JP2012231788A - Cultural base material of bone marrow-derived cell, culture method, and culture bone marrow-derived cell - Google Patents

Cultural base material of bone marrow-derived cell, culture method, and culture bone marrow-derived cell Download PDF

Info

Publication number
JP2012231788A
JP2012231788A JP2012095547A JP2012095547A JP2012231788A JP 2012231788 A JP2012231788 A JP 2012231788A JP 2012095547 A JP2012095547 A JP 2012095547A JP 2012095547 A JP2012095547 A JP 2012095547A JP 2012231788 A JP2012231788 A JP 2012231788A
Authority
JP
Japan
Prior art keywords
bone marrow
cells
polymer
water
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012095547A
Other languages
Japanese (ja)
Other versions
JP5935477B2 (en
Inventor
Tetsuo Takada
哲生 高田
Kazutoshi Haraguchi
和敏 原口
Isao Sakaida
功 坂井田
Taro Takami
太郎 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Yamaguchi University NUC
Original Assignee
Kawamura Institute of Chemical Research
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Yamaguchi University NUC filed Critical Kawamura Institute of Chemical Research
Priority to JP2012095547A priority Critical patent/JP5935477B2/en
Publication of JP2012231788A publication Critical patent/JP2012231788A/en
Application granted granted Critical
Publication of JP5935477B2 publication Critical patent/JP5935477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Clinical Laboratory Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cultural base material of a bone marrow-derived cell which controls the adhesion between a surface of the cultural base material and the bone marrow-derived cell, and has high culture (proliferation) ability and high peelability by a low temperature treatment after culturing, a culture method of the bone marrow-derived cell, and the culture bone marrow-derived cell.SOLUTION: The cell culture base material for culturing the bone marrow-derived cell contains a polymer (A) of a methoxyethyl acrylate (a), and one or more inorganic materials (C) selected from a water-swellable clay mineral and silica.

Description

本発明は、骨髄由来細胞を培養するための細胞培養基材であって、水溶性(メタ)アクリル酸エステル(a)の重合体(A)と無機材料(C)とを含有する細胞培養基材、骨髄由来細胞の培養方法、及びそれによって得られる培養骨髄由来細胞に関する。   The present invention is a cell culture substrate for culturing bone marrow-derived cells, which contains a water-soluble (meth) acrylic acid ester (a) polymer (A) and an inorganic material (C). The present invention relates to a material, a method for culturing bone marrow-derived cells, and cultured bone marrow-derived cells obtained thereby.

従来、動物組織等の細胞培養基材としては、主にプラスチック(例えばポリスチレン)製容器が使用されてきた。これら容器は、細胞培養を有効に行うために、その表面にプラズマ処理や、シリコンや細胞接着因子等のコーティングなどの表面処理が施されている。これら細胞培養容器の培養性が細胞の種類により異なる。例えば骨髄由来間葉系細胞の場合、細胞の増殖が非常に遅く、特に培地中に血清を入れない場合、細胞が殆ど増殖しない。一方、増殖できる細胞例えば線維芽細胞などについては、培養(増殖)した細胞が容器表面に接着しており、細胞を単離・回収するためには、トリプシン等のタンパク質加水分解酵素や化学薬品、物理的操作を用いて、容器表面から剥離する必要があった。このような酵素や化学薬品、物理的操作により細胞を剥離する操作は、細胞と基材の結合部分が切断されるだけではなく、細胞同士の結合も切断されるため、細胞を増殖している形状(例えばシート状)のままで取り出すことができなかったり、細胞の基底タンパクがダメージを受けたりして、予期せぬ細胞の性質変化を引き起こす可能性があった。   Conventionally, plastic (for example, polystyrene) containers have been mainly used as cell culture substrates for animal tissues and the like. These containers are subjected to surface treatment such as plasma treatment or coating of silicon, cell adhesion factor or the like in order to effectively perform cell culture. The culture properties of these cell culture containers vary depending on the cell type. For example, in the case of bone marrow-derived mesenchymal cells, the growth of the cells is very slow. Especially, when the serum is not put in the medium, the cells hardly grow. On the other hand, for cells that can proliferate, such as fibroblasts, cultured (proliferated) cells adhere to the surface of the container, and in order to isolate and recover the cells, protein hydrolases such as trypsin, chemicals, It was necessary to peel from the container surface using physical manipulation. The operation of peeling cells by such enzymes, chemicals, and physical operations not only cuts the binding part of the cell and the base material, but also cuts the bond between cells, so that the cell is proliferating. It could not be removed in the form (for example, in the form of a sheet) or the basal protein of the cell was damaged, which could cause unexpected cell property changes.

近年、細胞培養容器の表面にポリN−置換(メタ)アクリルアミドのような下限臨界溶解温度(LCST)を有するポリマーを極薄く被覆した基材を使用して、細胞培養温度ではポリマーが疎水性状態を示し細胞がポリマーに接着し、培養後にポリマーを低温処理して親水性状態にすることにより、細胞とポリマーとの接着性を低下させ、細胞を加水分解酵素や化学薬品を使用せずに基材から細胞をシート状に剥離する技術が報告されている(例えば特許文献1及び2、非特許文献1参照)。   In recent years, the surface of a cell culture vessel is coated with a polymer having a low critical solution temperature (LCST) such as poly N-substituted (meth) acrylamide, and the polymer is in a hydrophobic state at the cell culture temperature. The cells adhere to the polymer, and after culturing, the polymer is treated at a low temperature to make it hydrophilic, thereby reducing the adhesion between the cell and the polymer, and the cell can be used without hydrolase or chemicals. Techniques for peeling cells from a material into a sheet have been reported (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).

しかし、このような培養基材は放射線(例えばγ線)滅菌処理を行うと、LCSTを有するポリマーの温度応答性が大きく低下してしまい、本来の細胞の剥離しやすさが無くなる問題があった。   However, when such a culture substrate is sterilized by radiation (for example, γ-rays), the temperature responsiveness of the polymer having LCST is greatly reduced, and the original cells are not easily detached. .

一方、(メタ)アクリル酸エステル系モノマー(a)を含むモノマーの重合体(P)と、水膨潤性粘土鉱物(B)とが三次元網目を形成してなる有機無機複合体粒子(X)の分散液を乾燥してなる有機無機複合体(X)の乾燥皮膜を表面に有する細胞培養基材が開示されている(例えば特許文献3参照)。   On the other hand, an organic-inorganic composite particle (X) in which a polymer (P) of a monomer containing a (meth) acrylic acid ester monomer (a) and a water-swellable clay mineral (B) form a three-dimensional network. A cell culture substrate having a dry film of an organic-inorganic composite (X) formed by drying a dispersion of the above on its surface is disclosed (for example, see Patent Document 3).

しかし、上記従来文献においては、骨髄由来細胞の培養及び剥離方法に関する具体的手段は開示されていない。   However, the above-mentioned conventional documents do not disclose specific means relating to a method for culturing and detaching bone marrow-derived cells.

特公平6−104061JP 6-104061 特開平5−192138JP-A-5-192138 特許第4430124Japanese Patent No. 4430124

大和雅之、岡野光夫「ナノバイオテクノロジーの最前線」第6章、P.340−P.347、シーエムシー出版(2003年出版)Masayuki Yamato, Mitsuo Okano, “Frontiers of Nanobiotechnology”, Chapter 6, P.A. 340-P. 347, CMC Publishing (published in 2003)

本発明が解決しようとする課題は、培養基材表面と骨髄由来細胞間の接着力を制御し、高い培養(増殖)性と、培養後の低温処理による高い剥離性を有する骨髄由来細胞の培養基材、骨髄由来細胞の培養方法、及び培養骨髄由来細胞を提供することにある。   The problem to be solved by the present invention is to control the adhesion between the surface of the culture substrate and the bone marrow-derived cells, and to culture bone marrow-derived cells having high culture (proliferation) properties and high detachability by low-temperature treatment after the culture. To provide a base material, a method for culturing bone marrow-derived cells, and cultured bone marrow-derived cells.

本発明者等は、上記課題を解決すべく鋭意研究した結果、水溶性(メタ)アクリル酸エステル(a)の重合体(A)と、無機材料(C)とを含有する細胞培養基材、及び水溶性(メタ)アクリル酸エステル(a)の重合体(A)と、N−置換(メタ)アクリルアミドの重合体(B)と、無機材料(C)とを含有する細胞培養基材の上では、骨髄由来細胞が優れた増殖性を有し、また、上記培養基材を用いた場合、基材表面と細胞間の接着力を低く維持しながら、骨髄由来細胞を培養することができ、更に、培養後低温処理により、骨髄由来細胞を基材表面から容易に剥離できる、骨髄由来細胞の培養方法を見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have found that a cell culture substrate containing a polymer (A) of a water-soluble (meth) acrylic acid ester (a) and an inorganic material (C), And a water-soluble (meth) acrylic acid ester (a) polymer (A), an N-substituted (meth) acrylamide polymer (B), and an inorganic material (C). Then, bone marrow-derived cells have excellent growth properties, and when using the culture substrate, bone marrow-derived cells can be cultured while maintaining low adhesion between the substrate surface and the cells, Furthermore, the inventors have found a method for culturing bone marrow-derived cells that can be easily detached from the substrate surface by low-temperature treatment after culturing, and have completed the present invention.

即ち、本発明は、骨髄由来細胞を培養するための細胞培養基材であって、
水溶性(メタ)アクリル酸エステル(a)の重合体(A)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とを含有することを特徴とする骨髄由来細胞培養用細胞培養基材を提供する。
That is, the present invention is a cell culture substrate for culturing bone marrow-derived cells,
Bone marrow characterized by containing water-soluble (meth) acrylic acid ester (a) polymer (A) and one or more inorganic materials (C) selected from water-swellable clay minerals and silica A cell culture substrate for cell culture is provided.

また、本発明は、更に、N−置換(メタ)アクリルアミドの重合体(B)を含有する上記の骨髄由来細胞培養用細胞培養基材を提供する。   The present invention further provides the above-mentioned cell culture substrate for bone marrow-derived cell culture, which contains a polymer (B) of N-substituted (meth) acrylamide.

また、本発明は、水溶性(メタ)アクリル酸エステル(a)の重合体(A)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とを含有する細胞培養基材の上で、骨髄由来細胞を培養し、次いで培養細胞を基材から剥離することを特徴とする骨髄由来細胞の培養方法であって、
前記重合体(A)と、前記無機材料(C)との質量比((C)/(A))が、0.03〜0.7の範囲にある骨髄由来細胞の培養方法を提供する。
The present invention also provides a cell comprising a polymer (A) of a water-soluble (meth) acrylic acid ester (a), and one or more inorganic materials (C) selected from water-swellable clay minerals and silica. A method for culturing bone marrow-derived cells, comprising culturing bone marrow-derived cells on a culture substrate, and then peeling the cultured cells from the substrate,
Provided is a method for culturing bone marrow-derived cells, wherein the mass ratio ((C) / (A)) between the polymer (A) and the inorganic material (C) is in the range of 0.03 to 0.7.

また、本発明は、前記細胞培養基材が、更に、N−置換(メタ)アクリルアミドの重合体(B)を含有する骨髄由来細胞の培養方法を提供する。   The present invention also provides a method for culturing bone marrow-derived cells, wherein the cell culture substrate further contains a polymer (B) of N-substituted (meth) acrylamide.

本方法では、前記重合体(A)と重合体(B)との質量比((B)/(A))が、0.01〜0.7の範囲にあることが好ましい。   In this method, it is preferable that the mass ratio ((B) / (A)) between the polymer (A) and the polymer (B) is in the range of 0.01 to 0.7.

また、本発明は、前記培養方法で製造された骨髄由来細胞を提供する。   The present invention also provides bone marrow-derived cells produced by the culture method.

本発明の細胞培養基材の最大の特徴は、上記無機材料(C)の構成部分が骨髄由来細胞の増殖を担い、水溶性(メタ)アクリル酸エステル(a)の重合体(A)が細胞に対して低接着性を付与し、更に、N−置換(メタ)アクリルアミドの重合体(B)は温度変化による骨髄由来細胞の剥離を担うことにある。それぞれの部分を骨髄由来細胞の増殖、剥離の状況に応じてそれぞれ単独に調節できることにある。例えば、培養時(37℃)、骨髄由来細胞が培養表面との間弱い接着性を維持しながら、高い増殖能で増殖し、培養終了後、温度を30℃以下に下げることにより(例えば室温)、重合体(B)の部分がより高い親水性を示し、培養表面と細胞間の接着力が更に弱くなり、細胞が容易に剥離することができる。また、水溶性(メタ)アクリル酸エステル(a)の重合体(A)と細胞との間の接着性が十分に弱い場合、重合体(B)を配合しなくても、培地の低温処理で、両者間の接着性が更に弱くなり、骨髄由来細胞を容易に剥離・回収することができる(実施例1、9を参照)。ここでいう骨髄由来細胞とは、ヒトまたはその他の動物の骨髄由来の細胞および不死化骨髄由来細胞のことをいう。   The greatest feature of the cell culture substrate of the present invention is that the constituent part of the inorganic material (C) is responsible for the growth of bone marrow-derived cells, and the polymer (A) of the water-soluble (meth) acrylate (a) is a cell. Furthermore, the polymer (B) of N-substituted (meth) acrylamide is responsible for peeling of bone marrow-derived cells due to temperature change. Each part can be independently adjusted according to the state of proliferation and detachment of bone marrow-derived cells. For example, at the time of culture (37 ° C.), bone marrow-derived cells proliferate with high proliferation ability while maintaining weak adhesion to the culture surface, and after completion of the culture, the temperature is lowered to 30 ° C. or less (for example, room temperature). The polymer (B) part exhibits higher hydrophilicity, the adhesion between the culture surface and the cells is further weakened, and the cells can be easily detached. In addition, when the adhesion between the water-soluble (meth) acrylic acid ester (a) polymer (A) and the cells is sufficiently weak, the medium can be treated at a low temperature without blending the polymer (B). The adhesiveness between the two is further weakened, and bone marrow-derived cells can be easily detached and collected (see Examples 1 and 9). Bone marrow-derived cells as used herein refer to cells derived from bone marrow and immortalized bone marrow derived from humans or other animals.

本発明の細胞培養基材のもう一つの特徴は、培養時動物由来の血清を使用しなくても、骨髄由来細胞に対し、高い増殖性を有し、また、培養後、薬剤(タンパク質分解酵素)を使用することなく、低温処理のみで、培養細胞を容易に基材表面から剥離し、細胞にダメージを与えずに、高い収率で細胞を回収することができることにある。   Another feature of the cell culture substrate of the present invention is that it has high proliferative ability to bone marrow-derived cells without using animal-derived serum during culture. ), The cultured cells can be easily detached from the surface of the substrate only by low-temperature treatment, and the cells can be recovered with high yield without damaging the cells.

重合体(A)は主にイオン結合や水素結合などにより無機材料(C)と相互作用し結合している。この結合力は強く、容易にポリマーと無機材料(C)を引き離すことはできない。   The polymer (A) interacts and bonds with the inorganic material (C) mainly by ionic bonds or hydrogen bonds. This bonding force is strong, and the polymer and the inorganic material (C) cannot be easily separated.

本発明の骨髄由来細胞の培養方法は、細胞と培養表面の間に弱い接着力を維持しながら、高い増殖能を有し、培養した細胞を、薬剤(トリプシン等)を使用することなく、細胞を容易に培養基材表面から剥離、回収できる特徴を有する。   The method for culturing bone marrow-derived cells of the present invention has a high proliferation ability while maintaining a weak adhesive force between the cells and the culture surface, and the cultured cells are treated without using a drug (trypsin or the like). Can be easily peeled and recovered from the surface of the culture substrate.

また、本培養方法に用いられる培養基材は、γ線や電子線などの放射線滅菌が可能である特徴を有する。   In addition, the culture substrate used in the present culture method has a feature that radiation sterilization such as γ rays and electron beams is possible.

モノマー(a)の使用により、骨髄由来細胞の初期接着性を低く維持でき、細胞増殖性と剥離性が良好な細胞培養基材が得られる。また、水溶性(メタ)アクリル酸エステル(a)は、これらの細胞培養基材をポリスチレンなどのプラスチック製基材等の支持体の表面に積層させる場合は、両者間の接着性が強く、製造が簡便にできる特徴も持っている。   By using the monomer (a), the initial adhesion of bone marrow-derived cells can be kept low, and a cell culture substrate having good cell growth and exfoliation properties can be obtained. In addition, the water-soluble (meth) acrylic acid ester (a) is produced when these cell culture substrates are laminated on the surface of a support such as a plastic substrate such as polystyrene, and the adhesion between them is strong. Has the feature that can be easily.

水溶性(メタ)アクリル酸エステル(a)としては、実質的に水に溶解し、重合時に水膨潤性粘土鉱物(B)を微分散しうるものであり、例えばメトキシエチルアクリレート(MEA)、エトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレートなどが挙げられる。本発明の水溶性(メタ)アクリル酸エステル(a)から得られる重合体は、これら(メタ)アクリル酸エステルから選ばれる単独モノマーの重合体または複数モノマーの共重合体を含む。   The water-soluble (meth) acrylic acid ester (a) is substantially soluble in water and can finely disperse the water-swellable clay mineral (B) at the time of polymerization. For example, methoxyethyl acrylate (MEA), ethoxy Examples include ethyl acrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate and the like. The polymer obtained from the water-soluble (meth) acrylic acid ester (a) of the present invention includes a single-monomer polymer or a multi-monomer copolymer selected from these (meth) acrylic acid esters.

また、培養性や物性に影響を及ぼさない程度に、必要に応じてその他の共重合モノマーとして、例えば、スルホン基やカルボキシル基のようなアニオン基を有するアクリル系モノマー、4級アンモニウム基のようなカチオン基を有するアクリル系モノマー、4級アンモニウム基と燐酸基とを持つ両性イオン基を有するアクリル系モノマー、カルボキシル基とアミノ基とをもつアミノ酸残基を有するアクリル系モノマー、糖残基を有するアクリル系モノマー、また、水酸基を有するアクリル系モノマー、更にポリエチレングリコールのような親水性鎖とノニルフェニル基のような疎水基を合わせ持つ両親媒性アクリル系モノマー、N−置換(メタ)アクリルアミド誘導体、N,N−ジ置換(メタ)アクリルアミド誘導体、N,N’−メチレンビスアクリルアミドなどを併用することができる。   In addition, as necessary, other copolymerization monomers, such as acrylic monomers having an anion group such as a sulfone group or a carboxyl group, quaternary ammonium groups, etc., to the extent that does not affect the culture properties and physical properties. An acrylic monomer having a cationic group, an acrylic monomer having a zwitterionic group having a quaternary ammonium group and a phosphate group, an acrylic monomer having an amino acid residue having a carboxyl group and an amino group, and an acrylic having a sugar residue -Based monomers, acrylic monomers having hydroxyl groups, amphiphilic acrylic monomers having a hydrophilic chain such as polyethylene glycol and a hydrophobic group such as nonylphenyl group, N-substituted (meth) acrylamide derivatives, N , N-disubstituted (meth) acrylamide derivatives, N, N′-methylenebi It can be used in combination, such as acrylamide.

N−置換(メタ)アクリルアミド誘導体として、より具体的には、アルキル基の炭素数が1以上のアルキル(メタ)アクリルアミドであり、N−メチルアクリルアミド、N−エチルアクリルアミド、N−シクロプロピルアクリルアミド、N−イソプロピルアクリルアミド、N,N−ジメチルアクリルアミド、N−メチル−N−エチルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N,N−ジエチルアクリルアミド、N−エチル−N−イソプロピルアクリルアミド、N−エチル−N−n−プロピルアクリルアミド、N−アクリロイルピロリディン、N−アクリロイルピペリディン、N−アクリロイルモルフォリン、N−アクリロイルメチルホモピペラジン、N−アクリロイルメチルピペラジンまたはN−メチルメタクリルアミド等が挙げられる。   More specifically, the N-substituted (meth) acrylamide derivative is an alkyl (meth) acrylamide having an alkyl group having 1 or more carbon atoms, such as N-methylacrylamide, N-ethylacrylamide, N-cyclopropylacrylamide, N -Isopropylacrylamide, N, N-dimethylacrylamide, N-methyl-N-ethylacrylamide, N-methyl-N-isopropylacrylamide, N-methyl-Nn-propylacrylamide, N, N-diethylacrylamide, N-ethyl -N-isopropylacrylamide, N-ethyl-Nn-propylacrylamide, N-acryloylpyrrolidine, N-acryloylpiperidine, N-acryloylmorpholine, N-acryloylmethylhomopiperazine, N-acryloyl Etc. chill piperazine or N- methyl methacrylamide.

本発明に用いる無機材料(C)は、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料である。水膨潤性粘土鉱物としては、層状に剥離可能な水膨潤性粘土鉱物が挙げられ、好ましくは水または水と有機溶剤との混合溶液中で膨潤し均一に分散可能な粘土鉱物、特に好ましくは水中で分子状(単一層)またはそれに近いレベルで均一分散可能な無機粘土鉱物が用いられる。具体的にはナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリライト、水膨潤性サポナイト、水膨潤性合成雲母、等が挙げられる。これらの粘土鉱物を混合して用いても良い。   The inorganic material (C) used in the present invention is one or more inorganic materials selected from water-swellable clay minerals and silica. Examples of water-swellable clay minerals include water-swellable clay minerals that can be peeled in layers, preferably clay minerals that can swell and uniformly disperse in water or a mixed solution of water and an organic solvent, particularly preferably water. An inorganic clay mineral that can be uniformly dispersed at a molecular level (single layer) or at a level close thereto is used. Specific examples include water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, and water-swellable synthetic mica. You may mix and use these clay minerals.

本発明に用いるシリカ(SiO)としては、コロイダルシリカが挙げられ、好ましくは水溶液中で均一に分散可能で、粒径が10nm〜500nmのコロイダルシリカ、特に好ましくは粒径が10〜50nmのコロイダルシリカが用いられる。 Examples of the silica (SiO 2 ) used in the present invention include colloidal silica, preferably colloidal silica that can be uniformly dispersed in an aqueous solution and has a particle size of 10 nm to 500 nm, and particularly preferably a colloidal particle having a particle size of 10 to 50 nm. Silica is used.

本発明の細胞培養基材において、水溶性(メタ)アクリル酸エステル(a)の重合体(A)とN−置換(メタ)アクリルアミドの重合体(B)との質量比((B)/(A))が、0.01〜0.7であることが好ましく、0.03〜0.5がより好ましく、0.1〜0.3が特に好ましい。質量比((B)/(A))がこの範囲であると、骨髄由来細胞に対し良好な培養性と高い剥離性を兼ね備えることができ、好ましい。   In the cell culture substrate of the present invention, the mass ratio of the water-soluble (meth) acrylic acid ester (a) polymer (A) to the N-substituted (meth) acrylamide polymer (B) ((B) / ( A)) is preferably 0.01 to 0.7, more preferably 0.03 to 0.5, and particularly preferably 0.1 to 0.3. When the mass ratio ((B) / (A)) is within this range, it is preferable because it can have both good culturing properties and high peelability for bone marrow-derived cells.

また、本発明の細胞培養基材において、重合体(A)と無機材料(C)との質量比((C)/(A))が、0.03〜0.7であることが好ましく、0.05〜0.3がより好ましく、0.07〜0.1が特に好ましい。質量比((C)/(A))がこの範囲であると、骨髄由来細胞に対し良好な培養性と高い剥離性を兼ね備えることができ、好ましい。   In the cell culture substrate of the present invention, the mass ratio ((C) / (A)) of the polymer (A) and the inorganic material (C) is preferably 0.03 to 0.7, 0.05 to 0.3 is more preferable, and 0.07 to 0.1 is particularly preferable. When the mass ratio ((C) / (A)) is within this range, it is preferable because it can have both good culturing properties and high peelability for bone marrow-derived cells.

更に、本発明の細胞培養基材で培養した骨髄由来細胞を、培地温度を30℃以下に下げ、静置して、細胞を自然に剥離させることもできるし、または培地温度を30℃以下に下げた後、以下に列挙した方法と併用して、細胞を容易に剥離させることもできる。
(1)培養容器内の培地を軽く揺らして細胞を剥離させる方法。
(2)ピペットで培地を吸ったり出したりするピペッティング操作で剥離させる方法。
(3)ガラス棒、ピペットの先や、ゴムヘラ等を細胞シートと細胞培養基材間に差し込んで、細胞シートを持ち上げるように剥離させる方法、
(4)ストロー状の器材で吸引しながら剥離させる方法等がある。
Furthermore, the bone marrow-derived cells cultured on the cell culture substrate of the present invention can be allowed to stand by lowering the medium temperature to 30 ° C. or lower, and the cells can be naturally detached, or the medium temperature can be reduced to 30 ° C. or lower. After lowering, the cells can be easily detached by using the methods listed below.
(1) A method of detaching cells by gently shaking the medium in the culture vessel.
(2) A method of peeling by a pipetting operation in which a medium is sucked and taken out with a pipette.
(3) A method in which a glass rod, pipette tip, rubber spatula or the like is inserted between the cell sheet and the cell culture substrate, and the cell sheet is lifted off,
(4) There is a method of peeling while sucking with a straw-like device.

本発明の培養方法で製造された骨髄由来細胞は、トリプシンなどのタンパク質分解酵素を使用しないため、細胞の基底タンパクがダメージを受けず、生体内の細胞形態により近い状態にあり、細胞活性も高く、移植後の定着性や治癒性が高いと考えられる。   Since bone marrow-derived cells produced by the culture method of the present invention do not use a proteolytic enzyme such as trypsin, the basal proteins of the cells are not damaged, are in a state closer to the cell morphology in vivo, and have high cell activity. It is considered that the post-transplant fixation and curability are high.

本発明の培養基材の製造方法は、水溶性(メタ)アクリル酸エステル(a)重合体(A)とN−置換(メタ)アクリルアミドの重合体(B)が、無機材料(C)と相互作用し、有機無機複合体を形成できるものであれば、特に限定されない。例えば、水溶性(メタ)アクリル酸エステル(a)と前記無機材料(C)および重合開始剤(D)とを混合した水媒体(E)を支持体に塗布して、前記水溶性(メタ)アクリル酸エステル(a)を重合させることにより、重合体(A)と前記無機材料(C)との複合体(X)の薄層を形成する製造方法が挙げられる。   In the method for producing a culture substrate of the present invention, a water-soluble (meth) acrylic acid ester (a) polymer (A) and an N-substituted (meth) acrylamide polymer (B) interact with an inorganic material (C). It will not specifically limit if it acts and can form an organic inorganic composite. For example, an aqueous medium (E) in which a water-soluble (meth) acrylic acid ester (a), the inorganic material (C), and a polymerization initiator (D) are mixed is applied to a support, and the water-soluble (meth) The manufacturing method which forms the thin layer of the composite_body | complex (X) of a polymer (A) and the said inorganic material (C) by polymerizing acrylic ester (a) is mentioned.

前記製造方法に用いる水媒体(E)は、モノマー(a)や無機材料(C)などを含むことができ、重合によって、物性のよい有機無機複合体が得られれば良く、特に限定されない。例えば水、または水と混和性を有する溶剤及び/またはその他の化合物を含む水溶液であってよく、その中には更に、必要に応じて防腐剤や抗菌剤、抗生物質、着色料、香料、酵素、たんぱく質、コラーゲン、糖類、アミノ酸類、ペプチド類、DNA類、塩類、水溶性有機溶剤類、界面活性剤、高分子化合物、レベリング剤などを含むことができる。
本発明に用いられる重合開始剤(D)としては、公知のラジカル重合開始剤を適時選択して用いることができる。好ましくは水溶性または水分散性を有し、系全体に均一に含まれるものが好ましく用いられる。具体的には、重合開始剤として、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えばVA−044、V−50、V−501(いずれも和光純薬工業株式会社製)の他、Fe2+と過酸化水素との混合物などが例示される。
The aqueous medium (E) used in the production method can include the monomer (a), the inorganic material (C), and the like, and is not particularly limited as long as an organic-inorganic composite having good physical properties can be obtained by polymerization. For example, it may be water or an aqueous solution containing a solvent miscible with water and / or other compounds, and further contains antiseptics, antibacterial agents, antibiotics, coloring agents, fragrances, enzymes as necessary. , Proteins, collagen, saccharides, amino acids, peptides, DNAs, salts, water-soluble organic solvents, surfactants, polymer compounds, leveling agents, and the like.
As the polymerization initiator (D) used in the present invention, a known radical polymerization initiator can be appropriately selected and used. Preferably, those having water solubility or water dispersibility and uniformly contained in the entire system are preferably used. Specifically, as a polymerization initiator, a water-soluble peroxide such as potassium peroxodisulfate or ammonium peroxodisulfate, a water-soluble azo compound such as VA-044, V-50, V-501 (all of which are Wako Pure Chemical Industries, Ltd.) In addition to Yaku Kogyo Co., Ltd., a mixture of Fe 2+ and hydrogen peroxide is exemplified.

触媒としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンなどは好ましく用いられる。但し、触媒は必ずしも用いなくてもよい。重合温度は、重合触媒や開始剤の種類に合わせて例えば0℃〜100℃が用いられる。重合時間も数十秒〜数十時間の間で行うことが出来る。   As the catalyst, tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine are preferably used. However, the catalyst is not necessarily used. The polymerization temperature is, for example, 0 ° C. to 100 ° C. according to the type of polymerization catalyst or initiator. The polymerization time can also be carried out for several tens of seconds to several tens of hours.

一方、光重合開始剤は、酸素阻害の影響を受けにくく、重合速度が速いため、重合開始剤(D)として好適に用いられる。具体的には、p−tert−ブチルトリクロロアセトフェノンなどのアセトフェノン類、4,4’−ビスジメチルアミノベンゾフェノンなどのベンゾフェノン類、2−メチルチオキサントンなどのケトン類、ベンゾインメチルエーテルなどのベンゾインエーテル類、ヒドロキシシクロヘキシルフェニルケトンなどのα−ヒドロキシケトン類、メチルベンゾイルホルメートなどのフェニルグリオキシレート類、メタロセン類などが挙げられる。   On the other hand, the photopolymerization initiator is less susceptible to oxygen inhibition and has a high polymerization rate, and therefore is suitably used as the polymerization initiator (D). Specifically, acetophenones such as p-tert-butyltrichloroacetophenone, benzophenones such as 4,4′-bisdimethylaminobenzophenone, ketones such as 2-methylthioxanthone, benzoin ethers such as benzoin methyl ether, hydroxy Examples include α-hydroxy ketones such as cyclohexyl phenyl ketone, phenyl glyoxylates such as methyl benzoyl formate, and metallocenes.

本工程に用いられる光としては、電子線、γ線、X線、紫外線、可視光などを用いることができるが、中でも装置や取り扱いの簡便さやモノマー(b)の重合と同時に架橋を起こさせない観点から紫外線を用いることが好ましい。照射する紫外線の強度は10〜500mW/cmが好ましく、照射時間は一般に0.1秒〜200秒程度である。通常の加熱によるラジカル重合においては、酸素が重合の阻害因子として働くが、本発明では、必ずしも酸素を遮断した雰囲気で溶液の調製および紫外線照射による重合を行う必要がなく、空気雰囲気でこれらを行うことが可能である。但し、紫外線照射を不活性ガス雰囲気下で行うことによって、更に重合速度を速めることが可能で、望ましい場合がある。 As the light used in this step, electron beam, γ-ray, X-ray, ultraviolet ray, visible light, etc. can be used. Among them, the apparatus and handling are easy and the viewpoint of not causing crosslinking simultaneously with polymerization of the monomer (b). It is preferable to use ultraviolet rays. The intensity of the irradiated ultraviolet light is preferably 10 to 500 mW / cm 2 and the irradiation time is generally about 0.1 to 200 seconds. In radical polymerization by normal heating, oxygen works as an inhibitor of polymerization. However, in the present invention, it is not always necessary to prepare a solution in an atmosphere in which oxygen is blocked and to perform polymerization by ultraviolet irradiation, and these are performed in an air atmosphere. It is possible. However, it may be desirable that the polymerization rate can be further increased by performing ultraviolet irradiation in an inert gas atmosphere.

また、本発明の培養基材の第二の製造例としては、水媒体(E)中の前記無機材料(C)の濃度が下記式(1)又は式(2)で表される範囲となるように、前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを水媒体(E)に混合した後、前記モノマー(a)を重合させることにより重合体(A)と前記無機材料(C)との複合体(X)の分散液(L)を製造する第1工程、
前記分散液(L)を基材に塗布し、その後乾燥することにより前記複合体(X)の薄層を形成する第2工程を順次行なうことを特徴とする細胞培養基材の製造方法が挙げられる。
式(1) Ra<0.19のとき
無機材料(C)の濃度(質量%)<12.4Ra+0.05
式(2) Ra≧0.19のとき
無機材料(C)の濃度(質量%)<0.87Ra+2.17
(式中、無機材料(C)の濃度(質量%)は、無機材料(C)の質量を水媒体(E)と無機材料(C)の合計質量で除して100を掛けた数値、Raは無機材料(C)と重合体(A)との質量比((C)/(A))である。)
Moreover, as a second production example of the culture substrate of the present invention, the concentration of the inorganic material (C) in the aqueous medium (E) falls within the range represented by the following formula (1) or formula (2). Thus, after the monomer (a), the inorganic material (C), and the polymerization initiator (D) are mixed in an aqueous medium (E), the monomer (a) is polymerized to polymer (A) and A first step of producing a dispersion (L) of a complex (X) with the inorganic material (C);
A method for producing a cell culture substrate comprising sequentially performing the second step of forming the thin layer of the complex (X) by applying the dispersion (L) to a substrate and then drying the dispersion. It is done.
Formula (1) When Ra <0.19
Concentration (% by mass) of inorganic material (C) <12.4Ra + 0.05
Formula (2) When Ra ≧ 0.19
Concentration (% by mass) of inorganic material (C) <0.87Ra + 2.17
(In the formula, the concentration (mass%) of the inorganic material (C) is a value obtained by dividing the mass of the inorganic material (C) by the total mass of the aqueous medium (E) and the inorganic material (C) and multiplying by 100, Ra Is a mass ratio ((C) / (A)) between the inorganic material (C) and the polymer (A).)

無機材料(C)の水媒体に対する濃度(質量%)は式(1)又は式(2)で表される範囲内であると、良好な複合体(X)の分散液(L)が得られ、支持体への塗布が容易で、平滑で均一な薄い塗膜が得られ、好ましい。   When the concentration (mass%) of the inorganic material (C) with respect to the aqueous medium is within the range represented by the formula (1) or the formula (2), a good dispersion (L) of the composite (X) is obtained. The coating on the support is easy, and a smooth and uniform thin coating is obtained, which is preferable.

本発明の製造方法で製造される分散液(L)は、そのまま使用してもよいし、水洗などによる精製工程を経てから使用してもよい。また該分散液(L)に更にレベリング剤や界面活性剤、ペプチド、たんぱく質、コラーゲン、アミノ酸類、高分子化合物などを添加して使用してもよい。   The dispersion (L) produced by the production method of the present invention may be used as it is, or may be used after undergoing a purification step such as washing with water. Further, a leveling agent, a surfactant, a peptide, a protein, collagen, an amino acid, a polymer compound or the like may be added to the dispersion (L).

以下、実施例により本発明を具体的に説明するが、本発明の範囲がこれらの実施例にのみ限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited only to these Examples.

(実施例1) 重合体(A)と無機材料(C)からなる培養機材(重合体(B)を含まない)例。
[水溶性(メタ)アクリル酸エステル(a)、無機材料(C)、水媒体(E)を含む反応溶液の調製]
メトキシエチルアクリレート3.2g、無機材料(C)として水膨潤性粘土鉱物Laponite XLG(Rockwood Additives Ltd.社製)0.2g、水媒体(E)として水100g、を均一に混合して反応溶液(1)を調製した。
(Example 1) Example of culture equipment (not including polymer (B)) comprising polymer (A) and inorganic material (C).
[Preparation of reaction solution containing water-soluble (meth) acrylic acid ester (a), inorganic material (C), aqueous medium (E)]
A reaction solution (3.2 g of methoxyethyl acrylate, 0.2 g of a water-swellable clay mineral Laponite XLG (manufactured by Rockwood Additives Ltd.) as an inorganic material (C) and 100 g of water as an aqueous medium (E) are uniformly mixed. 1) was prepared.

[重合開始剤(D)を溶媒(F)に溶解させた溶液の調整]
溶媒(F)として、メタノール9.8g、重合開始剤(D)として1−ヒドロキシシクロヘキシルフェニルケトン「イルガキュアー184」(チバガイギー社製)0.2gを、均一に混合して溶液(2)を調製した。
[Preparation of a solution in which the polymerization initiator (D) is dissolved in the solvent (F)]
A solution (2) is prepared by uniformly mixing 9.8 g of methanol as a solvent (F) and 0.2 g of 1-hydroxycyclohexyl phenyl ketone “Irgacure 184” (manufactured by Ciba Geigy) as a polymerization initiator (D). did.

[複合体(X)の分散液(L)の調製(第1工程)]
上記反応溶液(1)全量に、溶液(2)を250μl入れ、均一に分散させた後、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し乳白色の複合体(X)の分散液(L1)を作製した。
[Preparation of dispersion (L) of complex (X) (first step)]
250 μl of the solution (2) is added to the total amount of the reaction solution (1) and dispersed uniformly, and then irradiated with ultraviolet rays having an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 180 seconds, and a milky white complex (X) dispersion liquid (L1) was produced.

この反応系のRa=0.06、無機材料(C)の濃度(質量%)=0.20(%)<12.4Ra+0.05=0.79   Ra = 0.06 in this reaction system, concentration (mass%) of inorganic material (C) = 0.20 (%) <12.4Ra + 0.05 = 0.79

[培養基材(複合体(X)の薄層)の調製(第2工程)]
直径35mmのポリスチレン製シャーレ(IWAKIティッシュカルチャデイッシュ3000−035)に、上記複合体(X)の分散液(L1)を入れ、スピンコーターを用いて3000回転で該分散液をシャーレの表面に薄く塗布した後、80℃の熱風乾燥器中で10分間乾燥させ、次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを40℃、5時間乾燥させて、細胞培養基材1を得た。
[Preparation of culture substrate (thin layer of complex (X)) (second step)]
A dispersion (L1) of the above complex (X) is placed in a polystyrene petri dish (IWAKI tissue culture dish 3000-035) having a diameter of 35 mm, and the dispersion is thinly applied to the surface of the petri dish at 3000 revolutions using a spin coater. After coating, the cell dish is dried for 10 minutes in a hot air dryer at 80 ° C., and then the petri dish is washed with sterilized water, and then the petri dish is dried at 40 ° C. for 5 hours in a sterile bag to obtain the cell culture substrate 1. It was.

[骨髄由来細胞の培養・回収]
上記得られた細胞培養基材1を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、培地DMEM(10%血清含有)を適量入れ、GFP遺伝子組み換えマウス骨髄から採取した単核球を2.0×10個/Dish(3.38cm)播種して、5%二酸化炭素中、37℃で6日間培養を行った。次いで、ディッシュ中の培地及び浮遊している単核球を除いて、予め冷蔵庫で冷やした冷培地を入れ、10分間静置した後、ピペットで培地を吸ったり出したりするピペッティング操作を10回程行ったところ、大部分の骨髄由来細胞が培養基材1の表面から剥離されたことが観察された。自然剥離された骨髄由来細胞を回収し、更にD-PBSと0.25% Trypsin‐EDTAを用いて、ディッシュに残った骨髄由来細胞を剥離回収して、それぞれ回収された細胞の数を計測したところ、低温処理で自然剥離・回収された細胞数は8.6×10個で、Trypsin処理で回収された細胞の数は1.8×10個であった。下記式(5)により低温処理による細胞の回収率を求めたところ、細胞回収率は約82%であった。
式(5) 細胞回収率(%)={低温処理で回収した細胞の数/(低温処理で回収した細胞の数+Trypsin処理で回収した細胞の数)}×100
また、上記培養基材1から回収された骨髄由来細胞の総数(10.4×10個)が、未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035)を用いた場合(2.5×10個)の約4.2倍であった。
[Culture and recovery of bone marrow-derived cells]
Mononuclear cells collected from GFP transgenic mouse bone marrow after sterilizing the obtained cell culture substrate 1 with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.) and adding an appropriate amount of medium DMEM (containing 10% serum) The cells were seeded at 2.0 × 10 6 spheres / Dish (3.38 cm 2 ) and cultured in 5% carbon dioxide at 37 ° C. for 6 days. Next, remove the culture medium in the dish and the suspended mononuclear cells, add a cold culture medium that has been chilled in the refrigerator in advance, leave it for 10 minutes, and then pipette up and down about 10 times with a pipette. As a result, it was observed that most bone marrow-derived cells were detached from the surface of the culture substrate 1. Bone marrow-derived cells that were naturally detached were collected, and further, using D-PBS and 0.25% Trypsin-EDTA, the bone marrow-derived cells remaining in the dish were separated and collected, and the number of each collected cells was measured. The number of cells spontaneously detached and collected by the low-temperature treatment was 8.6 × 10 4 , and the number of cells collected by the Trypsin treatment was 1.8 × 10 4 . When the cell recovery rate by low-temperature treatment was determined by the following formula (5), the cell recovery rate was about 82%.
Formula (5) Cell recovery rate (%) = {number of cells recovered by low-temperature treatment / (number of cells recovered by low-temperature treatment + number of cells recovered by trypsin treatment)} × 100
In addition, the total number of bone marrow-derived cells recovered from the culture substrate 1 (10.4 × 10 4 ) was obtained when an uncoated petri dish (IWAKI tissue culture 3000-035) was used (2.5 × 10 four) was about 4.2 times.

また、上記低温処理による自然剥離及びトリプシン処理で回収された骨髄由来細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。   In addition, it was confirmed that the bone marrow-derived cells collected by the natural detachment by the low-temperature treatment and the trypsin treatment each had a normal cell morphology under a microscope.

この実施例より、重合体(A)と無機材料(C)からなる培養基材(重合体(B)を含まない)が、通常のティッシュカルチャデイッシュに比べ、細胞培養性が高く、また、培養基材表面と細胞間の接着性が低く、低温処理のみで細胞が容易に剥離できることが理解できる。   From this example, the culture substrate (not including the polymer (B)) composed of the polymer (A) and the inorganic material (C) has a higher cell culture property than a normal tissue culture dish, It can be understood that the adhesion between the culture substrate surface and the cells is low, and the cells can be easily detached only by low-temperature treatment.

(実施例2) 重合体(A)、(B)と無機材料(C)からなる培養基材例。
[N−置換(メタ)アクリルアミドの重合体(B)の水溶液の調製]
N―イソプロピルアクリルアミド(株式会社興人製)1.7g、水10g、溶液(2)140μl、を混合した後、該溶液を入れるガラス容器の周りを冷却しながら(約10℃)、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、N-イソプロピルアクリルアミドを重合させた後、更に水を5g添加し、重合体(B)の水溶液(PNIPA2)を調製した。DIGITAL VISCOMATE粘度計(MODEL VM-100A、山一電機株式会社製)を用いてこの溶液の粘度を測定して、粘度は368mPa・sであった。測定時の溶液温度は24.2℃であった。
(Example 2) Example of culture substrate composed of polymers (A), (B) and inorganic material (C).
[Preparation of aqueous solution of polymer (B) of N-substituted (meth) acrylamide]
After mixing 1.7 g of N-isopropylacrylamide (manufactured by Kojin Co., Ltd.), 10 g of water, and 140 μl of the solution (2), the glass container containing the solution is cooled (about 10 ° C.) and ultraviolet light at 365 nm. After irradiating ultraviolet rays having an intensity of 40 mW / cm 2 for 180 seconds to polymerize N-isopropylacrylamide, 5 g of water was further added to prepare an aqueous solution of polymer (B) (PNIPA2). The viscosity of this solution was measured using a DIGITAL VISCOMATE viscometer (MODEL VM-100A, manufactured by Yamaichi Electronics Co., Ltd.), and the viscosity was 368 mPa · s. The solution temperature at the time of measurement was 24.2 ° C.

また、Shodex GPC System−21装置(昭和電工株式会社製)で測定した結果、このポリN―イソプロピルアクリルアミドの重量平均分子量Mwは3.40×10であった。測定時の溶媒として10mmol/LのLiBrを含有するN,N−ジメチルホルムアミド(DMF)溶液を使用した。分子量の計算に使用したポリスチレン標準物質としては、STANDARD SH−75とSM−105キット(昭和電工株式会社製)を使用した。 Moreover, as a result of measuring with Shodex GPC System-21 apparatus (made by Showa Denko KK), the weight average molecular weight Mw of this poly N-isopropylacrylamide was 3.40 * 10 < 6 >. An N, N-dimethylformamide (DMF) solution containing 10 mmol / L LiBr was used as a solvent for the measurement. STANDARD SH-75 and SM-105 kit (manufactured by Showa Denko KK) were used as polystyrene standard substances used for the calculation of molecular weight.

[水溶性(メタ)アクリル酸エステル(a)、無機材料(C)、水媒体(E)を含む反応溶液の調製]
メトキシエチルアクリレート3.2g、無機材料(C)として水膨潤性粘土鉱物Laponite XLG(Rockwood Additives Ltd.社製)0.2g、水媒体(E)として水100g、を均一に混合して反応溶液(2)を調製した。
[Preparation of reaction solution containing water-soluble (meth) acrylic acid ester (a), inorganic material (C), aqueous medium (E)]
A reaction solution (3.2 g of methoxyethyl acrylate, 0.2 g of a water-swellable clay mineral Laponite XLG (manufactured by Rockwood Additives Ltd.) as an inorganic material (C) and 100 g of water as an aqueous medium (E) are uniformly mixed. 2) was prepared.

[複合体(X)の分散液(L)の調製(第1工程)]
上記反応溶液(2)全量に、前記溶液(2)を250μl入れ、均一に分散させた後、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し乳白色の複合体(X)の分散液(L2)を作製した。
[Preparation of dispersion (L) of complex (X) (first step)]
Disperse the milky white complex (X) by adding 250 μl of the above solution (2) to the total amount of the reaction solution (2) and uniformly dispersing it, and then irradiating it with ultraviolet light having an ultraviolet intensity of 365 m at 40 mW / cm 2 for 180 seconds. A liquid (L2) was produced.

この反応系のRa=0.06、無機材料(C)の濃度(質量%)=0.20(%)<12.4Ra+0.05=0.79   Ra = 0.06 in this reaction system, concentration (mass%) of inorganic material (C) = 0.20 (%) <12.4Ra + 0.05 = 0.79

[培養基材(複合体(X)の薄層)の調製(第2工程)]
上記分散液(L2)全量に、N―イソプロピルアクリルアミドの重合体(B)の水溶液(PNIPA2)を7g添加し、均一に混合した後、直径35mmのポリスチレン製シャーレ(IWAKIティッシュカルチャデイッシュ3000−035)に入れ、スピンコーターを用いて3000回転で該分散液をシャーレの表面に薄く塗布した後、80℃の熱風乾燥器中で10分間乾燥させ、次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを40℃、5時間乾燥させて、細胞培養基材2を得た。
[Preparation of culture substrate (thin layer of complex (X)) (second step)]
7 g of an aqueous solution of N-isopropylacrylamide polymer (B) (PNIPA2) was added to the total amount of the dispersion (L2) and mixed uniformly, and then a polystyrene petri dish (IWAKI tissue culture 3000-035 with a diameter of 35 mm) was added. ), Apply the dispersion to the surface of the petri dish at 3000 rpm using a spin coater, dry it in a hot air drier at 80 ° C. for 10 minutes, and then wash the petri dish with sterilized water. The petri dish was dried in a bag at 40 ° C. for 5 hours to obtain a cell culture substrate 2.

[骨髄由来細胞の培養・回収]
上記得られた細胞培養基材2を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、培地DMEM(10%血清含有)を適量入れ、GFP遺伝子組み換えマウス骨髄から採取した単核球を2.0×10個/Dish(3.38cm)播種して、5%二酸化炭素中、37℃で6日間培養を行った。次いで、ディッシュ中の培地及び浮遊している単核球を除いて、予め冷蔵庫で冷やした冷培地を入れ、10分間静置した後、ピペットで培地を吸ったり出したりするピペッティング操作を10回程行ったところ、大部分の骨髄由来細胞が培養基材2の表面から剥離されたことが観察された。自然剥離された骨髄由来細胞を回収し、更にD-PBSと0.25% Trypsin‐EDTAを用いて、ディッシュに残った骨髄由来細胞を剥離回収して、それぞれ回収された細胞の数を計測したところ、低温処理で自然剥離・回収された細胞数12.0×10個で、Trypsin処理で回収された細胞の数は0.7×10個であった。下記式(5)により低温処理による細胞の回収率を求めたところ、細胞回収率は94%であった。
式(5) 細胞回収率(%)={低温処理で回収した細胞の数/(低温処理で回収した細胞の数+Trypsin処理で回収した細胞の数)}×100
また、上記培養基材2から回収された骨髄由来細胞の総数(12.7×10個)が、未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035)(比較例1)を用いた場合(2.5×10個)の約5.1倍であった。
[Culture and recovery of bone marrow-derived cells]
Mononuclear cells collected from the GFP transgenic mouse bone marrow after sterilizing the obtained cell culture substrate 2 with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.) and then adding an appropriate amount of medium DMEM (containing 10% serum) The cells were seeded at 2.0 × 10 6 spheres / Dish (3.38 cm 2 ) and cultured in 5% carbon dioxide at 37 ° C. for 6 days. Next, remove the culture medium in the dish and the suspended mononuclear cells, add a cold culture medium that has been chilled in the refrigerator in advance, leave it for 10 minutes, and then pipette up and down about 10 times with a pipette. As a result, it was observed that most bone marrow-derived cells were detached from the surface of the culture substrate 2. Bone marrow-derived cells that were naturally detached were collected, and further, using D-PBS and 0.25% Trypsin-EDTA, the bone marrow-derived cells remaining in the dish were separated and collected, and the number of each collected cells was measured. The number of cells spontaneously detached and collected by low-temperature treatment was 12.0 × 10 4 , and the number of cells collected by Trypsin treatment was 0.7 × 10 4 . When the cell recovery rate by low-temperature treatment was determined by the following formula (5), the cell recovery rate was 94%.
Formula (5) Cell recovery rate (%) = {number of cells recovered by low-temperature treatment / (number of cells recovered by low-temperature treatment + number of cells recovered by trypsin treatment)} × 100
When the total number of bone marrow-derived cells recovered from the culture substrate 2 (12.7 × 10 4 cells) was obtained using an uncoated petri dish (IWAKI tissue culture 3000-035) (Comparative Example 1) ( 2.5 times 10 4 ).

また、上記低温処理による自然剥離及びトリプシン処理で回収された骨髄由来細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。   In addition, it was confirmed that the bone marrow-derived cells collected by the natural detachment by the low-temperature treatment and the trypsin treatment each had a normal cell morphology under a microscope.

この実施例より、重合体(A)と無機材料(C)に更に温度応答性を有する重合体(B)を配合させた場合、良好な培養性を有すると同時に、低温処理による細胞の回収率が更に高くなることが理解できる。   From this example, when the polymer (B) having further temperature responsiveness is blended with the polymer (A) and the inorganic material (C), it has good culturing property and at the same time, the cell recovery rate by low-temperature treatment. Can be understood to be even higher.

(実施例3)
[水溶性(メタ)アクリル酸エステル(a)、無機材料(C)、水媒体(E)を含む反応溶液の調製]
メトキシエチルアクリレート3.2g、無機材料(C)としてコロイダルシリカ20質量%水溶液(商品名スノーテックス20、日産化学工業株式会社製)1g(SiO=0.2g)、水媒体(E)として水100g、を均一に混合して反応溶液(3)を調製した。
(Example 3)
[Preparation of reaction solution containing water-soluble (meth) acrylic acid ester (a), inorganic material (C), aqueous medium (E)]
3.2 g of methoxyethyl acrylate, 1 g of colloidal silica 20% by mass as inorganic material (C) (trade name Snowtex 20, manufactured by Nissan Chemical Industries, Ltd.) 1 g (SiO 2 = 0.2 g), water as aqueous medium (E) 100 g was uniformly mixed to prepare a reaction solution (3).

[複合体(X)の分散液(L)の調製(第1工程)]
上記反応溶液(3)全量に、前記溶液(2)を250μl入れ、均一に分散させた後、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し乳白色の複合体(X)の分散液(L3)を作製した。
[Preparation of dispersion (L) of complex (X) (first step)]
Disperse the milky white complex (X) by adding 250 μl of the solution (2) to the total amount of the reaction solution (3) and uniformly dispersing it, and then irradiating it with ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 for 180 seconds. A liquid (L3) was produced.

この反応系のRa=0.06、無機材料(C)の濃度(質量%)=0.20(%)<12.4Ra+0.05=0.79   Ra = 0.06 in this reaction system, concentration (mass%) of inorganic material (C) = 0.20 (%) <12.4Ra + 0.05 = 0.79

[培養基材(複合体(X)の薄層)の調製(第2工程)]
上記分散液(L3)全量に、N―イソプロピルアクリルアミドの重合体(B)の水溶液(PNIPA2)を1g添加し、均一に混合した後、直径35mmのポリスチレン製シャーレ(IWAKIティッシュカルチャデイッシュ3000−035)に入れ、スピンコーターを用いて3000回転で該分散液をシャーレの表面に薄く塗布した後、80℃の熱風乾燥器中で10分間乾燥させ、次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを40℃、5時間乾燥させて、細胞培養基材3を得た。
[Preparation of culture substrate (thin layer of complex (X)) (second step)]
1 g of an aqueous solution of N-isopropylacrylamide polymer (B) (PNIPA2) was added to the total amount of the dispersion (L3) and mixed uniformly, and then a polystyrene petri dish (IWAKI tissue culture 3000-035 with a diameter of 35 mm) was added. ), Apply the dispersion to the surface of the petri dish at 3000 rpm using a spin coater, dry it in a hot air drier at 80 ° C. for 10 minutes, and then wash the petri dish with sterilized water. The petri dish was dried in a bag at 40 ° C. for 5 hours to obtain a cell culture substrate 3.

[骨髄由来細胞の培養・回収]
上記得られた細胞培養基材3を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、培地DMEM(10%血清含有)を適量入れ、GFP遺伝子組み換えマウス骨髄から採取した単核球を2.0×10個/Dish(9.8cm)播種して、5%二酸化炭素中、37℃で6日間培養を行った。次いで、ディッシュ中の培地及び浮遊している単核球を除いて、予め冷蔵庫で冷やした冷培地を入れ、10分間静置した後、ピペットで培地を吸ったり出したりするピペッティング操作を10回程行ったところ、大部分の骨髄由来細胞が培養基材3の表面から剥離されたことが観察された。自然剥離された骨髄由来細胞を回収し、更にD-PBSと0.25% Trypsin‐EDTAを用いて、ディッシュに残った骨髄由来細胞を剥離回収して、それぞれ回収された細胞の数を計測したところ、低温処理で自然剥離・回収された細胞数6.2×10個で、Trypsin処理で回収された細胞の数は1.1×10個であった。下記式(5)により低温処理による細胞の回収率を求めたところ、細胞回収率は85%であった。
式(5) 細胞回収率(%)={低温処理で回収した細胞の数/(低温処理で回収した細胞の数+Trypsin処理で回収した細胞の数)}×100
また、上記培養基材3から回収された骨髄由来細胞の総数(7.3×10個)が、未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035)を用いた場合(2.5×10個)の約2.9倍であった。
[Culture and recovery of bone marrow-derived cells]
Mononuclear cells collected from GFP transgenic mouse bone marrow after sterilizing the obtained cell culture substrate 3 with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.) and adding an appropriate amount of medium DMEM (containing 10% serum) The cells were seeded at 2.0 × 10 6 spheres / Dish (9.8 cm 2 ) and cultured in 5% carbon dioxide at 37 ° C. for 6 days. Next, remove the culture medium in the dish and the suspended mononuclear cells, add a cold culture medium that has been chilled in the refrigerator in advance, leave it for 10 minutes, and then pipette up and down about 10 times with a pipette. As a result, it was observed that most bone marrow-derived cells were detached from the surface of the culture substrate 3. Bone marrow-derived cells that were naturally detached were collected, and further, using D-PBS and 0.25% Trypsin-EDTA, the bone marrow-derived cells remaining in the dish were separated and collected, and the number of each collected cells was measured. The number of cells spontaneously detached and recovered by low-temperature treatment was 6.2 × 10 4 , and the number of cells recovered by Trypsin treatment was 1.1 × 10 4 . When the cell recovery rate by low-temperature treatment was determined by the following formula (5), the cell recovery rate was 85%.
Formula (5) Cell recovery rate (%) = {number of cells recovered by low-temperature treatment / (number of cells recovered by low-temperature treatment + number of cells recovered by trypsin treatment)} × 100
Further, the total number of bone marrow-derived cells recovered from the culture substrate 3 (7.3 × 10 4 ) was obtained when using an uncoated petri dish (IWAKI tissue culture 3000-035) (2.5 × 10 6). About 4 times).

また、上記低温処理による自然剥離及びトリプシン処理で回収された骨髄由来細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。   In addition, it was confirmed that the bone marrow-derived cells collected by the natural detachment by the low-temperature treatment and the trypsin treatment each had a normal cell morphology under a microscope.

さらに同様に18日間培養を行った。次いで、ディッシュ中の培地及び浮遊している単核球を除いて、予め冷蔵庫で冷やした冷培地を入れ、10分間静置した後、ピペットで培地を吸ったり出したりするピペッティング操作を10回程行ったところ、大部分の骨髄由来細胞が培養基材3の表面から剥離されたことが観察された。自然剥離された骨髄由来細胞を回収し、更にD-PBSと0.25% Trypsin‐EDTAを用いて、ディッシュに残った骨髄由来細胞を剥離回収して、それぞれ回収された細胞の数を計測したところ、低温処理で自然剥離・回収された細胞数7.0×10個で、Trypsin処理で回収された細胞の数は1.2×10個であった。上記式(5)により低温処理による細胞の回収率を求めたところ、細胞回収率は85%であった。 Further, the culture was performed for 18 days in the same manner. Next, remove the culture medium in the dish and the suspended mononuclear cells, add a cold culture medium that has been chilled in the refrigerator in advance, leave it for 10 minutes, and then pipette up and down about 10 times with a pipette. As a result, it was observed that most bone marrow-derived cells were detached from the surface of the culture substrate 3. Bone marrow-derived cells that were naturally detached were collected, and further, using D-PBS and 0.25% Trypsin-EDTA, the bone marrow-derived cells remaining in the dish were separated and collected, and the number of each collected cells was measured. The number of cells spontaneously detached and collected by low-temperature treatment was 7.0 × 10 5 , and the number of cells collected by Trypsin treatment was 1.2 × 10 4 . When the cell recovery rate by low-temperature treatment was determined by the above formula (5), the cell recovery rate was 85%.

また、上記培養基材3から回収された骨髄由来細胞の総数(7.0×10個)が、未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035)を用いた場合(2.8×10個)の約25倍であった。 In addition, the total number of bone marrow-derived cells recovered from the culture substrate 3 (7.0 × 10 5 ) was obtained when an uncoated petri dish (IWAKI tissue culture 3000-035) was used (2.8 × 10 5). About 4 times).

この実施例より、無機材料(C)としてシリカを用いた場合の培養基材3が良好な培養性と自然剥離による高い回収率を有することが理解できる。   From this example, it can be understood that the culture substrate 3 in the case where silica is used as the inorganic material (C) has good culturing properties and a high recovery rate due to natural peeling.

(実施例4) 上記培養基材3による無血清培養例
[骨髄由来細胞の培養・回収]
上記得られた細胞培養基材3を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、無血清培地として適量のSTEMPRO LIPOMAX SUPPLEMENT(Life Technologies Japan A1085001)とGLUTAMAX I(Life Technologies Japan 35050061)を含有したStemPro MSC SFM XenoFree(Life Technologies Japan A1067501)を適量入れ、GFP遺伝子組み換えマウス骨髄から採取した単核球を7.0×10個/Dish(9.8cm)播種して、5%二酸化炭素中、37℃で7日間培養を行った。次いで、ディッシュ中の培地及び浮遊している単核球を除いて、予め冷蔵庫で冷やした冷培地を入れ、10分間静置した後、ピペットで培地を吸ったり出したりするピペッティング操作を10回程行ったところ、大部分の骨髄由来細胞が培養基材3の表面から剥離されたことが観察された。自然剥離された骨髄由来細胞を回収し、更にD-PBSと0.25% Trypsin‐EDTAを用いて、ディッシュに残った骨髄由来細胞を剥離回収して、それぞれ回収された細胞の数を計測したところ、低温処理で自然剥離・回収された細胞数3.9×10個で、Trypsin処理で回収された細胞の数は9×10個であった。下記式(5)により低温処理による細胞の回収率を求めたところ、細胞回収率は81%であった。
式(5) 細胞回収率(%)={低温処理で回収した細胞の数/(低温処理で回収した細胞の数+Trypsin処理で回収した細胞の数)}×100
一方、同様な無血清培地で、未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035)(比較例2)を用いて培養したところ、骨髄由来細胞が殆ど培養されなかった。
(Example 4) Example of serum-free culture using the culture substrate 3 [Culture and recovery of bone marrow-derived cells]
The obtained cell culture substrate 3 was sterilized with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.), and then used as a serum-free medium with appropriate amounts of STEMPRO LIPOMAX SUPPLEMENT (Life Technologies Japan A1085001) and GLUTAMAX I (Life Technologies Japan). 35050061) containing StemPro MSC SFM XenoFree (Life Technologies Japan A10675501) and seeding 7.0 × 10 6 mononuclear cells collected from GFP transgenic mouse bone marrow with Dish (9.8 cm 2 ), Culturing was performed at 37 ° C. in 5% carbon dioxide for 7 days. Next, remove the culture medium in the dish and the suspended mononuclear cells, add a cold culture medium that has been chilled in the refrigerator in advance, leave it for 10 minutes, and then pipette up and down about 10 times with a pipette. As a result, it was observed that most bone marrow-derived cells were detached from the surface of the culture substrate 3. Bone marrow-derived cells that were naturally detached were collected, and further, using D-PBS and 0.25% Trypsin-EDTA, the bone marrow-derived cells remaining in the dish were separated and collected, and the number of each collected cells was measured. The number of cells that were naturally detached and recovered by the low-temperature treatment was 3.9 × 10 4 , and the number of cells that were recovered by the Trypsin treatment was 9 × 10 3 . When the cell recovery rate by low-temperature treatment was determined by the following formula (5), the cell recovery rate was 81%.
Formula (5) Cell recovery rate (%) = {number of cells recovered by low-temperature treatment / (number of cells recovered by low-temperature treatment + number of cells recovered by trypsin treatment)} × 100
On the other hand, when cultured in a similar serum-free medium using an uncoated petri dish (IWAKI tissue culture 3000-035) (Comparative Example 2), bone marrow-derived cells were hardly cultured.

また、上記低温処理による自然剥離及びトリプシン処理で回収された骨髄由来細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。   In addition, it was confirmed that the bone marrow-derived cells collected by the natural detachment by the low-temperature treatment and the trypsin treatment each had a normal cell morphology under a microscope.

この実施例より、培養基材3が、完全無血清系の培養でも、良好な培養性と自然剥離による高い回収率を有することが理解できる。   From this example, it can be understood that the culture substrate 3 has good culturing properties and a high recovery rate due to spontaneous peeling even in completely serum-free culture.

(実施例5) その他の高分子化合物を配合した例。
[水溶性(メタ)アクリル酸エステル(a)、無機材料(C)、水媒体(E)を含む反応溶液の調製]
メトキシエチルアクリレート3.2g、無機材料(C)として水膨潤性粘土鉱物Laponite XLG(Rockwood Additives Ltd.社製)0.4g、水媒体(E)として水100g、を均一に混合して反応溶液(6)を調製した。
(Example 5) The example which mix | blended the other high molecular compound.
[Preparation of reaction solution containing water-soluble (meth) acrylic acid ester (a), inorganic material (C), aqueous medium (E)]
A reaction solution (3.2 g of methoxyethyl acrylate, 0.4 g of water-swellable clay mineral Laponite XLG (manufactured by Rockwood Additives Ltd.) as an inorganic material (C) and 100 g of water as an aqueous medium (E) are uniformly mixed. 6) was prepared.

[複合体(X)の分散液(L)の調製(第1工程)]
上記反応溶液(6)全量に、前記溶液(2)を250μl入れ、均一に分散させた後、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し乳白色の複合体(X)の分散液(L6)を作製した。
[Preparation of dispersion (L) of complex (X) (first step)]
Disperse the milky white complex (X) by adding 250 μl of the solution (2) to the total amount of the reaction solution (6) and uniformly dispersing it, and then irradiating it with ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 for 180 seconds. A liquid (L6) was produced.

この反応系のRa=0.13、無機材料(C)の濃度(質量%)=0.40(%)<12.4Ra+0.05=1.66   Ra = 0.13 of this reaction system, concentration (mass%) of inorganic material (C) = 0.40 (%) <12.4Ra + 0.05 = 1.66

[培養基材(複合体(X)の薄層)の調製(第2工程)]
上記分散液(L6)全量に、γ-ポリグルタミン酸(日本ポリグル株式会社製)1gを添加し、均一に混合した後、直径35mmのポリスチレン製シャーレ(IWAKIティッシュカルチャデイッシュ3000−035)に入れ、スピンコーターを用いて3000回転で該分散液をシャーレの表面に薄く塗布した後、80℃の熱風乾燥器中で10分間乾燥させ、次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを40℃、5時間乾燥させて、細胞培養基材6を得た。
[Preparation of culture substrate (thin layer of complex (X)) (second step)]
1 g of γ-polyglutamic acid (manufactured by Nippon Polyglu Co., Ltd.) was added to the total amount of the dispersion (L6) and mixed uniformly, and then placed in a polystyrene petri dish (IWAKI tissue culture 3000-035) having a diameter of 35 mm. The dispersion is thinly applied to the surface of the petri dish at 3000 revolutions using a spin coater, dried in a hot air drier at 80 ° C. for 10 minutes, then washed with sterile water, and then washed in a sterile bag. Was dried at 40 ° C. for 5 hours to obtain a cell culture substrate 6.

[骨髄由来細胞の培養・回収]
上記得られた細胞培養基材6を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、培地DMEM(10%血清含有)を適量入れ、GFP遺伝子組み換えマウスから採取した単核球細胞を2.0×10個/Dish(9.8cm)播種して、5%二酸化炭素中、37℃で7日間培養を行った。次いで、ディッシュ中の培地及び浮遊している単核球を除いて、予め冷蔵庫で冷やした冷培地を入れ、10分間静置した後、ピペットで培地を吸ったり出したりするピペッティング操作を10回程行ったところ、大部分の骨髄由来細胞が培養基材6の表面から剥離されたことが観察された。自然剥離された骨髄由来細胞を回収し、更にD-PBSと0.25% Trypsin‐EDTAを用いて、ディッシュに残った骨髄由来細胞を剥離回収して、それぞれ回収された細胞の数を計測したところ、低温処理で自然剥離・回収された細胞数6.4×10個で、Trypsin処理で回収された細胞の数は3.2×10個であった。下記式(5)により低温処理による細胞の回収率を求めたところ、細胞回収率は67%であった。
式(5) 細胞回収率(%)={低温処理で回収した細胞の数/(低温処理で回収した細胞の数+Trypsin処理で回収した細胞の数)}×100
また、上記培養基材6から回収された骨髄由来細胞の総数(6.4×10個)が、未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035)(比較例1)を用いた場合(2.4×10個)の約4倍であった。
[Culture and recovery of bone marrow-derived cells]
Mononuclear cells collected from GFP transgenic mice after sterilizing the obtained cell culture substrate 6 with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.) and adding an appropriate amount of medium DMEM (containing 10% serum) The cells were seeded at 2.0 × 10 6 cells / Dish (9.8 cm 2 ) and cultured in 5% carbon dioxide at 37 ° C. for 7 days. Next, remove the culture medium in the dish and the suspended mononuclear cells, add a cold culture medium that has been chilled in the refrigerator in advance, leave it for 10 minutes, and then pipette up and down about 10 times with a pipette. As a result, it was observed that most bone marrow-derived cells were detached from the surface of the culture substrate 6. Bone marrow-derived cells that were naturally detached were collected, and further, using D-PBS and 0.25% Trypsin-EDTA, the bone marrow-derived cells remaining in the dish were separated and collected, and the number of each collected cells was measured. The number of cells spontaneously detached and collected by the low temperature treatment was 6.4 × 10 4 , and the number of cells collected by the Trypsin treatment was 3.2 × 10 4 . When the cell recovery rate by low-temperature treatment was determined by the following formula (5), the cell recovery rate was 67%.
Formula (5) Cell recovery rate (%) = {number of cells recovered by low-temperature treatment / (number of cells recovered by low-temperature treatment + number of cells recovered by trypsin treatment)} × 100
In addition, when the total number of bone marrow-derived cells recovered from the culture substrate 6 (6.4 × 10 4 cells) was obtained using an uncoated petri dish (IWAKI tissue culture 3000-035) (Comparative Example 1) ( 2.4 times 10 4 ).

また、上記低温処理による自然剥離及びトリプシン処理で回収された骨髄由来細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。   In addition, it was confirmed that the bone marrow-derived cells collected by the natural detachment by the low-temperature treatment and the trypsin treatment each had a normal cell morphology under a microscope.

(比較例1)
市販の直径35mmのポリスチレン製シャーレ(IWAKIティッシュカルチャデイッシュ3000−035)を用いて、実施例1と同様にして、血清含有培地を用いてGFP遺伝子組み換えマウス骨髄から採取した単核球を37℃で7日間培養して、同様な低温処理による細胞の剥離を行ったが、細胞は殆ど剥離しなかった。更に、D-PBSと0.25% Trypsin‐EDTAを用いて、ディッシュに残った骨髄由来細胞を剥離回収し、細胞数を計測した。細胞の数は2.5×10個であった。
(Comparative Example 1)
Using a commercially available petri dish made of polystyrene having a diameter of 35 mm (IWAKI tissue culture 3000-035), mononuclear cells collected from GFP transgenic mouse bone marrow using a serum-containing medium were obtained at 37 ° C. in the same manner as in Example 1. After culturing for 7 days, cells were detached by the same low-temperature treatment, but the cells were hardly detached. Furthermore, using D-PBS and 0.25% Trypsin-EDTA, bone marrow-derived cells remaining in the dish were peeled and collected, and the number of cells was counted. The number of cells was 2.5 × 10 4 .

この比較例より、通常のポリスチレン製ティッシュカルチャデイッシュでは、骨髄由来細胞に対する培養(増殖)性が低く、培養された細胞もディッシュ表面に強く接着し、薬剤(トリプシン)を使用しない場合、容易に剥離することができないことが理解できる。   Compared to this comparative example, normal polystyrene tissue culture has low culture (proliferation) properties for bone marrow-derived cells, and the cultured cells adhere strongly to the dish surface, and can easily be used when no drug (trypsin) is used. It can be understood that it cannot be peeled off.

(比較例2) 市販のディッシュで、無血清系での培養例
市販の直径35mmのポリスチレン製シャーレ(IWAKIティッシュカルチャデイッシュ3000−035)を用いて、無血清培地として適量のSTEMPRO LIPOMAX SUPPLEMENT(Life Technologies Japan A1085001)とGLUTAMAX I(Life Technologies Japan 35050061)を含有したStemPro MSC SFM XenoFree(Life Technologies Japan A1067501)を適量入れ、GFP遺伝子組み換えマウスから採取した単核球を7.0×10個/Dish(9.8cm)播種して、5%二酸化炭素中、37℃で7日間培養した。次いで、ディッシュ中の培地及び浮遊している単核球細胞を除いて、新しい培地を入れ、顕微鏡で観察したところ、骨髄由来細胞が殆ど見当たらなかった。
(Comparative example 2) Example of culture in a serum-free system using a commercially available dish Using a commercially available polystyrene dish having a diameter of 35 mm (IWAKI tissue culture 3000-035), an appropriate amount of STEMPRO LIPOMAX SUPPLEMENT (Life) Technologies Japan A1085001) and GLUTAMAX I (Life Technologies Japan 35050061) put an appropriate amount of StemPro MSC SFM XenoFree containing (Life Technologies Japan A1067501) to, GFP transgenic mouse mononuclear cells harvested from 7.0 × 10 6 cells / Dish (9.8 cm 2 ) was seeded and cultured in 5% carbon dioxide at 37 ° C. for 7 days. Next, except for the culture medium in the dish and the suspended mononuclear cells, a new culture medium was added and observed with a microscope. As a result, almost no bone marrow-derived cells were found.

この比較例より、通常のポリスチレン製ティッシュカルチャデイッシュを用いて、無血清培地では、骨髄由来細胞はディッシュに接着することが殆どできないため、増殖できないことが理解できる。   From this comparative example, it can be understood that bone marrow-derived cells can hardly adhere to the dish in a serum-free medium using an ordinary polystyrene tissue culture dish, and thus cannot be grown.

(比較例3) 重合体(A)のみの(無機材料(C)を含まない)基材の例
[水溶性(メタ)アクリル酸エステル(a)、水媒体(E)を含む反応溶液の調製]
メトキシエチルアクリレート3.2g、水媒体(E)として水100g、を均一に混合して反応溶液(3’)を調製した。
(Comparative example 3) Example of base material (not including inorganic material (C)) only of polymer (A) [Preparation of reaction solution containing water-soluble (meth) acrylic acid ester (a) and aqueous medium (E) ]
A reaction solution (3 ′) was prepared by uniformly mixing 3.2 g of methoxyethyl acrylate and 100 g of water as an aqueous medium (E).

実施例1と同様にして基材(3’)を製造した。実施例1と同様にして、血清含有培地を用いてGFP遺伝子組み換えマウス骨髄から採取した単核球を播種し、6日間培養したが、基材(3’)の表面に接着する細胞は殆ど見当たらなかった。   In the same manner as in Example 1, a substrate (3 ') was produced. In the same manner as in Example 1, mononuclear cells collected from GFP transgenic mouse bone marrow were seeded using a serum-containing medium and cultured for 6 days. However, when most cells adhering to the surface of the substrate (3 ′) were found. There wasn't.

この比較例より、無機材料(C)を含まない、重合体(A)のみの基材では、細胞との接着性が低過ぎて、細胞が増殖できないことが理解できる。   From this comparative example, it can be understood that the base material containing only the polymer (A) that does not contain the inorganic material (C) has too low adhesion to the cells, and the cells cannot grow.

(参考例) 無機材料(C)を式(1)、(2)の領域を超えた例
[水溶性(メタ)アクリル酸エステル(a)、無機材料(C)、水媒体(E)を含む反応溶液の調製]
メトキシエチルアクリレート12.8g、無機材料(C)として水膨潤性粘土鉱物Laponite XLG(Rockwood Additives Ltd.社製)1.6g、水媒体(E)として水100g、を均一に混合して反応溶液(4’)を調製した。
(Reference Example) Example of inorganic material (C) exceeding the range of formulas (1) and (2) [Including water-soluble (meth) acrylic acid ester (a), inorganic material (C), aqueous medium (E) Preparation of reaction solution]
12.8 g of methoxyethyl acrylate, 1.6 g of water-swellable clay mineral Laponite XLG (manufactured by Rockwood Additives Ltd.) as inorganic material (C), and 100 g of water as aqueous medium (E) are uniformly mixed to form a reaction solution ( 4 ′) was prepared.

[複合体(X)の分散液(L)の調製(第1工程)]
上記反応溶液(4’)全量に、前記溶液(2)を250μl入れ、均一に分散させた後、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射したところ、反応液全体が白色のゲル状物になり、更に多量の水を入れ、攪拌しても、ゲル状物は細かく分散することなく、分散液は得られなかった。
[Preparation of dispersion (L) of complex (X) (first step)]
250 μl of the solution (2) was added to the total amount of the reaction solution (4 ′) and dispersed uniformly, and then irradiated with ultraviolet rays having an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 180 seconds. Even when a large amount of water was added and stirred, the gel-like product was not finely dispersed and a dispersion was not obtained.

この反応系のRa=0.125、無機材料(C)の濃度(質量%)=1.6(%)=12.4Ra+0.05=1.6
この比較例より、無機材料(C)の使用量が式(1)、(2)の領域を超えると、重合により反応液全体がゲルとなり、他の支持体への塗布はできず、培養基材を製造することができないことが理解できる。
Ra = 0.125 of this reaction system, concentration (mass%) of inorganic material (C) = 1.6 (%) = 12.4Ra + 0.05 = 1.6
From this comparative example, when the amount of the inorganic material (C) used exceeds the range of the formulas (1) and (2), the whole reaction solution becomes a gel due to polymerization and cannot be applied to other supports, It can be understood that the material cannot be manufactured.

(実施例6)
実施例1と同じ組成の分散液(L1)を作製し、該分散液(L1)全量に、実施例2のN―イソプロピルアクリルアミドの重合体(B)の水溶液(PNIPA2)を1g添加し、均一に混合した後、実施例1と同様にして細胞培養基材7を作製した。
(Example 6)
A dispersion liquid (L1) having the same composition as in Example 1 was prepared, and 1 g of an aqueous solution (PNIPA2) of the N-isopropylacrylamide polymer (B) of Example 2 was added to the total amount of the dispersion liquid (L1). After mixing, a cell culture substrate 7 was prepared in the same manner as in Example 1.

[骨髄由来細胞の培養・回収]
上記得られた細胞培養基材7を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、実施例1と同様にしてGFP遺伝子組み換えマウス骨髄から採取した単核球の培養・回収を行った。その結果、低温処理で自然剥離・回収された細胞数は5.7×10個で、トリプシン処理で回収された細胞の数は1.2×10個であった。細胞回収率は約83%であった。
[Culture and recovery of bone marrow-derived cells]
The cell culture substrate 7 obtained above was sterilized with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.), and then cultured and collected mononuclear cells collected from GFP transgenic mouse bone marrow in the same manner as in Example 1. Went. As a result, the number of cells naturally detached and collected by the low temperature treatment was 5.7 × 10 4 , and the number of cells collected by the trypsin treatment was 1.2 × 10 4 . Cell recovery was about 83%.

また、上記培養基材7から回収された骨髄由来細胞の総数(6.9×10個)が、未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035)を用いた場合(2.5×10個)の約2.8倍であった。 In addition, the total number of bone marrow-derived cells recovered from the culture substrate 7 (6.9 × 10 4 ) was obtained when an uncoated petri dish (IWAKI tissue culture 3000-035) was used (2.5 × 10 6). About 4 times).

(実施例7)
実施例1と同じ組成の分散液(L1)を作製し、該分散液(L1)全量に、実施例2のN―イソプロピルアクリルアミドの重合体(B)の水溶液(PNIPA2)を4g添加し、均一に混合した後、実施例1と同様にして細胞培養基材8を作製した。
(Example 7)
A dispersion (L1) having the same composition as in Example 1 was prepared, and 4 g of an aqueous solution (PNIPA2) of the N-isopropylacrylamide polymer (B) in Example 2 was added to the total amount of the dispersion (L1). After mixing, a cell culture substrate 8 was prepared in the same manner as in Example 1.

[骨髄由来細胞の培養・回収]
上記得られた細胞培養基材8を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、実施例1と同様にしてGFP遺伝子組み換えマウス骨髄から採取した単核球の培養・回収を行った。その結果、低温処理で自然剥離・回収された細胞数は9.7×10個で、トリプシン処理で回収された細胞の数は1.6×10個であった。細胞回収率は約86%であった。
[Culture and recovery of bone marrow-derived cells]
The cell culture substrate 8 obtained above was sterilized with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.), and then cultured and collected mononuclear cells collected from GFP transgenic mouse bone marrow in the same manner as in Example 1. Went. As a result, the number of cells spontaneously detached and collected by low-temperature treatment was 9.7 × 10 4 , and the number of cells collected by trypsin treatment was 1.6 × 10 4 . The cell recovery rate was about 86%.

また、上記培養基材8から回収された骨髄由来細胞の総数(11.3×10個)が、未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035)を用いた場合(2.5×10個)の約4.5倍であった。 In addition, the total number of bone marrow-derived cells recovered from the culture substrate 8 (11.3 × 10 4 ) was obtained when an uncoated petri dish (IWAKI tissue culture 3000-035) was used (2.5 × 10 4 ).

また、上記低温処理による自然剥離及びTrypsin処理で回収された骨髄由来細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。   In addition, it was confirmed that the bone marrow-derived cells collected by the natural detachment by the low-temperature treatment and the Trypsin treatment each had a normal cell morphology with a microscope.

以上の実施例6、7及び1、2より、培養基材の組成成分にN―イソプロピルアクリルアミドの重合体(B)を含有させ、含有量(B/A)を増加させることにより、低温処理による細胞の回収率が大きく増加することが理解できる。   From the above Examples 6, 7, and 1, the composition component of the culture substrate contains N-isopropylacrylamide polymer (B), and the content (B / A) is increased, whereby low temperature treatment is performed. It can be understood that the cell recovery rate is greatly increased.

(実施例8) ヒト骨髄単核細胞の培養・回収例
実施例2の細胞培養基材2を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、実施例1のGFP遺伝子組み換えマウス骨髄から採取した単核球の代わりに、ヒト骨髄由来単核細胞CL2M−125A(ロンザジャパン株式会社)を用いること以外は実施例1と同様にして細胞の培養・回収を行った。その結果、低温処理で自然剥離・回収された細胞数は22.3×10個で、トリプシン処理で回収された細胞の数は0個であった(細胞が全て自然剥離した)。細胞回収率は約100%であった。
(Example 8) Example of culture and recovery of human bone marrow mononuclear cells The cell culture substrate 2 of Example 2 was sterilized with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.), and then the GFP gene recombination of Example 1 Cells were cultured and collected in the same manner as in Example 1 except that human bone marrow-derived mononuclear cells CL2M-125A (Lonza Japan Co., Ltd.) were used instead of mononuclear cells collected from mouse bone marrow. As a result, the number of cells spontaneously detached and collected by the low-temperature treatment was 22.3 × 10 4 and the number of cells collected by the trypsin treatment was 0 (all the cells were naturally detached). Cell recovery was about 100%.

また、上記培養基材2から回収された骨髄由来細胞の総数(22.3×10個)が、未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035)を用いた場合(8.33×10個)の約2.7倍であった。 In addition, the total number of bone marrow-derived cells recovered from the culture substrate 2 (22.3 × 10 4 ) was obtained using an uncoated petri dish (IWAKI tissue culture 3000-035) (8.33 × 10 6). About 4 times).

以上の実施例より、感受性の高いヒト由来の骨髄単核細胞に対しても、良好な培養性と高い細胞回収率を示すことが理解できる。   From the above examples, it can be understood that good culturing properties and a high cell recovery rate are exhibited even for highly sensitive human-derived bone marrow mononuclear cells.

また、実施例2の細胞培養基材2を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、ヒト骨髄由来単核細胞CL2M−125A(ロンザジャパン株式会社)を用いること以外は実施例1と同様にして細胞の培養・回収を行った。回収した細胞表面抗原をフローサイトメーター(ガリオス、ベックマン・コールター株式会社)で解析したところ、CD73陽性細胞は99.2%、CD105陽性細胞は94.4%であり、CD45陽性細胞は0.1%であった。   In addition, after sterilizing the cell culture substrate 2 of Example 2 with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.), human bone marrow-derived mononuclear cells CL2M-125A (Lonza Japan Co., Ltd.) are used. Cells were cultured and collected in the same manner as in Example 1. When the collected cell surface antigen was analyzed with a flow cytometer (Galios, Beckman Coulter, Inc.), CD73-positive cells were 99.2%, CD105-positive cells were 94.4%, and CD45-positive cells were 0.1 %Met.

また、実施例2の細胞培養基材2を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、ロンザジャパン株式会社ヒト骨髄由来単核細胞CL2M−125Aを用いること以外は実施例1と同様にして細胞の培養を行った。R&D Systems・Mesenchymal Stem Cell,Human,Functional Identification Kit(SC006)を用いて培養細胞の骨細胞、脂肪細胞、軟骨細胞への分化能を評価した。骨細胞への誘導培地で培養した細胞は、アリザリンレッド染色で陽性であった。脂肪細胞への誘導培地で培養した細胞は、オイルレッドオー染色で陽性であった。軟骨細胞への誘導培地で培養した細胞は、抗アグリカン抗体を用いた免疫染色で陽性であった。   In addition, the cell culture substrate 2 of Example 2 was sterilized with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.), and then Lonsa Japan Co., Ltd. was used except for using human bone marrow-derived mononuclear cells CL2M-125A. The cells were cultured in the same manner as in 1. The differentiation ability of cultured cells into bone cells, adipocytes, and chondrocytes was evaluated using R & D Systems / Mesenchymal Stem Cell, Human, Functional Identification Kit (SC006). Cells cultured in the induction medium for bone cells were positive for alizarin red staining. Cells cultured in the induction medium for adipocytes were positive by oil red o staining. Cells cultured in the induction medium for chondrocytes were positive by immunostaining using anti-aggrecan antibodies.

以上の実施例より、ヒト骨髄由来単核細胞を実施例2の細胞培養基材2で培養することで間葉系幹細胞を含む細胞を効率よく培養することができると理解できる。   From the above examples, it can be understood that cells containing mesenchymal stem cells can be efficiently cultured by culturing human bone marrow-derived mononuclear cells on the cell culture substrate 2 of Example 2.

(実施例9)重合体(A)と無機材料(C)からなる培養基材(重合体(B)を含まない)
実施例3と同じ組成の分散液(L3)を作製し、また実施例1と同様にして細胞培養基材9を作製した。
(Example 9) Culture substrate comprising polymer (A) and inorganic material (C) (excluding polymer (B))
A dispersion (L3) having the same composition as in Example 3 was prepared, and a cell culture substrate 9 was prepared in the same manner as in Example 1.

[骨髄由来細胞の培養・回収]
上記得られた細胞培養基材9を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、実施例1と同様にしてGFP遺伝子組み換えマウス骨髄から採取した単核球の培養・回収を行った。その結果、低温処理で自然剥離・回収された細胞数は2.0×10個で、トリプシン処理で回収された細胞の数は1.4×10個であった。細胞回収率は約59%であった。
[Culture and recovery of bone marrow-derived cells]
The cell culture substrate 9 obtained above was sterilized with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.), and then cultured and collected mononuclear cells collected from GFP transgenic mouse bone marrow in the same manner as in Example 1. Went. As a result, the number of cells naturally detached and collected by low-temperature treatment was 2.0 × 10 4 , and the number of cells collected by trypsin treatment was 1.4 × 10 4 . Cell recovery was about 59%.

また、上記培養基材9から回収された骨髄由来細胞の総数(3.4×10個)が、未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035)を用いた場合(0.6×10個)の約5.7倍であった。 In addition, the total number of bone marrow-derived cells recovered from the culture substrate 9 (3.4 × 10 4 ) was obtained when an uncoated petri dish (IWAKI tissue culture 3000-035) was used (0.6 × 10 6). About 4 times).

また、上記低温処理による自然剥離及びトリプシン処理で回収された骨髄由来細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。   In addition, it was confirmed that the bone marrow-derived cells collected by the natural detachment by the low-temperature treatment and the trypsin treatment each had a normal cell morphology under a microscope.

(比較例5) B/A>0.7の例
実施例3と同じ組成の分散液(L3)を作製し、該分散液(L3)全量に、実施例2のN―イソプロピルアクリルアミドの重合体(B)の水溶液(PNIPA2)を25g添加し(B/A=0.78)、均一に混合した後、実施例3と同様にして基材5’を作製した。
(Comparative Example 5) Example of B / A> 0.7 A dispersion (L3) having the same composition as in Example 3 was prepared, and the total amount of the dispersion (L3) was a polymer of N-isopropylacrylamide of Example 2. After adding 25 g of the aqueous solution (PNIPA2) of (B) (B / A = 0.78) and mixing uniformly, a substrate 5 ′ was produced in the same manner as in Example 3.

[骨髄由来細胞の培養・回収]
上記得られた基材5’を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、実施例1と同様にしてGFP遺伝子組み換えマウス骨髄から採取した単核球の培養・回収を行った。6日間培養したが、基材5’の表面に接着する細胞は殆ど見当たらなかった。
[Culture and recovery of bone marrow-derived cells]
After sterilizing the obtained base material 5 ′ with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.), culture and recovery of mononuclear cells collected from GFP transgenic mouse bone marrow in the same manner as in Example 1. went. Although cultured for 6 days, few cells adhered to the surface of the substrate 5 ′.

この比較例より、重合体(B)の含有量(B/A)が0.7を超えると、基材表面が細胞増殖に適さなくなることが理解できる。 From this comparative example, it can be understood that when the content (B / A) of the polymer (B) exceeds 0.7, the surface of the base material is not suitable for cell growth.

(比較例6) C/A<0.03の例
[水溶性(メタ)アクリル酸エステル(a)、無機材料(C)、水媒体(E)を含む反応溶液の調製]
メトキシエチルアクリレート3.2g、無機材料(C)としてコロイダルシリカ20質量%水溶液(商品名スノーテックス20、日産化学工業株式会社製)0.4g(SiO=0.08g)、水媒体(E)として水100g、を均一に混合して反応溶液(6’)を調製した。
(Comparative example 6) Example of C / A <0.03 [Preparation of reaction solution containing water-soluble (meth) acrylic acid ester (a), inorganic material (C), aqueous medium (E)]
Methoxyethyl acrylate 3.2 g, 20 mass% colloidal silica aqueous solution (trade name Snowtex 20, manufactured by Nissan Chemical Industries, Ltd.) 0.4 g (SiO 2 = 0.08 g) as inorganic material (C), aqueous medium (E) As a result, 100 g of water was uniformly mixed to prepare a reaction solution (6 ′).

この反応系のRa=0.025、無機材料(C)の濃度(質量%)=0.08(%)<12.4Ra+0.05=0.36
実施例1と同様にして基材6’を作製した。該基材のC/Aは0.025であった。
Ra = 0.025 of this reaction system, concentration (mass%) of inorganic material (C) = 0.08 (%) <12.4Ra + 0.05 = 0.36
In the same manner as in Example 1, a substrate 6 ′ was produced. The C / A of the substrate was 0.025.

[骨髄由来細胞の培養・回収]
上記得られた基材6’を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、実施例1と同様にして、血清含有培地を用いてGFP遺伝子組み換えマウス骨髄から採取した単核球を播種し、6日間培養したが、基材(6’)の表面に接着する細胞は殆ど見当たらなかった。
[Culture and recovery of bone marrow-derived cells]
The obtained substrate 6 ′ was sterilized with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.) and then collected from GFP transgenic mouse bone marrow using a serum-containing medium in the same manner as in Example 1. Nucleocytes were seeded and cultured for 6 days, but few cells adhered to the surface of the substrate (6 ′).

(比較例7)
無機材料(C)としての水膨潤性粘土鉱物Laponite XLGの使用量を0.2から2.4gに変更したこと以外は、実施例1と同様にして淡い乳白色の複合体(X)の反応溶液(7’)を調整した。
(Comparative Example 7)
A light milky white complex (X) reaction solution in the same manner as in Example 1 except that the amount of the water-swellable clay mineral Laponite XLG as the inorganic material (C) was changed from 0.2 to 2.4 g. (7 ') was adjusted.

この反応系のRa=0.75、無機材料(C)の濃度(質量%)=2.34(%)<0.87Ra+2.17=2.82
また、反応溶液(7’)を用いて、実施例1と同様にして細胞培養基材7’を得た。
Ra = 0.75 of this reaction system, concentration (mass%) of inorganic material (C) = 2.34 (%) <0.87Ra + 2.17 = 2.82
Further, using the reaction solution (7 ′), a cell culture substrate 7 ′ was obtained in the same manner as in Example 1.

[骨髄由来細胞の培養・回収]
上記得られた細胞培養基材7’を照射線量10kGyの電子線で滅菌した(日本照射サービス株式会社)後、培養日数を7日間から14日間に変更したこと以外は、実施例1と同様にしてGFP遺伝子組み換えマウス骨髄から採取した単核球の培養・回収を行った。その結果、低温処理で自然剥離・回収された細胞数は0個で、トリプシン処理で回収された細胞の数は2.6×10個であった。細胞回収率は約0%であった。
[Culture and recovery of bone marrow-derived cells]
The cell culture substrate 7 ′ obtained above was sterilized with an electron beam with an irradiation dose of 10 kGy (Japan Irradiation Service Co., Ltd.), and then the culture days were changed from 7 days to 14 days in the same manner as in Example 1. Mononuclear cells collected from GFP transgenic mouse bone marrow were cultured and collected. As a result, the number of cells that were naturally detached and collected by the low-temperature treatment was 0, and the number of cells collected by the trypsin treatment was 2.6 × 10 4 . Cell recovery was about 0%.

また、上記培養基材7’から回収された骨髄由来細胞の総数(2.6×10個)が、未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035)を用いて14日間培養した場合(0.5×10個)の約5.2倍であった。 When the total number of bone marrow-derived cells recovered from the culture substrate 7 ′ (2.6 × 10 4 ) was cultured for 14 days using an uncoated petri dish (IWAKI tissue culture 3000-035) ( 0.5 × 10 4 ) was about 5.2 times.

また、上記低温処理による自然剥離及びトリプシン処理で回収された骨髄由来細胞を、それぞれ顕微鏡で細胞形態が正常であることを確認した。   In addition, it was confirmed that the bone marrow-derived cells collected by the natural detachment by the low-temperature treatment and the trypsin treatment each had a normal cell morphology under a microscope.

これらの比較例より、無機材料(C)の含有量(C/A)が少なすぎる(<0.03)と、細胞との接着性が低すぎて、細胞が増殖できないことが理解できる。   From these comparative examples, it can be understood that when the content (C / A) of the inorganic material (C) is too small (<0.03), the adhesion to the cells is too low and the cells cannot grow.

同様に、C/Aが0.03〜0.7の範囲でも、B/A>0.7の場合は、培養できないケースが生じることが理解できる。   Similarly, even when C / A is in the range of 0.03 to 0.7, it can be understood that there are cases where culture cannot be performed when B / A> 0.7.

Figure 2012231788
Figure 2012231788

注)TCPS:未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035) Note) TCPS: Uncoated Petri dish (IWAKI tissue culture 3000-035)

Figure 2012231788
Figure 2012231788

注)TCPS:未コートシャーレ(IWAKIティッシュカルチャデイッシュ3000−035) Note) TCPS: Uncoated Petri dish (IWAKI tissue culture 3000-035)

Claims (9)

水溶性(メタ)アクリル酸エステル(a)の重合体(A)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とを含有することを特徴とする骨髄由来細胞培養用細胞培養基材であって、
前記重合体(A)と、前記無機材料(C)との質量比((C)/(A))が、0.03〜0.7の範囲にある骨髄由来細胞培養用細胞培養基材。
Bone marrow characterized by containing water-soluble (meth) acrylic acid ester (a) polymer (A) and one or more inorganic materials (C) selected from water-swellable clay minerals and silica A cell culture substrate for cell culture,
A cell culture substrate for bone marrow-derived cell culture, wherein the mass ratio ((C) / (A)) between the polymer (A) and the inorganic material (C) is in the range of 0.03 to 0.7.
水溶性(メタ)アクリル酸エステル(a)の重合体(A)、N−置換(メタ)アクリルアミドの重合体(B)、及び水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とを含有することを特徴とする骨髄由来細胞培養用細胞培養基材であって、
前記重合体(A)と重合体(B)との質量比((B)/(A))が、0.01〜0.7の範囲にあり、前記重合体(A)と、前記無機材料(C)との質量比((C)/(A))が、0.03〜0.7の範囲にある骨髄由来細胞培養用細胞培養基材。
One or more inorganic materials selected from water-soluble (meth) acrylic acid ester (a) polymer (A), N-substituted (meth) acrylamide polymer (B), and water-swellable clay mineral and silica A cell culture substrate for bone marrow-derived cell culture characterized by containing (C),
The mass ratio ((B) / (A)) between the polymer (A) and the polymer (B) is in the range of 0.01 to 0.7, and the polymer (A) and the inorganic material A cell culture substrate for bone marrow-derived cell culture having a mass ratio ((C) / (A)) to (C) in the range of 0.03 to 0.7.
水溶性(メタ)アクリル酸エステル(a)の重合体(A)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とを含有する細胞培養基材の上で、骨髄由来細胞を培養し、次いで培養細胞を基材から剥離することを特徴とする骨髄由来細胞の培養方法であって、
前記重合体(A)と、前記無機材料(C)との質量比((C)/(A))が、0.03〜0.7の範囲にある骨髄由来細胞の培養方法。
On a cell culture substrate containing a polymer (A) of a water-soluble (meth) acrylic acid ester (a) and one or more inorganic materials (C) selected from water-swellable clay minerals and silica A method for culturing bone marrow-derived cells, characterized by culturing bone marrow-derived cells and then peeling the cultured cells from the substrate,
A method for culturing bone marrow-derived cells, wherein the mass ratio ((C) / (A)) between the polymer (A) and the inorganic material (C) is in the range of 0.03 to 0.7.
水溶性(メタ)アクリル酸エステル(a)の重合体(A)、N−置換(メタ)アクリルアミドの重合体(B)、及び水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とを含有する細胞培養基材の上で、骨髄由来細胞を培養し、次いで培養細胞を基材から剥離することを特徴とする骨髄由来細胞の培養方法であって、
前記重合体(A)と重合体(B)との質量比((B)/(A))が、0.01〜0.7の範囲にあり、前記重合体(A)と、前記無機材料(C)との質量比((C)/(A))が、0.03〜0.7の範囲にある骨髄由来細胞の培養方法。
One or more inorganic materials selected from water-soluble (meth) acrylic acid ester (a) polymer (A), N-substituted (meth) acrylamide polymer (B), and water-swellable clay mineral and silica A method for culturing bone marrow-derived cells, comprising culturing bone marrow-derived cells on a cell culture substrate containing (C), and then peeling the cultured cells from the substrate,
The mass ratio ((B) / (A)) between the polymer (A) and the polymer (B) is in the range of 0.01 to 0.7, and the polymer (A) and the inorganic material A method for culturing bone marrow-derived cells wherein the mass ratio to (C) ((C) / (A)) is in the range of 0.03 to 0.7.
前記水溶性(メタ)アクリル酸エステル(a)が、メトキシエチルアクリレート、エトキシエチルアクリレート、メトキシエチルメタクリレート及びエトキシエチルメタクリレートから選択される少なくとも1種のモノマーである請求項1〜4のいずれかに記載の骨髄由来細胞の培養方法。 The water-soluble (meth) acrylic acid ester (a) is at least one monomer selected from methoxyethyl acrylate, ethoxyethyl acrylate, methoxyethyl methacrylate and ethoxyethyl methacrylate. For culturing cells derived from bone marrow. 動物由来の血清を使用せずに骨髄由来細胞を培養する請求項3〜5のいずれかに記載の骨髄由来細胞の培養方法。 The method for culturing bone marrow-derived cells according to any one of claims 3 to 5, wherein the bone marrow-derived cells are cultured without using animal-derived serum. タンパク質分解酵素を使用せずに培養細胞を基材から剥離する請求項3〜5のいずれかに記載の骨髄由来細胞の培養方法。 The method for culturing bone marrow-derived cells according to any one of claims 3 to 5, wherein the cultured cells are detached from the substrate without using a proteolytic enzyme. 前記細胞培養基材で培養した骨髄由来細胞を25℃以下の低温処理及び/または物理的な外部刺激により該基材から剥離する請求項3〜7のいずれかに記載の骨髄由来細胞の培養方法。 The method for culturing bone marrow-derived cells according to any one of claims 3 to 7, wherein bone marrow-derived cells cultured on the cell culture substrate are detached from the substrate by low-temperature treatment at 25 ° C or lower and / or physical external stimulation. . 請求項3〜8のいずれかに記載の培養方法で製造された骨髄由来細胞。 Bone marrow-derived cells produced by the culture method according to any one of claims 3 to 8.
JP2012095547A 2011-04-20 2012-04-19 Bone marrow-derived cell culture method Active JP5935477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095547A JP5935477B2 (en) 2011-04-20 2012-04-19 Bone marrow-derived cell culture method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011093975 2011-04-20
JP2011093975 2011-04-20
JP2012095547A JP5935477B2 (en) 2011-04-20 2012-04-19 Bone marrow-derived cell culture method

Publications (2)

Publication Number Publication Date
JP2012231788A true JP2012231788A (en) 2012-11-29
JP5935477B2 JP5935477B2 (en) 2016-06-15

Family

ID=47432798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095547A Active JP5935477B2 (en) 2011-04-20 2012-04-19 Bone marrow-derived cell culture method

Country Status (1)

Country Link
JP (1) JP5935477B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033457A1 (en) * 2013-09-09 2015-03-12 株式会社日立製作所 Cell separation and collection membrane, and culturing sheet, culturing device, and cell separation and collection method using same
CN106754364A (en) * 2017-03-14 2017-05-31 南京九寿堂医药科技有限公司 A kind of cell culture container for improving lung cancer stem cell enrichment efficiency
JP2020184969A (en) * 2019-05-17 2020-11-19 東ソー株式会社 Cell differentiation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220354A (en) * 2007-03-14 2008-09-25 Cellseed Inc Method for restoring cell surface protein
JP2010018775A (en) * 2008-06-12 2010-01-28 Kawamura Inst Of Chem Res Organic and inorganic composite material dispersion and method for its preparation
JP2010193743A (en) * 2009-02-24 2010-09-09 Kawamura Inst Of Chem Res Cell culture substratum and manufacturing methods for same
JP2010220581A (en) * 2009-03-25 2010-10-07 Osaka Prefecture Univ Method for culturing hematopoietic stem cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220354A (en) * 2007-03-14 2008-09-25 Cellseed Inc Method for restoring cell surface protein
JP2010018775A (en) * 2008-06-12 2010-01-28 Kawamura Inst Of Chem Res Organic and inorganic composite material dispersion and method for its preparation
JP2010193743A (en) * 2009-02-24 2010-09-09 Kawamura Inst Of Chem Res Cell culture substratum and manufacturing methods for same
JP2010220581A (en) * 2009-03-25 2010-10-07 Osaka Prefecture Univ Method for culturing hematopoietic stem cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015045983; Plasma Processes and Polymers Vol.6, No.12, 20091204, p.831-839 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033457A1 (en) * 2013-09-09 2015-03-12 株式会社日立製作所 Cell separation and collection membrane, and culturing sheet, culturing device, and cell separation and collection method using same
JPWO2015033457A1 (en) * 2013-09-09 2017-03-02 株式会社日立製作所 Cell separation / recovery membrane, culture sheet and culture apparatus using the same, and cell separation / recovery method
CN106754364A (en) * 2017-03-14 2017-05-31 南京九寿堂医药科技有限公司 A kind of cell culture container for improving lung cancer stem cell enrichment efficiency
JP2020184969A (en) * 2019-05-17 2020-11-19 東ソー株式会社 Cell differentiation method
JP7432808B2 (en) 2019-05-17 2024-02-19 東ソー株式会社 Cell differentiation method

Also Published As

Publication number Publication date
JP5935477B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
US8530564B2 (en) Organic-inorganic composite dispersion, cell culture substrate manufactured using the same, and methods for preparing the same
JP6451023B2 (en) Cell culture substrate
EP2135940B1 (en) Cell culture support and manufacture thereof
JP6052432B2 (en) Temperature-responsive cell culture substrate and method for producing the same
JP5880181B2 (en) Organic inorganic composite hydrogel
JP6493629B2 (en) Cell culture substrate
JP5935477B2 (en) Bone marrow-derived cell culture method
JP4430123B1 (en) Cell culture substrate and method for producing the same
JP2006288251A (en) Cell culture substrate and method for culturing cell
JP5929053B2 (en) Selective culture method of adherent cells from blood-derived mononuclear cells
JP2011072297A (en) Cell culture substrate
JP4979199B2 (en) Cell culture substrate and cell culture method
JP2006288217A (en) Cell culture substrate and cell culture method
JP6024004B2 (en) Method for producing corneal cell and method for producing corneal cell sheet
JP5929111B2 (en) Adherent cell culture method and cell culture substrate used therefor
JP5862061B2 (en) Embryonic stem cell culture method
JP2006280206A (en) Substrate for cell culture and method for cell culture
JP2012050395A (en) Method for culturing retinal pigment cell, and cultured retinal pigment cell
JP2022044175A (en) Cell culture substrate and method for producing the same
JP2021090419A (en) Method of forming spontaneous stem cell spheroid using polymer coating
JP6229503B2 (en) Temperature-responsive cell culture substrate and method for producing the same
JP2013055908A (en) Culture bed and production method thereof
JP2015180230A (en) Cell culture substrate and cell culture method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140626

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5935477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250