JP7432808B2 - Cell differentiation method - Google Patents

Cell differentiation method Download PDF

Info

Publication number
JP7432808B2
JP7432808B2 JP2019093574A JP2019093574A JP7432808B2 JP 7432808 B2 JP7432808 B2 JP 7432808B2 JP 2019093574 A JP2019093574 A JP 2019093574A JP 2019093574 A JP2019093574 A JP 2019093574A JP 7432808 B2 JP7432808 B2 JP 7432808B2
Authority
JP
Japan
Prior art keywords
stem cells
differentiation
lcst
cells
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019093574A
Other languages
Japanese (ja)
Other versions
JP2020184969A (en
Inventor
聖也 平床
伸哉 今富
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2019093574A priority Critical patent/JP7432808B2/en
Publication of JP2020184969A publication Critical patent/JP2020184969A/en
Application granted granted Critical
Publication of JP7432808B2 publication Critical patent/JP7432808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、細胞分化方法に関する。 The present invention relates to a method for cell differentiation.

幹細胞は自己をほぼ際限なく増やすことのできる自己複製能と様々な細胞に分化することのできる多分化能を持つことから再生医療分野への応用が期待されている。幹細胞を移植などの再生医療に応用するためには、一般的に体内に存在する幹細胞、又は体外で作製した幹細胞を細胞培養容器等で拡大培養し、培養容器上で目的細胞へ分化させる必要がある。培養容器上での幹細胞の分化は、従来、目的細胞への分化に適した分化誘導因子を添加した分化誘導培地で培養する方法で行われている(例えば、特許文献1参照)。しかし、分化誘導培地による分化誘導のみでは分化にかかる日数が長く、再生医療に必要な目的の分化細胞を十分量得るのが困難な状況である。 Stem cells are expected to be applied in the field of regenerative medicine because they have self-renewal ability that allows them to multiply themselves almost without limit, and multipotency that allows them to differentiate into various cells. In order to apply stem cells to regenerative medicine such as transplantation, it is generally necessary to expand and culture stem cells existing in the body or stem cells produced outside the body in a cell culture vessel, etc., and differentiate into the target cells on the culture vessel. be. Differentiation of stem cells on a culture vessel has conventionally been carried out by culturing in a differentiation-inducing medium containing a differentiation-inducing factor suitable for differentiation into target cells (see, for example, Patent Document 1). However, the number of days required for differentiation is long when differentiation is induced using a differentiation-inducing medium alone, making it difficult to obtain a sufficient amount of targeted differentiated cells necessary for regenerative medicine.

特開2000-287680号公報Japanese Patent Application Publication No. 2000-287680

本発明の目的は、細胞分化効率の優れた細胞分化方法を提供することにある。 An object of the present invention is to provide a cell differentiation method with excellent cell differentiation efficiency.

本発明者らは、以上の点を鑑み、鋭意研究を重ねた結果、本発明を完成した。
すなわち本発明の一態様は、
幹細胞を、下限臨界溶解温度(LCST)を示す培養器材上で培養する工程と、前記培養器材をLCST以下に冷却して前記幹細胞を剥離・回収する工程と、回収した前記幹細胞を、分化誘導培地を用いて培養する工程と、を含んでなる幹細胞の分化方法である。
In view of the above points, the present inventors have completed the present invention as a result of extensive research.
That is, one aspect of the present invention is
A step of culturing the stem cells on a culture device exhibiting a lower critical melting temperature (LCST), a step of cooling the culture device below the LCST to detach and collect the stem cells, and a step of culturing the stem cells in a differentiation-inducing medium. A method for differentiating stem cells, which comprises the step of culturing using a .

本発明は、従来の幹細胞の分化方法に比べ、分化を促進できる。 The present invention can promote differentiation compared to conventional stem cell differentiation methods.

以下、本発明を実施するための形態について詳細に説明するが、本発明を以下の内容に限定する趣旨ではない。本発明は、その趣旨の範囲内で適宜に変形して実施できる。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail, but the present invention is not intended to be limited to the following contents. The present invention can be implemented with appropriate modifications within the scope of its spirit.

幹細胞とは、未分化状態で増殖できる自己複製能と別の種類の細胞に分化する能力を持っていれば特に限定はされず、誘導多能性(iPS)細胞、胚性幹(ES)細胞、胚性生殖(EG)細胞、胚性癌(EC)細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、皮膚幹細胞、筋幹細胞、生殖幹細胞又は各組織の前駆細胞などが挙げられ、間葉系幹細胞は特に好適に用いられる。 Stem cells are not particularly limited as long as they have the self-renewal ability to proliferate in an undifferentiated state and the ability to differentiate into other types of cells, and include induced pluripotent (iPS) cells and embryonic stem (ES) cells. , embryonic germ (EG) cells, embryonic cancer (EC) cells, hematopoietic stem cells, mesenchymal stem cells, liver stem cells, pancreatic stem cells, skin stem cells, muscle stem cells, germ stem cells, or progenitor cells of each tissue, etc. Mesenchymal stem cells are particularly preferably used.

間葉系幹細胞とは、軟骨細胞、骨芽細胞、脂肪細胞等の間葉系の細胞全て又はいくつかへの分化が可能な幹細胞並びにその前駆細胞の集団を意味する。間葉系幹細胞の由来として特に限定は無いが、骨髄、脂肪、歯髄、臍帯血、胎盤、滑膜などの組織由来やES細胞、iPS細胞などの多能性幹細胞由来が挙げられ、特に骨髄由来間葉系幹細胞が好ましい。また、間葉系幹細胞の由来種にも特に限定は無く、ヒト、動物、植物であってもよい。 Mesenchymal stem cells refer to a population of stem cells and their precursor cells that can differentiate into all or some mesenchymal cells such as chondrocytes, osteoblasts, and adipocytes. There are no particular limitations on the origin of mesenchymal stem cells, but examples include those derived from tissues such as bone marrow, adipose, dental pulp, umbilical cord blood, placenta, and synovium, and pluripotent stem cells such as ES cells and iPS cells, especially those derived from bone marrow. Mesenchymal stem cells are preferred. Furthermore, there is no particular limitation on the species from which mesenchymal stem cells are derived, and they may be human, animal, or plant.

幹細胞の分化誘導とは、幹細胞を未分化状態から分化を開始させることであり、未分化状態から、未分化状態では検出されない分化細胞特異的な分化マーカーが検出され得る状態とすることを含む。上述した分化マーカー及びその検出方法は適宜選択すればよいが、例えば、細胞膜に存在する糖、タンパク質などの細胞表面マーカー、細胞内に存在するmRNA、タンパク質、酵素などの細胞内マーカー、細胞外に分泌されるペプチド、タンパク質、酵素、化合物などの細胞外マーカーなどが分化マーカーとして挙げられ、標識抗体を用いる方法(染色法、フローサイトメトリー、ELISAなど)、酵素活性を利用した染色法、RT-PCR法などが検出方法として挙げられる。例えば、間葉系幹細胞の軟骨細胞への分化では、分化誘導により形成された軟骨細胞より分泌される細胞外基質を、アルシアンブルーを用いて染色することにより確認できる。 Induction of differentiation of stem cells refers to starting differentiation of stem cells from an undifferentiated state, and includes changing the undifferentiated state to a state in which differentiated cell-specific differentiation markers that are not detected in the undifferentiated state can be detected. The above-mentioned differentiation markers and their detection methods may be selected as appropriate, but for example, cell surface markers such as sugars and proteins present in the cell membrane, intracellular markers such as mRNA, proteins, and enzymes present within the cell, and markers outside the cell. Extracellular markers such as secreted peptides, proteins, enzymes, and compounds are listed as differentiation markers, and methods using labeled antibodies (staining method, flow cytometry, ELISA, etc.), staining methods using enzyme activity, RT PCR method etc. are mentioned as a detection method. For example, differentiation of mesenchymal stem cells into chondrocytes can be confirmed by staining the extracellular matrix secreted by the chondrocytes formed by differentiation induction using Alcian blue.

下限臨界溶解温度(LCST;Lower Critical Solution Temperature)とは、この温度よりも低い温度では高分子が水に溶解して透明の溶液になるが、この温度よりも高い温度では不溶化して白濁するか沈殿が生じ、相分離する温度である。本願明細書ではLCSTを示すことを、温度応答性を有するということがある。LCSTは20℃~40℃の範囲にあることが好ましく、30℃~40℃の範囲にあることがさらに好ましい。LCSTを示す繰返し単位とその水に対するLCSTは、例えば、N-イソプロピルアクリルアミド(LCST=32℃)、N-n-プロピルメタクリルアミド(LCST=22℃)、N-テトラヒドロフルフリルアクリルアミド(LCST=28℃)、N-エトキシエチルアクリルアミド(LCST=35℃)、N,N-ジエチルアクリルアミド(LCST=32℃)、N-n-プロピルメタクリルアミド(LCST=28℃)、N-テトラヒドロフルフリルメタクリルアミド(LCST=35℃)、N-メチル-N-イソプロピルアクリルアミド(LCST=23℃)、又はN-メチル-N-n-プロピルアクリルアミド(LCST=20℃)等が例示できる。LCSTは水溶液の濃度で発現する温度が前後するが、N-イソプロピルアクリルアミドはLCST発現の濃度依存性が低いため好ましい。本発明におけるLCSTを示す培養器材に用いる繰返し単位は、1種類のみでもよく、2種類以上を組み合わせてあってもよい。また温度応答性を有するのであれば、LCSTを示す繰返し単位の他に、異なる繰返し単位を含んでも良い。 Lower Critical Solution Temperature (LCST) is a polymer that dissolves in water and becomes a clear solution at a temperature lower than this temperature, but becomes insolubilized and becomes cloudy at a temperature higher than this temperature. This is the temperature at which precipitation occurs and phase separation occurs. In this specification, exhibiting LCST is sometimes referred to as having temperature responsiveness. The LCST is preferably in the range of 20°C to 40°C, more preferably in the range of 30°C to 40°C. Repeating units showing LCST and their LCST for water are, for example, N-isopropylacrylamide (LCST = 32°C), N-n-propylmethacrylamide (LCST = 22°C), N-tetrahydrofurfuryl acrylamide (LCST = 28°C). ), N-ethoxyethylacrylamide (LCST = 35°C), N,N-diethylacrylamide (LCST = 32°C), N-n-propylmethacrylamide (LCST = 28°C), N-tetrahydrofurfurylmethacrylamide (LCST Examples include N-methyl-N-isopropylacrylamide (LCST=23°C), and N-methyl-Nn-propylacrylamide (LCST=20°C). Although the temperature at which LCST is expressed varies depending on the concentration of the aqueous solution, N-isopropylacrylamide is preferable because the concentration dependence of LCST expression is low. The number of repeating units used in the culture equipment exhibiting LCST in the present invention may be one type or a combination of two or more types. Further, as long as it has temperature responsiveness, it may contain a different repeating unit in addition to the repeating unit showing LCST.

培養器材は、その製造方法に特に限定は無く、例えばLCSTを示す繰返し単位を電子線照射で重合して器材表面に被覆する方法、LCSTを示す繰返し単位を含有する重合体を溶媒に溶解させた表面処理剤を器材に塗布して、膜を被覆する方法が挙げられる。前記重合体は特に限定は無いがその合成方法としては、株式会社エヌ・ティー・エス発行、“ラジカル重合ハンドブック”、p.161~225(2010)に記載のリビングラジカル重合技術を用いて、共重合する方法を用いることができる。培養器材を用いて培養・増殖した細胞は、一般的にトリプシンのようなタンパク質分解酵素により処理することで容器表面から剥離・回収する必要があるが、LCSTを示す培養器材を用いることで周囲環境の温度降下による温度応答性重合体のゾル転移で器材表面の接着力を弱めて、タンパク質分解酵素を使わずに細胞を剥離させ、回収することができる。 There are no particular limitations on the manufacturing method for the culture equipment; for example, repeating units exhibiting LCST may be polymerized by electron beam irradiation to coat the equipment surface, or a polymer containing repeating units exhibiting LCST may be dissolved in a solvent. An example of this method is to coat a membrane by applying a surface treatment agent to the device. The above-mentioned polymer is not particularly limited, but its synthesis method is described in "Radical Polymerization Handbook" published by NTS Co., Ltd., p. A method of copolymerization using the living radical polymerization technique described in 161-225 (2010) can be used. Cells cultured and proliferated using culture equipment generally need to be detached and recovered from the container surface by treatment with proteolytic enzymes such as trypsin, but by using culture equipment that exhibits LCST, they can be removed from the surrounding environment. The sol transition of the temperature-responsive polymer caused by a drop in temperature weakens the adhesive force on the surface of the device, making it possible to detach and collect cells without using proteolytic enzymes.

LCSTを示す繰返し単位を含有する重合体の膜を用いる場合は、膜を構成する重合体の成分として、LCSTを示す繰返し単位の他に膜を器材に固定するための繰返し単位を含むことが好ましい。例えばスチレンやその誘導体、2-メトキシエチルアクリレート、n-プロピルアクリレート、n-プロピルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート等を例示でき、2-メトキシエチルアクリレートの繰返し単位とn-ブチルアクリレートの繰返し単位とN-イソプロピルアクリルアミドの繰返し単位とを含んでなるブロック共重合体が特に好ましい。 When using a polymer membrane containing repeating units exhibiting LCST, it is preferable that the component of the polymer constituting the membrane includes a repeating unit for fixing the membrane to equipment in addition to the repeating units exhibiting LCST. . Examples include styrene and its derivatives, 2-methoxyethyl acrylate, n-propyl acrylate, n-propyl methacrylate, n-butyl acrylate, n-butyl methacrylate, etc. Particularly preferred are block copolymers comprising repeating units and repeating units of N-isopropylacrylamide.

培養器材の形状は特に限定は無く、ディッシュ、フラスコ、マイクロウエルプレート、培養バッグ、チューブ、トレイ、培養槽などが挙げられる。これらの器材の材質も、特に限定されず、ガラスやポリプロピレン、ポリスチレン、ステンレスなどやそれらの組み合わせが挙げられる。 The shape of the culture equipment is not particularly limited, and examples thereof include dishes, flasks, microwell plates, culture bags, tubes, trays, culture vessels, and the like. The materials of these instruments are not particularly limited, and examples include glass, polypropylene, polystyrene, stainless steel, and combinations thereof.

培養器材表面には細胞外マトリックスを被覆してもよい。細胞外マトリックスの種類は特に限定は無く、例えば、コラーゲン、アテロコラーゲン、ヒアルロン酸、エラスチン、プロテオグリカン、グルコサミノグリカン、フィブロネクチン、ラミニン、ビトロネクチン、ゼラチン、又はラミニン、コラーゲンIV、ヘパラン硫酸プロテオグリカン、エンタクチン/ニドジェン1,2等を主成分として含有するマトリゲルを用いてもよく、これらを1種類のみでもよく、2種類以上を組み合わせてあってもよい。また、これら細胞外マトリックスのセグメントであってもよい。 The surface of the culture equipment may be coated with an extracellular matrix. The type of extracellular matrix is not particularly limited, and examples include collagen, atelocollagen, hyaluronic acid, elastin, proteoglycan, glycosaminoglycan, fibronectin, laminin, vitronectin, gelatin, or laminin, collagen IV, heparan sulfate proteoglycan, entactin/nidogen. Matrigel containing 1, 2, etc. as main components may be used, and one type of these may be used alone, or two or more types may be used in combination. It may also be a segment of these extracellular matrices.

本発明の分化方法は以下の工程を含むことを特徴とする。
幹細胞を、下限臨界溶解温度(LCST)を示す培養器材上で培養する工程(以下、(A)工程という。)
前記培養器材をLCST以下に冷却して前記幹細胞を剥離・回収する工程(以下、(B)工程という。)
回収した幹細胞を、分化誘導培地を用いて培養する工程(以下、(C)工程という。)
The differentiation method of the present invention is characterized by including the following steps.
A step of culturing stem cells on culture equipment exhibiting a lower critical melting temperature (LCST) (hereinafter referred to as (A) step).
A step of cooling the culture equipment below the LCST to detach and collect the stem cells (hereinafter referred to as (B) step).
A step of culturing the recovered stem cells using a differentiation-inducing medium (hereinafter referred to as step (C)).

1.(A)工程について
使用される培地の組成については、幹細胞が目的細胞への分化能を維持したまま接着・増殖すれば特に限定は無く、基礎培地と血清からなり、抗生物質が含まれていても良い。基礎培地の種類は特に限定はなく、例えば、MEM、αMEM、DMEM、EMEM、GMEM、DMEM/Ham’sF-12、Ham’sF-12、Ham’sF-10、Medium199、RPMI1640などを用いることができる。血清の種類は特に限定はなく、例えば、牛胎児血清(Fetal Bovine Serum:FBS)、児牛血清、成牛血清、ウマ血清、ヒツジ血清、ヤギ血清、ブタ血清、ニワトリ血清、ウサギ血清、ヒト血清が使用されるが、入手の容易さから一般的にFBSがよく用いられる。培地中の血清濃度は特に限定はない。費用体効果から一般的には20vol%以下の濃度で用いられることが多いが、20vol%超の濃度であっても良い。また、未処理又は未精製の血清をいずれも含まず、精製された血液由来成分又は動物組織由来成分(増殖因子など)を含有する無血清培地であってもよい。
細胞培養は、培養器材の表面に被覆された温度応答性重合体のLCSTよりも高い温度で行われるが、ヒト由来細胞を用いる場合は、高い培養効率を得ることを目的に体温付近で行うことが好ましく、35~39℃の温度範囲で行うことがより好ましく、36~38℃の温度範囲で行うことがさらに好ましい。
幹細胞の培養密度は、幹細胞が目的細胞への分化能を維持したまま接着・増殖すれば特に限定は無いが、間葉系幹細胞の場合では、例えば1.0×10~1.0×10cells/cmが好ましく、1.0×10~1.0×10cells/cmがより好ましい。その他の培養条件は特に限定されず、当分野において通常行われる条件下で培養を行ってよい。
1. (A) Regarding the process There are no particular limitations on the composition of the medium used, as long as the stem cells adhere and proliferate while maintaining their ability to differentiate into target cells. Also good. The type of basal medium is not particularly limited, and for example, MEM, αMEM, DMEM, EMEM, GMEM, DMEM/Ham'sF-12, Ham'sF-12, Ham'sF-10, Medium199, RPMI1640, etc. can be used. can. The type of serum is not particularly limited, and examples include fetal bovine serum (FBS), calf serum, adult bovine serum, horse serum, sheep serum, goat serum, pig serum, chicken serum, rabbit serum, and human serum. However, FBS is commonly used due to its easy availability. The serum concentration in the medium is not particularly limited. Generally, it is often used at a concentration of 20 vol% or less from cost-effectiveness, but it may be used at a concentration of more than 20 vol%. Alternatively, it may be a serum-free medium that does not contain untreated or unpurified serum but contains purified blood-derived components or animal tissue-derived components (growth factors, etc.).
Cell culture is performed at a temperature higher than the LCST of the temperature-responsive polymer coated on the surface of the culture equipment, but when using human-derived cells, it should be performed near body temperature in order to obtain high culture efficiency. is preferred, more preferably carried out at a temperature range of 35 to 39°C, and even more preferably carried out at a temperature range of 36 to 38°C.
The culture density of stem cells is not particularly limited as long as the stem cells adhere and proliferate while maintaining the ability to differentiate into target cells, but in the case of mesenchymal stem cells, for example, 1.0 × 10 1 to 1.0 × 10 5 cells/cm 2 is preferable, and 1.0×10 2 to 1.0×10 4 cells/cm 2 is more preferable. Other culture conditions are not particularly limited, and culture may be performed under conditions commonly used in the art.

2.(B)工程について
培養器材から幹細胞を剥離・回収する方法は、周囲の温度を培養器材のLCSTよりも低い温度に変化させた後、細胞の自然剥離を待つ方法、タッピングや振盪による方法、細胞に局所的に衝撃を与える方法、セルスクレーパーを用いた方法、ピペッティング等を用いることができる。培養器材の冷却時の温度はLCSTから1℃以上低温であることが好ましい。温度を降下させる方法としては冷所保管、温かい培地を抜き取った後に冷却した液体を注ぐ方法が例示される。冷却した液体に特に限定はなく、培養液やその他の培地溶液、等張液など目的に応じて選択することができる。また、冷却時間は、5分以上60分以下が好ましい。
2. (B) About the process There are several methods for detaching and collecting stem cells from culture equipment: changing the ambient temperature to a temperature lower than the LCST of the culture equipment and then waiting for the cells to detach naturally; methods using tapping or shaking; A method of locally applying an impact to the cell, a method using a cell scraper, pipetting, etc. can be used. The temperature when cooling the culture equipment is preferably 1° C. or more lower than the LCST. Examples of methods for lowering the temperature include storing in a cold place and pouring cooled liquid after removing the warm medium. The cooled liquid is not particularly limited, and can be selected depending on the purpose, such as a culture solution, other medium solution, or isotonic solution. Moreover, the cooling time is preferably 5 minutes or more and 60 minutes or less.

3.(C)工程について
用いる培養器材は特に限定は無く、培養器材表面に温度応答性重合体を被覆していてもよいし、していなくてもよい。
分化誘導培地の組成は特に限定は無く、基礎培地と血清に加え、幹細胞を目的細胞へ分化させる、分化誘導因子からなり、抗生物質が含まれていても良い。基礎培地の種類は特に限定はなく、上述した(A)工程で用いられるような培地を用いることができる。培養細胞を目的細胞へ分化させる分化誘導因子としては繊維芽細胞増殖因子(FGF)、トランスフォーミング増殖因子(TGF)、トランスフォーミング増殖因子β(TGFβ)、血小板由来増殖因子(PDFG)、上皮増殖因子(EGF)、インスリン様増殖因子(IGF)、肝細胞増殖因子(HGF)、血管内皮増殖因子(VEGF)、神経増殖因子(NGF)、脳由来神経栄養因子(BDNF)、アクチビン、骨形成因子(BMP)などがあるが、幹細胞の目的細胞への分化方法に応じて適宜選択すればよい。間葉系幹細胞の軟骨細胞への分化の場合では、例えばTGF-β、IGF、IL、デキサメサゾン、BMPなどが挙げられる。また、目的細胞に分化させるための市販の分化誘導培地を用いてもよい。市販の分化誘導培地は、間葉系幹細胞の軟骨細胞への分化の場合では、例えば Mesenchymal Stem Cell Chondrogenic Differentiation Medium Ready-to-use(Promocell(株)製)が挙げられる。
分化方法は(B)工程で剥離・回収した幹細胞を用いれば特に限定は無く、当分野において通常行われる条件下で分化誘導を行ってよい。また、接着培養、浮遊培養、アテロコラーゲンなどのスキャホールドを用いた3次元培養など目的に応じて選択することができる。
分化誘導培地で細胞の分化を誘導する前に、幹細胞を培養し増殖させる工程を含んでいてもよい。当該工程で用いる培地は(A)工程で用いる培地と同様に幹細胞が目的細胞への分化能を維持したまま接着・増殖すれば特に限定は無く、基礎培地と血清からなり、抗生物質が含まれていても良い。
幹細胞の培養密度は、幹細胞が目的細胞への分化を阻害しなければよく、間葉系幹細胞の軟骨細胞への分化の場合では、例えば、1.0×10~1.0×10cells/cmが好ましく、1.0×10~1.0×10cells/cmがより好ましい。
分化誘導を行った細胞の分化状態の評価方法は特に限定は無いが、例えば間葉系幹細胞の軟骨細胞へ分化では、分化誘導により形成された軟骨細胞が分泌した細胞外基質を、アルシアンブルーを用いて染色することにより確認できる。
3. (C) Regarding the process The culture equipment used is not particularly limited, and the surface of the culture equipment may or may not be coated with a temperature-responsive polymer.
The composition of the differentiation-inducing medium is not particularly limited, and in addition to the basal medium and serum, it consists of a differentiation-inducing factor that differentiates stem cells into target cells, and may also contain an antibiotic. The type of basal medium is not particularly limited, and a medium such as that used in step (A) described above can be used. Differentiation-inducing factors that differentiate cultured cells into target cells include fibroblast growth factor (FGF), transforming growth factor (TGF), transforming growth factor β (TGFβ), platelet-derived growth factor (PDFG), and epidermal growth factor. (EGF), insulin-like growth factor (IGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), activin, bone morphogenetic factor ( BMP), etc., and may be appropriately selected depending on the method of differentiation of stem cells into target cells. In the case of differentiation of mesenchymal stem cells into chondrocytes, examples include TGF-β, IGF, IL, dexamethasone, and BMP. Alternatively, a commercially available differentiation-inducing medium for differentiation into target cells may be used. In the case of differentiation of mesenchymal stem cells into chondrocytes, commercially available differentiation induction media include, for example, Mesenchymal Stem Cell Chondrogenic Differentiation Medium Ready-to-use (manufactured by Promocell Co., Ltd.).
The differentiation method is not particularly limited as long as the stem cells detached and collected in step (B) are used, and differentiation may be induced under conditions commonly used in the art. In addition, adhesive culture, suspension culture, three-dimensional culture using a scaffold such as atelocollagen, etc. can be selected depending on the purpose.
The method may include a step of culturing and proliferating stem cells before inducing cell differentiation with a differentiation-inducing medium. The medium used in this step is not particularly limited as long as the stem cells adhere and proliferate while maintaining the ability to differentiate into target cells, as in the medium used in step (A), and it consists of a basal medium and serum, and does not contain antibiotics. You can leave it there.
The culture density of stem cells may be as long as it does not inhibit the differentiation of stem cells into target cells, and in the case of differentiation of mesenchymal stem cells into chondrocytes, for example, 1.0×10 1 to 1.0×10 5 cells. /cm 2 is preferable, and 1.0×10 4 to 1.0×10 6 cells/cm 2 is more preferable.
There are no particular limitations on the method for evaluating the differentiation state of differentiated cells, but for example, in the differentiation of mesenchymal stem cells into chondrocytes, the extracellular matrix secreted by the chondrocytes formed by differentiation induction is treated with Alcian blue. This can be confirmed by staining with.

以下に本発明の実施例を説明するが、本発明はこれら実施例により何ら制限されるものではない。なお、断りのない限り、試薬は市販品を用いた。 Examples of the present invention will be described below, but the present invention is not limited to these Examples in any way. In addition, unless otherwise specified, commercially available reagents were used.

<ブロック共重合体の組成>
核磁気共鳴測定装置(日本電子(株)製、商品名:JNM-ECZ400S/L1)を用いたプロトン核磁気共鳴分光(H-NMR)スペクトル分析より求めた。
<Composition of block copolymer>
It was determined by proton nuclear magnetic resonance spectroscopy ( 1 H-NMR) spectrum analysis using a nuclear magnetic resonance measuring device (manufactured by JEOL Ltd., trade name: JNM-ECZ400S/L1).

<ブロック共重合体の分子量、分子量分布>
重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置は東ソー(株)製HLC-8320GPCを用い、カラムは東ソー製TSKgelSuperAWM-Hを2本用い、カラム温度を40℃に設定し、溶離液は10mMトリフルオロ酢酸ナトリウムを含む10mMトリフルオロ酢酸ナトリウムを用いて測定した。測定試料は1.0mg/mLで調製して測定した。分子量の検量線は、分子量既知のポリメタクリル酸メチル(ポリマーラボラトリーズ製)を用いた。
<Molecular weight and molecular weight distribution of block copolymer>
Weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw/Mn) were measured by gel permeation chromatography (GPC). The GPC device used was HLC-8320GPC manufactured by Tosoh Corporation, the columns used were two TSKgelSuperAWM-H manufactured by Tosoh Corporation, the column temperature was set at 40°C, and the eluent was 10mM sodium trifluoroacetate containing 10mM sodium trifluoroacetate. Measured using The measurement sample was prepared and measured at 1.0 mg/mL. For the molecular weight calibration curve, polymethyl methacrylate (manufactured by Polymer Laboratories) with a known molecular weight was used.

<ブロック共重合体の合成例>
200mL2口フラスコに2-メトキシエチルアクリレート(MEA)0.650g(5mmol)を加え、さらにシアノメチルドデシルトリチオカルボナトを31.8mg(100μmol)とアゾビスイソブチロニトリル1.6mg(10μmol)とtert-ブチルアルコール10mLを加え、アルゴンガス置換後、62℃で24時間加熱撹拌した。
1回目の加熱撹拌後、n-ブチルアクリレート(BA)3.845g(30mmol)を加え、さらにアゾビスイソブチロニトリル1.6mg(10μmol)とtert-ブチルアルコール5mLを加え、アルゴンガス置換後、62℃で24時間加熱撹拌した。
2回目の加熱撹拌後、上記にN-イソプロピルアクリルアミド(IPAAm LCST=32℃)7.355g(65mmol)を加え、さらにアゾビスイソブチロニトリル1.6mg(10μmol)とtert-ブチルアルコール85mLを加え、アルゴンガス置換後、62℃で24時間加熱撹拌した。
3回目の加熱撹拌後、反応液を水で再沈精製し、減圧乾燥することで黄色固体を得た。得られた黄色固体をクロロホルムに溶解し、分液ロートを用いクロロホルム相を回収した。回収したクロロホルム相をエバポレーターで濃縮し、ヘプタンで再沈精製した。沈殿物をろ過で回収し、減圧乾燥することで、ブロック共重合体poly(MEA-BA-IPAAm)を8.295g得た。得られたブロック共重合体の組成はMEA:BA:IPAAm=5:30:65(mol%)、Mnは11.8×10、Mw/Mnは1.45であった。
<Synthesis example of block copolymer>
Add 0.650 g (5 mmol) of 2-methoxyethyl acrylate (MEA) to a 200 mL two-necked flask, and add 31.8 mg (100 μmol) of cyanomethyldodecyl trithiocarbonate and 1.6 mg (10 μmol) of azobisisobutyronitrile. 10 mL of tert-butyl alcohol was added, and after purging with argon gas, the mixture was heated and stirred at 62° C. for 24 hours.
After the first heating and stirring, 3.845 g (30 mmol) of n-butyl acrylate (BA) was added, and 1.6 mg (10 μmol) of azobisisobutyronitrile and 5 mL of tert-butyl alcohol were added, and after replacing with argon gas, The mixture was heated and stirred at 62°C for 24 hours.
After the second heating and stirring, 7.355 g (65 mmol) of N-isopropylacrylamide (IPAAm LCST = 32 ° C.) was added to the above, and further 1.6 mg (10 μmol) of azobisisobutyronitrile and 85 mL of tert-butyl alcohol were added. After purging with argon gas, the mixture was heated and stirred at 62° C. for 24 hours.
After the third heating and stirring, the reaction solution was purified by reprecipitation with water and dried under reduced pressure to obtain a yellow solid. The obtained yellow solid was dissolved in chloroform, and the chloroform phase was collected using a separating funnel. The collected chloroform phase was concentrated using an evaporator and purified by reprecipitation with heptane. The precipitate was collected by filtration and dried under reduced pressure to obtain 8.295 g of block copolymer poly(MEA-BA-IPAAm). The composition of the obtained block copolymer was MEA:BA:IPAAm=5:30:65 (mol%), Mn was 11.8×10 4 , and Mw/Mn was 1.45.

<表面処理剤の調製>
ブロック共重合体90mgに2-メトキシエタノールを19.910g添加し、撹拌で全て溶解させ、ブロック共重合体の0.45wt%表面処理剤を調製した。
<Preparation of surface treatment agent>
19.910 g of 2-methoxyethanol was added to 90 mg of the block copolymer, and the whole was dissolved by stirring to prepare a 0.45 wt % surface treatment agent for the block copolymer.

<培養器材の調製>
IWAKI組織培養用ディッシュ(φ6cm)の中央に表面処理剤を100μL加え、スピンコータ―(ミカサ製、商品名MS-B200)を用いて、回転数3,000rpm、回転時間60秒の条件でスピンコートすることでブロック共重合体をコートした培養器材を調製した。この器材表面のブロック共重合体の被覆量を全反射型フーリエ変換型赤外分光(ATR/FT-IR)法により測定した所、温度応答性ブロック分として0.55μg/cmであった。
<Preparation of culture equipment>
Add 100 μL of surface treatment agent to the center of an IWAKI tissue culture dish (φ6 cm) and spin coat it using a spin coater (manufactured by Mikasa, product name MS-B200) at a rotation speed of 3,000 rpm and a rotation time of 60 seconds. In this way, culture equipment coated with the block copolymer was prepared. The coating amount of the block copolymer on the surface of this device was measured by total reflection Fourier transform infrared spectroscopy (ATR/FT-IR), and it was found to be 0.55 μg/cm 2 as a temperature-responsive block.

実施例1
培養器材に、骨髄由来ヒト間葉系幹細胞(ロンザジャパン(株)製、Product Code:PT-2501、Lot Number:0000603525)を1.0×10cells/dish播種し、37℃、CO濃度5%で培養した。培養液にはウシ胎児血清(コロンビア産)を10vol%含むダルベッコ・フォークト変法イーグル最小必須培地(10vol% FBS/DMEM)を用いた。
7日間培養後、培養液を抜き、新たに4℃に冷却した培養液を加え、室温で10分間冷却した。10分後、ピペッターを用いて培養器材の培養面の全面に培養液を当てるようにピペッティングした後、細胞ごと培養液を回収した。回収した培養液を、160rcf、25℃、5分の条件で遠心後、上清を除き、培養液を500μL加え懸濁した。得られた細胞懸濁液中から10μLを細胞数測定用スライド(Thermo Fisher Scientific(株)製、商品名:Countess(登録商標) Cell Counting Chamber Slid)に添加し、自動セルカウンター(Thermo Fisher Scientific(株)製、商品名:Countess(登録商標) II)を用いて、細胞数を測定した。
上記のように冷却によって剥離・回収した間葉系幹細胞を、10vol%FBS/DMEMを200μL加えた浮遊培養用の96wellプレート(コーニング製、商品名Corning(登録商標) 96-well Black Round Bottom Ultra-Low Attachment Spheroid Microplate)に1.0×10cells/wellずつ播種し、37℃、CO濃度5%で2日間培養した。その後、培地をMesenchymal Stem Cell Chondrogenic Differentiation Medium Ready-to-use(Promo Cell(株)製)に交換し軟骨細胞への分化誘導を行った。
Example 1
Bone marrow-derived human mesenchymal stem cells (manufactured by Lonza Japan Co., Ltd., Product Code: PT-2501, Lot Number: 0000603525) were seeded at 1.0 × 10 5 cells/dish in culture equipment, and the cells were incubated at 37°C and at a CO 2 concentration. Cultured at 5%. Dulbecco-Voigt modified Eagle's minimum essential medium (10 vol% FBS/DMEM) containing 10 vol% fetal bovine serum (from Colombia) was used as the culture solution.
After culturing for 7 days, the culture solution was drained, a new culture solution cooled to 4°C was added, and the mixture was cooled at room temperature for 10 minutes. After 10 minutes, the culture solution was applied to the entire culture surface of the culture device using a pipetter, and the culture solution was collected together with the cells. The collected culture solution was centrifuged at 160 rcf, 25° C., and for 5 minutes, the supernatant was removed, and 500 μL of the culture solution was added and suspended. 10 μL of the obtained cell suspension was added to a cell counting slide (manufactured by Thermo Fisher Scientific Co., Ltd., trade name: Countess (registered trademark) Cell Counting Chamber Slide), and an automatic cell counter (Thermo Fisher Scientific) was added. ( The number of cells was measured using Countess (registered trademark) II) manufactured by Co., Ltd., trade name: Countess (registered trademark) II).
The mesenchymal stem cells detached and collected by cooling as described above were placed in a 96-well plate for suspension culture (manufactured by Corning, trade name: Corning (registered trademark) 96-well Black Round Bottom Ultra-) to which 200 μL of 10 vol% FBS/DMEM was added. The cells were seeded at 1.0×10 5 cells/well in a Low Attachment Spheroid Microplate and cultured for 2 days at 37° C. and a CO 2 concentration of 5%. Thereafter, the medium was replaced with Mesenchymal Stem Cell Chondrogenic Differentiation Medium Ready-to-use (manufactured by Promo Cell Co., Ltd.) to induce differentiation into chondrocytes.

3日毎に該培地を交換しながら25日間培養したところ球状の細胞凝集塊が観察された。細胞凝集塊をアルシアンブルー染色し、染色陽性の軟骨組織の直径を測定した。測定後、150μLの6Mグアニジン塩酸塩でアルシアンブルーの色素を溶出させ細胞外基質量をプレートリーダー(コロナ電気(株)製、商品名:吸光グレーティングマイクロプレートリーダ SH-1300 Lab)を用いて630nmの吸光度で測定した。その結果、軟骨組織の直径は1.75mm、630nmの吸光度は0.912であった。 After culturing for 25 days while replacing the medium every 3 days, spherical cell aggregates were observed. Cell aggregates were stained with Alcian blue, and the diameter of the positively stained cartilage tissue was measured. After the measurement, the Alcian blue dye was eluted with 150 μL of 6M guanidine hydrochloride, and the amount of extracellular matrix was measured at 630 nm using a plate reader (manufactured by Corona Electric Co., Ltd., trade name: Absorption Grating Microplate Reader SH-1300 Lab). It was measured by the absorbance of As a result, the diameter of the cartilage tissue was 1.75 mm, and the absorbance at 630 nm was 0.912.

比較例1
培養器材から間葉系幹細胞を剥離・回収する際に4℃に冷却した培養液を加える代わりに、PBSで洗浄後、タンパク質分解酵素(Thermo Fisher Scientific(株)製、商品名:TrypLE Express)を1mL加え、37℃で10分間静置した以外は実施例1と同様の方法で、骨髄由来ヒト間葉系幹細胞から軟骨細胞への分化誘導を行った。
Comparative example 1
When detaching and collecting mesenchymal stem cells from culture equipment, instead of adding a culture medium cooled to 4°C, after washing with PBS, a proteolytic enzyme (manufactured by Thermo Fisher Scientific Co., Ltd., product name: TrypLE Express) is added. Differentiation of bone marrow-derived human mesenchymal stem cells into chondrocytes was induced in the same manner as in Example 1, except that 1 mL was added and allowed to stand at 37°C for 10 minutes.

細胞凝集塊をアルシアンブルー染色し、染色陽性の軟骨組織の直径を測定した。測定後、150μLの6Mグアニジン塩酸塩でアルシアンブルーの色素を溶出させ細胞外基質量を630nmの吸光度で測定した。その結果、軟骨組織の直径は1.22mm、630nmの吸光度は0.314であった。 Cell aggregates were stained with Alcian blue, and the diameter of the positively stained cartilage tissue was measured. After the measurement, the Alcian blue dye was eluted with 150 μL of 6M guanidine hydrochloride, and the amount of extracellular matrix was measured by absorbance at 630 nm. As a result, the diameter of the cartilage tissue was 1.22 mm, and the absorbance at 630 nm was 0.314.

Claims (4)

幹細胞を、下限臨界溶解温度(LCST)を示す培養器材上で未分化状態を維持しながら前培養する工程と、
前記培養器材をLCST以下に冷却して前培養後の幹細胞を剥離・回収する工程と、
回収した前記前培養後の幹細胞を、分化誘導培地を用いて培養する工程と、
を含んでなる幹細胞の分化方法であって、
前記培養器材の器材表面に、LCSTを示す温度応答性ブロック共重合体が被覆されてあり、
前記温度応答性ブロック共重合体が2-メトキシエチルアクリレートの繰返し単位と、n-ブチルアクリレートの繰返し単位と、N-イソプロピルアクリルアミドの繰返し単位を含んでなることを特徴とする、方法。
Pre-culturing the stem cells while maintaining an undifferentiated state on a culture device exhibiting a lower critical lysis temperature (LCST);
a step of cooling the culture equipment below the LCST and detaching and collecting the pre-cultured stem cells;
a step of culturing the recovered pre-cultured stem cells using a differentiation-inducing medium;
A method for differentiating stem cells, the method comprising:
The surface of the culture device is coated with a temperature-responsive block copolymer exhibiting LCST,
A method characterized in that the temperature-responsive block copolymer comprises repeating units of 2-methoxyethyl acrylate, repeating units of n-butyl acrylate, and repeating units of N-isopropylacrylamide.
前記幹細胞が間葉系幹細胞であることを特徴とする請求項1に記載の方法。 2. The method according to claim 1, wherein the stem cells are mesenchymal stem cells. 前記間葉系幹細胞が骨髄由来間葉系幹細胞であることを特徴とする請求項2に記載の方法。 3. The method according to claim 2, wherein the mesenchymal stem cells are bone marrow-derived mesenchymal stem cells. 前記幹細胞が軟骨細胞に分化することを特徴とする請求項1~3のいずれかに記載の方法。 4. The method according to claim 1, wherein the stem cells differentiate into chondrocytes.
JP2019093574A 2019-05-17 2019-05-17 Cell differentiation method Active JP7432808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019093574A JP7432808B2 (en) 2019-05-17 2019-05-17 Cell differentiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019093574A JP7432808B2 (en) 2019-05-17 2019-05-17 Cell differentiation method

Publications (2)

Publication Number Publication Date
JP2020184969A JP2020184969A (en) 2020-11-19
JP7432808B2 true JP7432808B2 (en) 2024-02-19

Family

ID=73220567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019093574A Active JP7432808B2 (en) 2019-05-17 2019-05-17 Cell differentiation method

Country Status (1)

Country Link
JP (1) JP7432808B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117350A (en) 2008-10-17 2010-05-27 National Institute Of Advanced Industrial Science & Technology Undifferentiated cell labeling technique using mortalin combining material
JP2012231788A (en) 2011-04-20 2012-11-29 Kawamura Institute Of Chemical Research Cultural base material of bone marrow-derived cell, culture method, and culture bone marrow-derived cell
JP2018019703A (en) 2007-06-29 2018-02-08 真理 船木 Low rigidity gel for MSC growth regulation
JP2018174919A (en) 2017-04-12 2018-11-15 東ソー株式会社 Block copolymer and surface treating agent using the same
JP2019033742A (en) 2017-08-16 2019-03-07 東ソー株式会社 Culture base for pluripotent stem cells and method for producing pluripotent stem cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018019703A (en) 2007-06-29 2018-02-08 真理 船木 Low rigidity gel for MSC growth regulation
JP2010117350A (en) 2008-10-17 2010-05-27 National Institute Of Advanced Industrial Science & Technology Undifferentiated cell labeling technique using mortalin combining material
JP2012231788A (en) 2011-04-20 2012-11-29 Kawamura Institute Of Chemical Research Cultural base material of bone marrow-derived cell, culture method, and culture bone marrow-derived cell
JP2018174919A (en) 2017-04-12 2018-11-15 東ソー株式会社 Block copolymer and surface treating agent using the same
JP2019033742A (en) 2017-08-16 2019-03-07 東ソー株式会社 Culture base for pluripotent stem cells and method for producing pluripotent stem cells

Also Published As

Publication number Publication date
JP2020184969A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
US10407663B2 (en) Obtaining multipotent amnion-derived stem cell (ADSC) from amniotic membrane tissue without enzymatic digestion
Cimino et al. Xeno-free strategies for safe human mesenchymal stem/stromal cell expansion: supplements and coatings
TWI720333B (en) Preparation method of pluripotent stem cell, preparation method of pluripotent stem cell using the preparation method, ameliorating agent, and differentiation induction method of the pluripotent stem cell
Tsai et al. Expansion of human mesenchymal stem cells in fibrous bed bioreactor
Rumiński et al. Osteogenic differentiation of human adipose-derived stem cells in 3D conditions-comparison of spheroids and polystyrene scaffolds
US20070148767A1 (en) Method of forming multicellular spheroids from the cultured cells
Coronado et al. Hepatocyte-like cells derived from human amniotic epithelial, bone marrow, and adipose stromal cells display enhanced functionality when cultured on decellularized liver substrate
US20130171729A1 (en) Methods and kits for cell release
Higuchi et al. Thermoresponsive surfaces designed for the proliferation and differentiation of human pluripotent stem cells
Al Hosni et al. Mapping human serum–induced gene networks as a basis for the creation of biomimetic periosteum for bone repair
Darge et al. Preparation of thermosensitive PNIPAm‐based copolymer coated cytodex 3 microcarriers for efficient nonenzymatic cell harvesting during 3D culturing
JP7432808B2 (en) Cell differentiation method
Flechner et al. Adhesion, proliferation, and detachment of various cell types on thermoresponsive microgel coatings
JP7250248B2 (en) BLOCK COPOLYMER, SURFACE TREATMENT AGENT AND MEMBRANE CONTAINING THE SAME, AND CELL CULTURE EQUIPMENT AND CELL CULTURE METHOD USING THE SAME
JP2021114995A (en) Cell with low tissue-factor activity, and method for producing the same
Le Clainche et al. The disc-shaped microcarriers: a new tool for increasing harvesting of adipose-derived mesenchymal stromal cells
Huang Isolation of human placenta‐derived multipotent cells and in vitro differentiation into hepatocyte‐like cells
JP2020174660A (en) Cell separation method
JP2020110140A (en) Cell culture method
WO2019075166A2 (en) Hollow microcarrier for shear-free culture of adherent cells in bioreactors
EP3153576A1 (en) Improved expansion of eukaryotic cells
Jiabei et al. Protocols in stem cell culture
Polat et al. Investigation of the differentiation potential of pericyte cells as an alternative source of mesenchymal stem cells
Kuno et al. Application of the water-insoluble, temperature-responsive block polymer poly (butyl methacrylate-block-N-isopropylacrylamide) for pluripotent stem cell culture and cell-selective detachment
JP2022073687A (en) Cooling recovery method suitable for cytometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240108

R151 Written notification of patent or utility model registration

Ref document number: 7432808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151