WO2002057368A1 - Low friction hydrogel having straight chain polymer and method for preparation thereof - Google Patents

Low friction hydrogel having straight chain polymer and method for preparation thereof Download PDF

Info

Publication number
WO2002057368A1
WO2002057368A1 PCT/JP2001/007776 JP0107776W WO02057368A1 WO 2002057368 A1 WO2002057368 A1 WO 2002057368A1 JP 0107776 W JP0107776 W JP 0107776W WO 02057368 A1 WO02057368 A1 WO 02057368A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
gel
friction
low
linear polymer
Prior art date
Application number
PCT/JP2001/007776
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihito Osada
Jian Ping Gong
Original Assignee
Hokkaido Technology Licensing Office Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Technology Licensing Office Co., Ltd. filed Critical Hokkaido Technology Licensing Office Co., Ltd.
Priority to US10/466,895 priority Critical patent/US20040116305A1/en
Publication of WO2002057368A1 publication Critical patent/WO2002057368A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/10Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00

Definitions

  • the present invention relates to a low-friction hydrogel having a linear polymer and a method for producing the same.
  • the polymer hydrogel is revealed ahead of coefficient of friction surface than are other solid materials is very small the 1 0 one half to one 0 inventors worldwide (J. Phys Chem.B, 101,5487-5489 (1997), J.Chem.Phys., 109,8062-8068 (1998), J.Phys.Chem.B, 103,6001-6006 (1999), J.Phys Chem.B, 103,6007-6014 (1999), The Japan Academy, 75,122-126 (1999) J.Phys.Cem.B, 104,3423-3428 (2000),) Elucidation and application to artificial joints are expected.
  • Japanese Patent Application Laid-Open No. H10-500000 describes a curable material containing polymer matrix such as silicone polymer and hydrated gel, which is used for repairing injured parts such as joints and surface finishing. Have been. Hydrated gels are made of hydrophilic, water-insoluble polymers and reduce surface friction.
  • Japanese Patent Application Laid-Open No. 8-195599 describes a medical device having a layer formed on a surface of a medical device comprising a water-soluble and water-swellable polymer having a reactive functional group and an antithrombotic agent when wetted. Is described.
  • the hydrogel layer immobilized on the surface of medical devices such as catheters becomes a lubricating layer and reduces friction.
  • 6- 7 1 8 1 8 is a fiber base fabric and a resin skin containing water-soluble alginate.
  • An underwater garment using a composite sheet made of a membrane and having low frictional resistance to water is described.
  • an object of the present invention is to provide a further low-friction material to satisfy the above requirements.
  • the present inventors have been conducting intensive research to solve the above-mentioned problems, and found that certain macromolecules are secreted on the surface and internal organs of fish and seaweed, and this is the cause of resistance from water and swallowing of food etc. Focusing on the fact that it plays a significant role in reducing friction, we found that by incorporating a linear polymer into the polymer gel, a hydrogel with even lower friction could be obtained. As a result of further research, the present invention was completed.
  • the present invention relates to a low-friction hydrogel in which a linear polymer is mixed or graft-polymerized with a polymer gel.
  • the present invention also relates to the low friction hydrogel, wherein the linear polymer is graft-polymerized on the surface of the polymer gel.
  • the present invention relates to the above low friction hydrogel, wherein the monomer constituting the polymer gel and the monomer constituting the linear polymer are the same monomer.
  • the present invention relates to the low-friction hydrogel described above, wherein the friction coefficient is 0.01 or less.
  • the present invention provides a low friction hydrogel having a linear polymer content based on the total weight of the hydrogel.
  • the low-friction hydrogel is characterized in that the content is 2 to 300% by weight. Further, the present invention relates to the above low friction hydrogel, wherein the polymer gel is an ionic gel.
  • the present invention relates to the low friction hide gel, Related to use.
  • the present invention also relates to a method for producing a low-friction hydrogel, comprising mixing a polymer forming a polymer or a monomer forming a polymer gel with a linear polymer or a monomer forming a linear polymer. And / or graft polymerization.
  • the present invention relates to the above method, wherein a linear polymer is mixed with a polymer gel, and the linear polymer chain is post-polymerized.
  • the present invention provides that the polymer gel contains a linear polymer by mixing and polymerizing a monomer that forms one or more linear polymers in the polymer gel.
  • the present invention relates to the above method.
  • the present invention is characterized in that a linear polymer is mixed with one or more kinds of monomers forming a polymer gel and polymerized, so that the polymer gel contains the linear polymer. To the method.
  • the present invention also provides a polymer gel by mixing and polymerizing one or more monomers that form a polymer gel with one or more monomers that form a linear polymer.
  • the present invention relates to the above low friction hydrogel, wherein the monomer forming the polymer gel and the monomer forming the linear polymer are the same type of monomer.
  • the present invention also relates to a method for producing a low-friction hydrogel, wherein the method comprises polymerizing a monomer forming a polymer gel on a hydrophobic substrate.
  • FIG. 1 shows the results of the rotational speed dependence of the frictional force of a 2-acrylamide-2-methylpropanesulfonic acid (AMP S) gel on a glass plate.
  • AMP S 2-acrylamide-2-methylpropanesulfonic acid
  • FIG. 2 shows the results of the load dependence of the frictional force of the AMPS gel at a speed of 0.01 rad / s.
  • FIG. 3 shows the results of the coefficient of friction of a dimethyl acrylamide (DAMM) gel, an AMPS gel, and a polyvinyl alcohol (PVA) gel against a glass plate.
  • FIG. 4 shows the results of the coefficient of friction of the DAMM gel and the AMPS gel against the glass plate.
  • DAMM dimethyl acrylamide
  • PVA polyvinyl alcohol
  • the monomer constituting the polymer gel used in the present invention is not limited as long as it is a monomer that forms a hydrogel having a three-dimensional network structure.
  • Derivatives 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, acrylamide methacrylamide and their derivatives, styrene sulfonic acid, vinyl sulfonic acid, vinyl phosphoric acid, vinyl pyridine And trimethylvinylpyridinium hydrochloride, 3-acryloylaminobutyryl trimethylammonium hydrochloride, 3-dimethylmethacryloyl mouth xishethylammonium propanesulfonic acid, and the like.
  • Preferred are acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, acrylic acid, styrenesulfonic acid and the like.
  • Crosslinking agents that crosslink these monomers include N, N, -methylenebisacrylamide, ethylene glycol dimethacrylate, divinylbenzene, and the like.
  • the above-mentioned two or three components of the above-mentioned monomers can be used, but the same type of monomer as the monomer constituting the above-mentioned polymer gel can be used. One can also be used.
  • polysaccharide gels such as dielan gel, carrageenan gel, agarose gel, carboxymethylcellulose gel, protein gels such as gelatin and collagen, nucleic acid gels such as DNA and RNA, Polymer gels such as polyvinyl alcohol, polyglutamic acid, polyethyleneimine, and freeze-thaw gels can also be used.
  • the content of the linear polymer relative to the total weight of the low friction hydrogel is preferably 2 to 300% by weight, particularly preferably 5 to 100% by weight from the viewpoint of the effect of reducing the frictional force.
  • the low-friction hydrogel of the present invention includes (1) a low-friction hydrogel in which a linear polymer is mixed with a polymer gel, or (2) a linear polymer in a polymer gel. There is a polymerized low friction hydrogel.
  • the method for producing a hydrogel according to the above (1) that is, a linear polymer is added to the polymer gel.
  • Any method can be used to produce a hydrogel in which the polymer is mixed, as long as the method can mix a linear polymer with the polymer gel. Typically, the following method is used. No.
  • the polymer gel is sufficiently immersed in a monomer solution that forms a linear polymer, and the monomers are diffused in the gel, and then the monomers are polymerized.
  • a linear polymer is mixed with monomers and other materials and polymerized to form a gel.
  • the method for producing a hydrogel according to the above (2) that is, a method for producing a hydrogel in which a linear polymer is graft-polymerized to a polymer gel, includes grafting a linear polymer to a polymer gel. Any method may be used as long as it is a polymerization method, but typically the following method is used.
  • One or more of the monomers that form the polymer gel and one or more of the monomers that form the linear polymer are mixed and polymerized to form a polymer gel. Graft the chain polymer.
  • the above method f. Is a novel gel synthesis method developed by the present inventors independently (J. Phys. ChemB, 103, 6069-6074 (1999), Biomacromolecules, 1, 162-167 (2000), Proceedings of the Society of Polymer Science, Japan, Vol. 48, No. 2, 2603-2604 (1999), Proceedings of the Society of Polymer Science, Japan, Vol. 49, No. 3, 3689-3692 (2000)).
  • a hydrophilic substrate such as a glass substrate
  • a hydrophobic substrate such as Teflon plate, polypropylene, polyethylene, or polystyrene is used.
  • the polymer gel having a linear polymer obtained by each of the above methods contains a hydrophilic polymer chain in the gel or on the surface, the water content of the gel is further increased, The hydrous gel or the polymer chain hydrous on the surface acts as a lubricating layer at the interface with the solid, so that a low-friction polymer hydrogel can be obtained. Furthermore, when the low-friction hydrogel is an ionic gel, and a low-friction hide-mouth gel using an ionic linear polymer chain is applied to the solid surface, an electrostatic A repulsive force is generated, and a thicker water layer is formed at the friction interface as compared with the neutral gel, so that the best friction effect can be obtained.
  • the hydrogel according to the present invention preferably contains a large amount of water, and the water content is preferably 50% by weight or more, particularly preferably 100% by weight or more. is there.
  • the friction coefficient of the obtained gel at the mouth is preferably 0.01 or less, particularly preferably 0.005 or less.
  • the form of the hydrogel according to the present invention may be any form as long as it includes a linear polymer chain in the polymer gel or on the surface of the polymer gel.
  • the polymer has a linear polymer on the surface of the gel, and more preferably has a polymer chain graft-polymerized on the surface.
  • 2-Acrylamido acid A solution containing 20 g of 2-methylpropanesulfonic acid (A MPS) in 100 ml of methylene bisacrylamide 8% as a cross-linking agent, 0.1% hyketoglutaric acid as a photosensitizer, and a pre-synthesized molecular weight of 250,000
  • An AMPS gel containing linear polymers was prepared on a glass plate, containing 4 g of poly (AMPS) and irradiating with 400 W ultraviolet light.
  • An AMPS gel containing a linear polymer was prepared in the same manner as in Example 1 except that 8 g of poly (AMPS) having a molecular weight of 250,000 in Example 1 was contained instead of 4 g. (Comparative Example 1)
  • DMAA dimethyl acrylamide
  • DMA A linear poly (DMA A) having a molecular weight of 120,000
  • AMP S poly (AMP S) having a molecular weight of 250,000
  • Example 3 was repeated except that it did not contain linear poly (DMAA) having a molecular weight of 120,000. In the same manner as in Example 3, a DMAA gel containing no linear polymer was prepared.
  • DMAA linear poly
  • Table 3 shows the measurement results of the frictional force between the gel and the glass in the same manner as in Example 1 using the gels of Example 3 and Comparative Example 2.
  • 0.5 g of methylene bisacrylamide as a cross-linking agent and 0.5 lg of ketoglutaric acid as a photosensitizer are added to 100 ml of an aqueous solution containing 10 g of AMP S, and 400 W UV irradiation is performed to create an AMPS gel on a glass plate. I do.
  • the resulting gel is immersed in 100 ml of an aqueous solution containing 4 g AMPS monomer for one week, and the monomer is diffused inside.Then, the polymer is polymerized inside by irradiating with 400 W ultraviolet light, and the linear polymer chain is formed.
  • a gel containing was prepared.
  • FIG. 1 shows the results of measuring the frictional force of the gel on the glass plate by the method described in Example 5.
  • a normal AMPS gel made of a glass plate has a frictional force on the order of 10 1 to 10 2 Nm- 2
  • a gel containing a linear polymer has a frictional force of 1.0 ° to 10 Nm- 2 .
  • - 2 Nm 2 gels having a linear graft chain to create the surface of the polystyrene as the substrate 10 - showed 1 ⁇ 10- 3 Nm one 2 and smaller frictional force.
  • Fig. 2 shows the results of measuring the load dependence of the friction force with the speed fixed at 0.01 rad / s. From the figure, it can be seen that both the gel containing a linear polymer and the gel having a graft chain on its surface have at least an order of magnitude lower frictional force than ordinary gels. It was found that the frictional force was reduced by more than an order of magnitude.
  • the frictional force of the gel having a graft chain on the surface was greatly reduced, especially in the low speed and low load range.
  • DMAA gel was prepared on a glass plate by adding 200% UV light to 50% of an aqueous solution containing 7 g of DMAA containing 1% by weight of methylene bisacrylamide as a crosslinking agent and 0.5% by weight of ketoglutaric acid as a photosensitizer. I do.
  • An AMPS gel was prepared in the same manner. On the other hand, 100 ml of an aqueous solution containing 2 g of ethylene glycol diglycidyl ether and 10 g of polyvinyl alcohol is reacted at 80 ° C for 24 hours to perform cross-linking to prepare a polyvinyl alcohol (PVA) gel.
  • PVA polyvinyl alcohol
  • Each of the obtained gels is immersed in a 1.0 M DMAA monomer aqueous solution or a 1.0 M AMPS monomer aqueous solution for one week, and after the monomer is diffused inside, it is irradiated with 400 W ultraviolet light to polymerize the polymer inside. As a result, a gel containing a linear polymer chain was prepared.
  • Figure 3 ⁇ shows the results of measuring the respective friction coefficients.
  • the figure shows the results of gels containing poly (DMAA) or poly (AMPS) in DMAA gel, and the figures below show poly (AMPS) in polyvinyl alcohol (PVA) gel and AMPS gel. Gel results.
  • DMAA gels contain linear polymer chains to reduce the coefficient of friction to less than 1 / 10th of the maximum, and those containing poly (AMPS) to AMPS gels less than 1/100 of the PVA.
  • the gel containing poly (AMPS) reduced the coefficient of friction to less than 1 in 1000.
  • DMA A is a gel polymerized between glass plates
  • DMAAgraft is a polymer polymerized between Teflon plates
  • PAMPS is a glass.
  • An AMP S gel polymerized by sandwiching between Teflon plates and PAMPSgraft indicate an AMP S gel polymerized by sandwiching between Teflon plates and having a graft chain on the surface.
  • the friction coefficient is 1, AMP S gel up to 10, 1 next to the maximum 1000 minutes, resulting in far that the friction coefficient of 6 x 1 0 one 5 It showed an unusually low value.

Abstract

A low friction hydrogel which comprises a polymer gel and, admixed therewith or graft-polymerized thereto, a straight chain polymer; and a method for preparing the hydrogel. The hydrogel exhibits improved low friction property over a conventional material.

Description

明 細 書  Specification
直鎖状高分子を有する低摩擦ノ、イ ド口ゲルおよびその製造方法 技術分野  TECHNICAL FIELD OF THE INVENTION
本発明は、 直鎖状高分子を有する低摩擦のハイドロゲルおよびその製造方法に 関する。  The present invention relates to a low-friction hydrogel having a linear polymer and a method for producing the same.
背景技 Background technique
低摩擦で機械運動を実現するにはボールべァリングを使うか、 シリコーンオイ ルゃグリセリンなどの潤滑剤存在下で滑り摩擦を実現する方法が通常取られる。 前者の場合には、 装置が複雑になるだけでなく、 低速下では摩擦が増大するとい う欠点を有する。 後者の場合には潤滑剤の脱離、 溶出のため逐次補給をしなけれ ばならず、 効果の持続性に問題がある。 潤滑剤無しの低摩擦運動はこれまでにあ まり例がなく、唯一超高分子量ポリエチレンやテフロンを使った例があるのみで、 これらの場合でも、 摩擦係数は 0 . 0 1以下とすることは困難である。  To achieve mechanical movement with low friction, ball bearings are usually used, or sliding friction is achieved in the presence of lubricants such as silicone oil and glycerin. In the former case, not only is the device complicated, but also the disadvantage is that friction increases at low speeds. In the latter case, the lubricant must be replenished successively for desorption and elution of the lubricant, and there is a problem with the sustainability of the effect. There have been few examples of low friction motion without a lubricant, and there are only examples using ultra-high molecular weight polyethylene or Teflon.In these cases, the friction coefficient cannot be less than 0.01. Have difficulty.
一方、 高分子ハイドロゲルは、 他の固体物質などに比べて表面の摩擦係数が 1 0一2〜 1 0 と非常に小さいことを発明者らは世界に先駆けて明らかにしており ( J.Phys.Chem.B,101,5487-5489( 1997)、 J.Chem.Phys.,109,8062-8068( 1998)、 J.Phys.Chem.B,103,6001-6006( 1999)、 J.Phys.Chem.B,103,6007-6014( 1999)、 The Japan Academy,75,122-126( 1999) J.Phys.C em.B,104,3423-3428( 2000)、)、 生体関節の摩擦 機構の解明や、 さらには人工関節などへの応用が期待されている。 On the other hand, the polymer hydrogel is revealed ahead of coefficient of friction surface than are other solid materials is very small the 1 0 one half to one 0 inventors worldwide (J. Phys Chem.B, 101,5487-5489 (1997), J.Chem.Phys., 109,8062-8068 (1998), J.Phys.Chem.B, 103,6001-6006 (1999), J.Phys Chem.B, 103,6007-6014 (1999), The Japan Academy, 75,122-126 (1999) J.Phys.Cem.B, 104,3423-3428 (2000),) Elucidation and application to artificial joints are expected.
特表平 1 0— 5 0 0 0 3 8には、 関節等の負傷箇所の修復および表面仕上げに 用いる、 シリコ一ンポリマ一等のポリマ一マトリヅクスと水和ゲルを含有する硬 化性材料が記載されている。 水和ゲルは、 親水性で水不溶性の高分子からなり表 面の摩擦力を下げる。  Japanese Patent Application Laid-Open No. H10-500000 describes a curable material containing polymer matrix such as silicone polymer and hydrated gel, which is used for repairing injured parts such as joints and surface finishing. Have been. Hydrated gels are made of hydrophilic, water-insoluble polymers and reduce surface friction.
特開平 8— 1 9 5 9 9には、医療用具の表面に、反応性官能基を有する水溶性、 水膨潤性高分子と抗血栓剤からなる湿潤時にハイドロゲルを形成する層を有する 医療用具が記載されている。 カテーテル等の医療用具表面に固定化したハイドロ ゲル層が潤滑層となり摩擦を低減している。  Japanese Patent Application Laid-Open No. 8-195599 describes a medical device having a layer formed on a surface of a medical device comprising a water-soluble and water-swellable polymer having a reactive functional group and an antithrombotic agent when wetted. Is described. The hydrogel layer immobilized on the surface of medical devices such as catheters becomes a lubricating layer and reduces friction.
特閧平 6— 7 1 8 1 8には、 繊維基布と水溶性アルギン酸塩を含有した樹脂皮 膜からなる複合シートを用いた、 水に対する摩擦抵抗の小さい水中衣料が記載さ れている。 6- 7 1 8 1 8 is a fiber base fabric and a resin skin containing water-soluble alginate. An underwater garment using a composite sheet made of a membrane and having low frictional resistance to water is described.
このように、 医療用具等の開発において、 材料表面の摩擦抵抗の小さい材料の 開発がなされているが、人工関節等への応用を考えた場合、関節の摩擦係数は 0 . 0 0 1〜0 . 0 3であり、 生体内並みの低摩擦の材料また低速度下での低摩擦の 実現という点では、 満足できるものは得られていない。  As described above, in the development of medical devices and the like, materials with low frictional resistance on the material surface have been developed.However, considering the application to artificial joints and the like, the friction coefficient of the joint is 0.001 to 0. 0.3, which is not satisfactory in terms of realizing low-friction materials at the same level as in vivo and low friction at low speed.
発明の開示 Disclosure of the invention
従って、 本発明の課題は、 前記の要求を満足すべく、 さらなる低摩擦材料を提 供することにある。  Therefore, an object of the present invention is to provide a further low-friction material to satisfy the above requirements.
本発明者らは、 上記課題を解決すべく鋭意研究を重ねる中で、 魚や海藻の表面 や内臓には、 ある種の高分子が分泌されており、 これが水からの抵抗や食物など を飲み込む際の摩擦の低減に大きな役割を果たしていることに着目し、 高分子ゲ ルに直鎖状高分子を含有させることにより、 さらに低摩擦のハイドロゲルが得ら れることを見出した。 そしてさらに研究を進めた結果、 本発明を完成するに至つ た。  The present inventors have been conducting intensive research to solve the above-mentioned problems, and found that certain macromolecules are secreted on the surface and internal organs of fish and seaweed, and this is the cause of resistance from water and swallowing of food etc. Focusing on the fact that it plays a significant role in reducing friction, we found that by incorporating a linear polymer into the polymer gel, a hydrogel with even lower friction could be obtained. As a result of further research, the present invention was completed.
すなわち本発明は、 高分子ゲルに対し、 直鎖状高分子が混合されているか、 ま たはグラフト重合されてなる低摩擦ハイドロゲルに関する。  That is, the present invention relates to a low-friction hydrogel in which a linear polymer is mixed or graft-polymerized with a polymer gel.
また本発明は、直鎖状高分子が、高分子ゲルの表面にグラフ卜重合されている、 前記の低摩擦ハイ ドロゲルに関する。  The present invention also relates to the low friction hydrogel, wherein the linear polymer is graft-polymerized on the surface of the polymer gel.
さらに本発明は、 高分子ゲルを構成するモノマーと直鎖状高分子を構成するモ ノマーとが同種のモノマ一であることを特徴とする、 前記の低摩擦ハイ ドロゲル に関 9—る。  Further, the present invention relates to the above low friction hydrogel, wherein the monomer constituting the polymer gel and the monomer constituting the linear polymer are the same monomer.
また本発明は、 摩擦係数が 0 . 0 1以下であることを特徴とする、 前記の低摩 擦ハイ ドロゲルに関する。  Further, the present invention relates to the low-friction hydrogel described above, wherein the friction coefficient is 0.01 or less.
さらに本発明は、 低摩擦ハイドロゲル全重量に対する直鎖状高分子の含有率が Furthermore, the present invention provides a low friction hydrogel having a linear polymer content based on the total weight of the hydrogel.
2〜3 0 0重量%であることを特徴とする、前記の低摩擦ハイドロゲルに関する。 また本発明は、 高分子ゲルがイオン性ゲルであることを特徴とする、 前記の低 摩擦ハイドロゲルに関する。 The low-friction hydrogel is characterized in that the content is 2 to 300% by weight. Further, the present invention relates to the above low friction hydrogel, wherein the polymer gel is an ionic gel.
さらに本発明は、 前記の低摩擦ハイド口ゲルの、 固体および生体組織表面に対 する使用に関する。 Further, the present invention relates to the low friction hide gel, Related to use.
また本発明は、 低摩擦ハイドロゲルを製造する方法であって、 高分子ゲル又は 高分子ゲルを形成するモノマーに、 直鎖状高分子又は直鎖状高分子を形成するモ ノマーを混合し、 及び/又はグラフト重合させることを特徴とする、 前記の方法 に関する。  The present invention also relates to a method for producing a low-friction hydrogel, comprising mixing a polymer forming a polymer or a monomer forming a polymer gel with a linear polymer or a monomer forming a linear polymer. And / or graft polymerization.
さらに本発明は、 高分子ゲルに直鎖状高分子を混合し、 直鎖状高分子鎖を後重 合グラフトさせることを特徴とする、 前記の方法に関する。  Furthermore, the present invention relates to the above method, wherein a linear polymer is mixed with a polymer gel, and the linear polymer chain is post-polymerized.
また本発明は、 高分子ゲルに 1種または 2種以上の直鎖状高分子を形成するモ ノマ一を混合し、 重合することにより、 高分子ゲルに直鎖状高分子を含有させる ことを特徴とする、 前記の方法に関する。  Further, the present invention provides that the polymer gel contains a linear polymer by mixing and polymerizing a monomer that forms one or more linear polymers in the polymer gel. The present invention relates to the above method.
さらに本発明は、 高分子ゲルを形成するモノマーの 1種又は 2種以上とともに 直鎖状高分子を混合し、 重合することにより、 高分子ゲルに直鎖状高分子を含有 させることを特徴とする、 前記の方法に関する。  Further, the present invention is characterized in that a linear polymer is mixed with one or more kinds of monomers forming a polymer gel and polymerized, so that the polymer gel contains the linear polymer. To the method.
また本発明は、 高分子ゲルを形成するモノマーの 1種又は 2種以上と、 直鎖状 高分子を形成するモノマーの 1種又は 2種以上とを混合し、重合することにより、 高分子ゲルに直鎖状高分子をグラフ卜させることを特徴とする、 前記の方法に関 する。  The present invention also provides a polymer gel by mixing and polymerizing one or more monomers that form a polymer gel with one or more monomers that form a linear polymer. The method according to the above-mentioned, characterized in that a linear polymer is grafted.
さらに本発明は、 高分子ゲルを形成するモノマーと直鎖状高分子を形成するモ ノマ一とが同種のモノマーであることを特徴とする、 前記の低摩擦ハイドロゲル に関する。  Further, the present invention relates to the above low friction hydrogel, wherein the monomer forming the polymer gel and the monomer forming the linear polymer are the same type of monomer.
また本発明は、低摩擦ハイ ドロゲルを製造する方法であって、疎水性基板上で、 高分子ゲルを形成するモノマーを重合することを特徴とする、前記方法に関する。 図面の簡単な説明  The present invention also relates to a method for producing a low-friction hydrogel, wherein the method comprises polymerizing a monomer forming a polymer gel on a hydrophobic substrate. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 2—アクリルアミド— 2—メチルプロパンスルホン酸 (AMP S ) ゲルのガラス板に対する摩擦力の回転速度依存性の結果を示す。  FIG. 1 shows the results of the rotational speed dependence of the frictional force of a 2-acrylamide-2-methylpropanesulfonic acid (AMP S) gel on a glass plate.
図 2は、 速度 0 . 0 1 r a d/ s時における AM P Sゲルの摩擦力の荷重依 存性の結果を示す。  FIG. 2 shows the results of the load dependence of the frictional force of the AMPS gel at a speed of 0.01 rad / s.
図 3は、 ジメチルァクリルアミ ド (D AMM) ゲル、 AM P Sゲルおよびポ リビニルアルコール (P VA) ゲルのガラス板に対する摩擦係数の結果を示す。 図 4は、 D AMMゲルおよび AM P Sゲルのガラス板に対する摩擦係数の結 果を示す。 FIG. 3 shows the results of the coefficient of friction of a dimethyl acrylamide (DAMM) gel, an AMPS gel, and a polyvinyl alcohol (PVA) gel against a glass plate. FIG. 4 shows the results of the coefficient of friction of the DAMM gel and the AMPS gel against the glass plate.
発明を実施するための形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明に用いられる高分子ゲルを構成するモノマーは、 3次元網目構造を有す るハイ ドロゲルを形成するモノマ一であれば限定されないが、 典型的にはァクリ ル酸ゃメ夕クリル酸およびそれらの誘導体、 2—ヒドロキシェチルァクリラート、 2—ヒドロキシェチルメ夕クリラ一ト、 ァクリルアミ ドゃメタクリルアミ ドおよ びそれらの誘導体、 スチレンスルホン酸、 ビニルスルホン酸、 ビニルリン酸、 ビ 二ルビリジン、 塩酸トリメチルビニルピリジニム、 3 _アクリルロイルアミノブ 口ビルトリメチルアンモニゥム塩酸、 3—ジメチルメタクリロイ口キシェチルァ ンモニゥムプロパンスルホン酸等が挙げられる。好ましいのは、ァクリルアミ ド、 2—アクリルアミ ド— 2—メチルプロパンスルホン酸、 アクリル酸、 スチレンス ルホン酸等である。  The monomer constituting the polymer gel used in the present invention is not limited as long as it is a monomer that forms a hydrogel having a three-dimensional network structure. Derivatives, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, acrylamide methacrylamide and their derivatives, styrene sulfonic acid, vinyl sulfonic acid, vinyl phosphoric acid, vinyl pyridine And trimethylvinylpyridinium hydrochloride, 3-acryloylaminobutyryl trimethylammonium hydrochloride, 3-dimethylmethacryloyl mouth xishethylammonium propanesulfonic acid, and the like. Preferred are acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, acrylic acid, styrenesulfonic acid and the like.
これらの単量体を架橋する架橋剤は、 N , N, —メチレンビスアクリルアミ ド、 エチレングリコールジメタクリラート、 ジビニルベンゼン等である。  Crosslinking agents that crosslink these monomers include N, N, -methylenebisacrylamide, ethylene glycol dimethacrylate, divinylbenzene, and the like.
本発明に用いられる直鎖状高分子を形成するモノマ一としては、 上記記載の 、 ずれのモノマーの 2成分または 3成分を用いることができるが、 上記高分子ゲル を構成するモノマーと同種のモノマ一を用いることもできる。  As the monomer for forming the linear polymer used in the present invention, the above-mentioned two or three components of the above-mentioned monomers can be used, but the same type of monomer as the monomer constituting the above-mentioned polymer gel can be used. One can also be used.
また、 上記の高分子ゲル以外で、 ジエランゲル、 —カラギ一ナンゲル、 ァガ ロースゲル、 カルボキシメチルセルロースゲル等の多糖類ゲル、 ゼラチン、 コラ —ゲン等のタンパク質ゲル、 D NA、 R NA等の核酸ゲル、 ポリビニルアルコー ル、 ポリグルタミン酸、 ポリエチレンィミン、 凍結解凍ゲル等の高分子ゲルを用 いることもできる。  In addition to the above-mentioned polymer gel, polysaccharide gels such as dielan gel, carrageenan gel, agarose gel, carboxymethylcellulose gel, protein gels such as gelatin and collagen, nucleic acid gels such as DNA and RNA, Polymer gels such as polyvinyl alcohol, polyglutamic acid, polyethyleneimine, and freeze-thaw gels can also be used.
低摩擦ハイ ドロゲル全重量に対する直鎖状高分子の含有率は、 摩擦力の低減効 果の点から、 2〜3 0 0重量%、 特に 5〜1 0 0重量%が好ましい。  The content of the linear polymer relative to the total weight of the low friction hydrogel is preferably 2 to 300% by weight, particularly preferably 5 to 100% by weight from the viewpoint of the effect of reducing the frictional force.
本発明の低摩擦ハイ ドロゲルには、 ( 1 ) 高分子ゲルに対し直鎖状高分子が混 合された低摩擦ハイ ドロゲル、 または (2 ) 高分子ゲルに対し直鎖状高分子がグ ラフト重合された低摩擦ハイ ドロゲルがある。  The low-friction hydrogel of the present invention includes (1) a low-friction hydrogel in which a linear polymer is mixed with a polymer gel, or (2) a linear polymer in a polymer gel. There is a polymerized low friction hydrogel.
前記 ( 1 ) のハイ ドロゲルの製造方法、 即ち、 高分子ゲルに対し直鎖状高分子 が混合されたハイドロゲルを製造する方法としては、 高分子ゲルに直鎖状高分子 を混合できる方法あれば、 どのような方法を用いてもよいが、 典型的には次のよ うな方法が挙げられる。 The method for producing a hydrogel according to the above (1), that is, a linear polymer is added to the polymer gel. Any method can be used to produce a hydrogel in which the polymer is mixed, as long as the method can mix a linear polymer with the polymer gel. Typically, the following method is used. No.
a. 高分子ゲルに直鎖状高分子を物理的に混合させる。 a. Physically mix the linear polymer with the polymer gel.
b. 高分子ゲル形成後、 高分子ゲルを直鎖状高分子を形成するモノマー溶液に十 分浸潰させ、 ゲル中にモノマ一を拡散させた後、 モノマーを重合する。 b. After the formation of the polymer gel, the polymer gel is sufficiently immersed in a monomer solution that forms a linear polymer, and the monomers are diffused in the gel, and then the monomers are polymerized.
c 高分子ゲルを形成する際、モノマー等の材料とともに直鎖状高分子を混合し、 重合してゲルを形成する。 c When a polymer gel is formed, a linear polymer is mixed with monomers and other materials and polymerized to form a gel.
一方、 前記 (2 ) のハイドロゲルの製造方法、 即ち、 高分子ゲルに対し直鎖状 高分子がグラフト重合されたハイドロゲルを製造する方法としては、 高分子ゲル に直鎖状高分子をグラフト重合する方法であれば、 どのような方法を用いてもよ いが、 典型的には次のようなものが挙げられる。  On the other hand, the method for producing a hydrogel according to the above (2), that is, a method for producing a hydrogel in which a linear polymer is graft-polymerized to a polymer gel, includes grafting a linear polymer to a polymer gel. Any method may be used as long as it is a polymerization method, but typically the following method is used.
d.形成した高分子ゲルに直鎖状高分子を混合し、 後重合グラフトする。 d. Mix the formed polymer gel with the linear polymer and post-polymerize the graft.
e. 高分子ゲルを形成するモノマーの 1種又は 2種以上と、 直鎖状高分子を形成 するモノマ一の 1種又は 2種以上とを混合し、 重合することにより、 高分子ゲル に直鎖状高分子をグラフトさせる。 e. One or more of the monomers that form the polymer gel and one or more of the monomers that form the linear polymer are mixed and polymerized to form a polymer gel. Graft the chain polymer.
f. 高分子ゲルの重合を疎水性基板で挟んで重合する。 f. Polymerization of polymer gel sandwiched between hydrophobic substrates.
とくに上記 f.の方法は、本発明者らが独自に開発した新規ゲル合成法である(J. Phys. ChemB, 103, 6069-6074( 1999) , Biomacromolecules, 1, 162-167 ( 2000) ,高分子 学会予稿集 48卷 10号 2603-2604( 1999 ), 高分子学会予稿集 49卷 12号 3689-3692 (2000)参照)。 従来行なわれていたガラス基板等の親水性の基板上でのゲルの重 合に代えて、 テフロン板、 ポリプロピレン、 ポリエチレン、 ポリスチレン等の疎 水性基板を用いることで、 重合の際、 疎水性基板付近で親水性のモノマー溶液の 濃度勾配が生じ、 ゲルの架橋密度が疎になり、 結果的に表面にグラフト鎖を有す るゲルが形成される。 この方法は、 一段階で他の試薬等を用いることなく、 疎水 性の基板のみで所望のゲルを簡便に形成することができることから、 とくに好適 である。  In particular, the above method f. Is a novel gel synthesis method developed by the present inventors independently (J. Phys. ChemB, 103, 6069-6074 (1999), Biomacromolecules, 1, 162-167 (2000), Proceedings of the Society of Polymer Science, Japan, Vol. 48, No. 2, 2603-2604 (1999), Proceedings of the Society of Polymer Science, Japan, Vol. 49, No. 3, 3689-3692 (2000)). Instead of the conventional polymerization of gel on a hydrophilic substrate such as a glass substrate, a hydrophobic substrate such as Teflon plate, polypropylene, polyethylene, or polystyrene is used. As a result, a concentration gradient of the hydrophilic monomer solution is generated, the cross-linking density of the gel becomes low, and as a result, a gel having a graft chain on the surface is formed. This method is particularly suitable because a desired gel can be easily formed only with a hydrophobic substrate without using another reagent or the like in one step.
以上のような各方法により得られた直鎖状高分子を有する高分子ゲルは、 親水 性の高分子鎖をゲル中または表面に含むことから、ゲルの含水率がさらに高まり、 含水したゲルまたは表面で含水した高分子鎖が固体との界面で潤滑層として働 き、 低摩擦の高分子ハイドロゲルを得ることができる。 さらに、 低摩擦ハイ ドロ ゲルがイオン性ゲルであって、 イオン性の直鎖状高分子鎖を用いた場合の低摩擦 ハイド口ゲルを固体表面に適用すると、 固体との間に静電的な反発力が生じ、 中 性のゲルと比較して摩擦界面にさらに厚い水層が形成されるため、 最も優れた摩 擦効果が得られる。 Since the polymer gel having a linear polymer obtained by each of the above methods contains a hydrophilic polymer chain in the gel or on the surface, the water content of the gel is further increased, The hydrous gel or the polymer chain hydrous on the surface acts as a lubricating layer at the interface with the solid, so that a low-friction polymer hydrogel can be obtained. Furthermore, when the low-friction hydrogel is an ionic gel, and a low-friction hide-mouth gel using an ionic linear polymer chain is applied to the solid surface, an electrostatic A repulsive force is generated, and a thicker water layer is formed at the friction interface as compared with the neutral gel, so that the best friction effect can be obtained.
本発明によるハイ ドロゲルは、 十分な低摩擦効果を得るには、 多量の水分を含 んでいるのが好ましく、 その含水率は、 好ましくは 50重量%以上であり、 特に 好ましくは 100重量%以上である。  In order to obtain a sufficient low friction effect, the hydrogel according to the present invention preferably contains a large amount of water, and the water content is preferably 50% by weight or more, particularly preferably 100% by weight or more. is there.
また、得られるハイド口ゲルの摩擦係数は、好ましくは、 0. 01以下であり、 特に好ましくは 0. 005以下である。  Further, the friction coefficient of the obtained gel at the mouth is preferably 0.01 or less, particularly preferably 0.005 or less.
本発明によるハイ ドロゲルの形態としては、 直鎖状高分子鎖を高分子ゲル中ま たは高分子ゲル表面に含む形態であればいずれでもよいが、 低摩擦力をより効果 的に実現するには、ゲルの表面に直鎖状高分子を有するものが好ましく、さらに、 高分子鎖が表面でグラフト重合されているものが好ましい。  The form of the hydrogel according to the present invention may be any form as long as it includes a linear polymer chain in the polymer gel or on the surface of the polymer gel. Preferably, the polymer has a linear polymer on the surface of the gel, and more preferably has a polymer chain graft-polymerized on the surface.
実施例 Example
以下、 本発明の低摩擦ハイドロゲルについて、 実施例、 比較例および試験例に よって、さらに詳しく説明するが、これらは本発明を何ら限定するものではない。 (実施例 1 )  Hereinafter, the low friction hydrogel of the present invention will be described in more detail with reference to Examples, Comparative Examples, and Test Examples, but these do not limit the present invention at all. (Example 1)
2—ァクリルアミ ドー 2—メチルプロパンスルホン酸を 20 g含む水溶液 (A MPS) 100mlに架橋剤としてメチレンビスアクリルアミド 8%、 光増感剤 としてひケトグルタル酸 0. 1 %、予め合成した分子量 25万のポリ(AMP S) 4 g含有させ、 400W紫外線照射を行い、 直鎖状高分子を含有する AMPSゲ ルをガラス板上で作成した。  2-Acrylamido acid A solution containing 20 g of 2-methylpropanesulfonic acid (A MPS) in 100 ml of methylene bisacrylamide 8% as a cross-linking agent, 0.1% hyketoglutaric acid as a photosensitizer, and a pre-synthesized molecular weight of 250,000 An AMPS gel containing linear polymers was prepared on a glass plate, containing 4 g of poly (AMPS) and irradiating with 400 W ultraviolet light.
(実施例 2)  (Example 2)
実施例 1の分子量 25万のポリ (AMPS) を 4 gの代わりに 8 g含有させる 以外は、実施例 1と同様にして直鎖状高分子を含有する AMP Sゲルを作成した。 (比較例 1 )  An AMPS gel containing a linear polymer was prepared in the same manner as in Example 1 except that 8 g of poly (AMPS) having a molecular weight of 250,000 in Example 1 was contained instead of 4 g. (Comparative Example 1)
分子量 25万のポリ (AMPS) を含有しない以外は、 実施例 1と同様にして 直鎖状高分子を含有しない P A M P Sゲルを作成した。 Except for not containing poly (AMPS) with a molecular weight of 250,000, A PAMPS gel containing no linear polymer was prepared.
—辺 2 c mの正立方体に切り出した実施例 1、 2およぴ比較例 1のゲルをガラ ス板の上に置き、 ガラス板を種々の速度で回転させた際の応力を測定することに より、 水中で摩擦力を測定した。 その結果を表 1に示す。 表 2は、 ガラス板上で なく、 実施例 2および比較例 1のゲルをそれそれ同じゲルの上に乗せて測定した 摩擦力の結果を示す。 表 1ゲル-ガラス間  -The gels of Examples 1, 2 and Comparative Example 1, which were cut into a cube with sides of 2 cm, were placed on a glass plate and the stress was measured when the glass plate was rotated at various speeds. The friction force was measured in water. The results are shown in Table 1. Table 2 shows the results of the frictional force measured by placing the gels of Example 2 and Comparative Example 1 on the same gel, but not on the glass plate. Table 1 Between gel and glass
Figure imgf000009_0001
Figure imgf000009_0001
(実施例 3)  (Example 3)
実施例 1で用いた AMPSの代わりにジメチルァクリルアミ ド(DMAA)を、 分子量 25万のポリ (AMP S) の代わりに分子量 12万の直鎖状ポリ (DMA A) 2 gを用いて、 実施例 1と同様に直鎖状高分子を含有する DMAAゲルを合 成した。  Using dimethyl acrylamide (DMAA) instead of AMPS used in Example 1, and 2 g of linear poly (DMA A) having a molecular weight of 120,000 instead of poly (AMP S) having a molecular weight of 250,000, In the same manner as in Example 1, a DMAA gel containing a linear polymer was synthesized.
(比較例 2)  (Comparative Example 2)
実施例 3の分子量 12万の直鎖状ポリ (DMAA) を含有しない以外は、 実施 例 3と同様にして直鎖状高分子を含有しない D MAAゲルを作成した。 Example 3 was repeated except that it did not contain linear poly (DMAA) having a molecular weight of 120,000. In the same manner as in Example 3, a DMAA gel containing no linear polymer was prepared.
実施例 3および比較例 2のゲルを用いて、 実施例 1と同様にゲル一ガラス間の 摩擦力の測定の結果を表 3に示す。  Table 3 shows the measurement results of the frictional force between the gel and the glass in the same manner as in Example 1 using the gels of Example 3 and Comparative Example 2.
表 3 ゲル ガラス間  Table 3 Gel glass
Figure imgf000010_0001
Figure imgf000010_0001
(実施例 4 ) (Example 4)
比較例 1の通常の AM P Sゲルの合成の際、 ガラス板上でなく、 メ夕クリル樹 脂板上で重合し、 ゲル表面に自由末端ポリ ( A M P S ) 鎖をもつグラフトゲルを 作成した。 得られたゲルを水中に膨潤させ、 実施例 1と同様にゲル—ガラス間の 摩擦力を測定した。 比較例 1と比較した結果を表 4に示す。  In the synthesis of the ordinary AMPS gel of Comparative Example 1, polymerization was performed not on a glass plate but on a resin acryl resin plate to prepare a graft gel having a free terminal poly (AMPS) chain on the gel surface. The obtained gel was swollen in water, and the frictional force between gel and glass was measured in the same manner as in Example 1. Table 4 shows the results of comparison with Comparative Example 1.
1 ゲル-ガラス間 1 Gel-glass
Figure imgf000010_0002
Figure imgf000010_0002
(実施例 5 )  (Example 5)
比較例 1で合成した P A M P Sゲル 1 0 gを予め合成した分子量 1 0万のポリ (D MAA) 4 gを含む水溶液 2 0 O m l中に室温で一週間放置したところ、 ポ リ (D MAA) 0 . 6 gを含む P AM P Sゲルが得られた。  When 10 g of the PAMPS gel synthesized in Comparative Example 1 was pre-synthesized and left at room temperature for one week in 20 O ml of an aqueous solution containing 4 g of poly (D MAA) having a molecular weight of 100,000, poly (D MAA) A PAMPS gel containing 0.6 g was obtained.
こうして得られたゲルを純水で平衡膨潤後、 粘弾性試験機 (ARES,Rheometric Scientific, Inc.) を用いて摩擦力を測定したところ、 ポリ (D MAA) を含有しな いものに対し摩擦力が 1ノ1 2に低下していた。 (実施例 6 ) After equilibrium swelling of the gel thus obtained with pure water, the frictional force was measured using a viscoelasticity tester (ARES, Rheometric Scientific, Inc.). The power had dropped to 1-2. (Example 6)
分子量 12万のポリ (アクリルアミド) 3 g、 分子量 8万のポリビニルアルコ —ル 7 g、 架橋剤としてエチレングリコ一ルグリシジルェ一テル 2 gを含有する 水溶液 100mlを 70°Cで 24時間加熱することにより、 ポリ (アクリルアミ ド) を含有するポリビニルアルコールゲルが得られた。 このゲルを 1 cmx 1 c mx 1 cmの立方体に切り、 実施例 5で記述した方法により摩擦力を測定したと ころ、 その値はポリ (アクリルアミド) を含まないものの値の 15%であった。 (試験例 1 )  By heating 100 ml of an aqueous solution containing 3 g of poly (acrylamide) having a molecular weight of 120,000, 7 g of polyvinyl alcohol having a molecular weight of 80,000, and 2 g of ethylene glycol glycidyl ether as a crosslinking agent at 70 ° C for 24 hours, A polyvinyl alcohol gel containing poly (acrylamide) was obtained. The gel was cut into 1 cm x 1 cm x 1 cm cubes, and the friction force was measured by the method described in Example 5, where the value was 15% of that without poly (acrylamide). (Test Example 1)
AMP S 10 g含む水溶液 100mlに架橋剤としてメチレンビスァクリルァ ミ ド 0. 5 g、 光増感剤として ケトグルタル酸 0. lg含有させ、 400W紫 外線照射を行い A M P Sゲルをガラス板上で作成する。 得られたゲルを 4 g A M P Sモノマーを含む水溶液 100mlに一週間浸潰させ、 内部にモノマ一を拡散 させた後、 400W紫外線照射し、 内部でポリマーを重合することによって、 直 鎖状高分子鎖を含有するゲルを作成した。  0.5 g of methylene bisacrylamide as a cross-linking agent and 0.5 lg of ketoglutaric acid as a photosensitizer are added to 100 ml of an aqueous solution containing 10 g of AMP S, and 400 W UV irradiation is performed to create an AMPS gel on a glass plate. I do. The resulting gel is immersed in 100 ml of an aqueous solution containing 4 g AMPS monomer for one week, and the monomer is diffused inside.Then, the polymer is polymerized inside by irradiating with 400 W ultraviolet light, and the linear polymer chain is formed. A gel containing was prepared.
別に、 上述のゲルと同様の組成で AMPSゲルを重合する際、 ガラス板のかわ りにポリスチレン上で重合し、 表面にポリ (AMPS) のグラフト鎖を有するゲ ルを作成した。  Separately, when polymerizing an AMPS gel with the same composition as the above-mentioned gel, it was polymerized on polystyrene instead of a glass plate to create a gel having poly (AMPS) graft chains on the surface.
ゲルのガラス板に対する摩擦力を実施例 5で記した方法により測定した結果を 図 1に示す。  FIG. 1 shows the results of measuring the frictional force of the gel on the glass plate by the method described in Example 5.
同図が示すとおり、 ガラス板で作成した通常の AMPSゲルは摩擦力が 101 〜102Nm— 2のオーダ一であるのに対し、 直鎖状高分子を含有するゲルは 1.0° 〜10— 2Nm— 2、 ポリスチレンを基板として作成した表面に直鎖状グラフト鎖を 有するゲルは 10 -1〜 10—3Nm一2とさらに小さな摩擦力を示した。 これらの値 から摩擦係数を計算するとそれそれ 10—2〜10—3、 10— 3〜10— 4、 10— 4〜 10— 5となる。 相対速度が小さい領域では直鎖状高分子が存在することで二桁以 上摩擦力が下がった。 As shown in the figure, a normal AMPS gel made of a glass plate has a frictional force on the order of 10 1 to 10 2 Nm- 2 , whereas a gel containing a linear polymer has a frictional force of 1.0 ° to 10 Nm- 2 . - 2 Nm 2, gels having a linear graft chain to create the surface of the polystyrene as the substrate 10 - showed 1 ~ 10- 3 Nm one 2 and smaller frictional force. When calculating the friction coefficient from the values it it 10-2 to 10-3, 10-3 to 10-4, a 10 4 to 10-5. In the region where the relative velocity was low, the frictional force decreased by more than two orders of magnitude due to the presence of the linear polymer.
(試験例 2 )  (Test Example 2)
速度を 0. 01 rad/sに固定し、 摩擦力の荷重依存性を測定した結果を図 2に示す。 同図から、 直鎖状高分子を含有するゲルおよび表面にグラフト鎖を有するゲル はどちらも一桁以上摩擦力が通常のゲルより小さくなつており、 特に低荷重領域 においてその効果は著しく、 二桁以上も摩擦力を下げることがわかった。 Fig. 2 shows the results of measuring the load dependence of the friction force with the speed fixed at 0.01 rad / s. From the figure, it can be seen that both the gel containing a linear polymer and the gel having a graft chain on its surface have at least an order of magnitude lower frictional force than ordinary gels. It was found that the frictional force was reduced by more than an order of magnitude.
表面にグラフト鎖を有するゲルの摩擦力は大きく下がり、 特に低速度 ·低荷重 の領域においてその ¾¾果が著しかった。  The frictional force of the gel having a graft chain on the surface was greatly reduced, especially in the low speed and low load range.
(試験例 3 )  (Test Example 3)
DMA A 7 g含む水溶液 50mlに架橋剤としてメチレンビスァクリルアミ ド 1重量%、 光増感剤として ケトグルタル酸 0. 5重量%含有させ、 200W紫 外線照射を行い DMAAゲルをガラス板上で作成する。 同様の方法により、 AM PSゲルを作成した。 一方、 エチレングリコ一ルジグリシジルエーテル 2 g、 ポ リビニルアルコール 10 g含む水溶液 100mlを 80°C、 24時間反応させて 架橋を行いポリビニルアルコール (PVA) ゲルを作成する。 得られたそれそれ のゲルを 1. 0Mの DMAAモノマー水溶液または 1. 0Mの AMPSモノマ一 水溶液に一週間浸潰させ、 内部にモノマーを拡散させた後、 400W紫外線照射 し、 内部でポリマーを重合することによって、 直鎖状高分子鎖を含有するゲルを 作成した。 それそれの摩擦係数を測定した結果を図 3·に示す。  DMAA gel was prepared on a glass plate by adding 200% UV light to 50% of an aqueous solution containing 7 g of DMAA containing 1% by weight of methylene bisacrylamide as a crosslinking agent and 0.5% by weight of ketoglutaric acid as a photosensitizer. I do. An AMPS gel was prepared in the same manner. On the other hand, 100 ml of an aqueous solution containing 2 g of ethylene glycol diglycidyl ether and 10 g of polyvinyl alcohol is reacted at 80 ° C for 24 hours to perform cross-linking to prepare a polyvinyl alcohol (PVA) gel. Each of the obtained gels is immersed in a 1.0 M DMAA monomer aqueous solution or a 1.0 M AMPS monomer aqueous solution for one week, and after the monomer is diffused inside, it is irradiated with 400 W ultraviolet light to polymerize the polymer inside. As a result, a gel containing a linear polymer chain was prepared. Figure 3 · shows the results of measuring the respective friction coefficients.
同図は、 DMAAゲルにポリ (DMAA) あるいはポリ (AMPS) を含有さ せたゲルの結果を、 下図は、 ポリビニルアルコ一ル (PVA) ゲル、 AMPSゲ ルにポリ (AMP S)含有させたゲルの結果である。  The figure shows the results of gels containing poly (DMAA) or poly (AMPS) in DMAA gel, and the figures below show poly (AMPS) in polyvinyl alcohol (PVA) gel and AMPS gel. Gel results.
DMAAゲルでは、 直鎖状高分子鎖を含有することで、 摩擦係数が最大 10分 の 1以下に、 AMPSゲルにポリ (AMP S)含有させたものでは、 最大 100 分の 1以下に、 PVAゲルにポリ (AMPS)含有させたものでは、 最大 100 0分の 1以下にまで摩擦係数が下がった。  DMAA gels contain linear polymer chains to reduce the coefficient of friction to less than 1 / 10th of the maximum, and those containing poly (AMPS) to AMPS gels less than 1/100 of the PVA. The gel containing poly (AMPS) reduced the coefficient of friction to less than 1 in 1000.
(試験例 4)  (Test Example 4)
試験例 3の DMA Aおよび AMP Sのゲルの合成の際、 ガラス板でなく、 テフ ロン板に挟んで重合し、 ゲル表面に自由末端グラフト鎖をもつゲルを作成した。 それそれの摩擦係数を測定した結果を図 4に示す。  When synthesizing the gels of DMA A and AMP S in Test Example 3, polymerization was performed not by using a glass plate but by a Teflon plate, and a gel having a free terminal graft chain on the gel surface was prepared. Figure 4 shows the results of measuring the respective friction coefficients.
同図中、 DMA Aはガラス板で挟んで重合したゲル、 DMAAgraf tはテ フロン板で挟んで重合した、 表面にグラフト鎖を有するゲル、 PAMPSはガラ ス板で挟んで重合した AMP Sゲル、 PAMPSgraf tはテフロン板で挟ん で重合した、 表面にグラフト鎖を有する AMP Sゲルを示す。 In the same figure, DMA A is a gel polymerized between glass plates, DMAAgraft is a polymer polymerized between Teflon plates, and a gel with a graft chain on the surface, and PAMPS is a glass. An AMP S gel polymerized by sandwiching between Teflon plates and PAMPSgraft indicate an AMP S gel polymerized by sandwiching between Teflon plates and having a graft chain on the surface.
DMAAゲルでは自由末端グラフト鎖が表面に存在することで、 摩擦係数が最 大 10の 1、 AMP Sゲルでは、 最大 1000分の 1となり、 摩擦係数が 6 x 1 0一5というこれまでに得られない低い値を示した。 In DMAA gel by free end graft chains present on the surface, the friction coefficient is 1, AMP S gel up to 10, 1 next to the maximum 1000 minutes, resulting in far that the friction coefficient of 6 x 1 0 one 5 It showed an unusually low value.
産業上の利用可能性 Industrial applicability
本発明によれば、 これまでにない程の低摩擦の材料を製造することができる。  ADVANTAGE OF THE INVENTION According to this invention, the material of low friction as never before can be manufactured.

Claims

請求の範囲 . 高分子ゲルに対し、 直鎖状高分子が混合されているか、 またはグラフト重合 されてなる低摩擦ハイ ドロゲル。 . 直鎖状高分子が、 高分子ゲルの表面にグラフト重合されている、 請求項 1に 記載の低摩擦ハイドロゲル。 . 高分子ゲルを構成するモノマーと直鎖状高分子を構成するモノマーとが同種 のモノマーであることを特徴とする、 請求項 1または 2に記載の低摩擦ハイ ド 口ゲル。 . 摩擦係数が 0 . 0 1以下であることを特徴とする、 請求項 1〜3のいずれか に記載の低摩擦ハイ ドロゲル。 . 低摩擦ハイドロゲル全重量に対する直鎖状高分子の含有率が 2〜3 0 0重量 %であることを特徴とする、 請求項 1〜4のいずれかに記載の低摩擦ハイドロ ゲル。. 高分子ゲルがイオン性ゲルであることを特徴とする、 請求項 1〜5のいずれ かに記載の低摩擦ハイ ドロゲル、。. 請求項 6に記載の低摩擦ハイド口ゲルの、 固体および生体組織表面に対する 使用。. 低摩擦ハイドロゲルを製造する方法であって、 高分子ゲル又は高分子ゲルを 形成するモノマーに、 直鎖状高分子又は直鎖状高分子を形成するモノマーを混 合し、 及び/又はグラフト重合させることを特徴とする、 前記方法。. 高分子ゲルに直鎖状高分子を混合し、 直鎖状高分子鎖を後重合グラフ卜させ ることを特徴とする、 請求項 8に記載の方法。 0 . 高分子ゲルに 1種または 2種以上の直鎖状高分子を形成するモノマ一を混 合し、 重合することにより、 高分子ゲルに直鎖状高分子を含有させることを特 徴とする、 請求項 8に記載の方法。 Claims. A low-friction hydrogel obtained by mixing a linear polymer with a polymer gel or by graft polymerization. The low friction hydrogel according to claim 1, wherein the linear polymer is graft-polymerized on the surface of the polymer gel. 3. The gel of claim 1, wherein the monomer constituting the polymer gel and the monomer constituting the linear polymer are the same type of monomer. The low-friction hydrogel according to any one of claims 1 to 3, wherein the coefficient of friction is 0.01 or less. The low-friction hydrogel according to any one of claims 1 to 4, wherein the content of the linear polymer is 2 to 300% by weight based on the total weight of the low-friction hydrogel. The low friction hydrogel according to any one of claims 1 to 5, wherein the polymer gel is an ionic gel. Use of the low-friction hide mouth gel according to claim 6 on solid and living tissue surfaces. A method for producing a low-friction hydrogel, comprising mixing a polymer forming a polymer or a monomer forming a polymer with a linear polymer or a monomer forming a linear polymer, and / or grafting. The above method, which comprises polymerizing. 9. The method according to claim 8, wherein a linear polymer is mixed with the polymer gel, and the linear polymer chain is subjected to post-polymerization grafting. 0. The polymer gel contains one or more monomers that form a linear polymer, and is polymerized to contain the linear polymer. The method of claim 8, wherein:
1 . 高分子ゲルを形成するモノマーの 1種又は 2種以上とともに直鎖状高分子 を混合し、 重合することにより、 高分子ゲルに直鎖状高分子を含有させること を特徴とする、 請求項 8に記載の方法。 1. A linear polymer is mixed with one or more kinds of monomers that form a polymer gel and polymerized so that the polymer gel contains the linear polymer. Item 9. The method according to Item 8.
2 . 高分子ゲルを形成するモノマーの 1種又は 2種以上と、 直鎖状高分子を形 成するモノマ一の 1種又は 2種以上とを混合し、.重合することにより、 高分子 ゲルに直鎖状高分子をグラフ卜させることを特徴とする、 請求項 8に記載の方 法。 2. One or more of the monomers that form the polymer gel are mixed with one or more of the monomers that form the linear polymer, and polymerized to form a polymer gel. 9. The method according to claim 8, wherein a straight-chain polymer is grafted.
3 . 高分子ゲルを形成するモノマーと直鎖状高分子を形成するモノマ一とが同 種のモノマーであることを特徴とする、 請求項 8〜 1 2のいずれかに記載の低 摩擦ハイドロゲル。3. The low friction hydrogel according to any one of claims 8 to 12, wherein the monomer forming the polymer gel and the monomer forming the linear polymer are the same type of monomer. .
4 . 低摩擦ハイドロゲルを製造する方法であって、 疎水性基板上で、 高分子ゲ ルを形成するモノマ一を重合することを特徴とする、 前記方法。 4. A method for producing a low friction hydrogel, comprising polymerizing a monomer that forms a polymer gel on a hydrophobic substrate.
PCT/JP2001/007776 2001-01-22 2001-09-07 Low friction hydrogel having straight chain polymer and method for preparation thereof WO2002057368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/466,895 US20040116305A1 (en) 2001-01-22 2001-09-07 Low friction hydrogel having straight chain polymers and method for preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-13617 2001-01-22
JP2001013617A JP5048183B2 (en) 2001-01-22 2001-01-22 Low friction hydrogel having linear polymer and method for producing the same

Publications (1)

Publication Number Publication Date
WO2002057368A1 true WO2002057368A1 (en) 2002-07-25

Family

ID=18880439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007776 WO2002057368A1 (en) 2001-01-22 2001-09-07 Low friction hydrogel having straight chain polymer and method for preparation thereof

Country Status (3)

Country Link
US (1) US20040116305A1 (en)
JP (1) JP5048183B2 (en)
WO (1) WO2002057368A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002309026A1 (en) 2002-05-01 2003-11-17 Hokkaido Technology Licensing Office Co., Ltd. Gel having multiple network structure and method for preparation thereof
JPWO2004015012A1 (en) * 2002-08-08 2005-12-02 北海道ティー・エル・オー株式会社 Low friction organogel
JP4709956B2 (en) 2004-06-18 2011-06-29 国立大学法人北海道大学 Artificial meniscus
JP5059407B2 (en) * 2004-06-25 2012-10-24 国立大学法人北海道大学 Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate
JP4734653B2 (en) * 2004-09-09 2011-07-27 国立大学法人北海道大学 Molecular measuring apparatus and molecular measuring method using gel substrate material
JP5324070B2 (en) 2007-08-27 2013-10-23 スリーエム イノベイティブ プロパティズ カンパニー Polymer gel structure and method for producing the same
US8293510B2 (en) * 2007-11-16 2012-10-23 University Of Kansas Method of preparing a hydrogel network encapsulating cells
EP2591010B1 (en) * 2010-07-09 2014-12-03 Lubrizol Advanced Materials, Inc. Blends of acrylic copolymer thickeners
JP5850417B2 (en) * 2010-08-04 2016-02-03 国立大学法人北海道大学 Polymer gel and method for producing the same
US9993577B2 (en) 2013-07-01 2018-06-12 Trustees Of Boston University Dissolvable hydrogel compositions for wound management and methods of use
JP6577709B2 (en) 2014-12-26 2019-09-18 三星電子株式会社Samsung Electronics Co.,Ltd. Gel production method and acoustic coupler gel
JP7333239B2 (en) * 2019-09-30 2023-08-24 日清紡ホールディングス株式会社 Composite material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939049A (en) * 1974-04-10 1976-02-17 The United States Of America As Represented By The United States Energy Research And Development Administration Process for radiation grafting hydrogels onto organic polymeric substrates
JPS63228053A (en) * 1986-12-15 1988-09-22 Fuji Photo Film Co Ltd Medium for electrophoresis
JPH0222555A (en) * 1988-05-02 1990-01-25 Eastman Kodak Co Kit for electrophoretic gel medium
EP0483941A2 (en) * 1990-11-01 1992-05-06 C.R. Bard, Inc. Lubricious hydrogel coatings
JPH04202455A (en) * 1990-11-30 1992-07-23 Terumo Corp Polymer gel with high water content
JPH08143782A (en) * 1994-11-21 1996-06-04 Arakawa Chem Ind Co Ltd Water-absorbing resin composition
JPH09249720A (en) * 1996-03-18 1997-09-22 Kanebo Ltd Water-absorbent resin particle and preparation thereof
JPH11140193A (en) * 1997-11-06 1999-05-25 Nippon Shokubai Co Ltd Production of hydrophilic polymer
JP2000143463A (en) * 1998-11-17 2000-05-23 Kao Corp Hair cosmetic

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746551A (en) * 1985-11-20 1988-05-24 Micro-Map, Inc. Rehydratable polyacrylamide gels
US5066376A (en) * 1988-05-02 1991-11-19 Eastman Kodak Company Electrophoresis media comprising active methylene groups
JP3740549B2 (en) * 1990-03-30 2006-02-01 アルザ・コーポレーション Apparatus and method for drug administration by ion permeation therapy
JPH05168909A (en) * 1991-03-08 1993-07-02 Terumo Corp Hydrogel with high water content and production thereof
GB9118597D0 (en) * 1991-08-30 1991-10-16 Biocompatibles Ltd Polymer treatments
JP3165734B2 (en) * 1992-05-19 2001-05-14 テルモ株式会社 New high water absorption shape memory material
JPH06287392A (en) * 1993-02-03 1994-10-11 Terumo Corp Highly water-containing and highly elastic transparent hydrogel
US5902832A (en) * 1996-08-20 1999-05-11 Menlo Care, Inc. Method of synthesizing swollen hydrogel for sphincter augmentation
JP2003524772A (en) * 1999-04-27 2003-08-19 シファーゲン バイオシステムズ, インコーポレイテッド Probe for gas-phase ion analyzer
JP4397006B2 (en) * 2000-09-05 2010-01-13 三菱レイヨン株式会社 Method for producing bio-related substance-immobilized gel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939049A (en) * 1974-04-10 1976-02-17 The United States Of America As Represented By The United States Energy Research And Development Administration Process for radiation grafting hydrogels onto organic polymeric substrates
JPS63228053A (en) * 1986-12-15 1988-09-22 Fuji Photo Film Co Ltd Medium for electrophoresis
JPH0222555A (en) * 1988-05-02 1990-01-25 Eastman Kodak Co Kit for electrophoretic gel medium
EP0483941A2 (en) * 1990-11-01 1992-05-06 C.R. Bard, Inc. Lubricious hydrogel coatings
JPH04202455A (en) * 1990-11-30 1992-07-23 Terumo Corp Polymer gel with high water content
JPH08143782A (en) * 1994-11-21 1996-06-04 Arakawa Chem Ind Co Ltd Water-absorbing resin composition
JPH09249720A (en) * 1996-03-18 1997-09-22 Kanebo Ltd Water-absorbent resin particle and preparation thereof
JPH11140193A (en) * 1997-11-06 1999-05-25 Nippon Shokubai Co Ltd Production of hydrophilic polymer
JP2000143463A (en) * 1998-11-17 2000-05-23 Kao Corp Hair cosmetic

Also Published As

Publication number Publication date
JP2002212452A (en) 2002-07-31
JP5048183B2 (en) 2012-10-17
US20040116305A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
Khalid et al. Preparation and characterization of alginate-PVA-based semi-IPN: Controlled release pH-responsive composites
Khan et al. Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly (vinyl alcohol) hydrogels
Brahim et al. Synthesis and hydration properties of pH-sensitive p (HEMA)-based hydrogels containing 3-(trimethoxysilyl) propyl methacrylate
Ju et al. pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly (N-isopropylacrylamide)
EP1505093B1 (en) Hydrogel of (semi)interpenetrating network structure and process for producing the same
WO2002057368A1 (en) Low friction hydrogel having straight chain polymer and method for preparation thereof
JP5059407B2 (en) Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate
JP2003504503A (en) Thermoformable ophthalmic lens
JP6628396B2 (en) Gel material for 3D printer
JP3914501B2 (en) Polymer gel composite and method for producing the same
Bonina et al. pH-sensitive hydrogels composed of chitosan and polyacrylamide–preparation and properties
Gümüşderelioğlu et al. Superporous polyacrylate/chitosan IPN hydrogels for protein delivery
Hocine et al. Synthesis, characterization and swelling behavior of pH-sensitive polyvinylalcohol grafted poly (acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid) hydrogels for protein delivery
JP5285839B2 (en) Method for producing polymer composite gel
JP2006213868A (en) Gel and its manufacturing method
Li et al. Thermoresponse improvement of poly (N-isopropylacrylamide) hydrogels via formation of poly (sodium p-styrenesulfonate) nanophases
Mohan et al. Swelling and diffusion characteristics of novel semi‐interpenetrating network hydrogels composed of poly [(acrylamide)‐co‐(sodium acrylate)] and poly [(vinylsulfonic acid), sodium salt]
Son et al. Tailoring Physical Properties of Dual-Network Acrylamide Hydrogel Composites by Engineering Molecular Structures of the Cross-linked Network
JP2011178843A (en) Method for bonding gel body to another gel body
JP2005000182A (en) Blood compatible material
JP2012001596A (en) Gel and manufacturing method for the same
Nistor et al. Upon the characterization of semi-synthetic hydrogels based on poly (NIPAM) inserted onto collagen sponge
KR20180010565A (en) Hydrogel with improved modulus and medical uses thereof
Kostanski et al. Interpenetrating polymer networks as a route to tunable multi-responsive biomaterials: development of novel concepts
JPS591744B2 (en) self-reinforcing hydrogel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10466895

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase