膨潤性粘土鉱物(B)と有機高分子(A)が分子レベルで複合体を形成して分散した状態、更にそれらの状態の水膨潤性粘土鉱物(B)が高分子複合体(C)中で三次元網目を形成した状態などがあげられ、単独または混在した状態が用いられる。更に延伸により、これらの水膨潤性粘土鉱物(B)が配向したものも用いられる。   The finely dispersed state of the water-swellable clay mineral (B) varies depending on the concentration of the water-swellable clay mineral (B) and the synthesis conditions and stretching conditions of the polymer composite (C). When the water-swellable clay mineral (B) layered or separated within 10 layers is dispersed alone in the polymer composite (C), the water-swellable clay mineral (B) and the organic polymer (A ) In a state where the complex is formed and dispersed at the molecular level, and further the state in which the water-swellable clay mineral (B) in these states forms a three-dimensional network in the polymer complex (C), etc. A single or mixed state is used. Further, those in which these water-swellable clay minerals (B) are oriented by stretching are also used.

有機高分子(A)と水膨潤性粘土鉱物(B)との相互作用は、効果的な微分散を達成できれば、イオン結合、水素結合、疎水結合、配位結合、共有結合などのいずれが一つ又は複数であって良い。該複合体は、合成直後はまだ水をかなり含んでおり、例えば水含有率(高分子複合体の固形分に対する質量%、以下同じ)が200〜800質量%であることが多く、強度的には弱い場合が多い。かかる複合体としては、合成直後のものを乾燥し、上記水含有率が好ましくは100質量%以下、より好ましくは50質量%以下、最も好ましくは20質量%以下のものとすることで、有機高分子(A)と水膨潤性粘土鉱物(B)の相互作用が大きく強化され、細胞接着性と優れた力学物性を有する特徴が発現される。いったん乾燥して得られた高分子複合体は、再度水中に入れても、白色化するが均一であり、大きく膨潤したり、また大きく強度が低下することはない。   As long as effective fine dispersion can be achieved, the interaction between the organic polymer (A) and the water-swellable clay mineral (B) is one of ionic bond, hydrogen bond, hydrophobic bond, coordinate bond, and covalent bond. There may be one or more. The composite still contains a considerable amount of water immediately after synthesis. For example, the water content (mass% with respect to the solid content of the polymer composite, hereinafter the same) is often 200 to 800% by mass. Are often weak. Such a composite is dried immediately after synthesis, and the water content is preferably 100% by mass or less, more preferably 50% by mass or less, and most preferably 20% by mass or less. The interaction between the molecule (A) and the water-swellable clay mineral (B) is greatly enhanced, and the characteristics of cell adhesion and excellent mechanical properties are expressed. The polymer composite obtained by drying once turns white even if it is again put into water, but it is uniform and does not swell greatly, and the strength is not greatly reduced.

また、本発明の効果を妨げない範囲で、前記有機高分子(A)を構成する重合成分と共に他の重合性有機分子などを併用、または得られる高分子複合体に機能性を付与する目的で有機または無機の各種機能性分子や粒子を添加して良い。特に、細胞接着性及び細胞増殖性を向上させる高分子化合物や低分子化合物等について、本発明の効果を損なわない範囲で添加することは好んで用いられ、例えばコラーゲンやヒアルロン酸等の細胞接着性因子,細胞増殖因子、ヒドロキシアパタイト粒子などを添加することができる。   Further, for the purpose of imparting functionality to the polymer composite obtained by using other polymerizable organic molecules together with the polymerization component constituting the organic polymer (A) within a range not impeding the effects of the present invention. Various organic or inorganic functional molecules and particles may be added. In particular, it is preferable to add a high molecular compound or a low molecular compound that improves cell adhesion and cell proliferation in a range that does not impair the effects of the present invention. For example, cell adhesion such as collagen and hyaluronic acid is used. Factors, cell growth factors, hydroxyapatite particles and the like can be added.

本発明においては、高分子複合体(C)中に水膨潤性粘土鉱物(B)を微分散させることが必須であり、通常の有機架橋剤を全く用いないで水膨潤性粘土鉱物のみで前記力学物性および透明性を発現することが可能である。特に好ましくは、有機架橋剤を用いずに調製されるが、モノマーや反応条件の選択によっては、また細胞接着性や物性制御のためには、有機架橋剤を併用することが好ましい場合もある。粘土鉱物を用いない場合、即ち線状高分子だけの場合や有機架橋剤のみを用いた場合は、得られる複合体は細胞接着性が無く、延伸性や強度などの力学物性も低い材料となる。有機架橋剤を水膨潤性粘土鉱物と併用して用いると、細胞接着性は保持したまま、弾性率や延伸性などを制御した高分子複合体が得られる。具体的には、有機架橋剤を併用することで、延伸性を減少させ、弾性率を増加させる制御が行える。併用して用いる有機架橋剤の量としては、2モル%以下、より好ましくは1モル%以下、特に好ましくは0.5モル%以下である。   In the present invention, it is essential to finely disperse the water-swellable clay mineral (B) in the polymer composite (C), and the water-swellable clay mineral alone is used without using any ordinary organic crosslinking agent. It is possible to develop mechanical properties and transparency. Particularly preferably, it is prepared without using an organic crosslinking agent, but it may be preferable to use an organic crosslinking agent in combination depending on the selection of monomers and reaction conditions and for cell adhesion and physical property control. When clay minerals are not used, that is, when only a linear polymer is used or only an organic cross-linking agent is used, the resulting composite has no cell adhesiveness and low mechanical properties such as stretchability and strength. . When an organic cross-linking agent is used in combination with a water-swellable clay mineral, a polymer composite in which the elastic modulus and stretchability are controlled while the cell adhesion is maintained can be obtained. Specifically, by using an organic crosslinking agent in combination, it is possible to control to reduce stretchability and increase elastic modulus. The amount of the organic crosslinking agent used in combination is 2 mol% or less, more preferably 1 mol% or less, and particularly preferably 0.5 mol% or less.

本発明の細胞培養基材を構成する高分子複合体(C)は、有機高分子(A)に対する水膨潤性粘土鉱物(B)の質量比が0.003〜3であることが好ましく、より好ましくは0.005〜2、特に好ましくは0.01〜1である。該質量比が0.003未満では機械的性質が高分子複合体として不十分となりやすく、3を超えると水膨潤性粘土鉱物の均一微細分散が困難となりやすい。   In the polymer complex (C) constituting the cell culture substrate of the present invention, the mass ratio of the water-swellable clay mineral (B) to the organic polymer (A) is preferably 0.003 to 3, more preferably Preferably it is 0.005-2, Most preferably, it is 0.01-1. If the mass ratio is less than 0.003, the mechanical properties tend to be insufficient as a polymer composite, and if it exceeds 3, uniform fine dispersion of the water-swellable clay mineral tends to be difficult.

本発明の細胞培養基材を構成する高分子複合体(C)は、水膨潤性粘土鉱物の含有率によらず乾燥物は均一で透明性を有し、透明性を低下させるような水膨潤性粘土鉱物のミクロンサイズの不均一な凝集は観測されない。最終的には水膨潤性粘土鉱物の含有率は熱質量分析(TGA)により、また微細分散性は透過型電子顕微鏡(TEM)観察により測定される。該高分子複合体は、用いた水膨潤性粘土鉱物の全量が高分子複合体に含まれていることがTGAにより確認され、且つ1〜数ナノメーターの厚みの層状粘土鉱物層が均一に分散しているのがTEMにより確認される。   The polymer composite (C) that constitutes the cell culture substrate of the present invention has a water-swelling that is uniform and transparent in the dry matter, regardless of the content of the water-swellable clay mineral, and lowers the transparency. Micron-sized heterogeneous aggregation of the clay mineral is not observed. Finally, the content of the water-swellable clay mineral is measured by thermal mass spectrometry (TGA), and the fine dispersibility is measured by observation with a transmission electron microscope (TEM). In the polymer composite, it was confirmed by TGA that the total amount of the water-swellable clay mineral used was contained in the polymer composite, and a layered clay mineral layer having a thickness of 1 to several nanometers was uniformly dispersed. This is confirmed by TEM.

本発明の細胞培養基材を構成する高分子複合体は、通常用いられる有機架橋剤を一切添加していない場合でも、優れた力学物性、特に高い延伸性と伸縮性を示すことから、有機高分子と微細分散した水膨潤性粘土鉱物が相互作用して三次元網目を形成していると推定される。一方、水膨潤性粘土鉱物を含まない線状高分子及び有機架橋剤のみを添加して三次元網目を形成したものは、比較例に示すようにいずれも該高分子複合体に比べて極めて低い力学物性しか示さない。このことは、本発明の細胞培養基材を構成する高分子複合体が、従来にない効果的な複合構造を形成していることを示唆している。疎水性の高い有機高分子(A)の多くは架橋剤に束縛されることなく、自由鎖として存在しているため、優れた力学物性を有するが、親水性である水膨潤性粘土鉱物(B)との相互作用により、細胞接着に適した疎水性を有することとなり、優れた細胞接着性が実現される。   The polymer composite constituting the cell culture substrate of the present invention exhibits excellent mechanical properties, particularly high stretchability and stretchability, even when no commonly used organic crosslinking agent is added. It is estimated that molecules and finely dispersed water-swellable clay minerals interact to form a three-dimensional network. On the other hand, a linear polymer that does not contain a water-swellable clay mineral and an organic cross-linking agent added thereto to form a three-dimensional network are extremely low compared to the polymer composite as shown in the comparative example. It shows only mechanical properties. This suggests that the polymer complex constituting the cell culture substrate of the present invention forms an unprecedented effective complex structure. Many of the highly hydrophobic organic polymers (A) are present as free chains without being constrained by a cross-linking agent, and thus have excellent mechanical properties but are hydrophilic, water-swellable clay minerals (B ) To have hydrophobicity suitable for cell adhesion, and excellent cell adhesion is realized.

上記構造の形成は、透過型電子顕微鏡やX線回折測定による水膨潤性粘土鉱物の微細分散の他、以下に示す優れた延伸性や高い破断強度の達成、動的粘弾性測定や示差走査熱量分析(DSC)などによる水膨潤性粘土鉱物層間の有機高分子の自由鎖に近いガラス転移温度の測定によっても確認された。   The formation of the above structure is not only fine dispersion of water-swellable clay minerals by transmission electron microscope and X-ray diffraction measurement, but also the following excellent stretchability and high breaking strength, dynamic viscoelasticity measurement and differential scanning calorimetry It was also confirmed by measuring the glass transition temperature close to the free chain of the organic polymer between water-swellable clay mineral layers by analysis (DSC) or the like.

本発明の細胞培養基材を構成する高分子複合体は、優れた力学物性を示し、例えば伸びについては、実質的に水含有量が0になっても数百%〜3000%の破断伸びを示し、3000%以上の大きい破断伸びを有する高分子複合体も得られる。また、本発明の高分子複合体は粘土鉱物を含有しない有機架橋高分子や線状高分子に比べて非常に高い破断強度を示す。具体的には、高分子複合体の引っ張り強度が500kPa以上、引っ張り破断伸びが200%以上,且つ引っ張り伸び100%での弾性率が50kPa以上である。また、得られた高分子複合体を100%以上、好ましくは100%〜3000%に延伸することにより、高分子複合体の延伸物を得ることができる。得られた高分子複合体延伸物は、延伸処理を行った後であるにもかかわらず、優れた延伸性(100%〜1500%)を保持しており、特に高い柔軟性と優れた伸縮性を有することが特徴である。具体的には、高分子複合体延伸物の引っ張り強度が1000kPa以上,引っ張り破断伸びが200%以上、且つ引っ張り100%での弾性率が100kPa以上である。得られた高分子複合体延伸物も優れた細胞接着性を有しており、高分子複合体を延伸状態で、あるいは細胞の接着と伸展を妨げない範囲での延伸と収縮を繰り返しながらの細胞培養が可能である。   The polymer composite constituting the cell culture substrate of the present invention exhibits excellent mechanical properties. For example, the elongation is about several hundred% to 3000% even when the water content is substantially zero. It is also possible to obtain a polymer composite having a large elongation at break of 3000% or more. In addition, the polymer composite of the present invention exhibits a very high breaking strength as compared with organic crosslinked polymers and linear polymers that do not contain clay minerals. Specifically, the tensile strength of the polymer composite is 500 kPa or more, the tensile breaking elongation is 200% or more, and the elastic modulus at a tensile elongation of 100% is 50 kPa or more. In addition, a stretched product of the polymer composite can be obtained by stretching the obtained polymer composite to 100% or more, preferably 100% to 3000%. The obtained polymer composite stretched product has excellent stretchability (100% to 1500%) despite being after being stretched, and has particularly high flexibility and excellent stretchability. It is the characteristic to have. Specifically, the tensile strength of the stretched polymer composite is 1000 kPa or more, the tensile elongation at break is 200% or more, and the elastic modulus at 100% tensile is 100 kPa or more. The obtained polymer composite stretched product also has excellent cell adhesion, and the cell is stretched or contracted in a stretched state or within a range that does not interfere with cell adhesion and extension. Culture is possible.

本発明の細胞培養基材を使用して培養を行うことが可能な細胞は、ヒト及び動物の組織細胞であれば特に制限はなく、例えば、血管細胞、繊維芽細胞、筋肉細胞、神経細胞、軟骨細胞、骨芽細胞、肝細胞、膵臓細胞、角膜細胞などが挙げられる。これらのうち、血管内皮細胞、皮膚繊維芽細胞、肝実質細胞、肝ガン細胞、軟骨細胞等好ましく用いられる。特に本発明においては、皮膚繊維芽細胞、血管内皮細胞、軟骨細胞などの培養に好適に使用できる。   The cells that can be cultured using the cell culture substrate of the present invention are not particularly limited as long as they are human and animal tissue cells. For example, vascular cells, fibroblasts, muscle cells, nerve cells, Examples include chondrocytes, osteoblasts, hepatocytes, pancreatic cells, corneal cells and the like. Of these, vascular endothelial cells, dermal fibroblasts, hepatocytes, hepatoma cells, chondrocytes and the like are preferably used. In particular, in the present invention, it can be suitably used for culturing skin fibroblasts, vascular endothelial cells, chondrocytes and the like.

本発明の細胞培養基材を構成する高分子複合体は、水に浸漬すると吸水することにより白色化するが、本発明において可能な培養細胞に用いられる液体培地に浸漬しても、ほとんど含水せず透明な状態を保つことができる。このため、培地浸漬によっても力学物性は乾燥状態とほとんど変化せず、優れた延伸性等を保つことができる。   The polymer complex constituting the cell culture substrate of the present invention becomes white by absorbing water when immersed in water. However, even when immersed in a liquid medium used for cultured cells that can be used in the present invention, the polymer complex is almost hydrated. It can maintain a transparent state. For this reason, even if the medium is immersed, the mechanical properties hardly change from the dry state, and excellent stretchability and the like can be maintained.

また、本発明の細胞培養基材を構成する高分子複合体は、細胞培養基材として使用する場合、重合して乾燥後に精製を行う必要があり、特にその方法には限定されないが、高分子複合体の構造を保持できる水又は有機溶媒による洗浄により精製を行うことが出来る。例えば、クリーンベンチ内で水又は有機溶媒に高分子複合体を浸漬し、水又は有機溶媒を適宜交換することにより精製され、再度乾燥させることによって、精製された高分子複合体を得ることが出来る。   In addition, when the polymer complex constituting the cell culture substrate of the present invention is used as a cell culture substrate, it must be polymerized and purified after drying, and the method is not particularly limited. Purification can be performed by washing with water or an organic solvent capable of retaining the structure of the complex. For example, a purified polymer composite can be obtained by immersing the polymer composite in water or an organic solvent in a clean bench, purifying by appropriately replacing water or the organic solvent, and drying again. .

本発明の細胞培養基材を構成する高分子複合体(C)は、細胞培養後、外部環境条件に応じて細胞接着性から細胞非接着性に変化する性質を有する。このため、該高分子複合体からなる細胞培養基材は細胞を好適に培養することが出来、且つ培養した細胞の破壊や基材の剥離混入を生じることなく、培養した細胞を容易且つ迅速に剥離回収することが可能である。   The polymer complex (C) constituting the cell culture substrate of the present invention has a property of changing from cell adhesiveness to cell nonadhesiveness after cell culture according to external environmental conditions. For this reason, the cell culture substrate made of the polymer complex can cultivate the cells suitably, and the cultured cells can be easily and quickly removed without causing destruction of the cultured cells or exfoliation of the substrate. It is possible to peel and collect.

該高分子複合体の細胞接着性と細胞非接着性とを外部環境条件に応じて変化させるには、外部温度を変化させることが簡便であり、細胞にとっても負荷の少ないことから最も都合が良く、該高分子複合体が細胞接着性を有する33℃〜40℃の温度範囲で細胞培養を行った後、該高分子複合体が細胞非接着性を示す0℃〜25℃程度の温度範囲で保持することにより、培養した細胞を迅速に剥離し、回収することが可能となる。   In order to change the cell adhesiveness and cell non-adhesiveness of the polymer complex according to external environmental conditions, it is convenient to change the external temperature, and it is most convenient because it has less burden on the cells. After the cell culture is performed in a temperature range of 33 ° C. to 40 ° C. where the polymer complex has cell adhesion, the polymer complex exhibits cell non-adhesiveness in a temperature range of about 0 ° C. to 25 ° C. By holding, the cultured cells can be quickly detached and recovered.

温度変化により、細胞の接着性、非接着性が変化するメカニズムとしては、高分子複合体(C)の含水率や最表面における微細構造が変化することが推定される。該高分子複合体を保持する温度が33℃〜40℃の範囲においては、高分子複合体の含水量は乾燥状態の重量に対して10%未満であり、優れた細胞接着性を有する疎水性であるが、保持する温度が0℃〜25℃程度である場合は、含水量がやや増加し、乾燥状態の重量に対して10%以上となり、親水性が高くなり細胞非接着性となる。この含水量の変化は該高分子複合体に含まれる粘土鉱物量、及び保持する温度によっても異なるが、含水量が乾燥状態の重量に対して20%以上であることが好ましく、30%以上であればより好ましい。   It is presumed that the moisture content of the polymer composite (C) and the fine structure on the outermost surface change as the mechanism by which the cell adhesiveness and non-adhesiveness change due to temperature change. When the temperature for holding the polymer complex is in the range of 33 ° C. to 40 ° C., the water content of the polymer complex is less than 10% with respect to the weight in the dry state, and hydrophobicity having excellent cell adhesion However, when the holding temperature is about 0 ° C. to 25 ° C., the water content slightly increases, becomes 10% or more with respect to the weight in the dry state, becomes hydrophilic and becomes non-cell-adhesive. The change in the water content varies depending on the amount of clay mineral contained in the polymer composite and the temperature to be retained, but the water content is preferably 20% or more with respect to the dry weight, and 30% or more. More preferably.

本発明の細胞培養基材に用いられる高分子複合体(C)は、単独で用いられる他、金属、セラミック、プラスチック等の平滑表面または凹凸表面を有する支持体に被覆して用いられる。また、各種形状に成形が可能であり、シート状、繊維状、中空繊維状、球状等で用いることが出来る。   The polymer composite (C) used for the cell culture substrate of the present invention is used alone or coated on a support having a smooth surface or an uneven surface such as metal, ceramic or plastic. Further, it can be formed into various shapes, and can be used in a sheet shape, a fiber shape, a hollow fiber shape, a spherical shape, or the like.

以下、実施例により本発明を具体的に説明するが、本発明の範囲がこれらの実施例にのみ限定されるものではない。
(作製例1)
水膨潤性粘土鉱物には、[Mg5.34Li0.66Si20(OH)]Na 0.66の組成を有する水膨潤性合成ヘクトライト(Rockwood Ltd.製「ラポナイトXLG」)を真空乾燥して用いた。アクリル酸エステルとしては、2−メトキシエチルアクリレート(和光純薬株式会社製:以下、MEAと略記。)を既知の方法により精製して、重合禁止剤を取り除いてから使用した。重合開始剤は、ペルオキソ二硫酸カリウム(関東化学株式会社製:以下、KPSと略記。)を脱酸素した超純水中に溶解し、水溶液にして使用した。触媒は、N,N,N’,N’−テトラメチルエチレンジアミン(和光純薬工業株式会社製:以下、TEMEDと略記。)を使用した。重合に使用する超純水は、含有酸素を除去してから使用した。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited only to these Examples.
(Production Example 1)
The water-swellable clay mineral includes a water-swellable synthetic hectorite having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 (“Laponite XLG” manufactured by Rockwood Ltd.) ) Was used after vacuum drying. As the acrylic ester, 2-methoxyethyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd .: hereinafter abbreviated as MEA) was purified by a known method and used after removing the polymerization inhibitor. As a polymerization initiator, potassium peroxodisulfate (manufactured by Kanto Chemical Co., Inc .: hereinafter abbreviated as KPS) was dissolved in deoxygenated ultrapure water and used as an aqueous solution. As the catalyst, N, N, N ′, N′-tetramethylethylenediamine (manufactured by Wako Pure Chemical Industries, Ltd .: hereinafter abbreviated as TEMED) was used. The ultrapure water used for the polymerization was used after the contained oxygen was removed.

内部を窒素置換した平底ガラス容器に、超純水57.06gを入れ、攪拌しながら0.96gのラポナイトXLGを加え、無色透明の溶液を調製した。これにMEA8.58gを加え、窒素雰囲気内で攪拌して溶解させ無色透明溶液を得た。次に、KPS水溶液3gとTEMED48μlを攪拌しながら無色透明溶液に加えた。この溶液をあらかじめ窒素雰囲気中に静置しておいた蓋付きのポリスチレン製容器(9cm×15cm)2枚にそれぞれ酸素にふれないようにして移した後、密栓をし、20℃の恒温水槽中で20時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全てクリーンベンチ内にて行い、さらに酸素を遮断した窒素雰囲気下で行った。重合開始から20時間後に、ポリスチレン製容器内に白色で均一なシート状の含水高分子複合体(C’−1)が水中で遊離して得られた。   Into a flat bottom glass container purged with nitrogen, 57.06 g of ultrapure water was added, and 0.96 g of Laponite XLG was added with stirring to prepare a colorless and transparent solution. To this, 8.58 g of MEA was added and dissolved by stirring in a nitrogen atmosphere to obtain a colorless transparent solution. Next, 3 g of KPS aqueous solution and 48 μl of TEMED were added to the colorless transparent solution with stirring. This solution was transferred to two polystyrene containers (9 cm × 15 cm) with lids that had been allowed to stand in a nitrogen atmosphere in advance so as not to come into contact with oxygen, and then sealed and placed in a constant temperature water bath at 20 ° C. And then allowed to stand for 20 hours for polymerization. The operations from preparation of the solution to polymerization were all performed in a clean bench, and further performed in a nitrogen atmosphere in which oxygen was blocked. Twenty hours after the start of polymerization, a white and uniform sheet-like water-containing polymer composite (C′-1) was released in water in a polystyrene container.

得られた含水高分子複合体(C’−1)中に水膨潤性粘土鉱物などによる不均一な凝集は観測されず、均一な白色固体(水含有率372質量%)であった。100℃で質量が一定になるまで真空乾燥することで、透明な高分子複合体(C−1)を得た。乾燥質量から計算した高分子重合収率は99.5質量%であった。この高分子複合体(C−1)を滅菌されたポリスチレン容器に入れ、注射用水(大塚製薬製)1Lを加えて密閉した。24時間ごとに注射用水を3回交換し、精製された含水高分子複合体を得た。再度この含水高分子複合体を真空乾燥することで、精製された透明な高分子複合体(C−1)を得た。なお、これらの精製工程はすべてクリーンベンチ内で行った。この得られた高分子複合体(C−1)を600℃までの熱質量分析(セイコー電子株式会社製TG−DTA−220:空気流通下、昇温:10℃/分)を行い、粘土鉱物含有率を求めた。粘土鉱物含有率(無機粘土/高分子複合体)は9.5質量%であり、重合溶液組成からの計算値をほぼ一致した。またKBr法によるフーリエ変換赤外線吸収スペクトル(FT−IR)の測定において、ポリ(2−メトキシエチルアクリレート)(PMEA)と水膨潤性粘土鉱物の特性ピークが確認された。   In the obtained water-containing polymer composite (C′-1), non-uniform aggregation due to water-swellable clay mineral was not observed, and it was a uniform white solid (water content 372 mass%). A transparent polymer composite (C-1) was obtained by vacuum drying until the mass became constant at 100 ° C. The polymer polymerization yield calculated from the dry mass was 99.5% by mass. This polymer complex (C-1) was put in a sterilized polystyrene container, and 1 L of water for injection (manufactured by Otsuka Pharmaceutical) was added and sealed. The water for injection was changed 3 times every 24 hours to obtain a purified water-containing polymer complex. This water-containing polymer composite was again vacuum-dried to obtain a purified transparent polymer composite (C-1). These purification steps were all performed in a clean bench. The polymer composite (C-1) thus obtained was subjected to thermal mass analysis up to 600 ° C. (TG-DTA-220 manufactured by Seiko Denshi Co., Ltd .: air flow, temperature increase: 10 ° C./min), and clay mineral The content rate was determined. The clay mineral content (inorganic clay / polymer composite) was 9.5% by mass, and the calculated values from the polymerization solution composition almost coincided. Further, in the measurement of Fourier transform infrared absorption spectrum (FT-IR) by KBr method, characteristic peaks of poly (2-methoxyethyl acrylate) (PMEA) and water-swellable clay mineral were confirmed.

乾燥した高分子複合体(C−1)をエポキシ樹脂中に包埋後、厚さ50μmの超薄切片を作製し、透過型電子顕微鏡観察を行った(日本電子株式会社製JEM−200CX使用)ところ、1〜数nmの厚みの層状粘土鉱物が微細且つ均一に分散しているのが観察された。また乾燥した高分子複合体(C−1)のX線回折測定(理学電機社製RX−7使用:CuKα線)を行ったところ、低角側に大きなピークは観測されなかった。以上の結果より、本実施例で得られた固体は、水膨潤性粘土鉱物とPMEAからなる高分子複合体であって、粘土鉱物含有量は9.5%であり、且つ水膨潤性粘土鉱物が均一に微細分散したものであることがわかった。   After embedding the dried polymer composite (C-1) in an epoxy resin, an ultrathin section having a thickness of 50 μm was prepared and observed with a transmission electron microscope (using JEM-200CX manufactured by JEOL Ltd.) However, it was observed that the layered clay mineral having a thickness of 1 to several nm was finely and uniformly dispersed. Further, when X-ray diffraction measurement (using RX-7 manufactured by Rigaku Corporation: CuKα ray) of the dried polymer composite (C-1) was performed, no large peak was observed on the low angle side. From the above results, the solid obtained in this example is a polymer composite composed of a water-swellable clay mineral and PMEA, the clay mineral content is 9.5%, and the water-swellable clay mineral. Was found to be uniformly finely dispersed.

乾燥した高分子複合体(C−1)の動的粘弾性をセイコー電子工業株式会社製DMA−200を使用し、測定周波数1Hz、昇温2℃/分で測定した結果、高分子複合体(C−1)は約−34℃にガラス転移温度(Tg)を示した。また、Tgよりも低い温度では高い弾性率を示し、Tg以上の温度では広い温度範囲にわたって安定したゴム領域の弾性率を示した。一方、示差走査熱量分析(DSC)測定(パーキンエルマー社製DSC−7使用)においても、−34℃にガラス転移温度が観測され、この温度は粘土鉱物を用いないで調製した線状高分子乾燥物のガラス転移温度と同等であった。
乾燥した高分子複合体(C−1)を1cm×5cmの大きさに切り取り、チャック部での滑りの無いようにして引っ張り試験装置(株式会社島津製作所製「卓上型万能試験機AGS−H」)に装着し、評点間距離=20mm、引っ張り速度=100mm/分にて引っ張り試験を行った結果、初期弾性率は27MPa、破断伸びが1850%、破断強度が2.6MPaであった。引っ張り試験後の高分子複合体の残留歪みは約100%であり、ゴム的な伸縮性とタフネスを示した。かかる優れた力学物性、有機架橋剤を何ら使用していないのにゴム的な伸縮性を有すること、及び水膨潤性粘土鉱物の微細分散性、重合体のガラス転移温度などから、この高分子複合体(C−1)では、有機高分子と水膨潤性粘土鉱物の微細分散性、重合体のガラス転移温度などから、有機高分子中に水膨潤性粘土鉱物が微分散していると結論された。
As a result of measuring the dynamic viscoelasticity of the dried polymer composite (C-1) using DMA-200 manufactured by Seiko Denshi Kogyo Co., Ltd. at a measurement frequency of 1 Hz and a temperature increase of 2 ° C./minute, the polymer composite ( C-1) exhibited a glass transition temperature (Tg) at about -34 ° C. Further, the elastic modulus was high at a temperature lower than Tg, and the elastic modulus of the rubber region was stable over a wide temperature range at a temperature higher than Tg. On the other hand, in the differential scanning calorimetry (DSC) measurement (using Perkin Elmer DSC-7), a glass transition temperature was observed at −34 ° C., and this temperature was a linear polymer dry prepared without using clay minerals. It was equivalent to the glass transition temperature of the product.
The dried polymer composite (C-1) is cut into a size of 1 cm × 5 cm, and a tensile test apparatus (“Tabletop Universal Testing Machine AGS-H” manufactured by Shimadzu Corporation) without slipping at the chuck portion. ), And a tensile test was performed at a distance between ratings = 20 mm and a tensile speed = 100 mm / min. As a result, the initial elastic modulus was 27 MPa, the breaking elongation was 1850%, and the breaking strength was 2.6 MPa. The residual strain of the polymer composite after the tensile test was about 100%, indicating rubbery elasticity and toughness. Due to such excellent mechanical properties, rubber-like stretchability without using any organic crosslinking agent, fine dispersion of water-swellable clay mineral, glass transition temperature of polymer, etc., this polymer composite In the body (C-1), it was concluded that the water-swellable clay mineral was finely dispersed in the organic polymer from the fine dispersion of the organic polymer and the water-swellable clay mineral, the glass transition temperature of the polymer, etc. It was.

(実施例1)
上記作製例1で得られた高分子複合体(C−1)を、直径8cmの大きさに切断し、細胞培養基材(A)とした。それを細胞培養用ディッシュ(ベクトン・ディッキンソン・ラブウェア社製「ファルコン3003」)の中に移し替えてから蓋をして37℃で静置した。なお、これらの操作は、すべてクリーンベンチ内で行った。
Example 1
The polymer composite (C-1) obtained in Production Example 1 was cut to a size of 8 cm in diameter to obtain a cell culture substrate (A). It was transferred into a dish for cell culture (“Falcon 3003” manufactured by Becton Dickinson Labware), covered, and allowed to stand at 37 ° C. All these operations were performed in a clean bench.

このようにして得られた細胞培養基材(A)を入れた細胞培養ディッシュを用いて、細胞の培養を行った。培養する細胞は、ヒト肝上皮細胞由来のガン細胞HepG2細胞株(大日本製薬株式会社製)を使用した。培養は、ウシ胎児血清(ICN製)を10%含有するミニマム・エッセンシャル・イーグル培地(SIGMA製)(ピルビン酸(ICN製)及び非必須アミノ酸(ICN製)を添加剤として含有)を使用して、5%二酸化炭素含有37℃恒温器内で行った。また細胞培養基材(A)を入れたディッシュは2枚用意し、同じ条件で同時に播種を行った。播種してから1週間後、この細胞培養基材(A)を入れたディッシュ1枚を20℃恒温槽内に5分間静置してから、表面を光学顕微鏡にて観察したところ、細胞が細胞培養基材(A)上に接着して、また十分に増殖していたことが確認された。この培養を行ったもう1枚の細胞培養基材(A)を入れたディッシュから細胞培養基材(A)を培養した細胞ごと取り出して、あらかじめ20℃に保持しておいたウシ胎児血清を10%含有するミニマム・エッセンシャル・イーグル培地を含む組織培養ディッシュに移し替えた。蓋をしてから20℃で10分間静置後、細胞培養基材(A)上に増殖した細胞をピンセットで摘むことにより、細胞を細胞培養基材(A)から分離できた。この時、細胞培養基材(A)に何ら損傷はなく、また分離した細胞にも何ら付着物は見られなかった。この取り出した細胞について、トリプシン−EDTA処理を行うことにより、各細胞を個々の状態に分離した後、トリパンブルー染色を行うことによって、生細胞数を計測したところ、培養開始時には2.0×10個であった細胞数が、培養後は9.7×10個に増加したことが確認された。また、別に用意しておいた2枚の細胞培養基材(A−1及びA−2)を細胞培養ディッシュ内に入れて37℃で静置しておき、そこにあらかじめ37℃で保持しておいた上記の培地を添加し、37℃で1週間保持した。その後細胞培養基材(A−1)は細胞培養ディッシュから取り出し、また細胞培養基材(A−2)はそのまま20℃で10分間静置してから取り出した。それぞれの細胞培養基材を乾燥させることにより、含水量を求めたところ、37℃で取り出した細胞培養基材(A−1)は乾燥状態の重量に対して8%であったのに対して、20℃で取り出した細胞培養基材(A−2)は25%であり、静置温度を下げることにより含水量が増加したことが確認された。 The cells were cultured using the cell culture dish containing the cell culture substrate (A) thus obtained. The cells to be cultured were human hepatic epithelial cell-derived cancer cell HepG2 cell line (Dainippon Pharmaceutical Co., Ltd.). The culture is performed using a minimum essential eagle medium (manufactured by SIGMA) containing 10% fetal bovine serum (manufactured by ICN) (containing pyruvic acid (manufactured by ICN) and non-essential amino acids (manufactured by ICN) as additives). This was carried out in a 37 ° C. incubator containing 5% carbon dioxide. Two dishes containing the cell culture substrate (A) were prepared and seeded simultaneously under the same conditions. One week after seeding, one dish containing the cell culture substrate (A) was left in a constant temperature bath at 20 ° C. for 5 minutes, and the surface was observed with an optical microscope. It was confirmed that it adhered on the culture substrate (A) and sufficiently proliferated. The cell culture substrate (A) was removed from the dish containing the other cell culture substrate (A), and the fetal bovine serum that had been kept at 20 ° C. It was transferred to a tissue culture dish containing a minimum essential eagle medium containing 1%. The cells were allowed to stand at 20 ° C. for 10 minutes after being covered, and then the cells grown on the cell culture substrate (A) were picked with forceps to separate the cells from the cell culture substrate (A). At this time, the cell culture substrate (A) was not damaged at all, and no adherent was observed on the separated cells. The extracted cells were treated with trypsin-EDTA to separate each cell into individual states, and then subjected to trypan blue staining to measure the number of viable cells. It was confirmed that the number of cells, which was 6 , increased to 9.7 × 10 7 after culturing. In addition, two separately prepared cell culture substrates (A-1 and A-2) are placed in a cell culture dish and allowed to stand at 37 ° C., and then kept at 37 ° C. in advance. The above medium was added and kept at 37 ° C. for 1 week. Thereafter, the cell culture substrate (A-1) was removed from the cell culture dish, and the cell culture substrate (A-2) was allowed to stand at 20 ° C. for 10 minutes and then removed. When the water content was determined by drying each cell culture substrate, the cell culture substrate (A-1) taken out at 37 ° C. was 8% of the dry weight. The cell culture substrate (A-2) taken out at 20 ° C. was 25%, and it was confirmed that the water content was increased by lowering the standing temperature.

(実施例2)
上記実施例1で得られた細胞培養基材(A)を入れた細胞培養ディッシュを用いて、細胞の培養を行った。培養する細胞は、正常ヒト皮膚繊維芽細胞(大日本製薬株式会社製)を使用した。培養は、CS−C培地(大日本製薬株式会社製)を使用して、5%二酸化炭素含有37℃恒温器内で行った。また細胞培養基材(A)を入れたディッシュは2枚用意し、同じ条件で同時に播種を行った。播種してから1週間後、この培養を行った細胞培養基材(A)を入れたディッシュ1枚を20℃恒温槽内に5分間静置してから、表面を光学顕微鏡にて観察したところ、細胞が細胞培養基材(A)上に接着して、また十分に増殖していたことが確認された。この培養を行ったもう1枚の細胞培養基材(A)を入れたディッシュから細胞培養基材(A)を培養した細胞ごと取り出して、あらかじめ20℃に保持しておいたCS−C培地を含む組織培養ディッシュに移し替えた。蓋をしてから20℃で10分間静置後、細胞培養基材(A)上に増殖した細胞をピンセットで摘むことにより、細胞をシート状に細胞培養基材(A)から分離できた。この時、細胞培養基材(A)に何ら損傷はなく、またシート状の細胞にも何ら付着物は見られなかった。この取り出したシート状細胞についてトリプシン−EDTA処理を行うことにより、各細胞を個々の状態に分離した後、トリパンブルー染色を行うことによって、生細胞数を計測したところ、培養開始時には2.5×10個であった細胞数が、培養後は7.2×10個に増加したことが確認された。また、実施例1と同様に含水量の変化を求めたところ、37℃で8%であったものが、20℃では28%と増加したことが確認された。
(Example 2)
Cells were cultured using the cell culture dish containing the cell culture substrate (A) obtained in Example 1 above. Normal human skin fibroblasts (Dainippon Pharmaceutical Co., Ltd.) were used as the cells to be cultured. Culturing was performed in a 37 ° C. incubator containing 5% carbon dioxide using CS-C medium (Dainippon Pharmaceutical Co., Ltd.). Two dishes containing the cell culture substrate (A) were prepared and seeded simultaneously under the same conditions. One week after seeding, one dish containing the cultured cell culture substrate (A) was left in a constant temperature bath at 20 ° C. for 5 minutes, and the surface was observed with an optical microscope. It was confirmed that the cells adhered on the cell culture substrate (A) and proliferated sufficiently. The CS-C medium that has been kept at 20 ° C. is taken out from the dish in which the other cell culture substrate (A) has been cultivated and the cell culture substrate (A) is cultured together. It was transferred to a tissue culture dish containing it. The cells were allowed to stand at 20 ° C. for 10 minutes after being covered, and then the cells grown on the cell culture substrate (A) were picked with forceps to separate the cells from the cell culture substrate (A) in a sheet form. At this time, the cell culture substrate (A) was not damaged at all, and no deposits were observed on the sheet-like cells. The extracted sheet-like cells were treated with trypsin-EDTA to separate each cell into individual states and then subjected to trypan blue staining to measure the number of viable cells. At the start of culture, 2.5 × It was confirmed that the number of cells, which was 10 6 , increased to 7.2 × 10 7 after culturing. Moreover, when the change of the water content was calculated | required similarly to Example 1, what was 8% at 37 degreeC was confirmed that it increased with 28% at 20 degreeC.

(作製例2)
MEAを8.58gを用いる代わりに、MEA5.5g(4.2×10−2モル)とN−イソプロピルアクリルアミド(NIPA:興人株式会社製)1.18g(1.0×10−2モル)との混合物を用いること以外は作製例1と同様にして、含水高分子複合体(C’−2)を調製した。得られた含水高分子複合体は、均一な水膨潤性粘土鉱物と共重合体からなる高分子複合体であり、水膨潤性粘土鉱物などの不均一な凝集は観測されなかった。得られた含水高分子複合体(C’−2)を作製例1と同様にして100℃で真空乾燥を行い、その後さらに精製を行い、透明な乾燥した高分子複合体(C−2)を得た。作製例1と同様に測定したところ、この高分子複合体中の粘土鉱物含有率は12.2%であった。また作成例と同様にして、乾燥した高分子複合体(C−2)の引っ張り試験を行ったところ、弾性率4.8MPa、破断強度4.5MPa、破断伸び700%のタフネス、柔軟性のある高分子複合体であった。
(Production Example 2)
Instead of using 8.58 g of MEA, 5.5 g of MEA (4.2 × 10 −2 mol) and N-isopropylacrylamide (NIPA: manufactured by Kojin Co., Ltd.) 1.18 g (1.0 × 10 −2 mol) A water-containing polymer composite (C′-2) was prepared in the same manner as in Production Example 1 except that the mixture of was used. The obtained water-containing polymer composite was a polymer composite composed of a uniform water-swellable clay mineral and copolymer, and non-uniform aggregation of the water-swellable clay mineral was not observed. The obtained water-containing polymer composite (C′-2) was vacuum dried at 100 ° C. in the same manner as in Production Example 1, and then further purified to obtain a transparent dried polymer composite (C-2). Obtained. When measured in the same manner as in Production Example 1, the clay mineral content in the polymer composite was 12.2%. Further, when a tensile test was performed on the dried polymer composite (C-2) in the same manner as in the preparation example, the elastic modulus was 4.8 MPa, the breaking strength was 4.5 MPa, the breaking elongation was 700% toughness, and there was flexibility. It was a polymer composite.

(実施例3及び実施例4)
上記作製例2で得られた高分子複合体(C−2)を、直径8cmの大きさに切断し、細胞培養基材(B)とした。それを細胞培養用ディッシュ(ベクトン・ディッキンソン・ラブウェア社製「ファルコン3003」)の中に移し替えてから蓋をして37℃で静置した。なお、これらの操作は、すべてクリーンベンチ内で行った。
(Example 3 and Example 4)
The polymer composite (C-2) obtained in Production Example 2 was cut to a size of 8 cm in diameter to obtain a cell culture substrate (B). It was transferred into a dish for cell culture (“Falcon 3003” manufactured by Becton Dickinson Labware), covered, and allowed to stand at 37 ° C. All these operations were performed in a clean bench.

実施例1及び実施例2と同様にして、細胞培養基材(B)を用いて細胞の培養を行った。細胞はヒト肝ガン細胞HepG2細胞株(実施例3)及び正常ヒト皮膚繊維芽細胞(実施例4)を用いた。それぞれの細胞を播種して1週間後に培養を行った細胞培養基材(B)の表面を光学顕微鏡で観察したところ、細胞が細胞培養基材(B)上に接着して、また十分に増殖していたことが確認された。実施例1及び実施例2と同様の方法で、これらの培養を行ったそれぞれもう1枚の細胞培養基材(B)からの細胞の剥離を行ったところ、実施例3及び実施例4のいずれも細胞を細胞培養基材(B)から分離することが出来た。また実施例1と同様の方法で培養後の各細胞数を計測したところ、培養開始時には2.0×10個(実施例3)、2.5×10個(実施例4)であった細胞数が、それぞれ1.0×10個(実施例3)、8.9×10個(実施例4)に増加したことが確認された。また、実施例1と同様に含水量の変化を求めたところ、実施例3及び実施例4の場合のいずれも37℃で10%であったものが、20℃では60%と増加したことが確認された。 In the same manner as in Example 1 and Example 2, cells were cultured using the cell culture substrate (B). Human hepatoma HepG2 cell line (Example 3) and normal human skin fibroblasts (Example 4) were used as cells. When the surface of the cell culture substrate (B) cultured after 1 week after seeding each cell was observed with an optical microscope, the cells adhered to the cell culture substrate (B) and proliferated sufficiently. Was confirmed. When cells were detached from another cell culture substrate (B) that had been cultured in the same manner as in Example 1 and Example 2, either of Example 3 or Example 4 was used. Were able to separate the cells from the cell culture substrate (B). In addition, when the number of cells after culture was measured by the same method as in Example 1, it was 2.0 × 10 6 cells (Example 3) and 2.5 × 10 6 cells (Example 4) at the start of culture. It was confirmed that the number of cells increased to 1.0 × 10 8 cells (Example 3) and 8.9 × 10 7 cells (Example 4), respectively. Moreover, when the change of the moisture content was calculated | required similarly to Example 1, what was 10% at 37 degreeC in both cases of Example 3 and Example 4 increased to 60% at 20 degreeC. confirmed.

(作製例3)
ラポナイトXLGを添加した後に、N,N‘−メチレンビスアクリルアミド(和光純薬工業株式会社製)を0.084g加えること以外は作製例1と同様にして、含水高分子複合体(C’−3)を得た。得られた含水高分子複合体(C’−3)は均一な固体であり、水膨潤性粘土鉱物などの不均一な凝集は観測されなかった。得られた含水高分子複合体(C’−3)を作製例1と同様にして100℃で真空乾燥を行い、その後さらに精製を行って、透明な乾燥した高分子複合体(C−3)を得た。作製例1と同様にしてこの乾燥した高分子複合体(C−3)の引っ張り試験を行ったところ、弾性率3.8MPa、破断強度1.8MPa、破断伸び400%の高い弾性率と破断伸びを示した。
(Production Example 3)
A hydrous polymer composite (C′-3) was prepared in the same manner as in Production Example 1 except that 0.084 g of N, N′-methylenebisacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) was added after adding Laponite XLG. ) The obtained water-containing polymer composite (C′-3) was a uniform solid, and nonuniform aggregation such as a water-swellable clay mineral was not observed. The obtained water-containing polymer composite (C′-3) was vacuum-dried at 100 ° C. in the same manner as in Production Example 1, and then further purified to obtain a transparent and dry polymer composite (C-3). Got. A tensile test of this dried polymer composite (C-3) was conducted in the same manner as in Preparation Example 1. As a result, a high elastic modulus and elongation at break of elastic modulus of 3.8 MPa, breaking strength of 1.8 MPa, and breaking elongation of 400% were obtained. showed that.

(実施例5)
上記作製例3で得られた高分子複合体(C−3)を直径8cmの大きさに切断し、細胞培養基材(C)とした。それを細胞培養用ディッシュ(ベクトン・ディッキンソン・ラブウェア社製「ファルコン3003」)の中に移し替えてから蓋をして37℃で静置した。なお、これらの操作は、すべてクリーンベンチ内で行った。
(Example 5)
The polymer composite (C-3) obtained in Production Example 3 was cut into a size of 8 cm in diameter to obtain a cell culture substrate (C). It was transferred into a dish for cell culture (“Falcon 3003” manufactured by Becton Dickinson Labware), covered, and allowed to stand at 37 ° C. All these operations were performed in a clean bench.

実施例2と同様にして、細胞培養基材(C)を用いて、正常ヒト繊維芽細胞の培養を行った。細胞を播種して1週間後に、培養を行った細胞培養基材(C)の表面を光学顕微鏡で観察したところ、細胞が細胞培養基材(C)上に接着して、また十分に増殖していたことが確認された。実施例2と同様の方法で、この培養を行ったもう1枚の細胞培養基材(C)からの細胞の剥離を行ったところ、培養後の細胞を細胞培養基材(D)から分離することが出来た。また実施例1と同様の方法で培養後の各細胞数を計測したところ、培養開始時には2.5×10個であった細胞数が、9.2×10個に増加したことが確認された。また、実施例1と同様に含水量の変化を求めたところ、37℃で8%であったものが、20℃では28%と増加したことが確認された。 In the same manner as in Example 2, normal human fibroblasts were cultured using the cell culture substrate (C). One week after seeding the cells, the surface of the cultured cell culture substrate (C) was observed with an optical microscope. The cells adhered to the cell culture substrate (C) and proliferated sufficiently. It was confirmed that it was. When cells were detached from another cell culture substrate (C) that had been cultured in the same manner as in Example 2, the cultured cells were separated from the cell culture substrate (D). I was able to. Further, when the number of cells after culture was measured by the same method as in Example 1, it was confirmed that the number of cells which was 2.5 × 10 6 at the start of the culture increased to 9.2 × 10 7. It was done. Moreover, when the change of the water content was calculated | required similarly to Example 1, what was 8% at 37 degreeC was confirmed that it increased with 28% at 20 degreeC.

(作製例4)
上記作製例1で得られた乾燥した高分子複合体(C−1)を、作製例1に記載した引っ張り試験と同様の方法で元の長さの30倍まで一軸延伸を行い、高分子複合体延伸物を調製した。高分子複合体延伸物を調製時の残留歪みは110%であった。
(Production Example 4)
The dried polymer composite (C-1) obtained in Preparation Example 1 is uniaxially stretched up to 30 times the original length in the same manner as the tensile test described in Preparation Example 1, and polymer composite A stretched body was prepared. The residual strain at the time of preparing the polymer composite stretched product was 110%.

(実施例6)
上記作製例4で得られた高分子複合体延伸物を直径8cmの大きさに切断し、細胞培養基材(D)とした。それを細胞培養用ディッシュ(ベクトン・ディッキンソン・ラブウェア社製「ファルコン3003」)の中に移し替えてから蓋をして37℃で静置した。なお、これらの操作は、すべてクリーンベンチ内で行った。
(Example 6)
The polymer composite stretched product obtained in Production Example 4 was cut into a size of 8 cm in diameter to obtain a cell culture substrate (D). It was transferred into a dish for cell culture (“Falcon 3003” manufactured by Becton Dickinson Labware), covered, and allowed to stand at 37 ° C. All these operations were performed in a clean bench.

実施例2と同様にして、細胞培養基材(D)を用いて、正常ヒト繊維芽細胞の培養を行った。細胞を播種して1週間後に、培養を行った細胞培養基材(D)の表面を光学顕微鏡で観察したところ、細胞が細胞培養基材(D)上に接着して、また十分に増殖していたことが確認された。実施例2と同様の方法で、この培養を行ったもう1枚の細胞培養基材(D)からの細胞の剥離を行ったところ、培養後の細胞を細胞培養基材(D)から分離することが出来た。また実施例1と同様の方法で培養後の各細胞数を計測したところ、培養開始時には2.5×10個であった細胞数が、8.0×10個に増加したことが確認された。また、実施例1と同様に含水量の変化を求めたところ、37℃で8%であったものが、20℃では29%と増加したことが確認された。 In the same manner as in Example 2, normal human fibroblasts were cultured using the cell culture substrate (D). One week after seeding the cells, the surface of the cultured cell culture substrate (D) was observed with an optical microscope. The cells adhered to the cell culture substrate (D) and proliferated sufficiently. It was confirmed that it was. When the cells were detached from the other cell culture substrate (D) that had been cultured in the same manner as in Example 2, the cultured cells were separated from the cell culture substrate (D). I was able to. Moreover, when the number of each cell after culture | cultivation was measured by the method similar to Example 1, it confirmed that the cell number which was 2.5 * 10 < 6 > at the time of culture | cultivation increased to 8.0 * 10 < 7 >. It was done. Moreover, when the change of the water content was calculated | required similarly to Example 1, what was 8% at 37 degreeC was confirmed that it increased with 29% at 20 degreeC.

(比較例1)
水膨潤性粘土鉱物を用いないこと以外は作製例1と同様にして、20℃で20時間重合を行ったところ、白濁した固体の重合物が得られた。この重合物は柔らかいが非常に脆く、またポリスチレン製容器との付着性が強く、ポリスチレン製容器から取り出そうとしたところ、剥離が困難であり、剥離に伴いすぐに破壊された。さらに細かく破壊された重合物を用いて実施例1と同様の方法で精製後、細胞培養用ディッシュに移し替えて、細胞の培養を行ったところ、細胞は重合物には全く接着せず、細胞を培養することは出来なかった。
(Comparative Example 1)
Polymerization was carried out at 20 ° C. for 20 hours in the same manner as in Production Example 1 except that no water-swellable clay mineral was used, and a cloudy solid polymer was obtained. This polymer was soft but very fragile, and had strong adhesion to a polystyrene container, and when it was attempted to be removed from the polystyrene container, it was difficult to peel off, and it was immediately destroyed upon peeling. Further, the polymer was further finely disrupted and purified in the same manner as in Example 1, then transferred to a cell culture dish and cultured, and the cells did not adhere to the polymer at all. Could not be cultured.

(比較例2)
水膨潤性粘土鉱物を用いないこと、MEAを添加した後、有機架橋材としてN,N‘−メチレンビスアクリルアミドをMEAの3モル%添加する以外は作製例1と同様にして、20℃で20時間重合を行ってPMEAの有機架橋物を得た。このPMEAの有機架橋物は白濁した非常に脆いゲルであり、またポリスチレン製容器との付着性が強く、ポリスチレン製容器から取り出そうとしたところ、剥離が困難であり、剥離に伴いすぐに破壊された。さらに細かく破壊されたPMEAの有機架橋物を用いて実施例1と同様の方法で精製後、細胞培養用ディッシュに移し替えて、細胞の培養を行ったところ、細胞はPMEAの有機架橋物には全く接着せず、細胞を培養することは出来なかった。
(Comparative Example 2)
20 ° C. at 20 ° C. in the same manner as in Preparation Example 1 except that no water-swelling clay mineral is used, MEA is added, and N, N′-methylenebisacrylamide is added as an organic crosslinking agent at 3 mol% of MEA. Polymerization with time was performed to obtain an organic crosslinked product of PMEA. This organic cross-linked product of PMEA is a cloudy and very brittle gel, and has strong adhesion to a polystyrene container, and when it was attempted to be removed from the polystyrene container, it was difficult to peel off, and it was destroyed immediately after peeling. . Furthermore, after refine | purifying by the method similar to Example 1 using the finely destroyed organic cross-linked product of PMEA, it was transferred to a dish for cell culture, and the cells were cultured. The cells were classified into the organic cross-linked product of PMEA. The cells did not adhere at all, and the cells could not be cultured.

Claims (8)

水溶性(メタ)アクリル酸エステル(a)を単量体として用いた重合体(A)中に、水膨潤性粘土鉱物(B)が微分散している高分子複合体(C)を用いたことを特徴とする細胞培養基材。 A polymer composite (C) in which a water-swellable clay mineral (B) is finely dispersed in a polymer (A) using a water-soluble (meth) acrylic acid ester (a) as a monomer is used. A cell culture substrate characterized by the above. 前記重合体(A)が、単量体として、更に、(メタ)アクリルアミド及びN−置換(メタ)アクリルアミドから選択される1種以上(b)を用いた重合体である請求項1記載の細胞培養基材。 The cell according to claim 1, wherein the polymer (A) is a polymer using one or more (b) selected from (meth) acrylamide and N-substituted (meth) acrylamide as a monomer. Culture substrate. 前記重合体(A)が、前記水溶性(メタ)アクリル酸エステル(a)と、前記(メタ)アクリルアミド及びN−置換(メタ)アクリルアミドから選択される1種以上(b)とを、モル比((b)/(a))が1以下となるように反応させた重合体である請求項2記載の細胞培養基材。 The polymer (A) is a molar ratio of the water-soluble (meth) acrylic acid ester (a) and one or more (b) selected from the (meth) acrylamide and N-substituted (meth) acrylamide. The cell culture substrate according to claim 2, which is a polymer reacted so that ((b) / (a)) is 1 or less. 前記高分子複合体(C)中の前記水膨潤性粘土鉱物(B)と前記重合体(A)の質量比((B)/(A))が、0.003〜3である請求項1、2又は3のいずれかに記載の細胞培養基材。 The mass ratio ((B) / (A)) of the water-swellable clay mineral (B) and the polymer (A) in the polymer composite (C) is 0.003 to 3. The cell culture substrate according to any one of 2 and 3. 前記水溶性(メタ)アクリル酸エステル(a)が、メトキシエチルアクリレート、エトキシエチルアクリレート、メトキシエチルメタクリレート及びエトキシエチルメタクリレートから選択される少なくとも1種のモノマーである請求項1、2、3又は4のいずれかに記載の細胞培養基材。 The water-soluble (meth) acrylic acid ester (a) is at least one monomer selected from methoxyethyl acrylate, ethoxyethyl acrylate, methoxyethyl methacrylate and ethoxyethyl methacrylate. The cell culture substrate according to any one of the above. 前記高分子複合体(C)の延伸物を用いた請求項1、2、3、4又は5のいずれかに記載の細胞培養基材。 The cell culture substrate according to any one of claims 1, 2, 3, 4 and 5, wherein a stretched product of the polymer composite (C) is used. 前記高分子複合体(C)が、温度変化により細胞接着性と細胞非接着性が可逆的に変化する請求項1、2、3、4、5又は6のいずれかに記載の細胞培養基材。 The cell culture substrate according to any one of claims 1, 2, 3, 4, 5 and 6, wherein the polymer complex (C) reversibly changes cell adhesion and cell non-adhesiveness due to a temperature change. . 請求項1〜7のいずれかに記載の細胞培養基材を使用して、該細胞培養基材が細胞接着性を示す温度条件下で細胞を培養した後、該細胞培養基材の温度を下げ、該細胞培養基材が細胞非接着性を示す温度とすることにより、培養した該細胞を該細胞培養基材から分離することを特徴とする細胞培養方法。 The cell culture substrate according to any one of claims 1 to 7, wherein the cell culture substrate is cultured under temperature conditions where the cell culture substrate exhibits cell adhesion, and then the temperature of the cell culture substrate is lowered. A cell culture method comprising separating the cultured cells from the cell culture substrate by setting the cell culture substrate to a temperature at which the cell culture substrate exhibits cell non-adhesiveness.
JP2007081389A 2007-03-27 2007-03-27 Base medium and method for cell culture Pending JP2008237088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081389A JP2008237088A (en) 2007-03-27 2007-03-27 Base medium and method for cell culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081389A JP2008237088A (en) 2007-03-27 2007-03-27 Base medium and method for cell culture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013129572A Division JP2013176402A (en) 2013-06-20 2013-06-20 Cell culture substrate and cell culture method

Publications (1)

Publication Number Publication Date
JP2008237088A true JP2008237088A (en) 2008-10-09

Family

ID=39909176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081389A Pending JP2008237088A (en) 2007-03-27 2007-03-27 Base medium and method for cell culture

Country Status (1)

Country Link
JP (1) JP2008237088A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150931A1 (en) 2008-06-12 2009-12-17 財団法人川村理化学研究所 Organic-inorganic complex dispersion, cell culture substratum manufactured by using the dispersion, and manufacturing methods for same
JP2012254054A (en) * 2011-06-10 2012-12-27 Kawamura Institute Of Chemical Research Method for culturing embryonic stem cell and cultured embryonic stem cell
JP2013055907A (en) * 2011-09-08 2013-03-28 Kawamura Institute Of Chemical Research Selective culture method of adhesive cell from blood-originated mononuclear cell group
JP2013099282A (en) * 2011-11-08 2013-05-23 Dainippon Printing Co Ltd Cell culture container and cultured cell recovery method
JP2014233245A (en) * 2013-05-31 2014-12-15 大日本印刷株式会社 Cell culturing method, and microcarrier used for the same
JP2015159778A (en) * 2014-02-28 2015-09-07 日本バイリーン株式会社 Cell cultivation carrier for optical measurement, well plate for optical measurement and method for optically measuring cells
JP2015527075A (en) * 2012-09-06 2015-09-17 プルリステム リミテッド Devices and methods for cell culture
WO2015146559A1 (en) * 2014-03-27 2015-10-01 テルモ株式会社 Cell culture instrument for producing sheet-shaped cell culture and method for producing sheet-shaped cell culture using same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213311A (en) * 1990-11-27 1992-08-04 Fuji Photo Film Co Ltd Copolymer of propenamide derivative with nonionic monomer and its use
JPH07118144A (en) * 1993-10-19 1995-05-09 Nitto Denko Corp Heat-sensitive hydrogel and medical external material using the same
JPH10175919A (en) * 1996-12-18 1998-06-30 Daicel Chem Ind Ltd Production of tetrahydrobenzyl (meth)acrylate
JP2002121230A (en) * 2000-10-19 2002-04-23 National Institute Of Advanced Industrial & Technology Temperature-sensitive polymer material having low viscosity at high temperature and high viscosity at low temperature
JP2002191353A (en) * 2000-10-17 2002-07-09 Sanyo Chem Ind Ltd Cell culture support and method for producing the same
JP2002347107A (en) * 2001-05-22 2002-12-04 Inst Of Physical & Chemical Res Stretched film and cell culture base material using the same
WO2004003130A1 (en) * 2002-06-28 2004-01-08 Chemical Biology Institute Chitosan/acidic biopolymer hybrid fiber and culture base for animal cells
JP2004262976A (en) * 2003-02-17 2004-09-24 Kawamura Inst Of Chem Res Polymer gel composite and production method therefor
JP2005027532A (en) * 2003-07-09 2005-02-03 Fuji Xerox Co Ltd Cell culture base material and method for producing the same, and method for culturing cell
JP2005232402A (en) * 2004-02-23 2005-09-02 Kawamura Inst Of Chem Res Polymer composite, its stretched product and process for producing polymer composite
WO2006015659A2 (en) * 2004-08-06 2006-02-16 Henkel Kommanditgesellschaft Auf Aktien Bonding agent and nanoparticles with barrier properties
JP2006217878A (en) * 2005-02-14 2006-08-24 Fuji Photo Film Co Ltd Cell culture carrier
JP2006288251A (en) * 2005-04-08 2006-10-26 Kawamura Inst Of Chem Res Cell culture substrate and method for culturing cell

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213311A (en) * 1990-11-27 1992-08-04 Fuji Photo Film Co Ltd Copolymer of propenamide derivative with nonionic monomer and its use
JPH07118144A (en) * 1993-10-19 1995-05-09 Nitto Denko Corp Heat-sensitive hydrogel and medical external material using the same
JPH10175919A (en) * 1996-12-18 1998-06-30 Daicel Chem Ind Ltd Production of tetrahydrobenzyl (meth)acrylate
JP2002191353A (en) * 2000-10-17 2002-07-09 Sanyo Chem Ind Ltd Cell culture support and method for producing the same
JP2002121230A (en) * 2000-10-19 2002-04-23 National Institute Of Advanced Industrial & Technology Temperature-sensitive polymer material having low viscosity at high temperature and high viscosity at low temperature
JP2002347107A (en) * 2001-05-22 2002-12-04 Inst Of Physical & Chemical Res Stretched film and cell culture base material using the same
WO2004003130A1 (en) * 2002-06-28 2004-01-08 Chemical Biology Institute Chitosan/acidic biopolymer hybrid fiber and culture base for animal cells
JP2004262976A (en) * 2003-02-17 2004-09-24 Kawamura Inst Of Chem Res Polymer gel composite and production method therefor
JP2005027532A (en) * 2003-07-09 2005-02-03 Fuji Xerox Co Ltd Cell culture base material and method for producing the same, and method for culturing cell
JP2005232402A (en) * 2004-02-23 2005-09-02 Kawamura Inst Of Chem Res Polymer composite, its stretched product and process for producing polymer composite
WO2006015659A2 (en) * 2004-08-06 2006-02-16 Henkel Kommanditgesellschaft Auf Aktien Bonding agent and nanoparticles with barrier properties
JP2006217878A (en) * 2005-02-14 2006-08-24 Fuji Photo Film Co Ltd Cell culture carrier
JP2006288251A (en) * 2005-04-08 2006-10-26 Kawamura Inst Of Chem Res Cell culture substrate and method for culturing cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150931A1 (en) 2008-06-12 2009-12-17 財団法人川村理化学研究所 Organic-inorganic complex dispersion, cell culture substratum manufactured by using the dispersion, and manufacturing methods for same
US8530564B2 (en) 2008-06-12 2013-09-10 Kawamura Institute Of Chemical Research Organic-inorganic composite dispersion, cell culture substrate manufactured using the same, and methods for preparing the same
JP2012254054A (en) * 2011-06-10 2012-12-27 Kawamura Institute Of Chemical Research Method for culturing embryonic stem cell and cultured embryonic stem cell
JP2013055907A (en) * 2011-09-08 2013-03-28 Kawamura Institute Of Chemical Research Selective culture method of adhesive cell from blood-originated mononuclear cell group
JP2013099282A (en) * 2011-11-08 2013-05-23 Dainippon Printing Co Ltd Cell culture container and cultured cell recovery method
JP2015527075A (en) * 2012-09-06 2015-09-17 プルリステム リミテッド Devices and methods for cell culture
US9512393B2 (en) 2012-09-06 2016-12-06 Pluristem Ltd. Devices and methods for culture of cells
JP2014233245A (en) * 2013-05-31 2014-12-15 大日本印刷株式会社 Cell culturing method, and microcarrier used for the same
JP2015159778A (en) * 2014-02-28 2015-09-07 日本バイリーン株式会社 Cell cultivation carrier for optical measurement, well plate for optical measurement and method for optically measuring cells
WO2015146559A1 (en) * 2014-03-27 2015-10-01 テルモ株式会社 Cell culture instrument for producing sheet-shaped cell culture and method for producing sheet-shaped cell culture using same
JPWO2015146559A1 (en) * 2014-03-27 2017-04-13 テルモ株式会社 Cell culture instrument for producing sheet cell culture and method for producing sheet cell culture using the same

Similar Documents

Publication Publication Date Title
US7993892B2 (en) Production of organic/inorganic composite hydrogel
US8530564B2 (en) Organic-inorganic composite dispersion, cell culture substrate manufactured using the same, and methods for preparing the same
JP2008237088A (en) Base medium and method for cell culture
US8557583B2 (en) Cell culture support and manufacture thereof
KR102469649B1 (en) cell culture substrate
JP6497677B2 (en) Block copolymer, surface treatment agent, membrane thereof, and cell culture substrate coated with the same
JP5880181B2 (en) Organic inorganic composite hydrogel
JP2017025335A (en) Temperature responsive substrate, method of producing the same, and evaluation method therefor
JP2005232402A (en) Polymer composite, its stretched product and process for producing polymer composite
JP5349728B2 (en) Cell culture substrate and cell culture method
JP2006271252A (en) Substrate for cell culture and method for cell culture
JP4430123B1 (en) Cell culture substrate and method for producing the same
JP2006288251A (en) Cell culture substrate and method for culturing cell
JP4979199B2 (en) Cell culture substrate and cell culture method
JP6024796B2 (en) Cell culture substrate and cell culture method
JP2006288217A (en) Cell culture substrate and cell culture method
EP2574664B1 (en) Method for preparation a thermosensitive coating substrate, the substrate with a thermosensitive coating and its application
JP2006280206A (en) Substrate for cell culture and method for cell culture
JP2013176402A (en) Cell culture substrate and cell culture method
JP7271870B2 (en) Substrate for culture of pluripotent stem cells and method for producing pluripotent stem cells
Delmar-Greenberg et al. Polymer Surface Modification for Cell Adhesion
Shahhosseini et al. Nanometric grafting of poly (N-isopropylacrylamide) onto polystyrene film by different doses of gamma radiation
Barrett et al. Role of surface chemistry and topology of chemoselectively tailored embossed films on shear adhesion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130627

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130710

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130710

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016