JP5059407B2 - Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate - Google Patents

Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate Download PDF

Info

Publication number
JP5059407B2
JP5059407B2 JP2006528567A JP2006528567A JP5059407B2 JP 5059407 B2 JP5059407 B2 JP 5059407B2 JP 2006528567 A JP2006528567 A JP 2006528567A JP 2006528567 A JP2006528567 A JP 2006528567A JP 5059407 B2 JP5059407 B2 JP 5059407B2
Authority
JP
Japan
Prior art keywords
gel
crosslinked polymer
network structure
polymer
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006528567A
Other languages
Japanese (ja)
Other versions
JPWO2006001313A1 (en
Inventor
チェンピン グン
義仁 長田
裕之 附柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Medical and Biological Laboratories Co Ltd
Original Assignee
Hokkaido University NUC
Medical and Biological Laboratories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Medical and Biological Laboratories Co Ltd filed Critical Hokkaido University NUC
Priority to JP2006528567A priority Critical patent/JP5059407B2/en
Publication of JPWO2006001313A1 publication Critical patent/JPWO2006001313A1/en
Application granted granted Critical
Publication of JP5059407B2 publication Critical patent/JP5059407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide

Description

本発明は、架橋ポリマーからなる網目構造に他のポリマーが絡み付いて構成されるセミ相互侵入網目構造を有するゲル及びそのゲルの製造方法、並びにそのゲルを利用した吸水性樹脂、潤滑材及び細胞培養用基材に関する。  The present invention relates to a gel having a semi-interpenetrating network structure in which another polymer is entangled with a network structure composed of a crosslinked polymer, a method for producing the gel, a water absorbent resin, a lubricant, and a cell culture using the gel The present invention relates to a substrate.

液体と固体との2相コロイド系であるゲルは、高柔軟性や高保水性等の優れた特性を有し、これらの特性を利用して、産業上の利用用途が従来から様々に検討されている。例えば、特許文献1には、ゲルに対して直鎖状高分子が混合されているか又はグラフト重合されてなる低摩擦材料が開示されている。  Gel, which is a two-phase colloidal system of liquid and solid, has excellent properties such as high flexibility and high water retention, and industrial applications have been studied in various ways using these properties. Yes. For example, Patent Document 1 discloses a low friction material in which a linear polymer is mixed or graft polymerized with respect to a gel.

ところが、従来のゲルは機械的強度が著しく低いため、耐強度や耐久性が不足し易く、利用用途が著しく制限されていた。  However, since the conventional gel has a remarkably low mechanical strength, the strength and durability are easily insufficient, and the use application is remarkably limited.

そこで、ゲルの機械的強度を高めるための技術が様々に検討され開発されている(例えば特許文献2〜7及び非特許文献1〜4)。これらの中でも例えば特許文献2には、第一の架橋ポリマーからなる網目構造中でモノマーを重合し架橋させることにより、第二のポリマーを形成し、第一の架橋ポリマーと第二のポリマーとが互いに絡み合った相互侵入網目構造又はセミ相互侵入網目構造を有するハイドロゲルを生成する技術が記載されている。なお、「相互侵入網目構造」とは、ベースとなる網目構造に他の網目構造が絡み付いた網目構造を指し、また「セミ相互侵入網目構造」とは、ベースとなる網目構造に直鎖状ポリマーが絡み付いた網目構造を指す。
特開2002−212452号公報 国際公開第03/093337号パンフレット 特開2004−91724号公報 特開2002−053762号公報 特開2002−053629号公報 特開昭57−130543号公報 特開昭58−36630号公報 J.P.Gong,Yoshinori Katsuyama,Takayuki Kurokawa,Yoshihito Osada,“Double−Network Hydrogel with Extremely High Mechanical Strength”,Advanced Materials,15,1155−1158(2003) H.Haraguchi,T.Takeshita,“Nanocomposite Hydrogels:A Unique Organic−Inorganic Network Structure with Extraordinary Mechanical,Optical,and Swelling/De−swelling Properties”,Advanced Materials,14,1120−1123(2002) Y.Okumura,KohzoIto,“The Polyrotaxane Gel:A Topological Gel by Figure−of−Eight Cross−links”,13,485−487(2001) Long Zhao,Hiroshi Mitomo,Naotsugu Nagasawa,Fumio Yoshii,Tamikazu Kume,“Radiation synthesis and characteristic of the hydrogels based on carboxymethylated chitin derivatives”,Carbohydrate Polymers,51,169−175(2003)
Therefore, various techniques for increasing the mechanical strength of the gel have been studied and developed (for example, Patent Documents 2 to 7 and Non-Patent Documents 1 to 4). Among these, for example, Patent Document 2 discloses that a second polymer is formed by polymerizing and crosslinking a monomer in a network structure composed of a first crosslinked polymer, and the first crosslinked polymer and the second polymer are Techniques for producing hydrogels having interpenetrating or semi-interpenetrating networks intertwined with each other are described. The “interpenetrating network structure” refers to a network structure in which another network structure is entangled with the base network structure, and the “semi-interpenetrating network structure” refers to a linear polymer in the base network structure. Refers to a mesh structure with tangled.
Japanese Patent Laid-Open No. 2002-212453 International Publication No. 03/093337 Pamphlet JP 2004-91724 A JP 2002-053762 A JP 2002-053629 A Japanese Patent Laid-Open No. 57-130543 JP 58-36630 A J. et al. P. Gong, Yoshinori Katsurayama, Takayuki Kuroka, Yoshihita Osada, “Double-Network Hydrogel with Extremely High Mechanical 3D 115-M11”. H. Haraguchi, T .; Takeshita, “Nanocomposite Hydrogels: A Uniform Organic-Inorganic Network, Structured with Extra 1, 1, 1, 1, 120 m, and Swelling / De-well. Y. Okumura, KohzoIto, “The Polyrotaxane Gel: A Topological Gel by FIGure-of-Eight Cross-links”, 13, 485-487 (2001). Long Zhao, Hiroshi Mitomo, Naotsugu Nagasawa, Fumio Yoshii, Tamikazu Kume, "Radiation synthesis and characteristic of the hydrogels based on carboxymethylated chitin derivatives", Carbohydrate Polymers, 51,169-175 (2003)

しかしながら、本発明者らは、特許文献2に開示された技術を発展させてゲルの強度をさらに向上させるべく鋭意研究を継続した結果、特許文献2〜7及び非特許文献1〜4に開示された技術の開発思想とは異なる知見を得た。即ち、例えば特許文献2又は非特許文献1に開示された技術では、ゲルの強度向上に最も重要な因子は、第一の架橋ポリマーに対する第二のモノマーのモル比及び第二のポリマーの架橋度であると考えられており、特に特許文献2に開示された技術では、第二のポリマーがごく僅かな架橋構造を有すること具体的には第二のポリマーの架橋度が0.001mol%以上であることがゲルの強度を高める最適条件であるとしているが限界がある。  However, the present inventors have developed the technique disclosed in Patent Document 2 and continued earnest research to further improve the strength of the gel, and as a result, disclosed in Patent Documents 2 to 7 and Non-Patent Documents 1 to 4. We obtained knowledge that was different from the development concept of the technology. That is, for example, in the technique disclosed in Patent Document 2 or Non-Patent Document 1, the most important factors for improving the strength of the gel are the molar ratio of the second monomer to the first crosslinked polymer and the degree of crosslinking of the second polymer. In particular, in the technique disclosed in Patent Document 2, the second polymer has a very slight cross-linked structure. Specifically, the degree of cross-linking of the second polymer is 0.001 mol% or more. Although there is an optimum condition for increasing the strength of the gel, there is a limit.

本発明の目的は、ゲルの有する高柔軟性や高保水性等の優れた特性を損なうことなく、ゲルの強度を飛躍的に向上させることのできる技術を提供すること、さらにはそのゲルを利用し各種用途を提供することである。  An object of the present invention is to provide a technique capable of dramatically improving the strength of a gel without impairing excellent properties such as high flexibility and high water retention property of the gel, and further utilizing the gel. To provide various uses.

本発明に係るゲルは、架橋ポリマーで構成される網目構造に非架橋ポリマーが侵入し物理的に絡み付いたセミ相互侵入網目構造を有し、良溶媒による平衡膨潤時において、膨潤度が5以上で、かつ、前記良溶媒の重量含有率が80%以上で、かつ、破壊エネルギーが700J/m以上2000J/m以下である構成を採る。The gel according to the present invention has a semi-interpenetrating network structure in which a non-crosslinked polymer invades and physically entangles into a network structure composed of a crosslinked polymer, and the degree of swelling is 5 or more during equilibrium swelling with a good solvent. and the weight content of the good solvent is at least 80%, and employs a configuration fracture energy is 700 J / m 2 or more 2000J / m 2 or less.

すなわち、架橋ポリマーでない第二のポリマーが架橋構造を全く有することなく線状で高分子量となっている。そして、第二のポリマーが架橋構造を採るよりもむしろ非架橋ポリマーを採る場合に限りゲルの強度が特異的に向上することを見出した。  That is, the second polymer that is not a crosslinked polymer is linear and has a high molecular weight without having any crosslinked structure. And it discovered that the intensity | strength of a gel improved specifically only when the 2nd polymer took a non-crosslinked polymer rather than taking a crosslinked structure.

本発明によれば、架橋ポリマーからなる剛直で、かつ、空洞部の散在する網目構造に、所定条件を満たす柔軟性の高い非架橋ポリマーが侵入して物理的に絡み付くため、生体組織に匹敵するかそれ以上の力学強度及び耐久性を備えるゲルを提供することができる。  According to the present invention, a non-crosslinked polymer having high flexibility satisfying a predetermined condition invades and physically entangles into a rigid network made of a crosslinked polymer and having scattered cavities, which is comparable to a living tissue. A gel with mechanical strength and durability higher than that can be provided.

本発明に係るゲルの有するセミ相互侵入網目構造を模式的に示す図The figure which shows typically the semi-interpenetrating network structure which the gel which concerns on this invention has セミ相互侵入網目構造における架橋ポリマーからなる網目構造の空洞部を模式的に示す図The figure which shows typically the cavity part of the network structure which consists of a crosslinked polymer in a semi-interpenetrating network structure 本発明に係るゲルの亀裂先端部において、セミ相互侵入網目構造が変形する様子と、非架橋ポリマーがある速度領域で化学的な架橋によらず物理的な絡み合いによる過渡的網目を形成することによって亀裂進行の抵抗力となる様子と、を模式的に示す図At the crack tip of the gel according to the present invention, the semi-interpenetrating network structure is deformed and a non-crosslinked polymer forms a transient network by physical entanglement regardless of chemical crosslinking in a certain speed region. A diagram schematically showing the state of resistance to crack progression 濃厚溶液状態における非架橋ポリマーに過渡的網目が形成される外力の速度領域を模式的に示す図The figure which shows typically the velocity area of the external force where the transient network is formed in the non-crosslinked polymer in the concentrated solution state 本発明に係るゲルの破壊エネルギーと非架橋ポリマーの重量平均分子量Mとの相関を模式的に示す図The figure which shows typically the correlation of the fracture energy of the gel which concerns on this invention, and the weight average molecular weight Mw of a non-crosslinked polymer.

本発明の骨子は、架橋ポリマーからなる空洞部の散在する網目構造に、前記空洞部を満たす大きさのランダムコイル形態をとる非架橋ポリマーが絡み付いたセミ相互侵入網目構造を有するゲルを形成することである。ランダムコイルの大きさは、非架橋ポリマーの分子量に依存する。  The gist of the present invention is to form a gel having a semi-interpenetrating network structure in which a non-crosslinked polymer in the form of a random coil having a size satisfying the cavity is entangled with a network structure in which cavities made of a crosslinked polymer are scattered. It is. The size of the random coil depends on the molecular weight of the non-crosslinked polymer.

以下、本発明の実施の形態について、適宜図面を参照しつつ詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

本発明に係るゲルを評価するに際して、その力学強度を示す指標として「圧縮強度」を、またその破壊力学的な丈夫さを示す指標として「破壊エネルギー」を使用する。「圧縮強度」は、ゲルの破壊に必要な応力を初期の面積で割った値で示され、「破壊エネルギー」は、ゲルの定常的な破壊進行に用いられた仕事量を破断面積で割った値、即ち破断面を形成するために必要なエネルギーで示される。従って、ゲルの優劣を示す指標としては、破壊に至るまでの変形率が極めて大きいというゲルの特性を勘案すれば、圧縮強度よりも破壊エネルギーを用いる方が適切である(Y.Tanaka,K.Fukao,Y.Miyamoto,“Fracture energy of gels”,The European Physical Journal E,3,395−401(2000)参照)。  When evaluating the gel according to the present invention, “compressive strength” is used as an index indicating its mechanical strength, and “breaking energy” is used as an index indicating its fracture mechanical strength. “Compressive strength” is the value obtained by dividing the stress required for the fracture of the gel by the initial area, and “Fracture energy” is the work used for steady fracture progression of the gel divided by the fracture area. The value, i.e., the energy required to form a fracture surface. Therefore, as an index indicating the superiority or inferiority of the gel, it is more appropriate to use the fracture energy rather than the compressive strength in view of the gel characteristics that the deformation rate until the fracture is extremely high (Y. Tanaka, K. et al. Fukao, Y. Miyamoto, “Fracture energy of gels”, The European Physical Journal E, 3, 395-401 (2000)).

図1に、本発明に係るゲルの有するセミ相互侵入網目構造を模式的に示す。ゲルの基本骨格を構成する架橋ポリマーは、網目の極めて疎な部分である空洞部の散在する剛直な網目構造を形成し、一方で非架橋ポリマーは、この空洞部に集中的に存在し、柔軟性を保ちつつ、その末端部で架橋ポリマーの網目構造に物理的に絡み付いている。  FIG. 1 schematically shows a semi-interpenetrating network structure of the gel according to the present invention. The cross-linked polymer that forms the basic skeleton of the gel forms a rigid network structure in which cavities, which are extremely sparse parts of the network, are scattered, while the non-cross-linked polymer is concentrated in the cavities and is flexible. It is physically entangled with the network structure of the cross-linked polymer at its end while maintaining the properties.

ここで、「物理的に絡み付いている」とは、二つ以上の非連続的な線状の物体が共有結合等による結合した状態には無いが、空間的な位置を束縛され得る位置関係を取っている箇所が少なくとも1つ存在し、且つ前記双方または何れか一方が物理的に破壊または変形されなければ、ほどけない状態をいう。ただ、微視的で、そもそもそのままでは目視できない状態にあるもの等の場合には、電子顕微鏡写真を用いるなど、そのものを確認するに相応の状態において、他の部分と比し、極めて接近した箇所が少なくとも1つ存在すべきである。しかしながら、溶液中に存在するポリマー同士の物理的な絡み合いについては、光学顕微鏡等で確認できないだけでなく、電子顕微鏡写真を用いた場合にも確認できないほどに微視的な部分で物理的な絡み合いを形成しているため、動的光散乱装置等によりその存在を示唆し得るのみである。また、以下においては、この空洞部含有架橋ポリマーに非架橋ポリマーが絡み付いた構造をダブルネットワーク(DN)と呼ぶこともある。  Here, “physically entangled” means a positional relationship in which two or more discontinuous linear objects are not in a coupled state by a covalent bond or the like, but their spatial positions can be constrained. If there is at least one portion taken and both or one of them is not physically destroyed or deformed, it means an unwound state. However, in the case of things that are microscopic and invisible in the first place, use an electron micrograph, etc. There should be at least one. However, the physical entanglement between the polymers present in the solution cannot be confirmed with an optical microscope or the like, but is also physically entangled in such a microscopic part that it cannot be confirmed with an electron micrograph. Therefore, its existence can only be suggested by a dynamic light scattering device or the like. In the following, a structure in which a non-crosslinked polymer is entangled with the void-containing crosslinked polymer may be referred to as a double network (DN).

この架橋ポリマーからなる空洞部の散在する網目構造は、例えばビニルモノマーとジビニルモノマーとのラジカル共重合によって形成される。ビニルモノマーとジビニルモノマーとはラジカル重合における反応性が異なるため、これらを共重合させると、反応初期にミクロゲルが形成され、それが成長することでミクロゲル同士の架橋が生じて不均一な網目構造が形成される(Erik Geissler,“Dynamic light scattering from polymer gels”,Chapter 11th,471−511、Edited by WYNBrown,“Dynamic Light Scattering−The Method and Some Applications−“CLARENDON PRESS,OXFORD(1993)参照)。このようにして形成された架橋ポリマーの網目構造は、溶媒を大量に吸収して平衡膨潤に達すれば、膨潤度の上昇に伴って網目の粗密差が拡大することで、空間的に不均一性が極めて高くなる(Hidemitsu Furukawa,Kazuyuki Horie,“Swelling−induced modulation of static and dynamic flnuctuations in polyacrylamide gels observed by scanning microscopic light scattering”,Physical Review E,68,031406(2003)、Mitsuhiro Shibayama,“Spatial inhomogeneity and dynamic fluctuations of polymer gels”,Macromol.Chem.Phys.,199,1−30(1998)参照)。また、電解質の架橋ポリマーからなる網目構造と非電解質の架橋ポリマーからなる網目構造とを比較すると、それらの架橋度が同じであれば、平衡膨潤度及び網目の不均一性は前者の方が後者に比べて著しく大きい。そのため、電解質の架橋ポリマーからなる網目構造には、網目の極めて疎な部分即ち空洞部が確実に散在すると考えられる。なお、動的光散乱法による測定データは、この考えを支持している。The network structure in which cavities made of the crosslinked polymer are scattered is formed by radical copolymerization of a vinyl monomer and a divinyl monomer, for example. Since vinyl monomers and divinyl monomers have different reactivity in radical polymerization, when they are copolymerized, a microgel is formed at the initial stage of the reaction, and when it grows, the microgel cross-links to form a non-uniform network structure. (Erik Geissler, “Dynamic light scattering from polymer polymer gels”, Chapter 11 th , 471-511, Edited by WYN Brown, “Dynamic Light Scattered. The network structure of the cross-linked polymer formed in this way is spatially non-uniform due to the increase in the density of the network as the degree of swelling increases as the equilibrium swelling is reached by absorbing a large amount of solvent. There is very high (Hidemitsu Furukawa, Kazuyuki Horie, "Swelling-induced modulation of static and dynamic flnuctuations in polyacrylamide gels observed by scanning microscopic light scattering", Physical Review E, 68,031406 (2003), Mitsuhiro Shibayama, "Spatial inhomogeneity and dynamic luctuations of polymer gels ", Macromol.Chem.Phys., see 199,1-30 (1998)). In addition, when comparing the network structure composed of the electrolyte cross-linked polymer and the network structure composed of the non-electrolyte cross-linked polymer, if the degree of cross-linking is the same, the degree of equilibrium swelling and the non-uniformity of the net are more Is significantly larger than Therefore, it is considered that an extremely sparse part of the network, that is, a cavity part is surely scattered in the network structure made of the crosslinked polymer of the electrolyte. Note that the measurement data obtained by the dynamic light scattering method supports this idea.

一方で、本発明において「非架橋ポリマー」とは、架橋度が0.001mol%未満のポリマー、好ましくは全く架橋されていないポリマーを指し、また架橋度は非架橋ポリマーを重合する際に添加される架橋剤の量から算出される。架橋度が小さいポリマーは、ゲルを形成しないゾル状態で溶媒に可溶であり、柔軟性が高く、ランダムコイルを形成し易い。  On the other hand, the “non-crosslinked polymer” in the present invention refers to a polymer having a degree of crosslinking of less than 0.001 mol%, preferably a polymer that is not crosslinked at all, and the degree of crosslinking is added when polymerizing the non-crosslinked polymer. Calculated from the amount of the crosslinking agent. A polymer having a low degree of crosslinking is soluble in a solvent in a sol state that does not form a gel, has high flexibility, and easily forms a random coil.

図2に、セミ相互侵入網目構造における架橋ポリマーからなる網目構造の空洞部を模式的に示す。非架橋ポリマーは、この空洞部内において移動や変形を自由に行えるため、ランダムコイルになっていると考えられ、統計的にはその直径dηはポリマー溶液の固有粘度[η]と重量平均分子量Mとから次の式によって算出される(M.−M.Kulicke,R.Kniewske,J.Klein,“Preparation,Characterization,Solution Properties and Rheological Behaviour of Polyacrylamide”,Progress in PoymerScience,8,373−468(1982)参照)。FIG. 2 schematically shows a cavity of a network structure made of a crosslinked polymer in a semi-interpenetrating network structure. The non-crosslinked polymer is considered to be a random coil because it can move and deform freely in this cavity, and statistically its diameter dη is the intrinsic viscosity [η] of the polymer solution and the weight average molecular weight M w. (M.-M. Kulikke, R. Kniewske, J. Klein, “Preparation, Characterization, Solution Properties and Rheologic Behind of Poly68”, Prod. )reference).

Figure 0005059407
Figure 0005059407

この式から算出される非架橋ポリマーからなるランダムコイルの直径が架橋ポリマーからなる網目の平均間隔の凡そ10倍以上になると、セミ相互侵入網目構造を有するゲルの力学強度及び破壊エネルギーが特異的に向上し始める。すなわち、この場合の非架橋ポリマーの分子量は重量平均分子量で10以上になっており、物理的な絡み合いが十分生じ得る程の濃度でポリマーが存在していることになる。このような現象が生じる機構は、非架橋ポリマーからなるランダムコイルがその重合度の上昇に伴い大きくなって架橋ポリマーからなる網目構造に散在する空洞部を満たすようになると、換言すれば非架橋ポリマーからなるランダムコイルの直径がその空洞部の直径よりも大きくなると、架橋ポリマーと非架橋ポリマーとが物理的に絡み合うようになり、その絡み合いに起因する擬似的な架橋点を形成することによってこれらのポリマーが連続した網目のように振舞うためであると推測される。翻って、非架橋ポリマーからなるランダムコイルの直径がその空洞部の直径よりも小さければ、架橋ポリマーと非架橋ポリマーとの間に擬似的な架橋点が形成されないため、セミ相互侵入網目構造においては非架橋ポリマーの存在によって粘度が高くなった溶媒に架橋ポリマーが膨潤しているだけの状態となることから、そのゲルの力学強度及び破壊エネルギーが著しく向上することはない。When the diameter of the random coil made of the non-crosslinked polymer calculated from this formula is about 10 times or more the average interval of the network made of the crosslinked polymer, the mechanical strength and the fracture energy of the gel having the semi-interpenetrating network structure are specifically determined. Start to improve. That is, the molecular weight of the non-crosslinked polymer in this case is 10 6 or more in terms of weight average molecular weight, and the polymer is present at such a concentration that sufficient physical entanglement can occur. The mechanism by which such a phenomenon occurs is that the random coil made of non-crosslinked polymer becomes larger as the degree of polymerization increases and fills the cavities scattered in the network structure made of cross-linked polymer. When the diameter of the random coil is larger than the diameter of the cavity, the cross-linked polymer and the non-cross-linked polymer become physically entangled, and by forming pseudo cross-linking points due to the entanglement, This is presumed to be because the polymer behaves like a continuous network. On the other hand, if the diameter of the random coil made of the non-crosslinked polymer is smaller than the diameter of the cavity, a pseudo cross-linking point is not formed between the crosslinked polymer and the non-crosslinked polymer. Since the crosslinked polymer is merely swollen by the solvent whose viscosity is increased by the presence of the non-crosslinked polymer, the mechanical strength and fracture energy of the gel are not significantly improved.

また、セミ相互侵入網目構造において非架橋ポリマーからなるランダムコイルの直径がその空洞部の直径よりも大きくなると、ゲルの力学強度及び破壊エネルギーが特異的に向上する機構については、次のように説明することもできる。即ち、セミ相互侵入網目構造は空間的に硬い部分(架橋ポリマーの密な部分)と柔らかい部分(架橋ポリマーの極めて疎な部分即ち空洞部における非架橋ポリマー)とを有する高次構造であり、外力が加わりこの硬い部分に応力の集中点が生じて亀裂が発生しても、亀裂が柔らかい部分に達するとその先端で応力が散逸し、亀裂先端の曲率が非常に大きくなることによってその亀裂進展が停止する、という機構である。従って、セミ相互侵入網目構造を有するゲルでは、非架橋ポリマーによって拡散され得る応力を超える極めて大きな外力が加えられない限り、亀裂は長い距離を進展することができなくなり、微視的に破壊が生じてもそれが巨視的な破壊に至ることはない。つまり、本発明に係るゲルであれば、巨視的な破壊に至る臨界値が著しく上昇するため、非常に大きな外力が加えられない限り破壊されることはない。仮に、架橋ポリマーの網目構造が均一であれば、このような巨視的な破壊に至る臨界値の著しい向上は見られない。  In addition, the mechanism by which the mechanical strength and fracture energy of the gel are specifically improved when the diameter of the random coil made of the non-crosslinked polymer in the semi-interpenetrating network is larger than the diameter of the cavity is explained as follows. You can also That is, the semi-interpenetrating network structure is a higher-order structure having a spatially hard part (a dense part of the crosslinked polymer) and a soft part (an extremely sparse part of the crosslinked polymer, that is, a non-crosslinked polymer in the cavity). However, even if a crack is generated due to the stress concentration point in this hard part, when the crack reaches the soft part, the stress is dissipated at the tip, and the curvature of the crack tip becomes very large, and the crack progresses. It is a mechanism that stops. Therefore, in a gel having a semi-interpenetrating network structure, cracks cannot propagate over long distances unless a very large external force exceeding the stress that can be diffused by the non-crosslinked polymer is applied, causing microscopic fracture. But that doesn't lead to macroscopic destruction. That is, in the case of the gel according to the present invention, the critical value leading to macroscopic destruction is remarkably increased, so that the gel is not broken unless a very large external force is applied. If the network structure of the crosslinked polymer is uniform, the critical value that leads to such macroscopic destruction is not significantly improved.

図3に、本発明に係るゲルの亀裂先端部において、セミ相互侵入網目構造が変形する様子と、非架橋ポリマーがある速度領域で過渡的網目を形成することによって亀裂進行の抵抗力となる様子と、を模式的に示す。本発明に係るゲルは外力に対する速度依存性を示し、このゲルの高強度化にとって最適な外力の速度は、セミ相互侵入網目構造における架橋ポリマーの網目構造に散在する空洞部において、非架橋ポリマー同士が絡み合いによる過渡的網目を形成し得る速度領域に相当すると考えられる。  FIG. 3 shows a state in which the semi-interpenetrating network structure is deformed at the crack tip of the gel according to the present invention, and a state in which a non-crosslinked polymer forms a transient network in a certain speed region and becomes a resistance to crack progress. And are shown schematically. The gel according to the present invention has a speed dependency on the external force, and the optimum external force speed for increasing the strength of the gel is determined between the non-crosslinked polymers in the cavities scattered in the network structure of the crosslinked polymer in the semi-interpenetrating network structure. Is considered to correspond to a velocity region in which a transient network due to entanglement can be formed.

また、図4に、濃厚溶液状態における非架橋ポリマーに過渡的網目が形成される外力の速度領域を模式的に示す。図4に示すように、非架橋ポリマーの運動速度よりも亀裂先端の亀裂進行速度が速い場合には、図3下段に示すように伸張状態から(B)非架橋ポリマーの切断が優先的に生じてしまうため、ゲルの力学強度及び破壊エネルギーは低下する、と考えられる。一方で、非架橋ポリマーの運動速度よりも亀裂先端の亀裂進行速度が遅い場合には、図3下段に示すように伸張状態から(A)非架橋ポリマーの滑りが優先的に生じてしまうため、やはりゲルの力学強度及び破壊エネルギーは低下する、と考えられる。このようなゲルの力学強度及び破壊エネルギーの低下は、加えられる外力の速度が物理的に絡まり合った濃厚溶液状態にある非架橋ポリマーの運動速度よりも著しく遅い場合には、非架橋ポリマーが流動的に振舞ってしまい、一方でそれよりも著しく速い場合には、非架橋ポリマーが移動や変形を行う時間的余裕を失いガラス状態になってしまう、ことに起因して生じる、と考えられる。  FIG. 4 schematically shows an external force velocity region in which a transient network is formed in the non-crosslinked polymer in a concentrated solution state. As shown in FIG. 4, when the crack progress rate at the crack tip is faster than the movement speed of the non-crosslinked polymer, as shown in the lower part of FIG. 3, (B) cutting of the non-crosslinked polymer occurs preferentially from the stretched state. Therefore, it is considered that the mechanical strength and fracture energy of the gel are reduced. On the other hand, when the crack progress rate at the crack tip is slower than the movement speed of the non-crosslinked polymer, the slip of the non-crosslinked polymer (A) occurs preferentially from the stretched state as shown in the lower part of FIG. It is thought that the mechanical strength and fracture energy of the gel also decrease. Such a decrease in the mechanical strength and fracture energy of the gel causes the flow of the non-crosslinked polymer when the rate of external force applied is significantly slower than the rate of motion of the non-crosslinked polymer in a physically entangled concentrated solution. On the other hand, if it is significantly faster than that, the non-crosslinked polymer is considered to be caused by the fact that it loses time to move and deform and becomes glassy.

しかし、セミ相互侵入網目構造において非架橋ポリマーが流動的に振舞ったりガラス状態になったりする間の速度領域では、濃厚溶液状態にある非架橋ポリマーは、絡み合いによる過渡的網目を形成してゴムに似た物性を示すようになると考えられるため、亀裂先端部で生じた応力を拡散させることができる。つまり、濃厚溶液状態である非架橋ポリマーによって形成された過渡的網目は、化学架橋点を有しないために過剰な応力が加わる(応力集中が生じる)と滑り合うことができ、この滑りの際の摩擦によって応力を熱に変換して拡散させる。従って、非架橋ポリマーは、高濃度溶液に近い状態で流動性を保ちつつゆっくりと運動していることが好ましい。ちなみに、この過渡的網目の弾性率は、架橋ポリマーで構成される剛直な網目の弾性率よりも十分小さくなければならない。  However, in the speed range during which the non-crosslinked polymer behaves in a semi-interpenetrating network and flows into a glass state, the non-crosslinked polymer in the concentrated solution state forms a transient network due to entanglement and forms a rubber. Since it is considered that similar physical properties are exhibited, the stress generated at the crack tip can be diffused. In other words, the transient network formed by the non-crosslinked polymer in a concentrated solution state does not have a chemical cross-linking point and can slip when excessive stress is applied (stress concentration occurs). Friction converts stress to heat and diffuses it. Therefore, it is preferable that the non-crosslinked polymer moves slowly while maintaining fluidity in a state close to a high concentration solution. Incidentally, the elastic modulus of this transitional network must be sufficiently smaller than the elastic modulus of a rigid network composed of a crosslinked polymer.

端的に言うなら、架橋ポリマーの網目構造から成る空洞部および非架橋ポリマーの物理的絡み付きは、クラック(亀裂)にかかる応力集中を回避でき、破裂にかかるエネルギーを分散することができ、「クラック止め」になる。  In short, the cavity made up of the network structure of the crosslinked polymer and the physical entanglement of the non-crosslinked polymer can avoid stress concentration on the crack (crack), can dissipate the energy on the explosion, "become.

従って、セミ相互侵入網目構造を有するゲルの力学強度及び破壊エネルギーは、非架橋ポリマーの運動速度と加えられる外力の速度との関係に応じて変動し、非架橋ポリマーの運動速度に近い速度で加えられた外力に対して最大となる。そこで、ゲルの温度又はゲルを膨潤させる溶媒の粘度や相溶性等を調節することによって非架橋ポリマーの運動速度を変化させれば、ゲルの力学強度及び破壊エネルギーが最大となる外力の速度領域を変化させることができる。  Therefore, the mechanical strength and fracture energy of the gel having a semi-interpenetrating network structure vary depending on the relationship between the speed of movement of the non-crosslinked polymer and the speed of the applied external force, and are added at a speed close to that of the non-crosslinked polymer. Maximum for the external force applied. Therefore, if the kinetic speed of the non-crosslinked polymer is changed by adjusting the temperature of the gel or the viscosity or compatibility of the solvent that swells the gel, the speed range of the external force that maximizes the mechanical strength and fracture energy of the gel can be obtained. Can be changed.

図5に、架橋ポリマーからなる空洞部の散在する網目構造に非架橋ポリマーを絡み付けたセミ相互侵入網目構造を有するゲルについて、その破壊エネルギーと非架橋ポリマーの重量平均分子量Mとの相関を模式的に示す。なお、図5には、アクリルアミドメチルプロパンスルホン酸(AMPS)とジビニルモノマーとから生成した架橋ポリマーにポリアクリルアミド(PAAm)からなる非架橋ポリマーを絡み付けた例を示す。また、図5では、セミ相互侵入網目構造から非架橋ポリマーだけを取り出してその重量平均分子量Mを測定することが困難なため、予め非架橋ポリマーの重合条件とその重量平均分子量Mとの相関を把握しておき、その相関からセミ相互侵入網目構造における非架橋ポリマーの重量平均分子量Mを推定した。FIG. 5 shows the correlation between the fracture energy and the weight average molecular weight Mw of the non-crosslinked polymer for a gel having a semi-interpenetrating network structure in which the non-crosslinked polymer is entangled with a network structure in which cavities of the crosslinked polymer are scattered. This is shown schematically. FIG. 5 shows an example in which a non-crosslinked polymer made of polyacrylamide (PAAm) is entangled with a crosslinked polymer formed from acrylamidomethylpropanesulfonic acid (AMPS) and a divinyl monomer. Also, in FIG. 5, it is difficult to take out only the non-crosslinked polymer from the semi-interpenetrating network structure and measure its weight average molecular weight M w , so the polymerization conditions of the non-crosslinked polymer and its weight average molecular weight M w The correlation was grasped, and the weight average molecular weight Mw of the non-crosslinked polymer in the semi-interpenetrating network structure was estimated from the correlation.

図5に示すように、このゲルの破壊エネルギーは、非架橋ポリマーの重量平均分子量M1×10付近から著しく上昇して4×10付近で頭打ちになっている。これは、非架橋ポリマーからなるランダムコイルが重量平均分子量M1×10付近になると架橋ポリマーの網目構造に散在する空洞部を満たし始め、重量平均分子量M4×10付近にまで達すると、その空洞部がランダムコイルでほぼ満たされてしまうためであると推測される。従って、非架橋ポリマーの大きさ(重合度)には、セミ相互侵入網目構造に散在する空洞部の大きさに依拠する最適範囲が存在すると考えられる。As shown in FIG. 5, the breaking energy of this gel rises remarkably from around the weight average molecular weight M w 1 × 10 6 of the non-crosslinked polymer and reaches a peak at around 4 × 10 6 . This is because when a random coil made of a non-crosslinked polymer reaches a weight average molecular weight Mw of about 1 × 10 6 , it begins to fill cavities scattered in the network structure of the crosslinked polymer and reaches a weight average molecular weight of Mw of about 4 × 10 6 Then, it is estimated that the cavity is almost filled with random coils. Therefore, it is considered that there is an optimum range depending on the size of the cavities scattered in the semi-interpenetrating network structure in the size (degree of polymerization) of the non-crosslinked polymer.

ここで、非架橋ポリマーは、ほとんど分岐の存在しない直鎖ポリマーでもあるから、重合度即ちポリマーの長さはその分子量に略一次関数的に比例する。従って、物理的絡み付きに最適な分子量が存在するとの事実は、即ち、網目構造を有する架橋ポリマーに対して、非架橋ポリマーが物理的に絡み付くに十分適した長さが存在することを示す。図1を参照して推考するに、非架橋ポリマーの長さが十分に長くないと架橋ポリマーの網目構造から非架橋ポリマーが滑り抜けてしまうことが予想される。或いは、非架橋ポリマー自体が十分に巻きのあるランダムコイルを構成できず、架橋ポリマーに引っ掛かることなくセミ相互侵入網目構造を構成できないことも予想できる。これを擬似的な架橋点が形成されないと言いかえてもよい。従って、セミ侵入網目構造とは、非架橋ポリマーのランダムコイル直径が架橋ポリマーの網目の平均間隔より遙かに大きいときのみに生じる構造でもある。  Here, since the non-crosslinked polymer is also a linear polymer having almost no branch, the degree of polymerization, that is, the length of the polymer is approximately linearly proportional to the molecular weight. Thus, the fact that there is an optimal molecular weight for physical entanglement indicates that for a crosslinked polymer having a network structure, there is a length that is well-suited for the non-crosslinked polymer to be physically entangled. As inferred with reference to FIG. 1, it is expected that the non-crosslinked polymer slips out of the network structure of the crosslinked polymer unless the length of the non-crosslinked polymer is sufficiently long. Alternatively, it can be expected that the non-crosslinked polymer itself cannot constitute a sufficiently wound random coil and cannot form a semi-interpenetrating network structure without being caught by the crosslinked polymer. This may be rephrased that pseudo cross-linking points are not formed. Therefore, the semi-penetrating network structure is a structure that occurs only when the random coil diameter of the non-crosslinked polymer is much larger than the average interval of the network of the crosslinked polymer.

このように、架橋ポリマーからなる剛直で空洞部の散在する網目構造にその空洞部を満たす大きさの非架橋ポリマーが物理的に絡み付いたセミ相互侵入網目構造を有するゲルであれば、良溶媒による平衡膨潤時において膨潤度が5以上で、かつ、良溶媒の重量含有率が80%以上であっても、外力が加えられた際に非架橋ポリマーが過渡的網目を確実に形成することができるため、破壊エネルギー700J/m以上2000J/m以下という従来達成し得なかった高い耐久性を実現することができる。In this way, if the gel has a semi-interpenetrating network structure in which a non-crosslinked polymer having a size satisfying the cavity is physically entangled with a rigid network structure composed of a crosslinked polymer, the cavity is scattered. Even when the swelling degree is 5 or more and the weight content of the good solvent is 80% or more at equilibrium swelling, the non-crosslinked polymer can surely form a transient network when an external force is applied. Therefore, it is possible to realize a high durability which could not have been conventionally achieved that the breaking energy 700 J / m 2 or more 2000J / m 2 or less.

また、このゲルは、良溶媒による平衡膨潤時において核磁気共鳴測定を行うと、分子間の相互作用の存在によって現れる化学シフトが観測されないという特徴を有する。この観測結果は、非架橋ポリマー間に水素結合よりも強い分子間相互作用が存在しないことを意味している。このように非架橋ポリマー間に水素結合よりも強い分子間相互作用が存在しなければ、架橋ポリマーからなる網目構造に散在する空洞部において、非架橋ポリマーの流動性や運動性が損なわれないため、ゲルの破壊エネルギーが効果的に向上する。  In addition, this gel has a feature that when a nuclear magnetic resonance measurement is performed during equilibrium swelling with a good solvent, a chemical shift that appears due to the presence of an intermolecular interaction is not observed. This observation means that there is no intermolecular interaction stronger than hydrogen bonding between non-crosslinked polymers. In this way, if there is no intermolecular interaction stronger than hydrogen bonding between non-crosslinked polymers, the fluidity and mobility of the non-crosslinked polymer will not be impaired in the cavities scattered in the network structure composed of the crosslinked polymer. The breaking energy of the gel is effectively improved.

これを裏付けるかのように、このような高破壊エネルギーを呈するダブルネットワークゲルを他のメカニズムに対して提案されたような理論、例えばレイク−トーマス(Lake−Thomas)理論、では説明できず、もしレイク−トーマス理論で概算されるなら、破壊エネルギーは10J/m付近にしかならず、実験値よりも2桁も低いものとなる。As if to support this, the double network gel exhibiting such high fracture energy cannot be explained by the theory proposed for other mechanisms, such as Lake-Thomas theory. If estimated by Lake-Thomas theory, the fracture energy is only around 10 J / m 2 , which is two orders of magnitude lower than the experimental value.

また、このゲルは、良溶媒による平衡膨潤時において、架橋ポリマーの弾性率(a)に対する非架橋ポリマーの過渡的弾性率(b)の比(b/a)が1/100以上1/5以下であることが好ましい。ここで、非架橋ポリマーの過渡的弾性率(b)の算出方法について説明する。非架橋ポリマー溶液に対する応力を段階的に増加させることによって生じる歪(e)を観測することにより、小さい応力(σ)に対する歪の線形関数「e=Jσ」の係数であるクリープコンプライアンス(J)を得る。このクリープコンプライアンスがある速度領域において一定値(定常状態コンプライアンス)を示すとき、この定常状態コンプライアンスの逆数が非架橋ポリマーの過渡的弾性率(b)に相当する。  Further, in this gel, the ratio (b / a) of the transient elastic modulus (b) of the non-crosslinked polymer to the elastic modulus (a) of the crosslinked polymer at equilibrium swelling with a good solvent is 1/100 or more and 1/5 or less. It is preferable that Here, a method for calculating the transient elastic modulus (b) of the non-crosslinked polymer will be described. By observing the strain (e) caused by stepwise increasing the stress on the non-crosslinked polymer solution, the creep compliance (J), which is a coefficient of the linear function of strain “e = Jσ” for small stress (σ), is obtained. obtain. When this creep compliance shows a constant value (steady state compliance) in a certain speed region, the reciprocal of this steady state compliance corresponds to the transient elastic modulus (b) of the non-crosslinked polymer.

このように、良溶媒による平衡膨潤時において、非架橋ポリマー間に水素結合よりも強い分子間相互作用が存在せず、或いは架橋ポリマーの弾性率に対する非架橋ポリマーの過渡的弾性率の比が1/100以上1/5以下であるセミ相互侵入網目構造を有するゲルであれば、一旦亀裂が生じてもその亀裂先端部で生じている応力が非架橋ポリマーの過渡的網目の形成によって熱に変換されて効果的に拡散されるため、破壊エネルギーが確実に700J/m以上2000J/m以下となる。Thus, during equilibrium swelling with a good solvent, there is no intermolecular interaction stronger than hydrogen bonding between the non-crosslinked polymers, or the ratio of the transient elastic modulus of the non-crosslinked polymer to the elastic modulus of the crosslinked polymer is 1. If the gel has a semi-interpenetrating network structure of / 100 or more and 1/5 or less, even if a crack occurs, the stress generated at the tip of the crack is converted into heat by the formation of a transient network of the non-crosslinked polymer to be effectively spread is, fracture energy is certainly a 700 J / m 2 or more 2000J / m 2 or less.

さらに、このゲルは、架橋ポリマーの良溶媒による平衡膨潤度が5〜1000であり、非架橋ポリマーの重量含有率が架橋ポリマーの重量含有率よりも高い、ことが好ましい。また、このゲルは、非架橋ポリマーの重量含有率がゲルにおける架橋ポリマー及び良溶媒の合計重量に対して10〜40%であることが好ましい。  Further, this gel preferably has an equilibrium swelling degree of the crosslinked polymer with a good solvent of 5 to 1000, and the weight content of the non-crosslinked polymer is higher than the weight content of the crosslinked polymer. Moreover, it is preferable that the weight content rate of a non-crosslinked polymer is 10 to 40% with respect to the total weight of the crosslinked polymer and good solvent in this gel.

このゲルを構成する架橋ポリマーは、平衡膨潤度が高く、高分子鎖が大きく伸展した剛直性の高いものである必要があり、具体的には、良溶媒による平衡膨潤度が5〜1000(溶媒含有率80〜99.9w%)となるように架橋されていることが好ましい。なお、架橋ポリマー自体の力学強度は、それほど高い必要はない。なお、ゲルの初期弾性率は、この架橋ポリマーからなる網目構造の初期弾性率によってほぼ定まり、非架橋ポリマーがゲルの初期弾性率に与える影響は極めて小さい。従って、架橋ポリマーの架橋度を調節することにより、ゲルの初期弾性率を調節することができる。  The crosslinked polymer constituting this gel needs to have a high equilibrium swelling degree and a high rigidity with a large extension of the polymer chain. Specifically, the equilibrium swelling degree with a good solvent is 5 to 1000 (solvent It is preferably crosslinked so that the content rate is 80 to 99.9 w%. The mechanical strength of the crosslinked polymer itself does not need to be so high. The initial elastic modulus of the gel is substantially determined by the initial elastic modulus of the network structure composed of the crosslinked polymer, and the influence of the non-crosslinked polymer on the initial elastic modulus of the gel is extremely small. Therefore, the initial elastic modulus of the gel can be adjusted by adjusting the degree of crosslinking of the crosslinked polymer.

また、この架橋ポリマーは、強電解質であることが好ましい。本発明者らは、電解質/非電解質の架橋ポリマーと、電解質/非電解質の非架橋ポリマーと、の組み合わせでセミ相互侵入網目構造を有するゲルを作製したところ、いずれの組み合わせについても力学強度の向上が見られたが、力学強度及び破壊エネルギーが著しく向上した組み合わせは、強電解質又は全解離した弱電解質の架橋ポリマーと、非電解質の非架橋ポリマーと、の組み合わせだけであった。従って、本発明では、強電解質又は全解離した弱電解質の架橋ポリマーと非電解質の非架橋ポリマーとを組み合わせて使用することが好ましい。なお、架橋ポリマーが電解質であっても非架橋ポリマーを絡み付けた後であれば、イオン強度の高い溶媒に浸漬しても、ゲルの収縮度は著しく小さい。  The crosslinked polymer is preferably a strong electrolyte. The inventors of the present invention produced a gel having a semi-interpenetrating network structure by combining an electrolyte / non-electrolyte crosslinked polymer and an electrolyte / non-electrolyte non-crosslinked polymer. However, the only combination that significantly improved the mechanical strength and the fracture energy was a combination of a strong electrolyte or a weakly crosslinked polymer that was completely dissociated with a non-electrolyte non-crosslinked polymer. Therefore, in the present invention, it is preferable to use a combination of a strong electrolyte or a completely dissociated weakly crosslinked polymer and a non-electrolyte non-crosslinked polymer. Even if the crosslinked polymer is an electrolyte, the degree of shrinkage of the gel is remarkably small even if the crosslinked polymer is entangled with a non-crosslinked polymer even when immersed in a solvent having a high ionic strength.

また、この非架橋ポリマーは、非電解質で柔軟性の高いこと、架橋ポリマーと静電相互作用や疎水結合等の相互作用がないか、あったとしても極めて弱いこと、等の特徴を有することが好ましい。ここで、非架橋ポリマーは、架橋ポリマーからなる網目構造内で濃厚溶液又はゾルの状態であり、それ自体は卵白のような流動性を持ち外形を維持することができない。  In addition, this non-crosslinked polymer may have characteristics such as being non-electrolyte and high in flexibility, and having no or no interaction such as electrostatic interaction and hydrophobic bond with the crosslinked polymer. preferable. Here, the non-crosslinked polymer is in the form of a concentrated solution or sol in the network structure composed of the crosslinked polymer, and itself has fluidity like egg white and cannot maintain the outer shape.

また、本発明に係るゲルにおける非架橋ポリマーの重量含有率は、高分子量の非架橋ポリマーが十分な物理的絡み合いを生じ得る濃度以上にすることが必要であるという観点から、架橋ポリマーに対して5〜100モル倍の範囲であることが好ましい。また、良溶媒による平衡膨潤時のゲルにおいて、非架橋ポリマーの濃度は、低すぎても高すぎてもゲルの力学強度が向上しないため、良溶媒に対して0.5〜5mol/L(3.5〜35%)であることが好ましい。さらに、非架橋ポリマーに架橋構造が全く含まれていない場合には、非架橋ポリマーは、その濃度が溶媒に対して0.5〜5mol/L(3.5〜35%)であり、かつ、その分子量が後述の下限臨界分子量以上であることが好ましい。  In addition, the weight content of the non-crosslinked polymer in the gel according to the present invention should be higher than the concentration at which the high molecular weight non-crosslinked polymer can cause sufficient physical entanglement. The range is preferably 5 to 100 mole times. Moreover, in the gel at the time of equilibrium swelling with a good solvent, the concentration of the non-crosslinked polymer is too low or too high, so that the mechanical strength of the gel does not improve, so 0.5 to 5 mol / L (3 0.5 to 35%). Furthermore, when the non-crosslinked polymer contains no cross-linked structure, the non-crosslinked polymer has a concentration of 0.5 to 5 mol / L (3.5 to 35%) with respect to the solvent, and The molecular weight is preferably equal to or higher than the lower critical molecular weight described below.

この非架橋ポリマーの下限臨界分子量とは、濃厚溶液粘度の分子量依存性が、ポリマー間の絡み合いによってη〜Mからη〜M3.4に変化する臨界点を与える分子量よりも10〜100倍大きく、かつ、その重合度(ポリマーユニット数)が10000程度かそれ以上の分子量を指す。非架橋ポリマーの平均分子量が下限臨界分子量以上であれば、セミ相互侵入網目構造を有するゲルの力学強度及び破壊エネルギーはその分子量に伴って向上し、その平均分子量が上限臨界分子量以上になれば、ゲルの力学強度及び破壊エネルギーは一定値を示すようになる。従って、図5に示す例で言えば、非架橋ポリマーの下限臨界分子量は、ゲルの破壊エネルギーが特異的に向上し始める重量平均分子量M1×10付近となり、非架橋ポリマーの上限臨界分子量は、ゲルの破壊エネルギーが頭打ちになる重量平均分子量M4×10付近ということになる。なお、非架橋ポリマーの下限及び上限臨界分子量は、架橋ポリマーからなる網目構造に散在する空洞部の大きさに依拠して変化する。The lower critical molecular weight of this non-crosslinked polymer is 10 to 100 times greater than the molecular weight that gives the critical point at which the molecular weight dependence of the concentrated solution viscosity changes from η to M to η to M 3.4 due to entanglement between the polymers. And the degree of polymerization (number of polymer units) refers to a molecular weight of about 10,000 or more. If the average molecular weight of the non-crosslinked polymer is equal to or higher than the lower critical molecular weight, the mechanical strength and fracture energy of the gel having a semi-interpenetrating network structure are improved with the molecular weight, and if the average molecular weight is equal to or higher than the upper critical molecular weight, The mechanical strength and fracture energy of the gel will be constant. Therefore, in the example shown in FIG. 5, the lower critical molecular weight of the non-crosslinked polymer is around the weight average molecular weight M w 1 × 10 6 where the breaking energy of the gel starts to improve specifically, and the upper critical molecular weight of the non-crosslinked polymer. Is around the weight average molecular weight M w 4 × 10 6 where the breaking energy of the gel reaches its peak. Note that the lower and upper critical molecular weights of the non-crosslinked polymer vary depending on the size of the cavities scattered in the network structure composed of the crosslinked polymer.

非架橋ポリマーが占有する体積は、架橋ポリマーからなる網目構造に散在する空洞部の体積以上であることが好ましい、即ち非架橋ポリマーは架橋ポリマーからなる網目構造に十分に絡み付いていることが好ましい。また、架橋ポリマーからなる網目構造に散在する空洞部周辺には、とりわけ網目の密な部分があり、その密な部分に対して非架橋ポリマーが十分に絡み付いていれば、その密な部分に存在する非架橋ポリマーは、拡散速度が著しく遅くなって架橋点のように振舞う。従って、非架橋ポリマーは、架橋ポリマーからなる網目構造に散在する空洞部をまたがってその両末端で少なくとも2つの架橋点を有し、さらにその空洞部を完全に満たす体積を有することが好適である。ちなみに、非架橋ポリマーの分子量は統計的な平均値で示されるため、全ての非架橋ポリマーの両端が架橋ポリマーからなる網目構造に散在する空洞部をまたがって架橋点を形成した場合における非架橋ポリマーの平均分子量が上限臨界分子量ということになる。  The volume occupied by the non-crosslinked polymer is preferably equal to or greater than the volume of the cavities scattered in the network structure composed of the crosslinked polymer, that is, the non-crosslinked polymer is preferably sufficiently entangled with the network structure composed of the crosslinked polymer. In addition, there is a dense part of the network around the cavity part scattered in the network structure composed of crosslinked polymer. If the non-crosslinked polymer is sufficiently entangled with the dense part, it exists in the dense part. A non-crosslinked polymer that acts as a crosslinking point with a significantly slow diffusion rate. Therefore, it is preferable that the non-crosslinked polymer has at least two cross-linking points at both ends across the cavity scattered in the network structure composed of the crosslinked polymer, and further has a volume that completely fills the cavity. . By the way, since the molecular weight of the non-crosslinked polymer is shown by a statistical average value, the non-crosslinked polymer in the case where the cross-linking points are formed across the cavities scattered at both ends of all the non-crosslinked polymers in the network structure composed of the crosslinked polymers. The average molecular weight is the upper critical molecular weight.

このような架橋ポリマー及び非架橋ポリマーを構成する原料モノマーとしては、2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)、アクリルアミド(AAm)、アクリル酸(AA)、メタクリル酸、N−イソプロピルアクリルアミド、ビニルピリジン、ヒドロキシエチルアクリレート、酢酸ビニル、ジメチルシロキサン、スチレン(St)、メチルメタクリレート(MMA)、トリフルオロエチルアクリレート(TFE)、スチレンスルホン酸(SS)又はジメチルアクリルアミド等が例示される。また、非電解質の非架橋ポリマーを構成する原料モノマーとしては、フッ素含有モノマー、具体的には2,2,2−トリフルオロエチルメチルアクリレート、2,2,3,3,3−ペンタフルオロプロピルメタクリレート、3−(ペルフルオロブチル)−2−ヒドロキシプロピルメタクリレート、1H,1H,9H−ヘキサデカフルオロノニメタクリレート、2,2,2−トリフルオロエチルアクリレート、2,3,4,5,6−ペンタフルオロスチレン又はフッ化ビニリデン等が例示される。また、架橋ポリマー又は非架橋ポリマーには、ジェラン、ヒアルロン酸、カラギーナン、キチン又はアルギン酸等の多糖類、或いはゼラチンやコラーゲン等のタンパク質を使用することもできる。  As a raw material monomer constituting such a crosslinked polymer and a non-crosslinked polymer, 2-acrylamido-2-methylpropanesulfonic acid (AMPS), acrylamide (AAm), acrylic acid (AA), methacrylic acid, N-isopropylacrylamide, Examples include vinyl pyridine, hydroxyethyl acrylate, vinyl acetate, dimethyl siloxane, styrene (St), methyl methacrylate (MMA), trifluoroethyl acrylate (TFE), styrene sulfonic acid (SS), and dimethylacrylamide. The raw material monomer constituting the non-electrolyte non-crosslinked polymer is a fluorine-containing monomer, specifically 2,2,2-trifluoroethyl methyl acrylate, 2,2,3,3,3-pentafluoropropyl methacrylate. 3- (perfluorobutyl) -2-hydroxypropyl methacrylate, 1H, 1H, 9H-hexadecafluorononimethacrylate, 2,2,2-trifluoroethyl acrylate, 2,3,4,5,6-pentafluorostyrene Or a vinylidene fluoride etc. are illustrated. Moreover, polysaccharides, such as gellan, hyaluronic acid, carrageenan, chitin, or alginic acid, or proteins, such as gelatin and collagen, can also be used for a crosslinked polymer or a non-crosslinked polymer.

また、本発明に係るゲルは、純水中での含水率が10〜99%であることが好ましく、より好ましくは50〜95%、さらには85〜95%が好適である。このようにゲルが多量の純水を含有すれば、ゲルの溶媒吸収率が高くなると同時にその透過性が向上するので、このようなゲルは、高吸水性樹脂、ソフトコンタクトレンズ又は液体クロマトグラフィー用分離架体等の用途、或いは徐放性が要求される用途に有用である。  Further, the gel according to the present invention preferably has a water content in pure water of 10 to 99%, more preferably 50 to 95%, and even more preferably 85 to 95%. Thus, if the gel contains a large amount of pure water, the solvent absorption rate of the gel increases, and at the same time, the permeability thereof improves. Therefore, such a gel is used for a superabsorbent resin, soft contact lens or liquid chromatography. This is useful for applications such as a separating frame or applications that require sustained release.

また、このゲルは、純水中から生理食塩水中に移し替えたときの体積維持率が20〜95%、さらには60〜95%、特には70〜95%であることが好ましい。また、このゲルは、一旦乾燥しても再膨潤することで元の物性を取り戻すことができ、その再膨潤時の溶媒は水に限定されないという特徴も有している。従って、このゲルをオムツ等の吸水剤として利用すれば、尿等の浸透圧の高い溶液でも大量に吸収できるため、圧迫や衝撃に強く、かつ、液漏れし難い高付加価値の衛生生理用品を提供することができる。  Moreover, it is preferable that this gel has a volume maintenance rate of 20 to 95%, further 60 to 95%, particularly 70 to 95% when transferred from pure water to physiological saline. In addition, this gel has a feature that even if it is once dried, it can be re-swelled to restore the original physical properties, and the solvent at the time of re-swelling is not limited to water. Therefore, if this gel is used as a water-absorbing agent such as a diaper, it can absorb a large amount of a solution with high osmotic pressure such as urine. Can be provided.

また、このゲルについて、架橋ポリマーと非架橋ポリマーとによって構成されるセミ相互侵入網目構造に、さらに他のポリマーを絡み付かせてもよい。このセミ相互侵入網目構造の表面層は最後に付加されたポリマーによって支配的に占有されるため、セミ相互侵入網目構造に他のポリマーを絡みつかせれば、その他のポリマーの特性をゲルに付与することができる。従って、特許文献1に開示された技術を利用して、このセミ相互侵入網目構造に電解質ポリマーを混合したりグラフト重合したりして自由末端鎖を形成すれば、力学強度及び破壊エネルギーの極めて高い低摩擦材料を得ることできる。  Further, with respect to this gel, another polymer may be entangled with a semi-interpenetrating network structure constituted by a crosslinked polymer and a non-crosslinked polymer. This semi-interpenetrating network surface layer is predominantly occupied by the last added polymer, so entanglement of other polymers with the semi-interpenetrating network imparts the properties of the other polymer to the gel be able to. Therefore, using the technique disclosed in Patent Document 1, if a free end chain is formed by mixing or graft polymerizing an electrolyte polymer to this semi-interpenetrating network structure, the mechanical strength and the fracture energy are extremely high. A low friction material can be obtained.

また、このセミ相互侵入網目構造を構成する非架橋ポリマーの側鎖を公知の手段で化学修飾することにより、非架橋ポリマーの運動速度を変化させて、ゲルの膨潤度特性、破壊エネルギー及び粘弾性特性を調節することができる。  In addition, the side chain of the non-crosslinked polymer constituting the semi-interpenetrating network structure is chemically modified by known means, thereby changing the motion speed of the non-crosslinked polymer, and the swelling property, fracture energy and viscoelasticity of the gel. The characteristics can be adjusted.

また、本発明に係るゲルを多価イオンの含有溶液に浸漬して膨潤させることにより、セミ相互侵入網目構造を構成する架橋ポリマーや非架橋ポリマーが具備する特定の官能基と前記多価イオンを反応させて、そのセミ相互侵入網目構造の表面及び内部において多価イオンを含有するキレート錯体やコロイドを形成し、ゲルの物性を変化させることができる。一般に、ゲルにおいて、金属イオンの含有率が高くなると、その含水率は小さくなり、かつ、力学強度が大きくなる。本発明に係るゲルでは、外力が加えられた際に非架橋ポリマーが過渡的網目を形成する必要があるため、架橋ポリマーからなる網目構造と多価イオンとが錯体やコロイドを形成し、かつ、非架橋ポリマーは多価イオンと錯体やコロイドを形成しないことが好ましい。また、このゲルにおける多価イオンの含有率は、純水による平衡膨潤時に0.01〜1mol/Lが好ましく、さらには0.03〜0.3mol/Lが好適である。また、多価イオンとしては、錯体を形成し得る金属イオンであればその種類を特に限定されるものではなく、例えば亜鉛イオン、鉄イオン、ニッケルイオン、コバルトイオン又はクロムイオン等が挙げられる。また、これらの多価イオンと錯体を形成しうる官能基としては、例えばカルボキシル基、スルホン酸基又はリン酸基が挙げられる。  Further, by immersing the gel according to the present invention in a polyvalent ion-containing solution and causing the gel to swell, the specific functional group included in the cross-linked polymer or non-cross-linked polymer constituting the semi-interpenetrating network structure and the polyvalent ion are combined. By reacting, a chelate complex or colloid containing a multivalent ion is formed on the surface and inside of the semi-interpenetrating network structure, and the physical properties of the gel can be changed. In general, when the content of metal ions in a gel increases, the water content decreases and the mechanical strength increases. In the gel according to the present invention, when an external force is applied, the non-crosslinked polymer needs to form a transient network, so that the network structure composed of the crosslinked polymer and the multivalent ions form a complex or a colloid, and The non-crosslinked polymer preferably does not form a complex or colloid with the multivalent ion. In addition, the content of multivalent ions in the gel is preferably 0.01 to 1 mol / L, more preferably 0.03 to 0.3 mol / L during equilibrium swelling with pure water. Further, the kind of the multivalent ion is not particularly limited as long as it is a metal ion capable of forming a complex, and examples thereof include zinc ion, iron ion, nickel ion, cobalt ion, and chromium ion. Examples of the functional group capable of forming a complex with these multivalent ions include a carboxyl group, a sulfonic acid group, and a phosphoric acid group.

また、本発明に係るゲルの表面電位を調節することにより、その表面に内皮細胞を付着させて増殖させることができる。従って、本発明に係るゲルにおけるセミ相互侵入網目構造の表面層の物性を支配する非架橋ポリマーの種類を選択したり、その非架橋ポリマーの側鎖を化学修飾したりすることにより、極めて耐久性の高い細胞培養用基材を得ることができる。  In addition, by adjusting the surface potential of the gel according to the present invention, endothelial cells can be attached to the surface and proliferated. Therefore, by selecting the type of non-crosslinked polymer that governs the physical properties of the surface layer of the semi-interpenetrating network structure in the gel according to the present invention, or by chemically modifying the side chain of the non-crosslinked polymer, it is extremely durable. Can be obtained.

また、上述の通り、架橋ポリマーからなる剛直で、かつ、空洞部の散在する網目構造に、所定条件を満たす柔軟性の高い非架橋ポリマーが侵入して物理的に絡み付いた本発明のゲルを用いて吸水性樹脂や潤滑材や細胞培養用基材等を構成することにより、これらの産業用材料の力学強度や耐久性を改善することができる。  In addition, as described above, the gel of the present invention in which a non-crosslinked polymer having high flexibility satisfying a predetermined condition invades and physically entangles in a rigid network made of a crosslinked polymer and in which cavities are scattered is used. By constituting a water-absorbing resin, a lubricant, a cell culture substrate, etc., the mechanical strength and durability of these industrial materials can be improved.

本発明に係るセミ相互侵入網目構造を有するゲルの製造方法は、特に限定されるものではないが、先ず反応性の異なるモノマーをラジカル共重合させて空洞部の散在する架橋ポリマーを形成し、次いでこの架橋ポリマーを架橋剤を含有しないモノマー溶液に浸漬しつつこのモノマー溶液から非架橋ポリマーをラジカル重合によってこの架橋ポリマーに絡み付かせる逐次重合法が好ましい。また、架橋ポリマーからなる網目構造に散在する空洞部をより大きくするには、反応性の異なるモノマーをラジカル共重合させてポリマーを一旦形成し、そのポリマー溶液に他の架橋剤を添加したりガンマー線照射等を行ったりしてポリマー同士をさらに重合させる方法が好適である。さらに、このセミ相互侵入網目構造を有するゲルをさらに他のモノマー溶液に浸漬して、このゲルに第三、第四の非架橋ポリマーを絡み付けてもよい。  The method for producing a gel having a semi-interpenetrating network structure according to the present invention is not particularly limited, but first, a monomer having different reactivity is radically copolymerized to form a crosslinked polymer in which cavities are scattered, and then A sequential polymerization method is preferred in which the cross-linked polymer is entangled in the monomer solution containing no cross-linking agent, and the non-cross-linked polymer is entangled with the cross-linked polymer by radical polymerization from the monomer solution. In addition, in order to enlarge the voids scattered in the network structure composed of cross-linked polymers, radically copolymerize monomers with different reactivity to form a polymer once, and add other cross-linking agents to the polymer solution or add gamma A method in which the polymers are further polymerized by, for example, irradiation with a beam is suitable. Further, the gel having the semi-interpenetrating network structure may be further immersed in another monomer solution, and the third and fourth non-crosslinked polymers may be entangled with the gel.

このような架橋ポリマーからなる網目構造の形成においては、適当な濃度の電解質ビニルモノマーに対して0.001〜0.1mol倍のジビニルモノマーを架橋剤として加え、これらをラジカル共重合させることが好ましい。架橋剤としては、N,N’−メチレンビスアクリルアミド(MBAA)やエチレングリコールジメタクリレートが例示される。ちなみに、弱電解質のビニルモノマーを用いる場合には、対イオンの交換やpHの制御により、その解離度を高めてから反応を開始させる必要がある。また、架橋ポリマーを生成する反応系にその貧溶媒を加えることで、架橋ポリマーから構成される網目構造の不均一性を高めることができる。また、架橋ポリマーのラジカル重合時に、その網目構造の内部に微粒子を混入させておいて、網目構造の形成後にその微粒子を溶解等によって取り除くことにより、その網目構造の不均一性を高めてもよい。  In forming a network structure composed of such a crosslinked polymer, it is preferable to add 0.001 to 0.1 mol times divinyl monomer as a crosslinking agent with respect to an electrolyte vinyl monomer having an appropriate concentration, and to radically copolymerize these monomers. . Examples of the crosslinking agent include N, N'-methylenebisacrylamide (MBAA) and ethylene glycol dimethacrylate. Incidentally, when using a weak electrolyte vinyl monomer, it is necessary to start the reaction after increasing the degree of dissociation by exchanging counterions or controlling pH. Moreover, the heterogeneity of the network structure comprised from a crosslinked polymer can be improved by adding the poor solvent to the reaction system which produces | generates a crosslinked polymer. Further, when the crosslinked polymer is radically polymerized, fine particles may be mixed inside the network structure, and the fine particles may be removed by dissolution after the formation of the network structure, thereby increasing the non-uniformity of the network structure. .

また、逐次重合法を用いて架橋ポリマーからなる網目構造に非架橋ポリマーを絡み付ける際には、架橋ポリマーは、溶媒を除去されていても、合成直後であっても、平衡膨潤であってもよい。さらに、この架橋ポリマーが非架橋ポリマーのモノマー溶液に浸漬されて平衡膨潤状態になった後、即ちその網目構造の内部と外部とでモノマー濃度がほぼ等しくなった後に、初めてそのモノマーの重合が行われるようにすることが好ましい。なお、このモノマー溶液において、モノマーに対するジビニルモノマー等の架橋剤の濃度は0.001mol%未満である必要がある。このような逐次重合法によれば、架橋ポリマーが十分膨潤した状態で非架橋ポリマーの重合が行われるので、非架橋ポリマーが架橋ポリマーに絡み付いても、その体積増加率は高々数十%に留まる。なお、このセミ相互侵入網目構造にさらに第三、第四のポリマーを絡み付けるには、前述した非架橋ポリマーの重合手段と同様の手段によればよい。  In addition, when the non-crosslinked polymer is entangled with the network structure composed of the crosslinked polymer using the sequential polymerization method, the crosslinked polymer may be removed from the solvent, immediately after synthesis, or in equilibrium swelling. Good. Furthermore, after the crosslinked polymer is immersed in the monomer solution of the non-crosslinked polymer and becomes in an equilibrium swelling state, that is, after the monomer concentration is almost equal between the inside and the outside of the network structure, the polymerization of the monomer is not performed. Preferably. In this monomer solution, the concentration of the crosslinking agent such as divinyl monomer with respect to the monomer needs to be less than 0.001 mol%. According to such a sequential polymerization method, since the non-crosslinked polymer is polymerized in a state where the crosslinked polymer is sufficiently swollen, even if the non-crosslinked polymer is entangled with the crosslinked polymer, the volume increase rate is at most several tens%. . In order to further entangle the third and fourth polymers with this semi-interpenetrating network structure, the same means as the above-described polymerization means of the non-crosslinked polymer may be used.

なお、このセミ相互侵入網目構造の表面及び内部に多価イオンを含有する錯体やコロイドを形成するには、前述の方法で製造したゲルを一旦真空乾燥させた後、この乾燥させたゲルを多価イオンの含有溶液中に浸漬すればよい。  In order to form a complex or colloid containing polyvalent ions on the surface and inside of this semi-interpenetrating network structure, the gel produced by the above-mentioned method is once vacuum-dried, and then the dried gel is mixed with a large amount. What is necessary is just to immerse in the containing solution of a valence ion.

先ず、本発明に係るゲルの比較対照として、特許文献2における実施例1で記載された方法を用いて、架橋ポリマーからなる空洞部が散在する網目構造に「架橋度0.1mol%の第二のポリマー」が侵入し物理的に絡み付いたセミ相互侵入網目構造を有するゲルを作製した。具体的には、以下のとおりである。  First, as a comparative control of the gel according to the present invention, using the method described in Example 1 of Patent Document 2, a second structure having a cross-linking degree of 0.1 mol% is formed on a network structure in which cavities made of a cross-linked polymer are scattered. A gel having a semi-interpenetrating network structure in which the “polymer of” entered and physically entangled was prepared. Specifically, it is as follows.

(比較例1)
<架橋ポリマーからなる空洞部の散在する網目構造の形成>
100×100×2mmのシリコン樹脂板からカッターで外辺長80×80mm、幅5mmの枠を切りだし、枠の1箇所3mmの溝を空けた。このシリコン樹脂枠を2枚の100×100×3mmのガラス板で挟み付けて、重合容器を組み立てた。
(Comparative Example 1)
<Formation of a network structure in which cavities made of a crosslinked polymer are scattered>
A frame having an outer side length of 80 × 80 mm and a width of 5 mm was cut out from a 100 × 100 × 2 mm silicon resin plate with a cutter, and a 3 mm groove was formed in one frame. The silicon resin frame was sandwiched between two 100 × 100 × 3 mm glass plates to assemble a polymerization vessel.

モノマーである2mol/Lの2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)水溶液25mlと、架橋剤である2mol/LのN,N’−メチレンビスアクリルアミド(MBAA)水溶液1mlと、開始剤である0.1mol/Lの2−オキソグルタル酸水溶液1mlとを合わせ、水で調整して水溶液50mlを得た。  25 ml of 2 mol / L 2-acrylamide-2-methylpropanesulfonic acid (AMPS) aqueous solution as a monomer, 1 ml of 2 mol / L N, N′-methylenebisacrylamide (MBAA) aqueous solution as a crosslinking agent, and an initiator It was combined with 1 ml of a certain 0.1 mol / L 2-oxoglutaric acid aqueous solution and adjusted with water to obtain 50 ml of an aqueous solution.

この水溶液を窒素ガスを用いて脱酸素した。続いて、この脱酸素水溶液を前記重合容器の一方のガラス板に置かれたシリコン樹脂板の開口部に流し込み、シリコン板上に他方のガラス板を重ねて前記開口部周辺をシールした後、波長365nmのUVランプ(22W、0.34A)を用いて紫外線を常温で6時間照射して重合させることにより、架橋度が4mol%で空洞部が散在する不均一な網目構造を有するゲル(半製品)を作製した。なお、架橋度の計算は、以下の通りである。  This aqueous solution was deoxygenated using nitrogen gas. Subsequently, the deoxygenated aqueous solution was poured into the opening of the silicon resin plate placed on one glass plate of the polymerization vessel, and the other glass plate was stacked on the silicon plate to seal the periphery of the opening, A gel having a non-uniform network structure with a degree of cross-linking of 4 mol% and interspersed cavities by polymerizing by irradiation with ultraviolet rays at room temperature for 6 hours using a 365 nm UV lamp (22 W, 0.34 A) (semi-finished product) ) Was produced. The calculation of the degree of crosslinking is as follows.

{(MBAA水溶液濃度×量)/(モノマー濃度×量)}×100
={(2mol/L×1ml)/(2mol/L×25ml)}×100
=4mol%
{(MBAA aqueous solution concentration × amount) / (monomer concentration × amount)} × 100
= {(2 mol / L × 1 ml) / (2 mol / L × 25 ml)} × 100
= 4 mol%

<相互侵入網目構造又はセミ相互侵入網目構造の形成>
モノマーである5mol/Lのアクリルアミド(AAm)水溶液40mlと、架橋剤である0.2mol/LのMBAA水溶液1mlと、開始剤である0.1mol/Lの2−オキソグルタル酸水溶液1mlとを混合し、水で調整して水溶液(浸漬溶液)200mlを得た。この浸漬溶液を窒素ガスを用いて脱酸素した。この時の開始剤濃度は、0.1mol%であった。なお、架橋度の計算は以下の通りである。
<Formation of interpenetrating network structure or semi-interpenetrating network structure>
40 ml of a 5 mol / L acrylamide (AAm) aqueous solution as a monomer, 1 ml of a 0.2 mol / L MBAA aqueous solution as a crosslinking agent, and 1 ml of a 0.1 mol / L 2-oxoglutaric acid aqueous solution as an initiator were mixed. The solution was adjusted with water to obtain 200 ml of an aqueous solution (immersion solution). The soaking solution was deoxygenated using nitrogen gas. The initiator concentration at this time was 0.1 mol%. The calculation of the degree of crosslinking is as follows.

{(0.2mol/L×1ml)/(5mol/L×40ml)}×100
=0.1mol%
{(0.2 mol / L × 1 ml) / (5 mol / L × 40 ml)} × 100
= 0.1 mol%

次いで、前記浸漬溶液と前記ゲル(半製品)4gとをそのゲルより十分に大きな容量のシール容器に入れた。この容器を4℃の冷蔵庫に24時間設置し、前記浸漬溶液中のモノマー、架橋剤及び開始剤を前記ゲルに拡散・浸透させた。この工程において、浸漬溶液の濃度を一様にする目的で時々容器を静かに振盪した。なお、この工程において、前記ゲル(半製品)は平衡膨潤してその体積が約十倍になり、網目の不均一性が拡大して、空洞部が散在する網目構造が形成される。  Next, the immersion solution and 4 g of the gel (semi-finished product) were placed in a sealed container having a capacity sufficiently larger than the gel. This container was placed in a refrigerator at 4 ° C. for 24 hours, and the monomer, crosslinking agent and initiator in the immersion solution were diffused and permeated into the gel. During this step, the container was gently shaken from time to time for the purpose of uniform soaking solution concentration. In this step, the gel (semi-finished product) is equilibrium swollen to increase its volume by about ten times, the non-uniformity of the network is expanded, and a network structure in which cavities are scattered is formed.

次いで、前記浸漬溶液からゲル(半製品)を取り出し、適当な大きさに裁断した後、このゲルを100×100×3mmの2枚のガラス板の間に気泡が混入しないように挟持した。この2枚のガラス板の周囲4辺をシールした後、波長365nmのUVランプ(30W、0.68A)を用いて紫外線を常温で6時間照射した。このとき、前記ゲル中に拡散したAAmモノマーが重合して第二のポリマーが生成されることにより、相互侵入網目構造又はセミ相互侵入網目構造を有するゲルが得られた。このゲルにおける第二のポリマーの架橋度は、0.1mol%であった。なお、その架橋度の計算は以下の通りである。  Next, after the gel (semi-finished product) was taken out from the dipping solution and cut into an appropriate size, the gel was sandwiched between two glass plates of 100 × 100 × 3 mm so as not to mix air bubbles. After sealing the four sides around the two glass plates, ultraviolet rays were irradiated at room temperature for 6 hours using a UV lamp (30 W, 0.68 A) having a wavelength of 365 nm. At this time, a gel having an interpenetrating network structure or a semi-interpenetrating network structure was obtained by polymerization of the AAm monomer diffused in the gel to produce a second polymer. The degree of crosslinking of the second polymer in this gel was 0.1 mol%. The calculation of the degree of crosslinking is as follows.

{(0.2mol/L×1ml)/(5mol/L×40ml)}×100
=0.1mol%
{(0.2 mol / L × 1 ml) / (5 mol / L × 40 ml)} × 100
= 0.1 mol%

このようにして得られた相互侵入網目構造又はセミ相互侵入網目構造を有するゲルを純水(良溶媒)中で平衡膨潤させた。純水による平行膨潤時のゲルにおいて、架橋ポリマーの重量含有率は1.5%であり、第二のポリマーの重量含有率は10.5%であり、純水の重量含有率は88%であり、架橋ポリマーの平衡膨潤度は44であり、ゲル自体の平衡膨潤度は8であった。  The gel having the interpenetrating network structure or semi-interpenetrating network structure obtained in this way was equilibratedly swollen in pure water (good solvent). In the gel at the time of parallel swelling with pure water, the weight content of the crosslinked polymer is 1.5%, the weight content of the second polymer is 10.5%, and the weight content of pure water is 88%. Yes, the equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 8.

そして、このゲルについて、下記の手段により、「初期弾性率」、「圧縮強度」、「破壊エネルギー」及び「水素結合より強い分子間相互作用の有無」を測定した。このゲルの構成及び測定された特性について、下記「表1」にまとめて示す。  And about this gel, the "initial elasticity modulus", "compressive strength", "breaking energy", and "the presence or absence of the intermolecular interaction stronger than a hydrogen bond" were measured with the following means. The composition and measured properties of this gel are summarized in “Table 1” below.

(実施例1)〜(実施例3)
前記比較例1において、<相互侵入網目構造又はセミ相互侵入網目構造の形成>における下記の点を変更する以外は同様にして、セミ相互侵入網目構造を有するゲルを作製した。
(Example 1) to (Example 3)
A gel having a semi-interpenetrating network structure was produced in the same manner as in Comparative Example 1 except that the following points in <Formation of Interpenetrating Network Structure or Semi-Interpenetrating Network Structure> were changed.

モノマーである5mol/Lのアクリルアミド(AAm)水溶液40mlと、開始剤である0.1mol/Lの2−オキソグルタル酸水溶液1/20ml(50μl)とを混合し、水で調整して水溶液(浸漬溶液)200mlを得た。この浸漬溶液における開始剤濃度は、0.005mol%である。なお、この開始剤濃度の計算は以下の通りである。  40 ml of a 5 mol / L acrylamide (AAm) aqueous solution as a monomer and 1/20 ml (50 μl) of a 0.1 mol / L 2-oxoglutaric acid aqueous solution as an initiator are mixed and adjusted with water to prepare an aqueous solution (immersion solution) ) 200ml was obtained. The initiator concentration in this immersion solution is 0.005 mol%. The calculation of the initiator concentration is as follows.

{(0.1mol/L×1/20ml)/(5mol/L×40ml)}×100
=0.005mol%
{(0.1 mol / L × 1/20 ml) / (5 mol / L × 40 ml)} × 100
= 0.005 mol%

また、浸漬溶液から取り出した後に2枚のガラス板で挟持したゲル(半製品)に対して、波長365nmのUVランプ(30W、0.68A)を用いて紫外線を常温で、実施例1では10時間、実施例2では8時間、並びに実施例3では6時間照射することにより、前記ゲル(半製品)を構成する空洞部の散在する網目構造に、所定の重量平均分子量Mの非架橋ポリマーを生成すると伴に絡み付けて、セミ相互侵入網目構造を有するゲルを得た。In addition, the gel (semi-finished product) sandwiched between two glass plates after being taken out from the dipping solution was irradiated with ultraviolet rays at room temperature using a UV lamp (30 W, 0.68 A) with a wavelength of 365 nm, and 10 in Example 1. When irradiated for 8 hours in Example 2, and 6 hours in Example 3, the non-crosslinked polymer having a predetermined weight average molecular weight Mw is formed in the network structure in which the cavities constituting the gel (semi-finished product) are scattered. Was generated and a gel having a semi-interpenetrating network structure was obtained.

このようにして得られたセミ相互侵入網目構造を有するゲルをそれぞれ純水(良溶媒)中で平衡膨潤させた。純水による平行膨潤時のゲルそれぞれにおいて、架橋ポリマーの重量含有率は1.5%であり、非架橋ポリマーの重量含有率は10.5%であり、純水の重量含有率は88%であり、架橋ポリマーの平衡膨潤度は44であり、ゲル自体の平衡膨潤度は8であった。これらのゲルの構成及び測定された特性について、下記「表1」にまとめて示す。  Each of the gels having a semi-interpenetrating network structure obtained in this manner was equilibratedly swollen in pure water (good solvent). In each gel in parallel swelling with pure water, the weight content of the crosslinked polymer is 1.5%, the weight content of the non-crosslinked polymer is 10.5%, and the weight content of pure water is 88%. Yes, the equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 8. The composition and measured properties of these gels are summarized in “Table 1” below.

(実施例4)
前記実施例3と同様にして得られたセミ相互侵入網目構造を有するゲルにおける非架橋ポリマーであるポリアクリルアミド(PAAm)に対して、次の手段を用いて化学修飾を施した。
Example 4
The polyacrylamide (PAAm), which is a non-crosslinked polymer in a gel having a semi-interpenetrating network structure obtained in the same manner as in Example 3, was chemically modified using the following means.

<マンニッヒ反応によるPAAm側基の化学修飾>
150mlの純水に35%のホルムアルデヒド水溶液1.2mlを溶解し、トリエチルアミンを加えてpH9.0に調整後、70度になるまで加熱した。この熱反応溶液中に、純水中で平衡膨潤に達した板状(厚さ約5mm)のゲル25gを入れて、メチロール化反応を開始させた。反応開始から1時間経過後、この板状のゲルを反応系外に取り出し、大過剰の冷水に膨潤させてメチロール化反応を停止させた。この反応によりPAAmに導入されたメチロール基の導入率を既知の方法により算出したところ、約30%であった。
<Chemical modification of PAAm side group by Mannich reaction>
In 150 ml of pure water, 1.2 ml of 35% aqueous formaldehyde solution was dissolved, adjusted to pH 9.0 by adding triethylamine, and heated to 70 degrees. In this hot reaction solution, 25 g of a plate-like (about 5 mm thick) gel that reached equilibrium swelling in pure water was added to initiate the methylolation reaction. After 1 hour from the start of the reaction, this plate-like gel was taken out of the reaction system and swollen in a large excess of cold water to stop the methylolation reaction. When the introduction rate of methylol groups introduced into PAAm by this reaction was calculated by a known method, it was about 30%.

このようにして得られたメチロール化されたセミ相互侵入網目構造を有するゲルを再度純水中で平衡膨潤させた。純水による平行膨潤時のゲルにおいて、架橋ポリマーの重量含有率は1.5%であり、非架橋ポリマーの重量含有率は12.5%であり、純水の重量含有率は86%であり、架橋ポリマーの平衡膨潤度は44であり、ゲル自体の平衡膨潤度は7.4であった。このゲルの構成及び測定された特性について、下記「表1」にまとめて示す。  The methylolated gel having a semi-interpenetrating network structure obtained in this manner was again subjected to equilibrium swelling in pure water. In the gel during parallel swelling with pure water, the weight content of the crosslinked polymer is 1.5%, the weight content of the non-crosslinked polymer is 12.5%, and the weight content of pure water is 86%. The equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 7.4. The composition and measured properties of this gel are summarized in “Table 1” below.

(比較例2)
<架橋ポリマーからなる空洞部の散在する網目構造の形成>
100×100×0.1mmのシリコン樹脂板からカッターで外辺長80×80mm、幅5mmの枠を切り出し、この枠の1箇所に3mmの溝を空けた。このシリコン樹脂枠を2枚の100×100×3mmのガラス板で挟み付け、重合容器を組み立てた。
(Comparative Example 2)
<Formation of a network structure in which cavities made of a crosslinked polymer are scattered>
A frame having an outer side length of 80 × 80 mm and a width of 5 mm was cut out from a 100 × 100 × 0.1 mm silicon resin plate with a cutter, and a 3 mm groove was formed in one portion of the frame. The silicon resin frame was sandwiched between two 100 × 100 × 3 mm glass plates to assemble a polymerization container.

モノマーである2mol/LのAMPS水溶液25mlと、架橋剤である2mol/LのMBAA水溶液1/8ml(125μl)と、開始剤である0.1mol/Lの2−オキソグルタル酸水溶液1mlとを混合し、水で調整して水溶液50mlを得た。  25 ml of a 2 mol / L AMPS aqueous solution as a monomer, 1/8 ml (125 μl) of a 2 mol / L MBAA aqueous solution as a crosslinking agent, and 1 ml of a 0.1 mol / L 2-oxoglutaric acid aqueous solution as an initiator were mixed. The solution was adjusted with water to obtain 50 ml of an aqueous solution.

この水溶液を窒素ガスを用いて脱酸素した。つづいて、この脱酸素水溶液を前記重合容器の一方のガラス板に置かれたシリコン板の開口部に流し込み、シリコン板上に他方のガラス板を重ねて前記開口部周辺をシールした後、波長365nmのUVランプ(30W、0.68A)を用いて紫外線を常温で6時間照射して重合させることにより、架橋度が0.5mol%で空洞部が散在する網目構造を有するゲル(半製品)を作製した。なお、架橋度の計算は、以下の通りである。  This aqueous solution was deoxygenated using nitrogen gas. Subsequently, this deoxygenated aqueous solution was poured into the opening of a silicon plate placed on one glass plate of the polymerization vessel, and the other glass plate was stacked on the silicon plate to seal the periphery of the opening, and then the wavelength was 365 nm. A gel (half-finished product) having a network structure in which the degree of cross-linking is 0.5 mol% and cavities are scattered is obtained by polymerizing by irradiating ultraviolet rays at room temperature for 6 hours using a UV lamp (30 W, 0.68 A). Produced. The calculation of the degree of crosslinking is as follows.

{(MBAA水溶液濃度×量)/(モノマー濃度×量)}×100
={(2mol/L×0.125ml)/(2mol/L×25ml)}×100
=0.5mol%
{(MBAA aqueous solution concentration × amount) / (monomer concentration × amount)} × 100
= {(2 mol / L × 0.125 ml) / (2 mol / L × 25 ml)} × 100
= 0.5 mol%

<相互侵入網目構造又はセミ相互侵入網目構造の形成>
モノマーである5mol/Lのアクリルアミド(AAm)水溶液40mlと、架橋剤である2mol/LであるMBAA水溶液1mlと、開始剤である0.1mol/Lの2−オキソグルタル酸水溶液1/20ml(50μl)とを混合し、水で調整して水溶液(浸漬溶液)200mlを得た。この浸漬溶液を窒素ガスを用いて脱酸素した。この浸漬溶液における開始剤濃度は、0.005mol%である。なお、開始剤濃度の計算は以下の通りである。
<Formation of interpenetrating network structure or semi-interpenetrating network structure>
40 ml of a 5 mol / L acrylamide (AAm) aqueous solution as a monomer, 1 ml of a 2 mol / L MBAA aqueous solution as a crosslinking agent, and 1/20 ml (50 μl) of a 0.1 mol / L 2-oxoglutaric acid aqueous solution as an initiator Were mixed and adjusted with water to obtain 200 ml of an aqueous solution (immersion solution). The soaking solution was deoxygenated using nitrogen gas. The initiator concentration in this immersion solution is 0.005 mol%. The calculation of the initiator concentration is as follows.

{(0.1mol/L×1/20ml)/(5mol/L×40ml)}×100
=0.005mol%
{(0.1 mol / L × 1/20 ml) / (5 mol / L × 40 ml)} × 100
= 0.005 mol%

次いで、前記浸漬溶液と前記ゲル(半製品)0.3gをそのゲルより十分に大きな容量のシール容器に入れた。この容器を4℃の冷蔵庫に24時間設置し、前記浸漬溶液中のモノマー、架橋剤及び開始剤を前記ゲル(半製品)に拡散させ浸透させた。この工程において、浸漬溶液の濃度を一様にする目的で時々容器を静かに振盪した。この工程において、ゲル(半製品)が平衡膨潤してその体積が250倍以上になった。  Subsequently, the immersion solution and 0.3 g of the gel (semi-finished product) were placed in a sealed container having a capacity sufficiently larger than the gel. This container was placed in a refrigerator at 4 ° C. for 24 hours, and the monomer, crosslinking agent and initiator in the soaking solution were diffused and permeated into the gel (semi-finished product). During this step, the container was gently shaken from time to time for the purpose of uniform soaking solution concentration. In this step, the gel (semi-finished product) was in equilibrium swell and its volume increased to 250 times or more.

次いで、前記浸漬溶液からゲル(半製品)を取り出し、適当な大きさに裁断した後、このゲルを100×100×3mmの2枚のガラス板を用いて、ガラス板の間に気泡が混入しないようにして挟持した。この2枚のガラス板の周囲4辺をシールした後、波長365nmのUVランプ(30W、0.68A)を用いて紫外線を常温で10時間照射した。このとき、前記ゲル中に拡散したAAmモノマーが重合することにより、相互侵入網目構造又はセミ相互侵入網目構造を有するゲルが得られた。  Next, after taking out the gel (semi-finished product) from the soaking solution and cutting it into an appropriate size, the gel is used to prevent air bubbles from being mixed between the glass plates using two glass plates of 100 × 100 × 3 mm. And pinched. After sealing the four sides around the two glass plates, ultraviolet rays were irradiated for 10 hours at room temperature using a UV lamp (30 W, 0.68 A) having a wavelength of 365 nm. At this time, a gel having an interpenetrating network structure or a semi-interpenetrating network structure was obtained by polymerization of the AAm monomer diffused in the gel.

このようにして得られたゲルを純水中で平衡膨潤させた。純水による平行膨潤時のゲルにおいて、架橋ポリマーの重量含有率は0.1%であり、第二のポリマーの重量含有率は5.9%であり、純水の重量含有率は94%であり、架橋ポリマーの平衡膨潤度は1360であり、ゲル自体の平衡膨潤度は17であった。このゲルの構成及び測定された特性について、下記「表1」にまとめて示す。  The gel thus obtained was equilibrated and swollen in pure water. In the gel during parallel swelling with pure water, the weight content of the crosslinked polymer is 0.1%, the weight content of the second polymer is 5.9%, and the weight content of pure water is 94%. Yes, the equilibrium swelling degree of the crosslinked polymer was 1360, and the equilibrium swelling degree of the gel itself was 17. The composition and measured properties of this gel are summarized in “Table 1” below.

(比較例3)
前記比較例1において、<架橋ポリマーからなる空洞部の散在する網目構造の形成>で使用されるAMPS及びMBAAの重量含有率と、<相互侵入網目構造又はセミ相互侵入網目構造の形成>で使用されるAAm及びMBAAの重量含有率とを変更する以外は同様にして、相互侵入網目構造又はセミ相互侵入網目構造を有するゲルを得た。
(Comparative Example 3)
In Comparative Example 1, the weight content of AMPS and MBAA used in <formation of a network structure in which cavities made of a crosslinked polymer are scattered> and <formation of an interpenetrating network structure or a semi-interpenetrating network structure> A gel having an interpenetrating network structure or a semi-interpenetrating network structure was obtained in the same manner except that the weight contents of AAm and MBAA were changed.

このようにして得られたゲルを純水中で平衡膨潤させた。純水による平行膨潤時のゲルにおいて、架橋ポリマーの重量含有率は0.7%であり、架橋ポリマーの架橋度は2mol%であり、第二のポリマーの重量含有率は9.3%であり、第二のポリマーの架橋度は0.1mol%であり、純水の重量含有率は90%であり、架橋ポリマーの平衡膨潤度は103であり、ゲル自体の平衡膨潤度は10であった。このゲルの構成及び測定された特性について、下記「表1」にまとめて示す。  The gel thus obtained was equilibrated and swollen in pure water. In the gel at the time of parallel swelling with pure water, the weight content of the crosslinked polymer is 0.7%, the degree of crosslinking of the crosslinked polymer is 2 mol%, and the weight content of the second polymer is 9.3%. The crosslinking degree of the second polymer was 0.1 mol%, the weight content of pure water was 90%, the equilibrium swelling degree of the crosslinked polymer was 103, and the equilibrium swelling degree of the gel itself was 10. . The composition and measured properties of this gel are summarized in “Table 1” below.

(比較例4)
前記比較例1において、<相互侵入網目構造又はセミ相互侵入網目構造の形成>でMBAAを使用しない以外は同様にして、セミ相互侵入網目構造を有するゲルを得た。
(Comparative Example 4)
A gel having a semi-interpenetrating network structure was obtained in the same manner as in Comparative Example 1 except that MBAA was not used in <formation of an interpenetrating network structure or a semi-interpenetrating network structure>.

このようにして得られたゲルを純水中で平衡膨潤させた。純水による平行膨潤時のゲルにおいて、架橋ポリマーの重量含有率は1.5%であり、架橋ポリマーの架橋度は4mol%であり、非架橋ポリマーの重量含有率は10.5%であり、純水の重量含有率は88%であり、架橋ポリマーの平衡膨潤度は44であり、ゲル自体の平衡膨潤度は8であった。このゲルの構成及び測定された特性について、下記「表1」にまとめて示す。  The gel thus obtained was equilibrated and swollen in pure water. In the gel at the time of parallel swelling with pure water, the weight content of the crosslinked polymer is 1.5%, the degree of crosslinking of the crosslinked polymer is 4 mol%, and the weight content of the non-crosslinked polymer is 10.5%, The weight content of pure water was 88%, the equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 8. The composition and measured properties of this gel are summarized in “Table 1” below.

(比較例5)
前記比較例1において、<相互侵入網目構造又はセミ相互侵入網目構造の形成>を次のように変更した以外は同様にして、セミ相互侵入網目構造を有するゲルを得た。
(Comparative Example 5)
A gel having a semi-interpenetrating network structure was obtained in the same manner as in Comparative Example 1, except that <interpenetrating network structure or semi-interpenetrating network structure formation> was changed as follows.

<セミ相互侵入網目構造ゲルの形成>
モノマーである5mol/Lのアクリルアミド(AAm)水溶液40mlと、開始剤である0.1mol/Lの2−オキソグルタル酸水溶液1mlとを混合し、さらに連鎖移動剤として2−メチルカプトエタノールを5.6μl加え、水で調整して水溶液(浸漬溶液)200mlを得た。この浸漬溶液に対して窒素ガスを用いて脱酸素した。この浸漬溶液における開始剤濃度は、0.1mol%である。なお、開始剤濃度の計算は以下の通りである。
<Formation of semi-interpenetrating network structure gel>
40 ml of a 5 mol / L aqueous acrylamide (AAm) solution as a monomer and 1 ml of a 0.1 mol / L 2-oxoglutaric acid aqueous solution as an initiator are mixed, and 5.6 μl of 2-methylcaptoethanol is further added as a chain transfer agent. In addition, it was adjusted with water to obtain 200 ml of an aqueous solution (immersion solution). The immersion solution was deoxygenated using nitrogen gas. The initiator concentration in this immersion solution is 0.1 mol%. The calculation of the initiator concentration is as follows.

{(0.2mol/L×1ml)/(5mol/L×40ml)}×100
=0.1mol%
{(0.2 mol / L × 1 ml) / (5 mol / L × 40 ml)} × 100
= 0.1 mol%

次いで、前記浸漬溶液とゲル(半製品)4gをそのゲルより十分に大きな容量のシール容器に入れた。この容器を4℃の冷蔵庫に24時間設置し、前記浸漬溶液中のモノマー、架橋剤及び開始剤を前記ゲルに拡散させ浸透させた。この工程において、浸漬液の濃度を一様にする目的で時々容器を静かに振盪した。この工程において、前記ゲルが平衡膨潤してその体積が約十倍になることにより、網目構造の不均一性が拡大して、空洞部が散在する網目構造が形成される。  Next, the immersion solution and 4 g of the gel (semi-finished product) were placed in a sealed container having a capacity sufficiently larger than that gel. This container was placed in a refrigerator at 4 ° C. for 24 hours, and the monomer, crosslinking agent, and initiator in the immersion solution were diffused and permeated into the gel. In this step, the container was gently shaken from time to time to make the concentration of the immersion liquid uniform. In this step, the gel swells and the volume of the gel becomes about ten times larger, so that the non-uniformity of the network structure is expanded and a network structure in which cavities are scattered is formed.

次いで、この浸漬溶液からゲルを取り出し、適当な大きさに裁断した後、このゲルを100×100×3mmの2枚のガラス板を用いて、ガラス板の間に気泡が混入しないようにして挟持した。この2枚のガラス板の周囲4辺をシールした後、波長365nmのUVランプ(30W、0.68A)を用いて紫外線を常温で10時間照射した。このとき、前記ゲル中に拡散したAAmモノマーが重合することにより、セミ相互侵入網目構造を有するゲルが得られた。  Next, the gel was taken out from the soaking solution and cut into an appropriate size, and the gel was sandwiched between two glass plates of 100 × 100 × 3 mm so that no air bubbles were mixed between the glass plates. After sealing the four sides around the two glass plates, ultraviolet rays were irradiated for 10 hours at room temperature using a UV lamp (30 W, 0.68 A) having a wavelength of 365 nm. At this time, a gel having a semi-interpenetrating network structure was obtained by polymerization of the AAm monomer diffused in the gel.

このようにして得られたゲルを純水中で平衡膨潤させた。純水による平行膨潤時のゲルにおいて、架橋ポリマーの重量含有率は1.6%であり、架橋ポリマーの架橋度は4mol%であり、非架橋ポリマーの重量含有率は8.2%であり、純水の重量含有率は89%であり、架橋ポリマーの平衡膨潤度は44であり、ゲル自体の平衡膨潤度は8.5であった。このゲルの構成及び測定された特性について、下記「表1」にまとめて示す。  The gel thus obtained was equilibrated and swollen in pure water. In the gel during parallel swelling with pure water, the weight content of the crosslinked polymer is 1.6%, the degree of crosslinking of the crosslinked polymer is 4 mol%, and the weight content of the non-crosslinked polymer is 8.2%, The weight content of pure water was 89%, the equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 8.5. The composition and measured properties of this gel are summarized in “Table 1” below.

(比較例6)
前記比較例1において、<相互侵入網目構造又はセミ相互侵入網目構造の形成>を次のように変更した以外は同様にして、セミ相互侵入網目構造を有するゲルを得た。
(Comparative Example 6)
A gel having a semi-interpenetrating network structure was obtained in the same manner as in Comparative Example 1, except that <interpenetrating network structure or semi-interpenetrating network structure formation> was changed as follows.

<セミ相互侵入網目構造ゲルの形成>
モノマーである5mol/Lのアクリルアミド(AAm)水溶液40mlと、開始剤である0.1mol/Lの2−オキソグルタル酸水溶液1/20ml(50μl)とを混合し、水で調整して水溶液(浸漬溶液)200mlを得た。この浸漬溶液に対して窒素ガスを用いて脱酸素した。この浸漬溶液における開始剤濃度は、0.005mol%であった。なお、開始剤濃度の計算は以下の通りである。
<Formation of semi-interpenetrating network structure gel>
40 ml of a 5 mol / L acrylamide (AAm) aqueous solution as a monomer and 1/20 ml (50 μl) of a 0.1 mol / L 2-oxoglutaric acid aqueous solution as an initiator are mixed and adjusted with water to prepare an aqueous solution (immersion solution) ) 200ml was obtained. The immersion solution was deoxygenated using nitrogen gas. The initiator concentration in this immersion solution was 0.005 mol%. The calculation of the initiator concentration is as follows.

{(0.1mol/L×1/20ml)/(5mol/L×40ml)×100
=0.005mol%
{(0.1 mol / L × 1/20 ml) / (5 mol / L × 40 ml) × 100
= 0.005 mol%

次いで、前記浸漬溶液とゲル(半製品)4gをそのゲルより十分に大きな容量のシール容器に入れた。この容器を4℃の冷蔵庫に24時間設置し、前記浸漬溶液中のモノマー、架橋剤および開始剤を前記ゲルに拡散させ浸透させた。この工程において、浸漬液の濃度を一様にする目的で時々容器を静かに振盪した。この工程において、前記ゲルが平衡膨潤してその体積が約十倍になることにより、網目構造の不均一性が拡大して空洞部が散在する網目構造が形成される。  Next, the immersion solution and 4 g of the gel (semi-finished product) were placed in a sealed container having a capacity sufficiently larger than that gel. This container was placed in a refrigerator at 4 ° C. for 24 hours, and the monomer, crosslinking agent and initiator in the soaking solution were diffused and permeated into the gel. In this step, the container was gently shaken from time to time to make the concentration of the immersion liquid uniform. In this step, the gel swells and the volume of the gel becomes about ten times, thereby increasing the non-uniformity of the network structure and forming a network structure in which cavities are scattered.

次いで、前記浸漬溶液からゲルを取り出し、適当な大きさに裁断した後、このゲルを100×100×3mmの2枚のガラス板を用いて、ガラス板の間に気泡が混入しないようにして挟持した。この2枚のガラス板の周囲4辺をシールした後、波長365nmのUVランプ(30W、0.68A)を用いて紫外線を常温で10時間照射した。前記ゲル中に拡散したAAmモノマーが重合して非架橋ポリマーが生成されることにより、セミ相互侵入網目構造を有するゲルが得られた。  Next, after the gel was taken out from the dipping solution and cut into an appropriate size, the gel was sandwiched between two glass plates of 100 × 100 × 3 mm so that no bubbles were mixed between the glass plates. After sealing the four sides around the two glass plates, ultraviolet rays were irradiated for 10 hours at room temperature using a UV lamp (30 W, 0.68 A) having a wavelength of 365 nm. A gel having a semi-interpenetrating network structure was obtained by polymerizing the AAm monomer diffused in the gel to produce a non-crosslinked polymer.

<マンニッヒ反応によるPAAm側基の化学修飾>
150mlの純水に35%のホルムアルデヒド水溶液1.2mlを溶解し、トリエチルアミンを加えてpH9.0に調節後、70度なるまで加熱した。この熱反応溶液中に、純水中で平衡膨潤に達した板状(厚さ約5mm)のセミ相互侵入網目構造を有する前記手段によるゲル25gを入れて、メチロール化反応を開始させた。その反応開始から1時間経過後、その熱反応溶液中にさらに50%ジメチルアミン水溶液9.5mlを加えた。それから30分間経過後、前記ゲルを反応系外に取り出し、大過剰の冷水に膨潤させて反応を停止させた。この反応によりPAAmに導入されたメチロール基及びカチオン基の導入率を既知の方法により算出したところ、それぞれ約30%であった。
<Chemical modification of PAAm side group by Mannich reaction>
In 150 ml of pure water, 1.2 ml of 35% aqueous formaldehyde solution was dissolved, adjusted to pH 9.0 by adding triethylamine, and then heated to 70 degrees. In this hot reaction solution, 25 g of the gel having the plate-like (thickness: about 5 mm) semi-interpenetrating network structure that reached equilibrium swelling in pure water was put to start the methylolation reaction. One hour after the start of the reaction, 9.5 ml of a 50% aqueous dimethylamine solution was further added to the hot reaction solution. After 30 minutes, the gel was taken out of the reaction system and swollen in a large excess of cold water to stop the reaction. When the introduction rate of the methylol group and the cationic group introduced into PAAm by this reaction was calculated by a known method, each was about 30%.

このようにして得られたメチロール化及びカチオン化されたセミ相互侵入網目構造を有するゲルを再度純水中で平衡膨潤させた。純水による平行膨潤時のゲルにおいて、架橋ポリマーの重量含有率は2.2%であり、非架橋ポリマーの重量含有率は14.8%であり、純水の重量含有率は83%であり、架橋ポリマーの平衡膨潤度は44であり、ゲル自体の平衡膨潤度は6であった。このゲルの構成及び測定された特性について、下記「表1」にまとめて示す。  The gel having the methylolated and cationized semi-interpenetrating network structure thus obtained was again subjected to equilibrium swelling in pure water. In the gel during parallel swelling with pure water, the weight content of the crosslinked polymer is 2.2%, the weight content of the non-crosslinked polymer is 14.8%, and the weight content of pure water is 83%. The equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 6. The composition and measured properties of this gel are summarized in “Table 1” below.

[ゲルの諸特性の測定]
ゲルの「初期弾性率」及び「圧縮強度」の測定には、ORIENTIC社製 TENSILON型式RTC−1150A(試験機A)又はORIENTIC社製 TENSILON型式RTC−1150A型式RTC−1150A(試験機B)と新居製作所社製 アタッチメント金具とを用いた。試験機Aは、250N以下、試験機Bは10kN以下の応力を測定することができ、測定するゲルの力学強度に応じて使い分けた。
[Measurement of various properties of gel]
For the measurement of the “initial elastic modulus” and “compressive strength” of the gel, TENTICON type RTC-1150A (tester A) manufactured by ORIENTIC or TENSILON type RTC-1150A type RTC-1150A (tester B) manufactured by ORIENTIC An attachment fitting made by Seisakusho was used. The tester A can measure stresses of 250 N or less, and the tester B can measure stresses of 10 kN or less, and they are used depending on the mechanical strength of the gel to be measured.

先ず圧縮試験を行い、ゲルを直径9mmの円形状カッターにより厚さ5mm程度の円筒状に切り抜き、試験機A又はBに接続したアタッチメント金具(上下圧縮板型)を用いて、ゲルの高さ方向の歪に対して10%/min(例えば、5.0mm厚のゲルであれば0.5mm/min)の圧縮速度でそのゲルに生じている応力を測定した。  First, a compression test is performed, the gel is cut into a cylindrical shape with a thickness of about 5 mm with a circular cutter having a diameter of 9 mm, and the height direction of the gel using an attachment fitting (upper and lower compression plate type) connected to the testing machine A or B The stress generated in the gel was measured at a compression rate of 10% / min (for example, 0.5 mm / min for a 5.0 mm thick gel) with respect to the strain.

そして、ゲルの初期弾性率は、前記圧縮試験によって得られた歪−応力曲線の歪が10%未満で直線性の高い領域における曲線の傾きから以下の式によって算出した。また、ゲルの圧縮強度は、ゲルが破壊されることにより、測定中リアルタイムでモニターに出力される歪−応力曲線の傾きが変化したときの応力、或いはモニターに出力される歪−応力曲線の傾きが変化しないとしてもゲルの破壊が確認された時の応力と表面積とから以下の式によって算出した。  The initial elastic modulus of the gel was calculated from the slope of the curve in the region where the strain of the strain-stress curve obtained by the compression test was less than 10% and high linearity, by the following formula. In addition, the compressive strength of the gel is the stress when the slope of the strain-stress curve output to the monitor changes in real time during measurement due to the destruction of the gel, or the slope of the strain-stress curve output to the monitor. Even if the change did not change, it was calculated by the following formula from the stress and the surface area when the destruction of the gel was confirmed.

(初期弾性率)=(応力)/(歪率)
(圧縮強度)=(破断時の応力)/(非変形時の表面積)
(Initial elastic modulus) = (stress) / (strain rate)
(Compressive strength) = (Stress at break) / (Surface area at non-deformation)

また、ゲルの破壊エネルギーについても試験機A又はBを用いて測定した。ゲルの破壊エネルギーは、JIS K−6252トラウザ型1/2サイズの金属性カッターで切り抜いた厚さ4.0〜5.0mmのゲルを、アタッチメント金具(引っ張り試験用固定器具)で固定し、定常的な破壊が起こる条件で500mm/minの速度で引き裂き試験を行い、その試験結果を以下の式に当てはめることによって算出した。  Further, the breaking energy of the gel was also measured using the tester A or B. The breaking energy of the gel is fixed to a 4.0 to 5.0 mm thick gel cut out with a JIS K-6252 trouser type 1/2 size metal cutter with an attachment fitting (fixing device for tensile test). A tear test was performed at a speed of 500 mm / min under conditions in which a general fracture occurred, and the test result was calculated by applying to the following equation.

尚、通常、破壊された面としては、破壊の左右または上下など、破壊位置を基準として、両側の二面が得られるが、ここでは議論を簡単にするため、片面のみのモデルを考える。  Normally, as the destroyed surface, two surfaces on both sides are obtained with reference to the destruction position, such as the left and right or upper and lower sides of the destruction, but here, in order to simplify the discussion, a model with only one side is considered.

(破壊エネルギー)=(定常的な破壊に要した仕事)/(破断面積)
=(定常的な破壊時の平均的な力)/(ゲルの厚さ)
(Fracture energy) = (Work required for steady fracture) / (Break area)
= (Average force at steady state failure) / (gel thickness)

また、非架橋ポリマー間又は第二のポリマー間における「水素結合よりも強い分子間相互作用の有無」については、ゲルに対して核磁気共鳴測定を行い、分子間相互作用の存在によって現れるはずの化学シフトが観測されるか否かによって判定した。  In addition, regarding the “presence / absence of intermolecular interactions stronger than hydrogen bonds” between non-crosslinked polymers or between second polymers, nuclear magnetic resonance measurements should be performed on the gel and should appear due to the presence of intermolecular interactions. Judgment was made by whether or not a chemical shift was observed.

また、セミ相互侵入網目構造における非架橋ポリマーの重量平均分子量Mは、予め非架橋ポリマーの重合条件とその重量平均分子量Mとの相関を把握しておき、その相関に基づいて非架橋ポリマーの重合条件から算出した。In addition, the weight average molecular weight Mw of the non-crosslinked polymer in the semi-interpenetrating network structure is obtained in advance based on the correlation between the polymerization conditions of the noncrosslinked polymer and the weight average molecular weight Mw. It calculated from the polymerization conditions.

Figure 0005059407
Figure 0005059407

表1に示す実施例1〜実施例3で得られたゲルの構成及び特性を対比することにより、セミ相互侵入網目構造を構成する非架橋ポリマーの重量平均分子量Mが大きくなるに従って、ゲルの破壊エネルギーが向上することが判る。なお、表1では、非架橋ポリマー(B)の重量平均分子量Mは10を底とする指数関数で表記されている。As the weight average molecular weight Mw of the non-crosslinked polymer constituting the semi-interpenetrating network is increased by comparing the structures and properties of the gels obtained in Example 1 to Example 3 shown in Table 1, the gel It can be seen that the destruction energy is improved. In Table 1, the weight average molecular weight Mw of the non-crosslinked polymer (B) is expressed as an exponential function with 10 as the base.

本明細書は、2004年6月25日出願の特願2004−187954に基づく。この内容はすべてここに含めておく。  This specification is based on Japanese Patent Application No. 2004-187754 filed on June 25, 2004. All this content is included here.

本発明に係るハイドロゲルは、力学強度及び破壊エネルギーが高く、透明で、柔軟性、物質透過性及び耐衝撃性を備えているので、オムツ、衛生用品、除放剤、土木材料、建築材料、通信材料(例えば軸受、ケーブルやその継手)、土壌改質剤、コンタクトレンズ、眼内レンズ、ホローファイバー、人工軟骨、人工関節、人工臓器(例えば人工血管や人工皮膚)、燃料電池用材料、バッテリーセパレータ、床ずれ・褥痩防止マット、クッション、潤滑材、化粧水等の安定剤や増粘剤、細胞培養用基材、ドラッグデリバリーシステム(DDS)、薬物の運搬架体、特定物質のセンサー又はカテーテルの先端に利用するソフトアクチュエーター等に利用することができる。  The hydrogel according to the present invention has high mechanical strength and high fracture energy, is transparent, has flexibility, substance permeability and impact resistance, so diapers, hygiene products, release agents, civil engineering materials, building materials, Communication materials (eg bearings, cables and joints), soil modifiers, contact lenses, intraocular lenses, hollow fibers, artificial cartilage, artificial joints, artificial organs (eg artificial blood vessels and artificial skin), fuel cell materials, batteries Stabilizers and thickeners such as separators, bedsores and anti-wrinkle mats, cushions, lubricants, lotions, cell culture substrates, drug delivery systems (DDS), drug carriers, specific substance sensors or catheters It can be used for soft actuators used at the tip of

Claims (19)

架橋ポリマーで構成される網目構造に非架橋ポリマーが侵入し物理的に絡み付いたセミ相互侵入網目構造を有し、
前記非架橋ポリマーの重量平均分子量が4×10 以上であり、
前記架橋ポリマー及び前記非架橋ポリマーに対する良溶媒による平衡膨潤時において、膨潤度が5以上で、かつ、前記良溶媒の重量含有率が80%以上で、かつ、破壊エネルギーが700J/m以上2000J/m以下であるゲル。
It has a semi-interpenetrating network structure in which a non-crosslinked polymer invades and physically entangles into a network structure composed of a crosslinked polymer,
The non-crosslinked polymer has a weight average molecular weight of 4 × 10 6 or more,
At the time of equilibrium swelling with a good solvent for the crosslinked polymer and the non-crosslinked polymer , the degree of swelling is 5 or more, the weight content of the good solvent is 80% or more, and the breaking energy is 700 J / m 2 or more and 2000 J / M 2 or less gel.
前記良溶媒による平衡膨潤時において、前記非架橋ポリマー間に水素結合よりも強い分子間相互作用が存在しない、請求項1記載のゲル。  The gel according to claim 1, wherein there is no intermolecular interaction stronger than hydrogen bonding between the non-crosslinked polymers during equilibrium swelling with the good solvent. 前記非架橋ポリマーは、前記良溶媒による平衡膨潤度が5〜1000であり、
前記非架橋ポリマーは、その重量含有率が前記架橋ポリマーの重量含有率よりも高い、
請求項1記載のゲル。
The non-crosslinked polymer has an equilibrium swelling degree of 5 to 1000 with the good solvent,
The non-crosslinked polymer has a weight content higher than the weight content of the crosslinked polymer.
The gel according to claim 1.
前記非架橋ポリマーは、その重量含有率が、前記ゲルにおける前記良溶媒の重量に対して3.5〜35%である、請求項1記載のゲル。  The gel according to claim 1, wherein the non-crosslinked polymer has a weight content of 3.5 to 35% with respect to the weight of the good solvent in the gel. 前記非架橋ポリマーの重量含有率が該ゲルにおける前記架橋ポリマー及び前記溶媒の合計重量に対して10〜40%である、請求項1記載のゲル。  The gel according to claim 1, wherein a weight content of the non-crosslinked polymer is 10 to 40% based on a total weight of the crosslinked polymer and the solvent in the gel. 前記架橋ポリマーおよび前記非架橋ポリマーの原料モノマーが、2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)、アクリルアミド(AAm)、アクリル酸(AA)、メタクリル酸、N−イソプロピルアクリルアミド、ビニルピリジン、ヒドロキシエチルアクリレート、酢酸ビニル、ジメチルシロキサン、スチレン(St)、メチルメタクリレート(MMA)、トリフルオロエチルアクリレート(TFE)、スチレンスルホン酸(SS)、ジメチルアクリルアミド、2,2,2−トリフルオロエチルメチルアクリレート、2,2,3,3,3−ペンタフルオロプロピルメタクリレート、3−(ペルフルオロブチル)−2−ヒドロキシプロピルメタクリレート、1H,1H,9H−ヘキサデカフルオロノニメタクリレート、2,2,2−トリフルオロエチルアクリレート、2,3,4,5,6−ペンタフルオロスチレン、フッ化ビニリデンから選ばれる、請求項1項記載のゲル。  Raw material monomers of the crosslinked polymer and the non-crosslinked polymer are 2-acrylamido-2-methylpropanesulfonic acid (AMPS), acrylamide (AAm), acrylic acid (AA), methacrylic acid, N-isopropylacrylamide, vinylpyridine, hydroxy Ethyl acrylate, vinyl acetate, dimethylsiloxane, styrene (St), methyl methacrylate (MMA), trifluoroethyl acrylate (TFE), styrene sulfonic acid (SS), dimethylacrylamide, 2,2,2-trifluoroethyl methyl acrylate, 2,2,3,3,3-pentafluoropropyl methacrylate, 3- (perfluorobutyl) -2-hydroxypropyl methacrylate, 1H, 1H, 9H-hexadecafluorononimethacrylate, 2 2,2 trifluoroethyl acrylate, 2,3,4,5,6-pentafluoro styrene, selected from vinylidene fluoride, claim 1 wherein the gel. 前記架橋ポリマーの重合に用いる架橋剤としては、N,N’−メチレンビスアクリルアミド(MBAA)又はエチレングリコールジメタクリレートである、請求項1記載のゲル。  The gel according to claim 1, wherein the crosslinking agent used for polymerization of the crosslinked polymer is N, N'-methylenebisacrylamide (MBAA) or ethylene glycol dimethacrylate. 前記架橋ポリマーの原料モノマーと前記非架橋ポリマーの原料モノマーとのモル比が約1:20である、請求項1記載のゲル。  The gel of claim 1, wherein the molar ratio of the cross-linked polymer source monomer to the non-cross-linked polymer source monomer is about 1:20. 前記セミ相互侵入網目構造の表面層に、電解質ポリマーからなる自由末端鎖を有する、請求項1記載のゲル。  The gel according to claim 1, wherein the semi-interpenetrating network surface layer has a free end chain made of an electrolyte polymer. 請求項1記載のゲルから溶媒を除去したものである吸水性樹脂。  A water-absorbent resin obtained by removing a solvent from the gel according to claim 1. 請求項1記載のゲルからなる潤滑材。  A lubricant comprising the gel according to claim 1. 請求項1記載のゲルからなる細胞培養用基材。  A cell culture substrate comprising the gel according to claim 1. 第一の原料モノマーを溶媒中で架橋剤と共に重合させて、網目構造を有する架橋ポリマーを構成することで、この架橋ポリマーと前記溶媒とからなる中間生成物としての半製品ゲルを得るステップと、
第二の原料モノマーを前記半製品ゲルに拡散・浸透させた後に、前記第二の原料モノマーに対して0.005モル%以下の重合開始剤の存在下で重合させて非架橋ポリマーを構成することで、この非架橋ポリマーが前記網目構造に物理的に絡み付いた構造を内包する最終生成物としてのゲルを得るステップと、を具備する製造方法により製造され、
前記溶媒による平衡膨潤時において膨潤度が5以上で、前記溶媒の重量含有率が80%以上で、かつ、破壊エネルギーが700J/m以上2000J/m以下である、ゲル。
Polymerizing the first raw material monomer together with a crosslinking agent in a solvent to form a crosslinked polymer having a network structure to obtain a semi-finished gel as an intermediate product composed of the crosslinked polymer and the solvent;
After the second raw material monomer is diffused and permeated into the semi-finished product gel, it is polymerized in the presence of 0.005 mol% or less of the polymerization initiator with respect to the second raw material monomer to form a non-crosslinked polymer. Thus, the non-crosslinked polymer is produced by a production method comprising a step of obtaining a gel as a final product including a structure physically entangled with the network structure,
The degree of swelling at the time of equilibrium swelling by the solvent is at least 5, the weight content of the solvent is 80% or more, and fracture energy is 700 J / m 2 or more 2000J / m 2 or less, gel.
前記製造方法は、多価イオン含有溶液に浸漬させ、内部にコロイドを形成するステップをさらに具備する、請求項13記載のゲル。  The gel according to claim 13, wherein the production method further comprises a step of immersing in a multivalent ion-containing solution to form a colloid therein. 前記非架橋ポリマーの重量含有率が該ゲルにおける前記架橋ポリマー及び前記溶媒の合計重量に対して10〜40%である、請求項13記載のゲル。  The gel according to claim 13, wherein a weight content of the non-crosslinked polymer is 10 to 40% based on a total weight of the crosslinked polymer and the solvent in the gel. 前記原料モノマーが、2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)、アクリルアミド(AAm)、アクリル酸(AA)、メタクリル酸、N−イソプロピルアクリルアミド、ビニルピリジン、ヒドロキシエチルアクリレート、酢酸ビニル、ジメチルシロキサン、スチレン(St)、メチルメタクリレート(MMA)、トリフルオロエチルアクリレート(TFE)、スチレンスルホン酸(SS)、ジメチルアクリルアミド、2,2,2−トリフルオロエチルメチルアクリレート、2,2,3,3,3−ペンタフルオロプロピルメタクリレート、3−(ペルフルオロブチル)−2−ヒドロキシプロピルメタクリレート、1H,1H,9H−ヘキサデカフルオロノニメタクリレート、2,2,2−トリフルオロエチルアクリレート、2,3,4,5,6−ペンタフルオロスチレン、フッ化ビニリデンから選ばれる、請求項13記載のゲル。  The raw material monomer is 2-acrylamido-2-methylpropanesulfonic acid (AMPS), acrylamide (AAm), acrylic acid (AA), methacrylic acid, N-isopropylacrylamide, vinylpyridine, hydroxyethyl acrylate, vinyl acetate, dimethylsiloxane , Styrene (St), methyl methacrylate (MMA), trifluoroethyl acrylate (TFE), styrene sulfonic acid (SS), dimethylacrylamide, 2,2,2-trifluoroethyl methyl acrylate, 2,2,3,3 3-pentafluoropropyl methacrylate, 3- (perfluorobutyl) -2-hydroxypropyl methacrylate, 1H, 1H, 9H-hexadecafluorononimethacrylate, 2,2,2-trifluoroethyl acrylate , 2,3,4,5,6-pentafluoro-styrene, are selected from vinylidene fluoride, according to claim 13, wherein the gel. 前記架橋剤としては、N,N’−メチレンビスアクリルアミド(MBAA)又はエチレングリコールジメタクリレートである、請求項13記載のゲル。  The gel according to claim 13, wherein the cross-linking agent is N, N'-methylenebisacrylamide (MBAA) or ethylene glycol dimethacrylate. 前記第一の原料モノマーと前記第二の原料モノマーとのモル比が約1:20である、請求項13記載のゲル。  The gel of claim 13, wherein the molar ratio of the first raw material monomer to the second raw material monomer is about 1:20. 架橋ポリマーで構成される網目構造に非架橋ポリマーが侵入し物理的に絡み付いたセミ相互侵入網目構造を有するゲルにおいて、前記非架橋ポリマーの側鎖を化学修飾、又は前記架橋ポリマーの架橋度を調節すると共に、前記非架橋ポリマーの重量平均分子量を4×10 以上とすることにより、前記ゲルの破壊エネルギーを700J/m以上2000J/m以下の範囲で調節する、ゲルの製造方法。In a gel having a semi-interpenetrating network structure in which a non-crosslinked polymer penetrates into a network structure composed of a crosslinked polymer and is physically entangled, the side chains of the noncrosslinked polymer are chemically modified, or the degree of crosslinking of the crosslinked polymer is adjusted. while the by setting the weight average molecular weight of the non-crosslinked polymer 4 × 10 6 or more, to adjust the fracture energy of the gel at 700 J / m 2 or more 2000J / m 2 or less of the range, the production method of the gel.
JP2006528567A 2004-06-25 2005-06-22 Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate Active JP5059407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528567A JP5059407B2 (en) 2004-06-25 2005-06-22 Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004187954 2004-06-25
JP2004187954 2004-06-25
JP2006528567A JP5059407B2 (en) 2004-06-25 2005-06-22 Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate
PCT/JP2005/011469 WO2006001313A1 (en) 2004-06-25 2005-06-22 Gel, process for producing the same, water-absorbing resin, lubricating material, and substrate for cell culture

Publications (2)

Publication Number Publication Date
JPWO2006001313A1 JPWO2006001313A1 (en) 2008-05-29
JP5059407B2 true JP5059407B2 (en) 2012-10-24

Family

ID=35781774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006528567A Active JP5059407B2 (en) 2004-06-25 2005-06-22 Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate

Country Status (2)

Country Link
JP (1) JP5059407B2 (en)
WO (1) WO2006001313A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213868A (en) * 2005-02-04 2006-08-17 Hokkaido Univ Gel and its manufacturing method
JP2006249258A (en) * 2005-03-10 2006-09-21 Fuji Xerox Co Ltd Polymer gel composition, method for producing polymer gel composition and optical element
JP5166282B2 (en) * 2006-11-29 2013-03-21 国立大学法人北海道大学 Bone filler for cartilage tissue regeneration treatment
JP5324070B2 (en) 2007-08-27 2013-10-23 スリーエム イノベイティブ プロパティズ カンパニー Polymer gel structure and method for producing the same
JP5544719B2 (en) * 2009-01-27 2014-07-09 三菱レイヨン株式会社 Gel and method for producing the same
EP2353609A1 (en) 2010-02-04 2011-08-10 Sanofi Pasteur Immunization compositions and methods
JP5458264B2 (en) * 2010-05-10 2014-04-02 独立行政法人理化学研究所 Conductive hydrogel, conductive dry gel, and method for producing conductive hydrogel
JP5556406B2 (en) * 2010-06-15 2014-07-23 三菱レイヨン株式会社 Gel and method for producing the same
KR20130041932A (en) * 2010-07-09 2013-04-25 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 Blends of acrylic copolymer thickners
JP6119568B2 (en) * 2013-11-15 2017-04-26 東亞合成株式会社 High strength gel
JP2015138192A (en) * 2014-01-23 2015-07-30 株式会社リコー Organ model for manipulation training
JP6930718B2 (en) * 2017-02-09 2021-09-01 国立大学法人山形大学 A method for producing a high-strength gel having a low-friction surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212452A (en) * 2001-01-22 2002-07-31 Hokkaido Technology Licence Office Co Ltd Low-friction hydrogel having linear polymer and its production method
WO2003093337A1 (en) * 2002-05-01 2003-11-13 Hokkaido Technology Licensing Office Co., Ltd. Hydrogel of (semi)interpenetrating network structure and process for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772033A1 (en) * 1997-12-05 1999-06-04 Essilor Int PROCESS FOR PRODUCING A TRANSPARENT POLYMERIC MATERIAL RESISTANT TO THE DEPOSITION OF PROTEINS, MATERIAL OBTAINED BY THIS PROCESS, CONTACT LENSES AND INTRAOCULAR IMPLANTS MADE OF THIS MATERIAL

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212452A (en) * 2001-01-22 2002-07-31 Hokkaido Technology Licence Office Co Ltd Low-friction hydrogel having linear polymer and its production method
WO2003093337A1 (en) * 2002-05-01 2003-11-13 Hokkaido Technology Licensing Office Co., Ltd. Hydrogel of (semi)interpenetrating network structure and process for producing the same

Also Published As

Publication number Publication date
WO2006001313A1 (en) 2006-01-05
JPWO2006001313A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP5059407B2 (en) Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate
CA2786738C (en) Nanocomposite hydrogel and method for preparing it, for industrial and medical applications
Nakajima et al. Effect of void structure on the toughness of double network hydrogels
JP4381297B2 (en) (Semi) interpenetrating network structure hydrogel and method for producing the same
JP5324070B2 (en) Polymer gel structure and method for producing the same
Chen MS thesis
Hoshino et al. Network elasticity of a model hydrogel as a function of swelling ratio: from shrinking to extreme swelling states
Garg et al. Hydrogel: Classification, properties, preparation and technical features
Naficy et al. Progress toward robust polymer hydrogels
WO2007108842A2 (en) Interpenetrating polymer network hydrogel contact lenses
Nakajima et al. Tough double-network gels and elastomers from the nonprestretched first network
JP6628396B2 (en) Gel material for 3D printer
JP2006213868A (en) Gel and its manufacturing method
Li et al. A novel fabrication method of temperature-responsive poly (acrylamide) composite hydrogel with high mechanical strength
Shimizu et al. Effective reinforcement of poly (methyl methacrylate) composites with a well-defined bacterial cellulose nanofiber network
JP2008163055A (en) High-strength gel and method for producing the gel
Xiang et al. 3D-printed high-toughness double network hydrogels via digital light processing
JP5048183B2 (en) Low friction hydrogel having linear polymer and method for producing the same
Bonyadi et al. Compositional dependence of polyacrylamide hydrogel abrasive wear resistance
CN111727223B (en) Hydrogel and method for producing hydrogel
Kawauchi et al. Brittle, ductile, paste-like behaviors and distinct necking of double network gels with enhanced heterogeneity
JP2005000182A (en) Blood compatible material
JP2012036262A (en) Polymer gel and method for producing the same
Takeoka et al. Transparent and Mechanically High-Performance Soft Materials Consisting of Colloidal Building Blocks
MX2012008558A (en) Nanocomposite hydrogel and method for preparing it, for industrial and medical applications.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350