WO2006001313A1 - Gel, process for producing the same, water-absorbing resin, lubricating material, and substrate for cell culture - Google Patents

Gel, process for producing the same, water-absorbing resin, lubricating material, and substrate for cell culture Download PDF

Info

Publication number
WO2006001313A1
WO2006001313A1 PCT/JP2005/011469 JP2005011469W WO2006001313A1 WO 2006001313 A1 WO2006001313 A1 WO 2006001313A1 JP 2005011469 W JP2005011469 W JP 2005011469W WO 2006001313 A1 WO2006001313 A1 WO 2006001313A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
crosslinked polymer
network structure
polymer
semi
Prior art date
Application number
PCT/JP2005/011469
Other languages
French (fr)
Japanese (ja)
Inventor
Jian Ping Gong
Yoshihito Osada
Hiroyuki Tsukeshiba
Original Assignee
National University Corporation Hokkaido University
Medical & Biological Laboratories Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University, Medical & Biological Laboratories Co., Ltd filed Critical National University Corporation Hokkaido University
Priority to JP2006528567A priority Critical patent/JP5059407B2/en
Publication of WO2006001313A1 publication Critical patent/WO2006001313A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide

Definitions

  • Patent Document 1 discloses a low-friction material obtained by mixing a linear polymer with a gel or graft polymerization.
  • Patent Documents 2 to 7 disclose various techniques for increasing the mechanical strength of the gel (for example, Patent Documents 2 to 7 and Non-Patent Documents 1 to 4).
  • Patent Document 2 discloses that a second polymer is formed by polymerizing and crosslinking a monomer in a network structure having the strength of the first crosslinked polymer, thereby forming the first crosslinked polymer and the second polymer.
  • interpenetrating network structure refers to a network structure in which other network structures are entangled with the base network structure
  • sub-interpenetrating network structure refers to the base network structure.
  • a linear polymer is entangled to indicate a network structure.
  • Patent Document 1 JP 2002-212452
  • Patent Document 2 Pamphlet of International Publication No. 03Z093337
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-91724
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2002-053762
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2002-053629
  • Patent Document 6 Japanese Unexamined Patent Publication No. 57-130543
  • Patent Document 7 JP-A-58-36630
  • Non-patent document 4 Long Zhao, Hiroshi Mitomo, Naotsugu Nagasawa, Fumio Yoshn, Tami kazu Kume, "Radiation synthesis and characteristic of the hydrogels based on carbo xymethylated chitin derivatives, Carbohydrate Polymers, 51, 169-175 (2003) Disclosure
  • Patent Documents 2-7 and Knowledge different from the development concept of the technology disclosed in Patent Documents 1 to 4 was obtained. That is, for example, in the technique disclosed in Patent Document 2 or Non-Patent Document 1, the most important factors for improving the strength of the gel are the molar ratio of the second monomer to the first crosslinked polymer and the degree of crosslinking of the second polymer. In particular, in the technique disclosed in Patent Document 2, the second polymer has a very slight cross-linked structure. Specifically, the degree of cross-linking of the second polymer is 0.001 mol% or more. Although there is an optimum condition for increasing the strength of the gel, there is a limit.
  • An object of the present invention is to provide a technique capable of dramatically improving the strength of a gel without impairing excellent properties such as high flexibility and high water retention property of the gel, and further to the gel To provide various uses.
  • the gel according to the present invention has a semi-interpenetrating network structure in which a non-crosslinked polymer invades a network structure composed of a crosslinked polymer and is physically entangled.
  • the degree of swelling is 5 or more
  • the weight content of the good solvent is 80% or more
  • the fracture energy is 700 jZm 2 or more and 2000 jZm 2 or less.
  • the second polymer that is not a crosslinked polymer is linear and has a high molecular weight without having any crosslinked structure. It was found that the strength of the gel is specifically improved only when the second polymer adopts a non-crosslinked polymer rather than a crosslinked structure. The invention's effect
  • a non-crosslinked polymer having high flexibility satisfying a predetermined condition enters and is physically entangled in a rigid network made of a crosslinked polymer and in which cavities are scattered. It is possible to provide a gel with mechanical strength and durability comparable to or better than tissue.
  • FIG. 1 is a diagram schematically showing a semi-interpenetrating network structure of a gel according to the present invention.
  • FIG. 2 A diagram schematically showing a cavity of a network structure made of a crosslinked polymer in a semi-interpenetrating network structure
  • FIG. 3 The state of deformation of the semi-interpenetrating network structure at the crack tip of the gel according to the present invention and the transient network due to physical entanglement regardless of chemical crosslinking in the velocity region where the non-crosslinked polymer exists.
  • FIG. 4 Schematic diagram showing the external force velocity region where a transient network is formed in a non-crosslinked polymer in a concentrated solution state.
  • the essence of the present invention is that a gel having a semi-interpenetrating network structure in which a non-crosslinked polymer in the form of a random coil having a size satisfying the cavity is entangled with a network structure in which cavities having a crosslinked polymer force are scattered. Is to form.
  • the size of the random coil depends on the molecular weight of the unbridged polymer.
  • “compressive strength” is used as an index indicating the mechanical strength
  • “breaking energy” is used as an index indicating the fracture mechanical strength.
  • “Compressive strength” is the value obtained by dividing the stress required to break the gel by the initial area
  • “Fracture energy” is the work used for steady progress of the gel divided by the fracture area. The value, i.e., the energy required to form a fracture surface. Therefore, as an index indicating the superiority or inferiority of the gel, it is more appropriate to use the fracture energy rather than the compressive strength, taking into account the characteristics of the gel that the deformation rate until fracture is extremely large (Y. Tanaka, K. rukao, Y. Miyamoto, Fracture energy of gels, ie European Physical Journal, 3, 395-401 (2000)).
  • FIG. 1 schematically shows a semi-interpenetrating network structure of the gel according to the present invention.
  • the cross-linked polymer that forms the basic skeleton of the gel forms a rigid network structure in which cavities, which are extremely sparse parts of the network, are scattered, while the non-cross-linked polymer is concentrated in these cavities, While maintaining flexibility, it is physically entangled with the network structure of the crosslinked polymer at its end.
  • a network structure in which cavities having a cross-linked polymer force are scattered is formed, for example, by radical copolymerization of a bull monomer and a dibul monomer. Bull monomers and dibules Since monomers are different in reactivity in radical polymerization, when they are copolymerized, a microgel is formed in the early stage of the reaction, and when it grows, the microgel crosslinks to form a non-uniform network structure.
  • the degree of cross-linking is the same, then the equilibrium swelling degree and the non-uniformity of the network are significantly greater in the former than in the latter, so the network structure composed of the crosslinked polymer of the electrolyte has a network structure. Considered very sparse portion or cavity is scattered reliably.
  • the measurement data by the dynamic light scattering method supports this idea.
  • non-crosslinked polymer refers to a polymer having a degree of crosslinking of less than 0.001 mol%, preferably a polymer that is not crosslinked at all, and the degree of crosslinking is a polymerization of a non-crosslinked polymer.
  • the quantity power of the crosslinking agent added at the time is also calculated.
  • a polymer having a low degree of cross-linking is soluble in a solvent in a sol state that does not form a gel, and tends to form a highly flexible random coil.
  • FIG. 2 schematically shows a cavity of a network structure that also has a cross-linked polymer force in a semi-interpenetrating network structure.
  • Non-crosslinked polymer is considered to be a random coil because it can move and deform freely in this cavity, and its diameter d 7? Is statistically the intrinsic viscosity [7?] And weight of the polymer solution.
  • Average molecular weight M and force Calculated by the following formula (M.-M.
  • the diameter of the random coil that has the calculated non-crosslinked polymer force is about 10 times or more the average interval of the network that also has the crosslinked polymer force, the mechanical strength and the fracture energy of the gel having a semi-interpenetrating network structure are reduced. Begin to improve specifically.
  • the molecular weight of the non-crosslinked polymer in this case is 10 6 or more in terms of weight average molecular weight, and the polymer is present at a concentration at which sufficient physical entanglement can occur.
  • the mechanism by which this phenomenon occurs is that random coils with non-crosslinked polymer force increase as the degree of polymerization increases.
  • V when it becomes larger and fills the cavity scattered in the network structure with the cross-linked polymer force, in other words, when the diameter of the random coil with the non-cross-linked polymer force becomes larger than the diameter of the cavity, the cross-linked polymer and It is presumed that the non-crosslinked polymers become physically entangled and these polymers behave like a continuous network by forming pseudo-crosslinking points due to the entanglement.
  • the diameter of the random coil made of the non-crosslinked polymer is smaller than the diameter of the cavity, a pseudo cross-linking point is not formed between the crosslinked polymer and the non-crosslinked polymer. In this case, the cross-linked polymer swells in the solvent whose viscosity has been increased due to the presence of the non-cross-linked polymer, so that the mechanical strength and fracture energy of the gel are remarkably improved. Absent.
  • the semi-interpenetrating network structure is a higher order structure having spatially hard, part (dense part of the crosslinked polymer) and soft part (very sparse part of the bridge polymer, ie, non-crosslinked polymer in the cavity).
  • FIG. 3 shows the deformation of the semi-interpenetrating network structure at the crack tip of the gel according to the present invention and the resistance to crack progression by forming a transient network in the velocity region where the non-crosslinked polymer is present.
  • the gel according to the present invention shows a speed dependency on the external force, and the optimum external force speed for increasing the strength of the gel is the non-crosslinked polymer in the cavity portion scattered in the network structure of the crosslinked polymer in the semi-interpenetrating network structure. This is considered to correspond to a velocity region in which a transitional network due to entanglement can be formed.
  • FIG. 4 schematically shows a velocity region of external force in which a transient network is formed in the non-crosslinked polymer in a concentrated solution state.
  • (B) cutting of the non-crosslinked polymer occurs preferentially from the stretched state. Therefore, it is considered that the mechanical strength and fracture energy of the gel are reduced.
  • the crack progress rate at the crack tip is slower than the movement speed of the non-crosslinked polymer, slipping of the (A) non-crosslinked polymer occurs preferentially from the stretched state as shown in the lower part of Fig. 3.
  • the non-crosslinked polymer in a concentrated solution state forms a transient network due to entanglement in the velocity region during which the non-crosslinked polymer behaves in a fluid state or enters a glassy state. It seems that it will show physical properties similar to rubber Therefore, the stress generated at the crack tip can be diffused.
  • the transient network formed by the non-crosslinked polymer in the concentrated solution state does not have a chemical cross-linking point and can slide when excessive stress is applied (stress concentration occurs). By friction, stress is converted to heat and diffused. Therefore, it is preferable that the non-crosslinked polymer moves slowly while maintaining fluidity in a state close to a high concentration solution.
  • the elastic modulus of this transitional network must be sufficiently smaller than the elastic modulus of rigid networks composed of cross-linked polymers.
  • the voids which are the network structure force of the crosslinked polymer, and the physical entanglement of the non-crosslinked polymer can avoid stress concentration that acts on cracks and disperse the energy that resists rupture. It becomes "crack prevention”.
  • the mechanical strength and fracture energy of the gel having a semi-interpenetrating network structure vary depending on the relationship between the speed of movement of the non-crosslinked polymer and the speed of the applied external force, and the movement speed of the non-crosslinked polymer Maximum for external force applied at close speed. Therefore, if the kinetic speed of the uncrosslinked polymer is changed by adjusting the gel temperature or the viscosity or compatibility of the solvent that swells the gel, the external force that maximizes the mechanical strength and fracture energy of the gel is obtained. The speed region can be changed.
  • Fig. 5 shows the relationship between the fracture energy and the weight average molecular weight M of the non-crosslinked polymer for a gel having a semi-interpenetrating network structure in which a non-crosslinked polymer is entangled with a network structure in which cavities made of a crosslinked polymer are scattered. The correlation is schematically shown.
  • Figure 5 shows the acrylic
  • the breaking energy of the gel increases remarkably near the weight average molecular weight M 1 X 10 6 of the non-crosslinked polymer, and reaches a peak at around 4 X 10 6 . This is non-w
  • the size (degree of polymerization) of the non-crosslinked polymer is considered to have an optimum range depending on the size of the cavities scattered in the semi-interpenetrating network structure.
  • the non-crosslinked polymer is also a linear polymer having almost no branching
  • the degree of polymerization that is, the length of the polymer is approximately linearly proportional to the molecular weight. Therefore, the fact that there is an optimal molecular weight for physical entanglement indicates that there is a length that is well-suited for physically entangled non-crosslinked polymers relative to crosslinked polymers with a network structure. . As can be inferred with reference to Fig. 1, it is expected that the cross-linking polymer will not slip through if the length of the non-crosslinked polymer is not long enough.
  • the non-crosslinked polymer itself cannot constitute a sufficiently wound random coil and cannot form a semi-interpenetrating network structure without being caught by the crosslinked polymer.
  • a pseudo cross-linking point is not formed. Therefore, the semi-penetrating network structure is a structure that occurs only when the random coil diameter of the non-crosslinked polymer is much larger than the average interval of the network of the crosslinked polymer.
  • the gel has a semi-interpenetrating network structure in which a non-crosslinked polymer having a size satisfying the cavity is physically entangled with a rigid network structure having a cross-linked polymer force and a space in which the cavity is scattered, Even when the swelling degree is 5 or more and the weight content of the good solvent is 80% or more at the time of equilibrium swelling with a good solvent, a non-crosslinked polymer is reliably formed when an external force is applied. Therefore, the fracture energy of 700jZm 2 or more and 2 OOOjZm 2 or less can achieve high durability that can not be achieved in the past.
  • this gel has a feature that when a nuclear magnetic resonance measurement is performed at the time of equilibrium swelling with a good solvent, a chemical shift appearing due to the presence of interaction between molecules is not observed. This observation means that there is no intermolecular interaction stronger than hydrogen bonds between non-crosslinked polymers. Thus, if there is no intermolecular interaction stronger than hydrogen bonding between the non-crosslinked polymers, the fluidity and mobility of the non-crosslinked polymer are impaired in the cavities scattered in the network structure of the crosslinked polymer. Therefore, the fracture energy of the gel is effectively improved. [0032] As if to support this, double-network gels exhibiting such high fracture energy cannot be explained by theories proposed for other mechanisms, such as Lake-Thomas theory. First, if estimated by Lake-Thomas theory, the breaking energy is only around lOjZm 2 , which is two orders of magnitude lower than the experimental value.
  • the ratio (bZa) of the transient elastic modulus (b) of the non-crosslinked polymer to the elastic modulus (a) of the crosslinked polymer is preferably from ⁇ to 1Z5.
  • the non-crosslinked polymer is stronger than hydrogen bonds and no intermolecular interaction exists, or the non-crosslinked polymer has a transient effect on the elastic modulus of the crosslinked polymer.
  • the gel has a semi-interpenetrating network structure with an elastic modulus ratio of 1Z100 or more and 1Z5 or less-and even if a crack occurs, the stress is generated at the tip of the crack, and the stress is caused by a transient network of non-crosslinked polymer. Since it is converted into heat by the formation and diffused effectively, the destruction energy is surely 700 jZm 2 or more and 2000 jZm 2 or less.
  • the gel has an equilibrium swelling degree of the crosslinked polymer with a good solvent of 5 to: LOOO, and the weight content of the non-crosslinked polymer is higher than the weight content of the crosslinked polymer.
  • the weight content of the non-crosslinked polymer is preferably 10 to 40% with respect to the total weight of the crosslinked polymer and the good solvent in the gel.
  • the cross-linked polymer constituting the gel must be highly rigid with a polymer chain having a high equilibrium swelling degree and a large extension, and specifically, the equilibrium swelling degree with a good solvent is 5%. It is preferably crosslinked so as to be ⁇ 1000 (solvent content 80 ⁇ 99.9 w%). The mechanical strength of the crosslinked polymer itself does not have to be so high.
  • the initial elastic modulus of the gel is almost determined by the initial elastic modulus of the network structure composed of the crosslinked polymer, and the influence of the non-crosslinked polymer on the initial elastic modulus of the gel is extremely small. Therefore, cross-linked polymers The initial elastic modulus of the gel can be adjusted by adjusting the degree of crosslinking.
  • the crosslinked polymer is preferably a strong electrolyte. We have electrolytes
  • this non-crosslinked polymer has characteristics such as non-electrolyte and high flexibility, no interaction such as electrostatic interaction and hydrophobic bond with the crosslinked polymer, or extremely weak if any. It is preferable to have.
  • the non-crosslinked polymer is in the form of a concentrated solution or sol within the network structure composed of the crosslinked polymer, and itself has fluidity like egg white and cannot maintain its outer shape.
  • the weight content of the non-crosslinked polymer in the gel according to the present invention needs to be higher than the concentration at which the high molecular weight non-crosslinked polymer can generate sufficient physical entanglement, Is preferably in the range of 5 to: LOO mole times.
  • concentration of the non-crosslinked polymer is too low or too high, the mechanical strength of the gel will not improve, so 0.5 to 5 molZL (3.5 ⁇ 35%).
  • the non-crosslinked polymer when the non-crosslinked polymer does not contain any cross-linked structure, the non-crosslinked polymer has a concentration of 0.5 to 5 molZL (3.5 to 35%) with respect to the solvent and has a molecular weight of Is preferably not less than the lower critical molecular weight described below.
  • the lower critical molecular weight of the non-crosslinked polymer a concentrated solution the molecular weight dependence of the viscosity, than the molecular weight giving the critical point that changes from ⁇ M by entanglement between port Rimmer 7?
  • ⁇ 3 ⁇ 4 10 ⁇ LOO times larger and its degree of polymerization (number of polymer units) It refers to molecular weight higher than that. If the average molecular weight of the non-crosslinked polymer is equal to or higher than the lower critical molecular weight, the mechanical strength and fracture energy of the gel having a semi-interpenetrating network structure increase with the molecular weight, and if the average molecular weight exceeds the upper critical molecular weight.
  • the mechanical strength and fracture energy of the gel show constant values. Therefore, in the example shown in FIG. 5, the lower critical molecular weight of the non-crosslinked polymer is around the weight average molecular weight M 1 X 10 6 where the fracture energy of the gel begins to increase specifically, and the upper critical critical mass of the non-crosslinked polymer.
  • the molecular weight is around the weight average molecular weight M 4 X 10 6 where the breaking energy of the gel peaks.
  • the lower and upper critical molecular weights of the non-crosslinked polymer vary depending on the size of the cavities scattered in the network structure composed of the crosslinked polymer.
  • the volume occupied by the non-crosslinked polymer is preferably equal to or greater than the volume of the vacancies scattered in the network structure composed of the crosslinked polymer, that is, the non-crosslinked polymer is sufficiently entangled in the network structure also having the crosslinked polymer force. It is preferable.
  • the non-crosslinked polymer present in the part behaves like a crosslinking point when the diffusion rate is significantly slow.
  • the non-crosslinked polymer has at least two cross-linking points at both ends across the cavity scattered in the network structure having the cross-linked polymer force, and further has a volume that completely fills the cavity. It is.
  • the molecular weight of the non-crosslinked polymer is indicated by a statistical average value, and therefore, the non-crosslinked polymer is formed when the both ends of all non-crosslinked polymers straddle the cavities scattered in the network structure of the crosslinked polymer.
  • the average molecular weight of the polymer is the upper critical molecular weight.
  • Raw material monomers constituting such a crosslinked polymer and a non-crosslinked polymer include 2-acrylamide-2-methylpropanesulfonic acid (AMPS), acrylamide (AAm), acrylic acid (AA), methacrylic acid, N-isopropylacrylamide, butylpyridine, hydroxyethyl acrylate, butyl acetate, dimethylsiloxane, styrene (St), methyl methacrylate (MMA), trifluoroethyl acrylate (TFE), styrene sulfonate (SS) Or dimethylacrylamide etc. are illustrated.
  • AMPS 2-acrylamide-2-methylpropanesulfonic acid
  • AAm acrylic acid
  • AA methacrylic acid
  • N-isopropylacrylamide butylpyridine
  • hydroxyethyl acrylate butyl acetate
  • dimethylsiloxane styrene
  • MMA methyl methacrylate
  • TFE
  • a fluorine-containing monomer specifically 2, 2, 2-trifluoroethylene Rumethyl Atarylate, 2, 2, 3, 3, 3 Pentafluoropropyl methacrylate, 3— (Perfluorobutyl) 2 Hydroxypropyl methacrylate, 1H, 1H, 9H Hexadecafluorono-methacrylate, 2, Examples thereof include 2,2-trifluoroethyl attareido, 2, 3, 4, 5, 6 pentafluorostyrene or vinylidene fluoride.
  • polysaccharides such as dielan, hyaluronic acid, carrageenan, chitin or alginic acid, or proteins such as gelatin and collagen can also be used.
  • the gel according to the present invention preferably has a water content of 10 to 99% in pure water, more preferably 50 to 95%, and even more preferably 85 to 95%. If the gel contains a large amount of pure water, the solvent absorption rate of the gel is increased and the permeability thereof is improved. At the same time, such a gel is a highly water-absorbent resin, soft contact lens, or liquid chromatography. It is useful for applications such as single-use separation frames, or applications that require sustained release.
  • this gel preferably has a volume retention rate of 20 to 95%, more preferably 60 to 95%, and particularly preferably 70 to 95% when transferred from pure water to physiological saline.
  • this gel has the feature that even if it is once dried, it can be re-swelled to restore its original physical properties, and the solvent at the time of re-swelling is not limited to water. Therefore, if this gel is used as a water-absorbing agent such as Omumu, it can absorb a large amount of a solution with high osmotic pressure such as urine. Can be provided.
  • another polymer may be entangled with a semi-interpenetrating network structure constituted by a crosslinked polymer and a non-crosslinked polymer. Since the surface layer of this semi-interpenetrating network structure is dominated by the last added polymer, if the other polymer is entangled with the semi-interpenetrating network structure, the other polymer properties are imparted to the gel. can do. Therefore, if the technique disclosed in Patent Document 1 is used to form a free end chain by mixing an electrolyte polymer or graft polymerization into this semi-interpenetrating network structure, the mechanical strength and fracture energy are extremely high. This is achieved by obtaining high and low friction materials.
  • the side chain of the non-crosslinked polymer constituting this semi-interpenetrating network structure is known means.
  • the kinetics of the non-crosslinked polymer can be changed to adjust the swelling property, fracture energy and viscoelastic properties of the gel.
  • the cross-linked polymer or non-cross-linked polymer constituting the semi-interpenetrating network structure and the above-described many functional groups are included.
  • a valence ion By reacting a valence ion, a chelate complex or a colloid containing a polyvalent ion is formed on the surface and inside of the semi-interpenetrating network structure, and the physical properties of the gel can be changed.
  • the content of metal ions in a gel increases, the water content decreases and the mechanical strength increases.
  • the non-crosslinked polymer needs to form a transient network.
  • the network structure which is also a crosslinked polymarker, and the polyvalent ions form a colloid, and It is preferable that the non-crosslinked polymer does not form a colloid with the multivalent ion.
  • the content of polyvalent ions in the gel is preferably 0.01 to Lmol / L at the time of equilibrium swelling with pure water, and more preferably 0.03 to 0.3 mol / L.
  • the polyvalent ion is not particularly limited as long as it is a metal ion capable of forming a complex, and examples thereof include zinc ion, iron ion, nickel ion, cobalt ion, and chromium ion.
  • examples of the functional group capable of forming a complex with these multivalent ions include a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
  • endothelial cells can be attached to the surface and allowed to proliferate. Therefore, by selecting the type of the non-crosslinked polymer that governs the physical properties of the surface layer of the semi-interpenetrating network structure in the gel according to the present invention, or by chemically modifying the side chain of the non-crosslinked polymer, An extremely durable substrate for cell culture can be obtained.
  • a non-crosslinked polymer having high flexibility satisfying a predetermined condition penetrates into a rigid network structure including a crosslinked polymer and in which cavities are scattered.
  • the mechanical strength and durability of these industrial materials can be improved by using the gel of the present invention to constitute a water-absorbent resin, a lubricant, a cell culture substrate and the like.
  • the method for producing a gel having a semi-interpenetrating network structure according to the present invention is not particularly limited! /, But first, radically copolymerization of monomers having different reactivities to disperse the cavities. Next, the cross-linked polymer is formed, and then the cross-linked polymer does not contain a cross-linking agent, and the monomer solution force is immersed in the monomer solution while the non-cross-linked polymer is entangled with the cross-linked polymer by radical polymerization. Legal is preferred.
  • a monomer having a different reactivity is radically copolymerized to form a polymer, and another crosslinking agent is added to the polymer solution.
  • a method of further polymerizing the polymers by gamma ray irradiation or the like is preferable.
  • the gel having the semi-interpenetrating network structure may be further immersed in another monomer solution, and the third and fourth non-crosslinked polymers may be entangled with the gel.
  • a crosslinking agent 0.001 to 0.1 mol times dibule monomer is added as a crosslinking agent to an appropriate concentration of electrolyte bulule monomer, and these are combined with radicals. It is preferable to polymerize.
  • the cross-linking agent include N, N′-methylene bisacrylamide (MBAA) and ethylene glycol dimetatalylate.
  • non-uniformity of the network structure composed of the crosslinked polymer can be enhanced.
  • non-uniformity of the network structure may be increased by mixing fine particles inside the network structure and removing the fine particles by dissolution after the formation of the network structure. .
  • the crosslinked polymer when the non-crosslinked polymer is entangled with the network structure composed of the crosslinked polymer by using the sequential polymerization method, the crosslinked polymer may be equilibrated and swollen even if the solvent is removed or just after the synthesis. It may be. Furthermore, after the crosslinked polymer is immersed in the monomer solution of the non-crosslinked polymer and becomes in an equilibrium swelling state, that is, after the monomer concentration is almost equal between the inside and the outside of the network structure, the polymerization of the monomer is not performed for the first time. It is preferable that the In this monomer solution, the concentration of the cross-linking agent such as dibule monomer with respect to the monomer needs to be less than 0. 01 mol%.
  • the non-crosslinked polymer is polymerized in a state where the crosslinked polymer is sufficiently swollen, even if the non-crosslinked polymer is entangled with the crosslinked polymer, the volume increase rate remains at most several tens of percent. .
  • the third and fourth polymers are further entangled with this semi-interpenetrating network structure.
  • the same means as the polymerization means for the non-crosslinked polymer described above may be used.
  • the gel produced by the above-mentioned method was once vacuum dried and then dried. Soak the gel in a solution containing multivalent ions.
  • a frame with an outer length of 80 X 80 mm and a width of 5 mm was cut out from a 100 X 100 X 2 mm silicone resin board with a cutter, and a 3 mm groove was made in one part of the frame.
  • the silicone resin frame was sandwiched between two 100 ⁇ 100 ⁇ 3 mm glass plates to assemble a polymerization vessel.
  • the gel having a semi-interpenetrating network structure obtained in this manner was subjected to equilibrium swelling again in pure water.
  • the weight content of the crosslinked polymer is 1.5%
  • the weight content of the non-crosslinked polymer is 12.5%
  • the weight content of pure water is 86%.
  • the equilibrium swelling degree of the crosslinked polymer was 44
  • the equilibrium swelling degree of the gel itself was 7.4.
  • a gel having a semi-interpenetrating network structure was obtained in the same manner as in Comparative Example 1 except that the formation of the interpenetrating network structure or semi-interpenetrating network structure> was changed as follows.
  • a gel having a semi-interpenetrating network structure was prepared in the same manner as in Comparative Example 1 except that the formation of an interpenetrating network structure or a semi-interpenetrating network structure> was changed as follows. Obtained.
  • the immersion solution strength gel is taken out and cut into an appropriate size, and then the gel is used with two glass plates of 100 X 100 X 3mm so that air bubbles are not mixed between the glass plates. I pinched it.
  • ultraviolet rays were irradiated for 10 hours at room temperature using a 365 nm wavelength UV lamp (30W, 0.68A).
  • a gel having a semi-interpenetrating network structure was obtained by polymerizing the AAm monomer diffused in the gel to produce a non-crosslinked polymer.
  • the initial elastic modulus of the gel was calculated from the slope of the curve in the region where the strain of the strain-stress curve obtained by the compression test was less than 10% and high in linearity by the following equation.
  • the compressive strength of the gel is the stress when the slope of the strain-stress curve output to the monitor changes in real time during the measurement due to the gel being destroyed, or the strain-stress curve output to the monitor. Even if the slope of the film did not change, the following formula was calculated from the stress and the surface area when the fracture of the gel was confirmed.
  • the weight average molecular weight M of the non-crosslinked polymer in the semi-interpenetrating network structure is
  • the Hyde Mouth Gel according to the present invention is transparent with high mechanical strength and fracture strength, and has flexibility, substance permeability and impact resistance.
  • Materials building materials, communication materials (e.g. bearings, cables and joints), soil modifiers, contact lenses, intraocular lenses, hollow fibers, artificial cartilage, artificial joints, artificial organs (e.g. artificial blood vessels and artificial skins) ), Fuel cell materials, knottery separators, bedsore prevention mats, cushions, lubricants, lotions and other stabilizers and thickeners, cell culture substrates, drug delivery systems (DDS), It can be used as a drug carrier, a sensor for a specific substance, or a software computer used at the tip of a force tail.
  • DDS drug delivery systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

A technique by which the strength of a gel can be improved without impairing excellent properties of the gel, such as high flexibility and high water retention; and various uses of the gel. In the gel, a crosslinked polymer constitutes the basic skeleton of the gel and forms a rigid network structure having scatteringly distributed vacant parts which are extremely sparse parts in the network, while an uncrosslinked polymer localizes in these vacant parts and is physically entangled at end parts thereof with the network structure of the crosslinked polymer while retaining flexibility. In the gel having a semiinterpenetrating network structure, crack propagation over a long distance cannot occur as long as an extremely large external force exceeding stresses diffusible by the uncrosslinked polymer is not applied. Even when a fracture occurs microscopically, it does not become a macroscopic fracture under these conditions. This gel never break unless an extraordinarily large external force is applied, because the critical value leading to a macroscopic fracture is extremely high.

Description

ゲル、その製造方法、吸水性樹脂、潤滑材及び細胞培養用基材 技術分野  Gel, production method thereof, water-absorbent resin, lubricant and cell culture substrate
[0001] 本発明は、架橋ポリマーからなる網目構造に他のポリマーが絡み付いて構成される セミ相互侵入網目構造を有するゲル及びそのゲルの製造方法、並びにそのゲルを 利用した吸水性榭脂、潤滑材及び細胞培養用基材に関する。  [0001] The present invention relates to a gel having a semi-interpenetrating network structure in which another polymer is entangled with a network structure composed of a crosslinked polymer, a method for producing the gel, and a water-absorbent resin and a lubricant using the gel. The present invention relates to a material and a cell culture substrate.
背景技術  Background art
[0002] 液体と固体との 2相コロイド系であるゲルは、高柔軟性や高保水性等の優れた特性 を有し、これらの特性を利用して、産業上の利用用途が従来から様々に検討されて いる。例えば、特許文献 1には、ゲルに対して直鎖状高分子が混合されているか又は グラフト重合されてなる低摩擦材料が開示されている。  [0002] Gels, which are two-phase colloidal systems of liquid and solid, have excellent properties such as high flexibility and high water retention, and various applications for industrial use have been made using these properties. It is being considered. For example, Patent Document 1 discloses a low-friction material obtained by mixing a linear polymer with a gel or graft polymerization.
[0003] ところが、従来のゲルは機械的強度が著しく低いため、耐強度や耐久性が不足し 易ぐ利用用途が著しく制限されていた。  [0003] However, since the conventional gel has a remarkably low mechanical strength, its intended use is easily restricted due to insufficient strength and durability.
[0004] そこで、ゲルの機械的強度を高めるための技術が様々に検討され開発されている( 例えば特許文献 2〜7及び非特許文献 1〜4)。これらの中でも例えば特許文献 2に は、第一の架橋ポリマー力 なる網目構造中でモノマーを重合し架橋させることによ り、第二のポリマーを形成し、第一の架橋ポリマーと第二のポリマーとが互いに絡み 合った相互侵入網目構造又はセミ相互侵入網目構造を有するハイド口ゲルを生成す る技術が記載されている。なお、「相互侵入網目構造」とは、ベースとなる網目構造に 他の網目構造が絡み付 、た網目構造を指し、また「セミ相互侵入網目構造」とは、ベ ースとなる網目構造に直鎖状ポリマーが絡み付 、た網目構造を指す。  [0004] Accordingly, various techniques for increasing the mechanical strength of the gel have been studied and developed (for example, Patent Documents 2 to 7 and Non-Patent Documents 1 to 4). Among these, for example, Patent Document 2 discloses that a second polymer is formed by polymerizing and crosslinking a monomer in a network structure having the strength of the first crosslinked polymer, thereby forming the first crosslinked polymer and the second polymer. Describes a technique for producing a hide-mouthed gel having an interpenetrating network structure or semi-interpenetrating network structure in which and are intertwined with each other. The “interpenetrating network structure” refers to a network structure in which other network structures are entangled with the base network structure, and the “semi-interpenetrating network structure” refers to the base network structure. A linear polymer is entangled to indicate a network structure.
特許文献 1 :特開 2002— 212452号公報  Patent Document 1: JP 2002-212452
特許文献 2:国際公開第 03Z093337号パンフレット  Patent Document 2: Pamphlet of International Publication No. 03Z093337
特許文献 3:特開 2004 - 91724号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-91724
特許文献 4:特開 2002— 053762号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2002-053762
特許文献 5 :特開 2002— 053629号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2002-053629
特許文献 6:特開昭 57— 130543号公報 特許文献 7:特開昭 58— 36630号公報 Patent Document 6: Japanese Unexamined Patent Publication No. 57-130543 Patent Document 7: JP-A-58-36630
特 S干文献 1: J.P.Gong, Yoshinori Katsuyama, Takayuki Kurokawa, YoshihitoOsada , Double-Network Hydrogel with Extremely High Mechanical Strengtn , Advanced Materials, 15, 1155-1158 (2003)  特 S Dry Literature 1: J.P.Gong, Yoshinori Katsuyama, Takayuki Kurokawa, YoshihitoOsada, Double-Network Hydrogel with Extremely High Mechanical Strengtn, Advanced Materials, 15, 1155-1158 (2003)
特言午文献 2 : H. Haraguchi, T. Takeshita, "Nanocomposite Hydrogels: A Unique O rganic— Inorganic Network Structure with Extraordinary Mechanical, Optical, and Sw elling/De— swelling Properties", Advanced Materials, 14, 1120—1123 (2002) 非特言午文献 3 : Y. Okumura, Kohzolto, "The Polyrotaxane Gel: A Topological Gel by Figure— of— Eight Cross— links", 13, 485-487 (2001)  Special Article 2: H. Haraguchi, T. Takeshita, "Nanocomposite Hydrogels: A Unique Organics—Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling / De—swelling Properties", Advanced Materials, 14, 1120—1123 (2002) Non-specialty literary literature 3: Y. Okumura, Kohzolto, "The Polyrotaxane Gel: A Topological Gel by Figure— of— Eight Cross— links”, 13, 485-487 (2001)
非特言午文献 4 : Long Zhao, Hiroshi Mitomo, Naotsugu Nagasawa, Fumio Yoshn, Tami kazu Kume, "Radiation synthesis and characteristic of the hydrogels based on carbo xymethylated chitin derivatives , Carbohydrate Polymers, 51, 169-175 (2003) 発明の開示  Non-patent document 4: Long Zhao, Hiroshi Mitomo, Naotsugu Nagasawa, Fumio Yoshn, Tami kazu Kume, "Radiation synthesis and characteristic of the hydrogels based on carbo xymethylated chitin derivatives, Carbohydrate Polymers, 51, 169-175 (2003) Disclosure
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、本発明者らは、特許文献 2に開示された技術を発展させてゲルの強 度をさらに向上させるベく鋭意研究を継続した結果、特許文献 2〜7及び非特許文献 1〜4に開示された技術の開発思想とは異なる知見を得た。即ち、例えば特許文献 2 又は非特許文献 1に開示された技術では、ゲルの強度向上に最も重要な因子は、第 一の架橋ポリマーに対する第二のモノマーのモル比及び第二のポリマーの架橋度で あると考えられており、特に特許文献 2に開示された技術では、第二のポリマーがごく 僅かな架橋構造を有すること具体的には第二のポリマーの架橋度が 0. 001mol% 以上であることがゲルの強度を高める最適条件であるとしているが限界がある。  [0005] However, as a result of continuing intensive studies to further improve the strength of the gel by developing the technology disclosed in Patent Document 2, the present inventors have found that Patent Documents 2-7 and Knowledge different from the development concept of the technology disclosed in Patent Documents 1 to 4 was obtained. That is, for example, in the technique disclosed in Patent Document 2 or Non-Patent Document 1, the most important factors for improving the strength of the gel are the molar ratio of the second monomer to the first crosslinked polymer and the degree of crosslinking of the second polymer. In particular, in the technique disclosed in Patent Document 2, the second polymer has a very slight cross-linked structure. Specifically, the degree of cross-linking of the second polymer is 0.001 mol% or more. Although there is an optimum condition for increasing the strength of the gel, there is a limit.
[0006] 本発明の目的は、ゲルの有する高柔軟性や高保水性等の優れた特性を損なうこと なぐゲルの強度を飛躍的に向上させることのできる技術を提供すること、さらにはそ のゲルを利用し各種用途を提供することである。  [0006] An object of the present invention is to provide a technique capable of dramatically improving the strength of a gel without impairing excellent properties such as high flexibility and high water retention property of the gel, and further to the gel To provide various uses.
課題を解決するための手段  Means for solving the problem
[0007] 本発明に係るゲルは、架橋ポリマーで構成される網目構造に非架橋ポリマーが侵 入し物理的に絡み付いたセミ相互侵入網目構造を有し、良溶媒による平衡膨潤時に おいて、膨潤度が 5以上で、かつ、前記良溶媒の重量含有率が 80%以上で、かつ、 破壊エネルギーが 700jZm2以上 2000jZm2以下である構成を採る。 [0007] The gel according to the present invention has a semi-interpenetrating network structure in which a non-crosslinked polymer invades a network structure composed of a crosslinked polymer and is physically entangled. In this case, the degree of swelling is 5 or more, the weight content of the good solvent is 80% or more, and the fracture energy is 700 jZm 2 or more and 2000 jZm 2 or less.
[0008] すなわち、架橋ポリマーでない第二のポリマーが架橋構造を全く有することなく線 状で高分子量となっている。そして、第二のポリマーが架橋構造を採るよりもむしろ非 架橋ポリマーを採る場合に限りゲルの強度が特異的に向上することを見出した。 発明の効果 [0008] That is, the second polymer that is not a crosslinked polymer is linear and has a high molecular weight without having any crosslinked structure. It was found that the strength of the gel is specifically improved only when the second polymer adopts a non-crosslinked polymer rather than a crosslinked structure. The invention's effect
[0009] 本発明によれば、架橋ポリマーからなる剛直で、かつ、空洞部の散在する網目構造 に、所定条件を満たす柔軟性の高い非架橋ポリマーが侵入して物理的に絡み付くた め、生体組織に匹敵するかそれ以上の力学強度及び耐久性を備えるゲルを提供す ることがでさる。  [0009] According to the present invention, a non-crosslinked polymer having high flexibility satisfying a predetermined condition enters and is physically entangled in a rigid network made of a crosslinked polymer and in which cavities are scattered. It is possible to provide a gel with mechanical strength and durability comparable to or better than tissue.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明に係るゲルの有するセミ相互侵入網目構造を模式的に示す図 [0010] FIG. 1 is a diagram schematically showing a semi-interpenetrating network structure of a gel according to the present invention.
[図 2]セミ相互侵入網目構造における架橋ポリマーからなる網目構造の空洞部を模 式的に示す図  [Fig. 2] A diagram schematically showing a cavity of a network structure made of a crosslinked polymer in a semi-interpenetrating network structure
[図 3]本発明に係るゲルの亀裂先端部において、セミ相互侵入網目構造が変形する 様子と、非架橋ポリマーがある速度領域で化学的な架橋によらず物理的な絡み合い による過渡的網目を形成することによって亀裂進行の抵抗力となる様子と、を模式的 に示す図  [Fig. 3] The state of deformation of the semi-interpenetrating network structure at the crack tip of the gel according to the present invention and the transient network due to physical entanglement regardless of chemical crosslinking in the velocity region where the non-crosslinked polymer exists. A diagram that schematically shows how it forms a resistance to crack progression by forming
[図 4]濃厚溶液状態における非架橋ポリマーに過渡的網目が形成される外力の速度 領域を模式的に示す図  [Fig. 4] Schematic diagram showing the external force velocity region where a transient network is formed in a non-crosslinked polymer in a concentrated solution state.
[図 5]本発明に係るゲルの破壊エネルギーと非架橋ポリマーの重量平均分子量 Mと  [Fig. 5] The fracture energy of the gel according to the present invention and the weight average molecular weight M of the non-crosslinked polymer
w の相関を模式的に示す図  Diagram showing the correlation of w
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の骨子は、架橋ポリマー力もなる空洞部の散在する網目構造に、前記空洞 部を満たす大きさのランダムコイル形態をとる非架橋ポリマーが絡み付いたセミ相互 侵入網目構造を有するゲルを形成することである。ランダムコイルの大きさは、非架 橋ポリマーの分子量に依存する。 [0011] The essence of the present invention is that a gel having a semi-interpenetrating network structure in which a non-crosslinked polymer in the form of a random coil having a size satisfying the cavity is entangled with a network structure in which cavities having a crosslinked polymer force are scattered. Is to form. The size of the random coil depends on the molecular weight of the unbridged polymer.
[0012] 以下、本発明の実施の形態について、適宜図面を参照しつつ詳細に説明する。 [0013] 本発明に係るゲルを評価するに際して、その力学強度を示す指標として「圧縮強度 」を、またその破壊力学的な丈夫さを示す指標として「破壊エネルギー」を使用する。 「圧縮強度」は、ゲルの破壊に必要な応力を初期の面積で割った値で示され、「破壊 エネルギー」は、ゲルの定常的な破壊進行に用いられた仕事量を破断面積で割った 値、即ち破断面を形成するために必要なエネルギーで示される。従って、ゲルの優 劣を示す指標としては、破壊に至るまでの変形率が極めて大き 、と 、うゲルの特性を 勘案すれば、圧縮強度よりも破壊エネルギーを用いる方が適切である (Y.Tanaka, K. rukao, Y. Miyamoto, Fracture energy of gels , i e European Physical Journal , 3, 395-401 (2000)参照)。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. When evaluating the gel according to the present invention, “compressive strength” is used as an index indicating the mechanical strength, and “breaking energy” is used as an index indicating the fracture mechanical strength. “Compressive strength” is the value obtained by dividing the stress required to break the gel by the initial area, and “Fracture energy” is the work used for steady progress of the gel divided by the fracture area. The value, i.e., the energy required to form a fracture surface. Therefore, as an index indicating the superiority or inferiority of the gel, it is more appropriate to use the fracture energy rather than the compressive strength, taking into account the characteristics of the gel that the deformation rate until fracture is extremely large (Y. Tanaka, K. rukao, Y. Miyamoto, Fracture energy of gels, ie European Physical Journal, 3, 395-401 (2000)).
[0014] 図 1に、本発明に係るゲルの有するセミ相互侵入網目構造を模式的に示す。ゲル の基本骨格を構成する架橋ポリマーは、網目の極めて疎な部分である空洞部の散在 する剛直な網目構造を形成し、一方で非架橋ポリマーは、この空洞部に集中的に存 在し、柔軟性を保ちつつ、その末端部で架橋ポリマーの網目構造に物理的に絡み 付いている。  [0014] FIG. 1 schematically shows a semi-interpenetrating network structure of the gel according to the present invention. The cross-linked polymer that forms the basic skeleton of the gel forms a rigid network structure in which cavities, which are extremely sparse parts of the network, are scattered, while the non-cross-linked polymer is concentrated in these cavities, While maintaining flexibility, it is physically entangled with the network structure of the crosslinked polymer at its end.
[0015] ここで、「物理的に絡み付いている」とは、二つ以上の非連続的な線状の物体が共 有結合等による結合した状態には無いが、空間的な位置を束縛され得る位置関係を 取って 、る箇所が少なくとも 1つ存在し、且つ前記双方または何れか一方が物理的 に破壊または変形されなければ、ほどけない状態をいう。ただ、微視的で、そもそもそ のままでは目視できない状態にあるもの等の場合には、電子顕微鏡写真を用いるな ど、そのものを確認するに相応の状態において、他の部分と比し、極めて接近した箇 所が少なくとも 1つ存在すべきである。し力しながら、溶液中に存在するポリマー同士 の物理的な絡み合いについては、光学顕微鏡等で確認できないだけでなぐ電子顕 微鏡写真を用いた場合にも確認できな 、ほどに微視的な部分で物理的な絡み合 ヽ を形成しているため、動的光散乱装置等によりその存在を示唆し得るのみである。ま た、以下においては、この空洞部含有架橋ポリマーに非架橋ポリマーが絡み付いた 構造をダブルネットワーク(DN)と呼ぶこともある。  [0015] Here, "physically entangled" means that two or more discontinuous linear objects are not in a coupled state by a shared bond or the like, but the spatial position is constrained. It means a state that cannot be unwound if there is at least one location where the obtained positional relationship exists and both or one of them is not physically destroyed or deformed. However, in the case of something that is microscopic and cannot be seen in the first place, use an electron micrograph, etc. There should be at least one close point. However, the physical entanglement between the polymers present in the solution cannot be confirmed with an optical microscope or the like. Since a physical entanglement is formed in the part, it can only be suggested by a dynamic light scattering device or the like. In the following, the structure in which the non-crosslinked polymer is entangled with the void-containing crosslinked polymer is sometimes referred to as a double network (DN).
[0016] この架橋ポリマー力 なる空洞部の散在する網目構造は、例えばビュルモノマーと ジビュルモノマーとのラジカル共重合によって形成される。ビュルモノマーとジビュル モノマーとはラジカル重合における反応性が異なるため、これらを共重合させると、反 応初期にミクロゲルが形成され、それが成長することでミクロゲル同士の架橋が生じ て不均一な網目構造が形成される(Erik Geissler, "Dynamic light scattering from pol ymer gels , Chapter 11th, 471-511、 Edited by WYNBrown, 'Dynamic Light Scatteri ng -The Method and Some Applications-" CLARENDON PRESS, OXFORD (1993) 参照)。このようにして形成された架橋ポリマーの網目構造は、溶媒を大量に吸収し て平衡膨潤に達すれば、膨潤度の上昇に伴って網目の粗密差が拡大することで、空 間的に不均一性が極めて高くなる(Hidemitsu Furukawa, Kazuyuki Horie, "Swelling- induced modulation of static and dynamic fluctuations in polyacrylamide gels observe d by scanning microscopic light scattering , Physical Review E, 68, 031406 (2003)、 Mitsuhiro Shibayama, "Spatial inhomogeneity and dynamic fluctuations of polymer ge Is", Macromol. Chem. Phys., 199, 1-30 (1998)参照)。また、電解質の架橋ポリマー からなる網目構造と非電解質の架橋ポリマーからなる網目構造とを比較すると、それ らの架橋度が同じであれば、平衡膨潤度及び網目の不均一性は前者の方が後者に 比べて著しく大きい。そのため、電解質の架橋ポリマーからなる網目構造には、網目 の極めて疎な部分即ち空洞部が確実に散在すると考えられる。なお、動的光散乱法 による測定データは、この考えを支持している。 [0016] A network structure in which cavities having a cross-linked polymer force are scattered is formed, for example, by radical copolymerization of a bull monomer and a dibul monomer. Bull monomers and dibules Since monomers are different in reactivity in radical polymerization, when they are copolymerized, a microgel is formed in the early stage of the reaction, and when it grows, the microgel crosslinks to form a non-uniform network structure. (See Erik Geissler, "Dynamic light scattering from polymer gels, Chapter 11 th , 471-511, Edited by WYNBrown, 'Dynamic Light Scattering -The Method and Some Applications-" CLARENDON PRESS, OXFORD (1993)). The network structure of the cross-linked polymer formed in this way is spatially non-uniform because the difference in mesh density increases as the degree of swelling increases when a large amount of solvent is absorbed and equilibrium swelling is reached. (Hidemitsu Furukawa, Kazuyuki Horie, "Swelling- induced modulation of static and dynamic fluctuations in polyacrylamide gels observe d by scanning microscopic light scattering, Physical Review E, 68, 031406 (2003), Mitsuhiro Shibayama," Spatial inhomogeneity and dynamic fluctuations of polymer ge Is ", Macromol. Chem. Phys., 199, 1-30 (1998)). Also, compare the network structure composed of the electrolyte cross-linked polymer and the network structure composed of the non-electrolyte cross-linked polymer. If the degree of cross-linking is the same, then the equilibrium swelling degree and the non-uniformity of the network are significantly greater in the former than in the latter, so the network structure composed of the crosslinked polymer of the electrolyte has a network structure. Considered very sparse portion or cavity is scattered reliably. In addition, the measurement data by the dynamic light scattering method, supports this idea.
[0017] 一方で、本発明において「非架橋ポリマー」とは、架橋度が 0. 001mol%未満のポ リマー、好ましくは全く架橋されていないポリマーを指し、また架橋度は非架橋ポリマ 一を重合する際に添加される架橋剤の量力も算出される。架橋度が小さいポリマー は、ゲルを形成しないゾル状態で溶媒に可溶であり、柔軟性が高ぐランダムコイルを 形成し易い。 On the other hand, in the present invention, “non-crosslinked polymer” refers to a polymer having a degree of crosslinking of less than 0.001 mol%, preferably a polymer that is not crosslinked at all, and the degree of crosslinking is a polymerization of a non-crosslinked polymer. The quantity power of the crosslinking agent added at the time is also calculated. A polymer having a low degree of cross-linking is soluble in a solvent in a sol state that does not form a gel, and tends to form a highly flexible random coil.
[0018] 図 2に、セミ相互侵入網目構造における架橋ポリマー力もなる網目構造の空洞部を 模式的に示す。非架橋ポリマーは、この空洞部内において移動や変形を自由に行え るため、ランダムコイルになっていると考えられ、統計的にはその直径 d 7?はポリマー 溶液の固有粘度 [ 7? ]と重量平均分子量 Mと力 次の式によって算出される (M.-M. FIG. 2 schematically shows a cavity of a network structure that also has a cross-linked polymer force in a semi-interpenetrating network structure. Non-crosslinked polymer is considered to be a random coil because it can move and deform freely in this cavity, and its diameter d 7? Is statistically the intrinsic viscosity [7?] And weight of the polymer solution. Average molecular weight M and force Calculated by the following formula (M.-M.
Kulicke, R. Kniews e, J. Klein, Preparation, Characterization, solution Properties and Rheological Behaviour of Polyacrylamide", Progress in PoymerScience, 8, 373—4 68 (1982)参照)。 Kulicke, R. Kniews e, J. Klein, Preparation, Characterization, solution Properties and Rheological Behavior of Polyacrylamide ", Progress in PoymerScience, 8, 373—4 68 (1982)).
[0019] [数 1]
Figure imgf000008_0001
(nm)
[0019] [Equation 1]
Figure imgf000008_0001
(nm)
[0020] この式力 算出される非架橋ポリマー力もなるランダムコイルの直径が架橋ポリマー 力もなる網目の平均間隔の凡そ 10倍以上になると、セミ相互侵入網目構造を有する ゲルの力学強度及び破壊エネルギーが特異的に向上し始める。すなわち、この場合 の非架橋ポリマーの分子量は重量平均分子量で 106以上になっており、物理的な絡 み合いが十分生じ得る程の濃度でポリマーが存在していることになる。このような現 象が生じる機構は、非架橋ポリマー力 なるランダムコイルがその重合度の上昇に伴[0020] When the diameter of the random coil that has the calculated non-crosslinked polymer force is about 10 times or more the average interval of the network that also has the crosslinked polymer force, the mechanical strength and the fracture energy of the gel having a semi-interpenetrating network structure are reduced. Begin to improve specifically. In other words, the molecular weight of the non-crosslinked polymer in this case is 10 6 or more in terms of weight average molecular weight, and the polymer is present at a concentration at which sufficient physical entanglement can occur. The mechanism by which this phenomenon occurs is that random coils with non-crosslinked polymer force increase as the degree of polymerization increases.
V、大きくなつて架橋ポリマー力 なる網目構造に散在する空洞部を満たすようになる と、換言すれば非架橋ポリマー力 なるランダムコイルの直径がその空洞部の直径よ りも大きくなると、架橋ポリマーと非架橋ポリマーとが物理的に絡み合うようになり、そ の絡み合いに起因する擬似的な架橋点を形成することによってこれらのポリマーが 連続した網目のように振舞うためであると推測される。翻って、非架橋ポリマーからな るランダムコイルの直径がその空洞部の直径よりも小さければ、架橋ポリマーと非架 橋ポリマーとの間に擬似的な架橋点が形成されないため、セミ相互侵入網目構造に おいては非架橋ポリマーの存在によって粘度が高くなつた溶媒に架橋ポリマーが膨 潤して!/、るだけの状態となることから、そのゲルの力学強度及び破壊エネルギーが著 しく向上することはない。 V, when it becomes larger and fills the cavity scattered in the network structure with the cross-linked polymer force, in other words, when the diameter of the random coil with the non-cross-linked polymer force becomes larger than the diameter of the cavity, the cross-linked polymer and It is presumed that the non-crosslinked polymers become physically entangled and these polymers behave like a continuous network by forming pseudo-crosslinking points due to the entanglement. On the other hand, if the diameter of the random coil made of the non-crosslinked polymer is smaller than the diameter of the cavity, a pseudo cross-linking point is not formed between the crosslinked polymer and the non-crosslinked polymer. In this case, the cross-linked polymer swells in the solvent whose viscosity has been increased due to the presence of the non-cross-linked polymer, so that the mechanical strength and fracture energy of the gel are remarkably improved. Absent.
[0021] また、セミ相互侵入網目構造において非架橋ポリマー力もなるランダムコイルの直 径がその空洞部の直径よりも大きくなると、ゲルの力学強度及び破壊エネルギーが 特異的に向上する機構については、次のように説明することもできる。即ち、セミ相互 侵入網目構造は空間的に硬 、部分 (架橋ポリマーの密な部分)と柔らか 、部分 (架 橋ポリマーの極めて疎な部分即ち空洞部における非架橋ポリマー)とを有する高次 構造であり、外力が加わりこの硬い部分に応力の集中点が生じて亀裂が発生しても、 亀裂が柔らかい部分に達するとその先端で応力が散逸し、亀裂先端の曲率が非常 に大きくなることによってその亀裂進展が停止する、という機構である。従って、セミ相 互侵入網目構造を有するゲルでは、非架橋ポリマーによって拡散され得る応力を超 える極めて大きな外力が加えられない限り、亀裂は長い距離を進展することができな くなり、微視的に破壊が生じてもそれが巨視的な破壊に至ることはない。つまり、本発 明に係るゲルであれば、巨視的な破壊に至る臨界値が著しく上昇するため、非常に 大きな外力が加えられない限り破壊されることはない。仮に、架橋ポリマーの網目構 造が均一であれば、このような巨視的な破壊に至る臨界値の著しい向上は見られな い。 [0021] In addition, when the diameter of the random coil having non-crosslinked polymer force in the semi-interpenetrating network structure is larger than the diameter of the cavity, the mechanical strength and fracture energy of the gel are specifically improved. It can also be explained as follows. In other words, the semi-interpenetrating network structure is a higher order structure having spatially hard, part (dense part of the crosslinked polymer) and soft part (very sparse part of the bridge polymer, ie, non-crosslinked polymer in the cavity). Yes, even if an external force is applied and a stress concentration point occurs in this hard part and a crack occurs, when the crack reaches the soft part, the stress is dissipated at the tip, and the curvature of the crack tip becomes very large. It is a mechanism that the crack growth stops. Therefore, gels with a semi-interpenetrating network structure exceed the stress that can be diffused by non-crosslinked polymers. Unless a very large external force is applied, the crack cannot propagate over a long distance, and even if it breaks microscopically, it does not lead to macroscopic breakage. In other words, in the gel according to the present invention, the critical value leading to macroscopic destruction is remarkably increased, so that it is not destroyed unless a very large external force is applied. If the network structure of the crosslinked polymer is uniform, the critical value that leads to such macroscopic destruction is not significantly improved.
[0022] 図 3に、本発明に係るゲルの亀裂先端部において、セミ相互侵入網目構造が変形 する様子と、非架橋ポリマーがある速度領域で過渡的網目を形成することによって亀 裂進行の抵抗力となる様子と、を模式的に示す。本発明に係るゲルは外力に対する 速度依存性を示し、このゲルの高強度化にとって最適な外力の速度は、セミ相互侵 入網目構造における架橋ポリマーの網目構造に散在する空洞部において、非架橋 ポリマー同士が絡み合いによる過渡的網目を形成し得る速度領域に相当すると考え られる。  [0022] FIG. 3 shows the deformation of the semi-interpenetrating network structure at the crack tip of the gel according to the present invention and the resistance to crack progression by forming a transient network in the velocity region where the non-crosslinked polymer is present. This is a schematic illustration of the power. The gel according to the present invention shows a speed dependency on the external force, and the optimum external force speed for increasing the strength of the gel is the non-crosslinked polymer in the cavity portion scattered in the network structure of the crosslinked polymer in the semi-interpenetrating network structure. This is considered to correspond to a velocity region in which a transitional network due to entanglement can be formed.
[0023] また、図 4に、濃厚溶液状態における非架橋ポリマーに過渡的網目が形成される外 力の速度領域を模式的に示す。図 4に示すように、非架橋ポリマーの運動速度よりも 亀裂先端の亀裂進行速度が速い場合には、図 3下段に示すように伸張状態から (B) 非架橋ポリマーの切断が優先的に生じてしまうため、ゲルの力学強度及び破壊エネ ルギ一は低下する、と考えられる。一方で、非架橋ポリマーの運動速度よりも亀裂先 端の亀裂進行速度が遅い場合には、図 3下段に示すように伸張状態から (A)非架橋 ポリマーの滑りが優先的に生じてしまうため、やはりゲルの力学強度及び破壊エネル ギ一は低下する、と考えられる。このようなゲルの力学強度及び破壊エネルギーの低 下は、加えられる外力の速度が物理的に絡まり合った濃厚溶液状態にある非架橋ポ リマーの運動速度よりも著しく遅い場合には、非架橋ポリマーが流動的に振舞ってし まい、一方でそれよりも著しく速い場合には、非架橋ポリマーが移動や変形を行う時 間的余裕を失いガラス状態になってしまう、ことに起因して生じる、と考えられる。  [0023] FIG. 4 schematically shows a velocity region of external force in which a transient network is formed in the non-crosslinked polymer in a concentrated solution state. As shown in Fig. 4, when the crack progress rate at the crack tip is faster than the movement rate of the non-crosslinked polymer, as shown in the lower part of Fig. 3, (B) cutting of the non-crosslinked polymer occurs preferentially from the stretched state. Therefore, it is considered that the mechanical strength and fracture energy of the gel are reduced. On the other hand, when the crack progress rate at the crack tip is slower than the movement speed of the non-crosslinked polymer, slipping of the (A) non-crosslinked polymer occurs preferentially from the stretched state as shown in the lower part of Fig. 3. It is thought that the mechanical strength and fracture energy of the gel are also lowered. Such a reduction in the mechanical strength and fracture energy of the gel can be achieved when the rate of external force applied is significantly slower than the rate of motion of the uncrosslinked polymer in a physically entangled concentrated solution. May behave in a fluid manner, but if it is significantly faster than that, the non-crosslinked polymer loses the time to move and deform, resulting in a glass state. Conceivable.
[0024] しかし、セミ相互侵入網目構造において非架橋ポリマーが流動的に振舞ったりガラ ス状態になったりする間の速度領域では、濃厚溶液状態にある非架橋ポリマーは、 絡み合いによる過渡的網目を形成してゴムに似た物性を示すようになると考えられる ため、亀裂先端部で生じた応力を拡散させることができる。つまり、濃厚溶液状態で ある非架橋ポリマーによって形成された過渡的網目は、化学架橋点を有しないため に過剰な応力が加わる (応力集中が生じる)と滑り合うことができ、この滑りの際の摩 擦によって応力を熱に変換して拡散させる。従って、非架橋ポリマーは、高濃度溶液 に近い状態で流動性を保ちつつゆっくりと運動していることが好ましい。ちなみに、こ の過渡的網目の弾性率は、架橋ポリマーで構成される剛直な網目の弾性率よりも十 分小さくなければならない。 However, in the semi-interpenetrating network structure, the non-crosslinked polymer in a concentrated solution state forms a transient network due to entanglement in the velocity region during which the non-crosslinked polymer behaves in a fluid state or enters a glassy state. It seems that it will show physical properties similar to rubber Therefore, the stress generated at the crack tip can be diffused. In other words, the transient network formed by the non-crosslinked polymer in the concentrated solution state does not have a chemical cross-linking point and can slide when excessive stress is applied (stress concentration occurs). By friction, stress is converted to heat and diffused. Therefore, it is preferable that the non-crosslinked polymer moves slowly while maintaining fluidity in a state close to a high concentration solution. Incidentally, the elastic modulus of this transitional network must be sufficiently smaller than the elastic modulus of rigid networks composed of cross-linked polymers.
[0025] 端的に言うなら、架橋ポリマーの網目構造力 成る空洞部および非架橋ポリマーの 物理的絡み付きは、クラック (亀裂)に力かる応力集中を回避でき、破裂に力かるエネ ルギーを分散することができ、「クラック止め」になる。  [0025] In short, the voids, which are the network structure force of the crosslinked polymer, and the physical entanglement of the non-crosslinked polymer can avoid stress concentration that acts on cracks and disperse the energy that resists rupture. It becomes "crack prevention".
[0026] 従って、セミ相互侵入網目構造を有するゲルの力学強度及び破壊エネルギーは、 非架橋ポリマーの運動速度と加えられる外力の速度との関係に応じて変動し、非架 橋ポリマーの運動速度に近い速度で加えられた外力に対して最大となる。そこで、ゲ ルの温度又はゲルを膨潤させる溶媒の粘度や相溶性等を調節することによって非架 橋ポリマーの運動速度を変化させれば、ゲルの力学強度及び破壊エネルギーが最 大となる外力の速度領域を変化させることができる。  [0026] Therefore, the mechanical strength and fracture energy of the gel having a semi-interpenetrating network structure vary depending on the relationship between the speed of movement of the non-crosslinked polymer and the speed of the applied external force, and the movement speed of the non-crosslinked polymer Maximum for external force applied at close speed. Therefore, if the kinetic speed of the uncrosslinked polymer is changed by adjusting the gel temperature or the viscosity or compatibility of the solvent that swells the gel, the external force that maximizes the mechanical strength and fracture energy of the gel is obtained. The speed region can be changed.
[0027] 図 5に、架橋ポリマーからなる空洞部の散在する網目構造に非架橋ポリマーを絡み 付けたセミ相互侵入網目構造を有するゲルについて、その破壊エネルギーと非架橋 ポリマーの重量平均分子量 Mとの相関を模式的に示す。なお、図 5には、アクリルァ [0027] Fig. 5 shows the relationship between the fracture energy and the weight average molecular weight M of the non-crosslinked polymer for a gel having a semi-interpenetrating network structure in which a non-crosslinked polymer is entangled with a network structure in which cavities made of a crosslinked polymer are scattered. The correlation is schematically shown. Figure 5 shows the acrylic
w  w
ミドメチルプロパンスルホン酸 (AMPS)とジビュルモノマーとから生成した架橋ポリマ 一にポリアクリルアミド (PAAm)力 なる非架橋ポリマーを絡み付けた例を示す。また 、図 5では、セミ相互侵入網目構造力 非架橋ポリマーだけを取り出してその重量平 均分子量 Mを測定することが困難なため、予め非架橋ポリマーの重合条件とその重  An example is shown in which a non-crosslinked polymer with polyacrylamide (PAAm) force is entangled with a crosslinked polymer formed from imidomethylpropanesulfonic acid (AMPS) and dibule monomer. Also, in FIG. 5, it is difficult to take out only the semi-interpenetrating network structure strength non-crosslinked polymer and measure its weight average molecular weight M.
w  w
量平均分子量 Mとの相関を把握しておき、その相関力 セミ相互侵入網目構造に おける非架橋ポリマーの重量平均分子量 Mを推定した。  The correlation with the weight average molecular weight M was grasped, and the weight average molecular weight M of the non-crosslinked polymer in the semi-interpenetrating network structure was estimated.
[0028] 図 5に示すように、このゲルの破壊エネルギーは、非架橋ポリマーの重量平均分子 量 M 1 X 106付近力 著しく上昇して 4 X 106付近で頭打ちになっている。これは、非 w [0028] As shown in FIG. 5, the breaking energy of the gel increases remarkably near the weight average molecular weight M 1 X 10 6 of the non-crosslinked polymer, and reaches a peak at around 4 X 10 6 . This is non-w
架橋ポリマーからなるランダムコイルが重量平均分子量 M 1 X 106付近になると架橋 When a random coil made of a crosslinked polymer reaches a weight average molecular weight of M 1 X 10 6
w ポリマーの網目構造に散在する空洞部を満たし始め、重量平均分子量 M 4 X 106 w Start filling the voids scattered in the polymer network, weight average molecular weight M 4 X 10 6
w  w
付近にまで達すると、その空洞部がランダムコイルでほぼ満たされてしまうためである と推測される。従って、非架橋ポリマーの大きさ (重合度)には、セミ相互侵入網目構 造に散在する空洞部の大きさに依拠する最適範囲が存在すると考えられる。  It is presumed that this is because the cavity is almost filled with random coils when it reaches the vicinity. Therefore, the size (degree of polymerization) of the non-crosslinked polymer is considered to have an optimum range depending on the size of the cavities scattered in the semi-interpenetrating network structure.
[0029] ここで、非架橋ポリマーは、ほとんど分岐の存在しない直鎖ポリマーでもあるから、 重合度即ちポリマーの長さはその分子量に略一次関数的に比例する。従って、物理 的絡み付きに最適な分子量が存在するとの事実は、即ち、網目構造を有する架橋ポ リマーに対して、非架橋ポリマーが物理的に絡み付くに十分適した長さが存在するこ とを示す。図 1を参照して推考するに、非架橋ポリマーの長さが十分に長くないと架 橋ポリマーの網目構造力 非架橋ポリマーが滑り抜けてしまうことが予想される。或い は、非架橋ポリマー自体が十分に巻きのあるランダムコイルを構成できず、架橋ポリ マーに引っ掛力ることなくセミ相互侵入網目構造を構成できないことも予想できる。こ れを擬似的な架橋点が形成されないと言いかえてもよい。従って、セミ侵入網目構造 とは、非架橋ポリマーのランダムコイル直径が架橋ポリマーの網目の平均間隔より遙 かに大き 、ときのみに生じる構造でもある。 Here, since the non-crosslinked polymer is also a linear polymer having almost no branching, the degree of polymerization, that is, the length of the polymer is approximately linearly proportional to the molecular weight. Therefore, the fact that there is an optimal molecular weight for physical entanglement indicates that there is a length that is well-suited for physically entangled non-crosslinked polymers relative to crosslinked polymers with a network structure. . As can be inferred with reference to Fig. 1, it is expected that the cross-linking polymer will not slip through if the length of the non-crosslinked polymer is not long enough. Alternatively, it can be expected that the non-crosslinked polymer itself cannot constitute a sufficiently wound random coil and cannot form a semi-interpenetrating network structure without being caught by the crosslinked polymer. This may be rephrased that a pseudo cross-linking point is not formed. Therefore, the semi-penetrating network structure is a structure that occurs only when the random coil diameter of the non-crosslinked polymer is much larger than the average interval of the network of the crosslinked polymer.
[0030] このように、架橋ポリマー力 なる剛直で空洞部の散在する網目構造にその空洞部 を満たす大きさの非架橋ポリマーが物理的に絡み付いたセミ相互侵入網目構造を有 するゲルであれば、良溶媒による平衡膨潤時において膨潤度が 5以上で、かつ、良 溶媒の重量含有率が 80%以上であっても、外力が加えられた際に非架橋ポリマー が過渡的網目を確実に形成することができるため、破壊エネルギー 700jZm2以上 2 OOOjZm2以下と 、う従来達成し得な力つた高 、耐久性を実現することができる。 [0030] In this way, if the gel has a semi-interpenetrating network structure in which a non-crosslinked polymer having a size satisfying the cavity is physically entangled with a rigid network structure having a cross-linked polymer force and a space in which the cavity is scattered, Even when the swelling degree is 5 or more and the weight content of the good solvent is 80% or more at the time of equilibrium swelling with a good solvent, a non-crosslinked polymer is reliably formed when an external force is applied. Therefore, the fracture energy of 700jZm 2 or more and 2 OOOjZm 2 or less can achieve high durability that can not be achieved in the past.
[0031] また、このゲルは、良溶媒による平衡膨潤時にぉ ヽて核磁気共鳴測定を行うと、分 子間の相互作用の存在によって現れる化学シフトが観測されないという特徴を有する 。この観測結果は、非架橋ポリマー間に水素結合よりも強い分子間相互作用が存在 しないことを意味している。このように非架橋ポリマー間に水素結合よりも強い分子間 相互作用が存在しなければ、架橋ポリマー力 なる網目構造に散在する空洞部にお いて、非架橋ポリマーの流動性や運動性が損なわれないため、ゲルの破壊エネルギ 一が効果的に向上する。 [0032] これを裏付けるかのように、このような高破壊エネルギーを呈するダブルネットワーク ゲルを他のメカニズムに対して提案されたような理論、例えばレイク一トーマス (Lake —Thomas)理論、では説明できず、もしレイク一トーマス理論で概算されるなら、破 壊エネルギーは lOjZm2付近にしかならず、実験値よりも 2桁も低 、ものとなる。 [0031] Further, this gel has a feature that when a nuclear magnetic resonance measurement is performed at the time of equilibrium swelling with a good solvent, a chemical shift appearing due to the presence of interaction between molecules is not observed. This observation means that there is no intermolecular interaction stronger than hydrogen bonds between non-crosslinked polymers. Thus, if there is no intermolecular interaction stronger than hydrogen bonding between the non-crosslinked polymers, the fluidity and mobility of the non-crosslinked polymer are impaired in the cavities scattered in the network structure of the crosslinked polymer. Therefore, the fracture energy of the gel is effectively improved. [0032] As if to support this, double-network gels exhibiting such high fracture energy cannot be explained by theories proposed for other mechanisms, such as Lake-Thomas theory. First, if estimated by Lake-Thomas theory, the breaking energy is only around lOjZm 2 , which is two orders of magnitude lower than the experimental value.
[0033] また、このゲルは、良溶媒による平衡膨潤時にお!、て、架橋ポリマーの弾性率 (a) に対する非架橋ポリマーの過渡的弾性率 (b)の比 (bZa)が ΙΖΙΟΟ以上 1Z5以下 であることが好ましい。ここで、非架橋ポリマーの過渡的弾性率 (b)の算出方法につ いて説明する。非架橋ポリマー溶液に対する応力を段階的に増加させることによって 生じる歪 (e)を観測することにより、小さい応力( σ )に対する歪の線形関数「e=J σ」 の係数であるクリープコンプライアンス (J)を得る。このクリープコンプライアンスがある 速度領域にぉ 、て一定値 (定常状態コンプライアンス)を示すとき、この定常状態コン プライアンスの逆数が非架橋ポリマーの過渡的弾性率 (b)に相当する。  [0033] In addition, this gel is suitable for equilibrium swelling with a good solvent! Thus, the ratio (bZa) of the transient elastic modulus (b) of the non-crosslinked polymer to the elastic modulus (a) of the crosslinked polymer is preferably from ΙΖΙΟΟ to 1Z5. Here, the calculation method of the transient elastic modulus (b) of the non-crosslinked polymer will be described. Creep compliance (J), which is a coefficient of the linear function of strain “e = J σ” for small stress (σ) by observing the strain (e) caused by increasing the stress on the non-crosslinked polymer solution step by step Get. When the creep compliance shows a constant value (steady state compliance) in a certain speed region, the reciprocal of the steady state compliance corresponds to the transient elastic modulus (b) of the non-crosslinked polymer.
[0034] このように、良溶媒による平衡膨潤時において、非架橋ポリマー間に水素結合より も強 、分子間相互作用が存在せず、或 、は架橋ポリマーの弾性率に対する非架橋 ポリマーの過渡的弾性率の比が 1Z100以上 1Z5以下であるセミ相互侵入網目構 造を有するゲルであれば、ー且亀裂が生じてもその亀裂先端部で生じて 、る応力が 非架橋ポリマーの過渡的網目の形成によって熱に変換されて効果的に拡散されるた め、破壊エネルギーが確実に 700jZm2以上 2000jZm2以下となる。 [0034] In this way, during equilibrium swelling with a good solvent, the non-crosslinked polymer is stronger than hydrogen bonds and no intermolecular interaction exists, or the non-crosslinked polymer has a transient effect on the elastic modulus of the crosslinked polymer. If the gel has a semi-interpenetrating network structure with an elastic modulus ratio of 1Z100 or more and 1Z5 or less-and even if a crack occurs, the stress is generated at the tip of the crack, and the stress is caused by a transient network of non-crosslinked polymer. Since it is converted into heat by the formation and diffused effectively, the destruction energy is surely 700 jZm 2 or more and 2000 jZm 2 or less.
[0035] さらに、このゲルは、架橋ポリマーの良溶媒による平衡膨潤度が 5〜: LOOOであり、 非架橋ポリマーの重量含有率が架橋ポリマーの重量含有率よりも高 、、ことが好まし い。また、このゲルは、非架橋ポリマーの重量含有率がゲルにおける架橋ポリマー及 び良溶媒の合計重量に対して 10〜40%であることが好ましい。  [0035] Furthermore, it is preferable that the gel has an equilibrium swelling degree of the crosslinked polymer with a good solvent of 5 to: LOOO, and the weight content of the non-crosslinked polymer is higher than the weight content of the crosslinked polymer. . Further, in this gel, the weight content of the non-crosslinked polymer is preferably 10 to 40% with respect to the total weight of the crosslinked polymer and the good solvent in the gel.
[0036] このゲルを構成する架橋ポリマーは、平衡膨潤度が高ぐ高分子鎖が大きく伸展し た剛直性の高いものである必要があり、具体的には、良溶媒による平衡膨潤度が 5〜 1000 (溶媒含有率 80〜99. 9w%)となるように架橋されていることが好ましい。なお 、架橋ポリマー自体の力学強度は、それほど高い必要はない。なお、ゲルの初期弹 性率は、この架橋ポリマーからなる網目構造の初期弾性率によってほぼ定まり、非架 橋ポリマーがゲルの初期弾性率に与える影響は極めて小さい。従って、架橋ポリマ 一の架橋度を調節することにより、ゲルの初期弾性率を調節することができる。 [0036] The cross-linked polymer constituting the gel must be highly rigid with a polymer chain having a high equilibrium swelling degree and a large extension, and specifically, the equilibrium swelling degree with a good solvent is 5%. It is preferably crosslinked so as to be ˜1000 (solvent content 80˜99.9 w%). The mechanical strength of the crosslinked polymer itself does not have to be so high. The initial elastic modulus of the gel is almost determined by the initial elastic modulus of the network structure composed of the crosslinked polymer, and the influence of the non-crosslinked polymer on the initial elastic modulus of the gel is extremely small. Therefore, cross-linked polymers The initial elastic modulus of the gel can be adjusted by adjusting the degree of crosslinking.
[0037] また、この架橋ポリマーは、強電解質であることが好ましい。本発明者らは、電解質 [0037] The crosslinked polymer is preferably a strong electrolyte. We have electrolytes
Z非電解質の架橋ポリマーと、電解質 Z非電解質の非架橋ポリマーと、の組み合わ せでセミ相互侵入網目構造を有するゲルを作製したところ、いずれの組み合わせに ついても力学強度の向上が見られたが、力学強度及び破壊エネルギーが著しく向上 した組み合わせは、強電解質又は全解離した弱電解質の架橋ポリマーと、非電解質 の非架橋ポリマーと、の組み合わせだけであった。従って、本発明では、強電解質又 は全解離した弱電解質の架橋ポリマーと非電解質の非架橋ポリマーとを組み合わせ て使用することが好ましい。なお、架橋ポリマーが電解質であっても非架橋ポリマーを 絡み付けた後であれば、イオン強度の高い溶媒に浸漬しても、ゲルの収縮度は著し く小さい。 When a gel having a semi-interpenetrating network structure was prepared by combining a Z non-electrolyte cross-linked polymer and an electrolyte Z non-electrolyte non-cross-linked polymer, improvement in mechanical strength was observed for any combination. The only combination that significantly improved the mechanical strength and the fracture energy was a combination of a strong electrolyte or a weakly crosslinked polymer that was completely dissociated and a non-electrolyte non-crosslinked polymer. Therefore, in the present invention, it is preferable to use a combination of a strong electrolyte or a weakly dissociated weakly crosslinked polymer and a non-electrolyte non-crosslinked polymer. Even if the crosslinked polymer is an electrolyte, the degree of shrinkage of the gel is remarkably small even if it is immersed in a solvent having a high ionic strength if it is entangled with the non-crosslinked polymer.
[0038] また、この非架橋ポリマーは、非電解質で柔軟性の高いこと、架橋ポリマーと静電 相互作用や疎水結合等の相互作用がないか、あつたとしても極めて弱いこと、等の 特徴を有することが好ましい。ここで、非架橋ポリマーは、架橋ポリマーからなる網目 構造内で濃厚溶液又はゾルの状態であり、それ自体は卵白のような流動性を持ち外 形を維持することができな 、。  [0038] In addition, this non-crosslinked polymer has characteristics such as non-electrolyte and high flexibility, no interaction such as electrostatic interaction and hydrophobic bond with the crosslinked polymer, or extremely weak if any. It is preferable to have. Here, the non-crosslinked polymer is in the form of a concentrated solution or sol within the network structure composed of the crosslinked polymer, and itself has fluidity like egg white and cannot maintain its outer shape.
[0039] また、本発明に係るゲルにおける非架橋ポリマーの重量含有率は、高分子量の非 架橋ポリマーが十分な物理的絡み合いを生じ得る濃度以上にすることが必要である という観点から、架橋ポリマーに対して 5〜: LOOモル倍の範囲であることが好ましい。 また、良溶媒による平衡膨潤時のゲルにおいて、非架橋ポリマーの濃度は、低すぎ ても高すぎてもゲルの力学強度が向上しないため、良溶媒に対して 0. 5〜5molZL (3. 5〜35%)であることが好ましい。さらに、非架橋ポリマーに架橋構造が全く含ま れていない場合には、非架橋ポリマーは、その濃度が溶媒に対して 0. 5〜5molZL (3. 5〜35%)であり、かつ、その分子量が後述の下限臨界分子量以上であることが 好ましい。  [0039] Further, from the viewpoint that the weight content of the non-crosslinked polymer in the gel according to the present invention needs to be higher than the concentration at which the high molecular weight non-crosslinked polymer can generate sufficient physical entanglement, Is preferably in the range of 5 to: LOO mole times. In addition, in the gel during equilibrium swelling with a good solvent, if the concentration of the non-crosslinked polymer is too low or too high, the mechanical strength of the gel will not improve, so 0.5 to 5 molZL (3.5 ~ 35%). Further, when the non-crosslinked polymer does not contain any cross-linked structure, the non-crosslinked polymer has a concentration of 0.5 to 5 molZL (3.5 to 35%) with respect to the solvent and has a molecular weight of Is preferably not less than the lower critical molecular weight described below.
[0040] この非架橋ポリマーの下限臨界分子量とは、濃厚溶液粘度の分子量依存性が、ポ リマー間の絡み合いによって 〜Mから 7?〜Μ3· 4に変化する臨界点を与える分子 量よりも 10〜: LOO倍大きぐかつ、その重合度(ポリマーユニット数)力 SlOOOO程度力 それ以上の分子量を指す。非架橋ポリマーの平均分子量が下限臨界分子量以上で あれば、セミ相互侵入網目構造を有するゲルの力学強度及び破壊エネルギーはそ の分子量に伴って向上し、その平均分子量が上限臨界分子量以上になれば、ゲル の力学強度及び破壊エネルギーは一定値を示すようになる。従って、図 5に示す例 で言えば、非架橋ポリマーの下限臨界分子量は、ゲルの破壊エネルギーが特異的 に向上し始める重量平均分子量 M 1 X 106付近となり、非架橋ポリマーの上限臨界 [0040] The lower critical molecular weight of the non-crosslinked polymer, a concentrated solution the molecular weight dependence of the viscosity, than the molecular weight giving the critical point that changes from ~M by entanglement between port Rimmer 7? To ~Μ 3 · 4 10 ~: LOO times larger and its degree of polymerization (number of polymer units) It refers to molecular weight higher than that. If the average molecular weight of the non-crosslinked polymer is equal to or higher than the lower critical molecular weight, the mechanical strength and fracture energy of the gel having a semi-interpenetrating network structure increase with the molecular weight, and if the average molecular weight exceeds the upper critical molecular weight. The mechanical strength and fracture energy of the gel show constant values. Therefore, in the example shown in FIG. 5, the lower critical molecular weight of the non-crosslinked polymer is around the weight average molecular weight M 1 X 10 6 where the fracture energy of the gel begins to increase specifically, and the upper critical critical mass of the non-crosslinked polymer.
w  w
分子量は、ゲルの破壊エネルギーが頭打ちになる重量平均分子量 M 4 X 106付近 The molecular weight is around the weight average molecular weight M 4 X 10 6 where the breaking energy of the gel peaks.
w  w
ということになる。なお、非架橋ポリマーの下限及び上限臨界分子量は、架橋ポリマ 一からなる網目構造に散在する空洞部の大きさに依拠して変化する。  It turns out that. The lower and upper critical molecular weights of the non-crosslinked polymer vary depending on the size of the cavities scattered in the network structure composed of the crosslinked polymer.
[0041] 非架橋ポリマーが占有する体積は、架橋ポリマーからなる網目構造に散在する空 洞部の体積以上であることが好ましい、即ち非架橋ポリマーは架橋ポリマー力もなる 網目構造に十分に絡み付いていることが好ましい。また、架橋ポリマーからなる網目 構造に散在する空洞部周辺には、とりわけ網目の密な部分があり、その密な部分に 対して非架橋ポリマーが十分に絡み付 、て 、れば、その密な部分に存在する非架 橋ポリマーは、拡散速度が著しく遅くなつて架橋点のように振舞う。従って、非架橋ポ リマーは、架橋ポリマー力 なる網目構造に散在する空洞部をまたがってその両末端 で少なくとも 2つの架橋点を有し、さらにその空洞部を完全に満たす体積を有するこ とが好適である。ちなみに、非架橋ポリマーの分子量は統計的な平均値で示される ため、全ての非架橋ポリマーの両端が架橋ポリマー力 なる網目構造に散在する空 洞部をまたがって架橋点を形成した場合における非架橋ポリマーの平均分子量が上 限臨界分子量ということになる。  [0041] The volume occupied by the non-crosslinked polymer is preferably equal to or greater than the volume of the vacancies scattered in the network structure composed of the crosslinked polymer, that is, the non-crosslinked polymer is sufficiently entangled in the network structure also having the crosslinked polymer force. It is preferable. In addition, there is a particularly dense portion of the network around the cavity portion scattered in the network structure composed of the crosslinked polymer, and the non-crosslinked polymer is sufficiently entangled with the dense portion. The non-crosslinked polymer present in the part behaves like a crosslinking point when the diffusion rate is significantly slow. Therefore, it is preferable that the non-crosslinked polymer has at least two cross-linking points at both ends across the cavity scattered in the network structure having the cross-linked polymer force, and further has a volume that completely fills the cavity. It is. By the way, the molecular weight of the non-crosslinked polymer is indicated by a statistical average value, and therefore, the non-crosslinked polymer is formed when the both ends of all non-crosslinked polymers straddle the cavities scattered in the network structure of the crosslinked polymer. The average molecular weight of the polymer is the upper critical molecular weight.
[0042] このような架橋ポリマー及び非架橋ポリマーを構成する原料モノマーとしては、 2— アクリルアミドー 2—メチルプロパンスルホン酸 (AMPS)、アクリルアミド(AAm)、ァク リル酸 (AA)、メタクリル酸、 N—イソプロピルアクリルアミド、ビュルピリジン、ヒドロキシ ェチルアタリレート、酢酸ビュル、ジメチルシロキサン、スチレン(St)、メチルメタクリレ ート(MMA)、トリフルォロェチルアタリレート(TFE)、スチレンスルホン酸 (SS)又は ジメチルアクリルアミド等が例示される。また、非電解質の非架橋ポリマーを構成する 原料モノマーとしては、フッ素含有モノマー、具体的には 2, 2, 2—トリフルォロェチ ルメチルアタリレート、 2, 2, 3, 3, 3 ペンタフルォロプロピルメタタリレート、 3— (ぺ ルフルォロブチル) 2 ヒドロキシプロピルメタタリレート、 1H, 1H, 9H へキサデ カフルォロノ-メタクリレー卜、 2, 2, 2—トリフルォロェチルアタリレー卜、 2, 3, 4, 5, 6 ペンタフルォロスチレン又はフッ化ビ-リデン等が例示される。また、架橋ポリマー 又は非架橋ポリマーには、ジエラン、ヒアルロン酸、カラギーナン、キチン又はアルギ ン酸等の多糖類、或いはゼラチンやコラーゲン等のタンパク質を使用することもでき る。 [0042] Raw material monomers constituting such a crosslinked polymer and a non-crosslinked polymer include 2-acrylamide-2-methylpropanesulfonic acid (AMPS), acrylamide (AAm), acrylic acid (AA), methacrylic acid, N-isopropylacrylamide, butylpyridine, hydroxyethyl acrylate, butyl acetate, dimethylsiloxane, styrene (St), methyl methacrylate (MMA), trifluoroethyl acrylate (TFE), styrene sulfonate (SS) Or dimethylacrylamide etc. are illustrated. In addition, as a raw material monomer constituting the non-electrolyte non-crosslinked polymer, a fluorine-containing monomer, specifically 2, 2, 2-trifluoroethylene Rumethyl Atarylate, 2, 2, 3, 3, 3 Pentafluoropropyl methacrylate, 3— (Perfluorobutyl) 2 Hydroxypropyl methacrylate, 1H, 1H, 9H Hexadecafluorono-methacrylate, 2, Examples thereof include 2,2-trifluoroethyl attareido, 2, 3, 4, 5, 6 pentafluorostyrene or vinylidene fluoride. For the crosslinked polymer or non-crosslinked polymer, polysaccharides such as dielan, hyaluronic acid, carrageenan, chitin or alginic acid, or proteins such as gelatin and collagen can also be used.
[0043] また、本発明に係るゲルは、純水中での含水率が 10〜99%であることが好ましぐ より好ましくは 50〜95%、さらには 85〜95%が好適である。このようにゲルが多量の 純水を含有すれば、ゲルの溶媒吸収率が高くなると同時にその透過性が向上するの で、このようなゲルは、高吸水性榭脂、ソフトコンタクトレンズ又は液体クロマトグラフィ 一用分離架体等の用途、或いは徐放性が要求される用途に有用である。  [0043] The gel according to the present invention preferably has a water content of 10 to 99% in pure water, more preferably 50 to 95%, and even more preferably 85 to 95%. If the gel contains a large amount of pure water, the solvent absorption rate of the gel is increased and the permeability thereof is improved. At the same time, such a gel is a highly water-absorbent resin, soft contact lens, or liquid chromatography. It is useful for applications such as single-use separation frames, or applications that require sustained release.
[0044] また、このゲルは、純水中から生理食塩水中に移し替えたときの体積維持率が 20 〜95%、さらには 60〜95%、特には 70〜95%であることが好ましい。また、このゲ ルは、一旦乾燥しても再膨潤することで元の物性を取り戻すことができ、その再膨潤 時の溶媒は水に限定されないという特徴も有している。従って、このゲルをォムッ等 の吸水剤として利用すれば、尿等の浸透圧の高い溶液でも大量に吸収できるため、 圧迫や衝撃に強ぐかつ、液漏れし難い高付加価値の衛生生理用品を提供すること ができる。  [0044] Further, this gel preferably has a volume retention rate of 20 to 95%, more preferably 60 to 95%, and particularly preferably 70 to 95% when transferred from pure water to physiological saline. In addition, this gel has the feature that even if it is once dried, it can be re-swelled to restore its original physical properties, and the solvent at the time of re-swelling is not limited to water. Therefore, if this gel is used as a water-absorbing agent such as Omumu, it can absorb a large amount of a solution with high osmotic pressure such as urine. Can be provided.
[0045] また、このゲルについて、架橋ポリマーと非架橋ポリマーとによって構成されるセミ 相互侵入網目構造に、さらに他のポリマーを絡み付力せてもよい。このセミ相互侵入 網目構造の表面層は最後に付加されたポリマーによって支配的に占有されるため、 セミ相互侵入網目構造に他のポリマーを絡みつ力せれば、その他のポリマーの特性 をゲルに付与することができる。従って、特許文献 1に開示された技術を利用して、こ のセミ相互侵入網目構造に電解質ポリマーを混合したりグラフト重合したりして自由 末端鎖を形成すれば、力学強度及び破壊エネルギーの極めて高 ヽ低摩擦材料を得 ることでさる。  [0045] Further, with respect to this gel, another polymer may be entangled with a semi-interpenetrating network structure constituted by a crosslinked polymer and a non-crosslinked polymer. Since the surface layer of this semi-interpenetrating network structure is dominated by the last added polymer, if the other polymer is entangled with the semi-interpenetrating network structure, the other polymer properties are imparted to the gel. can do. Therefore, if the technique disclosed in Patent Document 1 is used to form a free end chain by mixing an electrolyte polymer or graft polymerization into this semi-interpenetrating network structure, the mechanical strength and fracture energy are extremely high. This is achieved by obtaining high and low friction materials.
[0046] また、このセミ相互侵入網目構造を構成する非架橋ポリマーの側鎖を公知の手段 で化学修飾することにより、非架橋ポリマーの運動速度を変化させて、ゲルの膨潤度 特性、破壊エネルギー及び粘弾性特性を調節することができる。 [0046] Further, the side chain of the non-crosslinked polymer constituting this semi-interpenetrating network structure is known means. By chemically modifying the gel, the kinetics of the non-crosslinked polymer can be changed to adjust the swelling property, fracture energy and viscoelastic properties of the gel.
[0047] また、本発明に係るゲルを多価イオンの含有溶液に浸漬して膨潤させることにより、 セミ相互侵入網目構造を構成する架橋ポリマーや非架橋ポリマーが具備する特定の 官能基と前記多価イオンを反応させて、そのセミ相互侵入網目構造の表面及び内部 にお 、て多価イオンを含有するキレート錯体ゃコロイドを形成し、ゲルの物性を変化 させることができる。一般に、ゲルにおいて、金属イオンの含有率が高くなると、その 含水率は小さくなり、かつ、力学強度が大きくなる。本発明に係るゲルでは、外力が 加えられた際に非架橋ポリマーが過渡的網目を形成する必要があるため、架橋ポリ マーカもなる網目構造と多価イオンとが錯体ゃコロイドを形成し、かつ、非架橋ポリマ 一は多価イオンと錯体ゃコロイドを形成しないことが好ましい。また、このゲルにおけ る多価イオンの含有率は、純水による平衡膨潤時に 0. 01〜: Lmol/Lが好ましぐさ らには 0. 03-0. 3mol/Lが好適である。また、多価イオンとしては、錯体を形成し 得る金属イオンであればその種類を特に限定されるものではなぐ例えば亜鉛イオン 、鉄イオン、ニッケルイオン、コバルトイオン又はクロムイオン等が挙げられる。また、こ れらの多価イオンと錯体を形成しうる官能基としては、例えばカルボキシル基、スルホ ン酸基又はリン酸基が挙げられる。  [0047] Further, by immersing the gel according to the present invention in a polyvalent ion-containing solution to swell, the cross-linked polymer or non-cross-linked polymer constituting the semi-interpenetrating network structure and the above-described many functional groups are included. By reacting a valence ion, a chelate complex or a colloid containing a polyvalent ion is formed on the surface and inside of the semi-interpenetrating network structure, and the physical properties of the gel can be changed. In general, when the content of metal ions in a gel increases, the water content decreases and the mechanical strength increases. In the gel according to the present invention, when an external force is applied, the non-crosslinked polymer needs to form a transient network. Therefore, the network structure, which is also a crosslinked polymarker, and the polyvalent ions form a colloid, and It is preferable that the non-crosslinked polymer does not form a colloid with the multivalent ion. Further, the content of polyvalent ions in the gel is preferably 0.01 to Lmol / L at the time of equilibrium swelling with pure water, and more preferably 0.03 to 0.3 mol / L. Further, the polyvalent ion is not particularly limited as long as it is a metal ion capable of forming a complex, and examples thereof include zinc ion, iron ion, nickel ion, cobalt ion, and chromium ion. In addition, examples of the functional group capable of forming a complex with these multivalent ions include a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
[0048] また、本発明に係るゲルの表面電位を調節することにより、その表面に内皮細胞を 付着させて増殖させることができる。従って、本発明に係るゲルにおけるセミ相互侵 入網目構造の表面層の物性を支配する非架橋ポリマーの種類を選択したり、その非 架橋ポリマーの側鎖をィ匕学修飾したりすることにより、極めて耐久性の高い細胞培養 用基材を得ることができる。  [0048] Further, by adjusting the surface potential of the gel according to the present invention, endothelial cells can be attached to the surface and allowed to proliferate. Therefore, by selecting the type of the non-crosslinked polymer that governs the physical properties of the surface layer of the semi-interpenetrating network structure in the gel according to the present invention, or by chemically modifying the side chain of the non-crosslinked polymer, An extremely durable substrate for cell culture can be obtained.
[0049] また、上述の通り、架橋ポリマーからなる剛直で、かつ、空洞部の散在する網目構 造に、所定条件を満たす柔軟性の高い非架橋ポリマーが侵入して物理的に絡み付 Vヽた本発明のゲルを用いて吸水性榭脂ゃ潤滑材ゃ細胞培養用基材等を構成するこ とにより、これらの産業用材料の力学強度や耐久性を改善することができる。  [0049] Further, as described above, a non-crosslinked polymer having high flexibility satisfying a predetermined condition penetrates into a rigid network structure including a crosslinked polymer and in which cavities are scattered. The mechanical strength and durability of these industrial materials can be improved by using the gel of the present invention to constitute a water-absorbent resin, a lubricant, a cell culture substrate and the like.
[0050] 本発明に係るセミ相互侵入網目構造を有するゲルの製造方法は、特に限定される ものではな!/、が、先ず反応性の異なるモノマーをラジカル共重合させて空洞部の散 在する架橋ポリマーを形成し、次 ヽでこの架橋ポリマーを架橋剤を含有しな 、モノマ 一溶液に浸漬しつつこのモノマー溶液力 非架橋ポリマーをラジカル重合によってこ の架橋ポリマーに絡み付かせる逐次重合法が好ましい。また、架橋ポリマーからなる 網目構造に散在する空洞部をより大きくするには、反応性の異なるモノマーをラジカ ル共重合させてポリマーをー且形成し、そのポリマー溶液に他の架橋剤を添加したり ガンマ一線照射等を行ったりしてポリマー同士をさらに重合させる方法が好適である 。さらに、このセミ相互侵入網目構造を有するゲルをさらに他のモノマー溶液に浸漬 して、このゲルに第三、第四の非架橋ポリマーを絡み付けてもよい。 [0050] The method for producing a gel having a semi-interpenetrating network structure according to the present invention is not particularly limited! /, But first, radically copolymerization of monomers having different reactivities to disperse the cavities. Next, the cross-linked polymer is formed, and then the cross-linked polymer does not contain a cross-linking agent, and the monomer solution force is immersed in the monomer solution while the non-cross-linked polymer is entangled with the cross-linked polymer by radical polymerization. Legal is preferred. In addition, in order to make the voids scattered in the network structure composed of a crosslinked polymer larger, a monomer having a different reactivity is radically copolymerized to form a polymer, and another crosslinking agent is added to the polymer solution. A method of further polymerizing the polymers by gamma ray irradiation or the like is preferable. Further, the gel having the semi-interpenetrating network structure may be further immersed in another monomer solution, and the third and fourth non-crosslinked polymers may be entangled with the gel.
[0051] このような架橋ポリマー力もなる網目構造の形成においては、適当な濃度の電解質 ビュルモノマーに対して 0. 001〜0. lmol倍のジビュルモノマーを架橋剤として加 え、これらをラジカル共重合させることが好ましい。架橋剤としては、 N, N'—メチレン ビスアクリルアミド(MBAA)やエチレングリコールジメタタリレートが例示される。ちな みに、弱電解質のビュルモノマーを用いる場合には、対イオンの交換や pHの制御に より、その解離度を高めて力も反応を開始させる必要がある。また、架橋ポリマーを生 成する反応系にその貧溶媒を加えることで、架橋ポリマーから構成される網目構造の 不均一性を高めることができる。また、架橋ポリマーのラジカル重合時に、その網目 構造の内部に微粒子を混入させておいて、網目構造の形成後にその微粒子を溶解 等によって取り除くことにより、その網目構造の不均一性を高めてもよい。  [0051] In the formation of a network structure having such a crosslinking polymer force, 0.001 to 0.1 mol times dibule monomer is added as a crosslinking agent to an appropriate concentration of electrolyte bulule monomer, and these are combined with radicals. It is preferable to polymerize. Examples of the cross-linking agent include N, N′-methylene bisacrylamide (MBAA) and ethylene glycol dimetatalylate. By the way, when using weak electrolyte bull monomers, it is necessary to increase the degree of dissociation and to initiate the reaction with force by exchanging counterions and controlling pH. Further, by adding the poor solvent to the reaction system for producing the crosslinked polymer, the non-uniformity of the network structure composed of the crosslinked polymer can be enhanced. In addition, when the crosslinked polymer is radically polymerized, non-uniformity of the network structure may be increased by mixing fine particles inside the network structure and removing the fine particles by dissolution after the formation of the network structure. .
[0052] また、逐次重合法を用いて架橋ポリマーからなる網目構造に非架橋ポリマーを絡み 付ける際には、架橋ポリマーは、溶媒を除去されていても、合成直後であっても、平 衡膨潤であってもよい。さらに、この架橋ポリマーが非架橋ポリマーのモノマー溶液に 浸漬されて平衡膨潤状態になった後、即ちその網目構造の内部と外部とでモノマー 濃度がほぼ等しくなつた後に、初めてそのモノマーの重合が行われるようにすること が好ましい。なお、このモノマー溶液において、モノマーに対するジビュルモノマー 等の架橋剤の濃度は 0. O01mol%未満である必要がある。このような逐次重合法に よれば、架橋ポリマーが十分膨潤した状態で非架橋ポリマーの重合が行われるので 、非架橋ポリマーが架橋ポリマーに絡み付いても、その体積増加率は高々数十%に 留まる。なお、このセミ相互侵入網目構造にさらに第三、第四のポリマーを絡み付け るには、前述した非架橋ポリマーの重合手段と同様の手段によればよい。 [0052] In addition, when the non-crosslinked polymer is entangled with the network structure composed of the crosslinked polymer by using the sequential polymerization method, the crosslinked polymer may be equilibrated and swollen even if the solvent is removed or just after the synthesis. It may be. Furthermore, after the crosslinked polymer is immersed in the monomer solution of the non-crosslinked polymer and becomes in an equilibrium swelling state, that is, after the monomer concentration is almost equal between the inside and the outside of the network structure, the polymerization of the monomer is not performed for the first time. It is preferable that the In this monomer solution, the concentration of the cross-linking agent such as dibule monomer with respect to the monomer needs to be less than 0. 01 mol%. According to such a sequential polymerization method, since the non-crosslinked polymer is polymerized in a state where the crosslinked polymer is sufficiently swollen, even if the non-crosslinked polymer is entangled with the crosslinked polymer, the volume increase rate remains at most several tens of percent. . In addition, the third and fourth polymers are further entangled with this semi-interpenetrating network structure. For this purpose, the same means as the polymerization means for the non-crosslinked polymer described above may be used.
[0053] なお、このセミ相互侵入網目構造の表面及び内部に多価イオンを含有する錯体ゃ コロイドを形成するには、前述の方法で製造したゲルを一旦真空乾燥させた後、この 乾燥させたゲルを多価イオンの含有溶液中に浸漬すればょ 、。 [0053] In order to form a colloid containing a multivalent ion on the surface and inside of this semi-interpenetrating network structure, the gel produced by the above-mentioned method was once vacuum dried and then dried. Soak the gel in a solution containing multivalent ions.
実施例  Example
[0054] 先ず、本発明に係るゲルの比較対照として、特許文献 2における実施例 1で記載さ れた方法を用いて、架橋ポリマーからなる空洞部が散在する網目構造に「架橋度 0. lmol%の第二のポリマー」が侵入し物理的に絡み付!/、たセミ相互侵入網目構造を 有するゲルを作製した。具体的には、以下のとおりである。  [0054] First, as a comparative control of the gel according to the present invention, using the method described in Example 1 in Patent Document 2, a network structure in which cavities made of a crosslinked polymer are scattered is used. % Second polymer ”penetrated and physically entangled! /, And a gel having a semi-interpenetrating network structure was prepared. Specifically, it is as follows.
[0055] (比較例 1)  [0055] (Comparative Example 1)
<架橋ポリマーからなる空洞部の散在する網目構造の形成 >  <Formation of network structure with interspersed cavities made of crosslinked polymer>
100 X 100 X 2mmのシリコン榭脂板からカッターで外辺長 80 X 80mm,幅 5mm の枠を切りだし、枠の 1箇所 3mmの溝を空けた。このシリコン榭脂枠を 2枚の 100 X 1 00 X 3mmのガラス板で挟み付けて、重合容器を組み立てた。  A frame with an outer length of 80 X 80 mm and a width of 5 mm was cut out from a 100 X 100 X 2 mm silicone resin board with a cutter, and a 3 mm groove was made in one part of the frame. The silicone resin frame was sandwiched between two 100 × 100 × 3 mm glass plates to assemble a polymerization vessel.
[0056] モノマーである 2molZLの 2 アクリルアミド 2 メチルプロパンスルホン酸 (AM PS)水溶液 25mlと、架橋剤である 2molZLの N, N'—メチレンビスアクリルアミド( MBAA)水溶液 lmlと、開始剤である 0. ImolZLの 2—ォキソダルタル酸水溶液 1 mlとを合わせ、水で調整して水溶液 50mlを得た。  [0056] 25 mol of 2 molZL 2-acrylamide 2-methylpropanesulfonic acid (AMPS) aqueous solution as a monomer, 1 ml of 2 molZL N, N'-methylenebisacrylamide (MBAA) aqueous solution as a crosslinking agent, and 0. 50 ml of an aqueous solution was obtained by combining with 1 ml of a 2-oxodaltalic acid aqueous solution of ImolZL and adjusting with water.
[0057] この水溶液を窒素ガスを用いて脱酸素した。 、て、この脱酸素水溶液を前記重 合容器の一方のガラス板に置かれたシリコン榭脂板の開口部に流し込み、シリコン板 上に他方のガラス板を重ねて前記開口部周辺をシールした後、波長 365nmの UVラ ンプ(22W、 0. 34A)を用いて紫外線を常温で 6時間照射して重合させることにより、 架橋度が 4mol%で空洞部が散在する不均一な網目構造を有するゲル (半製品)を 作製した。なお、架橋度の計算は、以下の通りである。  [0057] This aqueous solution was deoxygenated using nitrogen gas. Then, after pouring this deoxygenated aqueous solution into the opening of the silicon resin plate placed on one glass plate of the polymerization container, the other glass plate is stacked on the silicon plate and the periphery of the opening is sealed. By using UV lamp (22W, 0.34A) with a wavelength of 365nm and irradiating with UV light at room temperature for 6 hours, the gel has a non-uniform network structure with a degree of cross-linking of 4 mol% and scattered cavities. (Semi-finished product) was produced. The calculation of the degree of crosslinking is as follows.
[0058] { (MBAA水溶液濃度 X量) Z (モノマー濃度 X量) } X 100  [0058] {(MBAA aqueous solution concentration X amount) Z (monomer concentration X amount)} X 100
= { (2mol/L X lml) / (2mol/L X 25ml) } X 100  = {(2mol / L X lml) / (2mol / L X 25ml)} X 100
=4mol%  = 4mol%
[0059] <相互侵入網目構造又はセミ相互侵入網目構造の形成 > モノマーである 5molZLのアクリルアミド (AAm)水溶液 40mlと、架橋剤である 0. 2molZLの MBAA水溶液 lmlと、開始剤である 0. ImolZLの 2—ォキソグルタル 酸水溶液 lmlとを混合し、水で調整して水溶液 (浸漬溶液) 200mlを得た。この浸 漬溶液を窒素ガスを用いて脱酸素した。この時の開始剤濃度は、 0. lmol%であつ た。なお、架橋度の計算は以下の通りである。 <Formation of interpenetrating network structure or semi-interpenetrating network structure> Mix 40 ml of 5 molZL acrylamide (AAm) aqueous solution as a monomer, 1 ml of 0.2 molZL MBAA aqueous solution as a cross-linking agent, and 1 ml of 0.2 mol aqueous solution of ImolZL 2-oxoglutaric acid and adjust with water. 200 ml of an aqueous solution (immersion solution) was obtained. This soaking solution was deoxygenated using nitrogen gas. The initiator concentration at this time was 0.1 mol%. The calculation of the degree of crosslinking is as follows.
[0060] { (0. 2mol/L X lml) / (5mol/L X 40ml) } X 100 [0060] {(0. 2mol / L X lml) / (5mol / L X 40ml)} X 100
=0. lmol%  = 0. Lmol%
[0061] 次 ヽで、前記浸漬溶液と前記ゲル (半製品) 4gとをそのゲルより十分に大きな容量 のシール容器に入れた。この容器を 4°Cの冷蔵庫に 24時間設置し、前記浸漬溶液 中のモノマー、架橋剤及び開始剤を前記ゲルに拡散'浸透させた。この工程におい て、浸漬溶液の濃度を一様にする目的で時々容器を静かに振盪した。なお、このェ 程において、前記ゲル (半製品)は平衡膨潤してその体積が約十倍になり、網目の不 均一性が拡大して、空洞部が散在する網目構造が形成される。  [0061] Next, the soaking solution and 4 g of the gel (semi-finished product) were placed in a sealed container having a capacity sufficiently larger than the gel. This container was placed in a refrigerator at 4 ° C. for 24 hours, and the monomer, crosslinking agent and initiator in the soaking solution were diffused and penetrated into the gel. During this process, the container was occasionally gently shaken to make the concentration of the immersion solution uniform. In this process, the gel (semi-finished product) is swelled in equilibrium to increase its volume by about ten times, the non-uniformity of the network is expanded, and a network structure in which cavities are scattered is formed.
[0062] 次いで、前記浸漬溶液からゲル (半製品)を取り出し、適当な大きさに裁断した後、 このゲルを 100 X 100 X 3mmの 2枚のガラス板の間に気泡が混入しないように挟持 した。この 2枚のガラス板の周囲 4辺をシールした後、波長 365nmの UVランプ(30 W、 0. 68A)を用いて紫外線を常温で 6時間照射した。このとき、前記ゲル中に拡散 した AAmモノマーが重合して第二のポリマーが生成されることにより、相互侵入網目 構造又はセミ相互侵入網目構造を有するゲルが得られた。このゲルにおける第二の ポリマーの架橋度は、 0. lmol%であった。なお、その架橋度の計算は以下の通り である。  [0062] Next, the gel (semi-finished product) was taken out from the dipping solution, cut into an appropriate size, and then the gel was sandwiched between two 100 X 100 X 3mm glass plates so that no air bubbles were mixed. After sealing the four sides around the two glass plates, ultraviolet rays were irradiated for 6 hours at room temperature using a 365 nm wavelength UV lamp (30 W, 0.68 A). At this time, a gel having an interpenetrating network structure or a semi-interpenetrating network structure was obtained by polymerization of the AAm monomer diffused in the gel to produce a second polymer. The degree of crosslinking of the second polymer in this gel was 0.1 mol%. The calculation of the degree of crosslinking is as follows.
[0063] { (0. 2mol/L X lml) / (5mol/L X 40ml) } X 100  [0063] {(0. 2mol / L X lml) / (5mol / L X 40ml)} X 100
=0. lmol%  = 0. Lmol%
[0064] このようにして得られた相互侵入網目構造又はセミ相互侵入網目構造を有するゲ ルを純水(良溶媒)中で平衡膨潤させた。純水による平行膨潤時のゲルにおいて、架 橋ポリマーの重量含有率は 1. 5%であり、第二のポリマーの重量含有率は 10. 5% であり、純水の重量含有率は 88%であり、架橋ポリマーの平衡膨潤度は 44であり、 ゲル自体の平衡膨潤度は 8であった。 [0065] そして、このゲルについて、下記の手段により、「初期弾性率」、「圧縮強度」、「破壊 エネルギー」及び「水素結合より強い分子間相互作用の有無」を測定した。このゲル の構成及び測定された特性について、下記「表 1」にまとめて示す。 [0064] The gel having the interpenetrating network structure or semi-interpenetrating network structure obtained in this manner was equilibratedly swollen in pure water (good solvent). In the gel during parallel swelling with pure water, the weight content of the bridge polymer is 1.5%, the weight content of the second polymer is 10.5%, and the weight content of pure water is 88%. The equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 8. [0065] Then, for this gel, "initial elastic modulus", "compressive strength", "breaking energy" and "presence / absence of intermolecular interaction stronger than hydrogen bond" were measured by the following means. The composition and measured properties of this gel are summarized in “Table 1” below.
[0066] (実施例 1)〜(実施例 3)  [0066] (Example 1) to (Example 3)
前記比較例 1において、く相互侵入網目構造又はセミ相互侵入網目構造の形成 >における下記の点を変更する以外は同様にして、セミ相互侵入網目構造を有する ゲルを作製した。  A gel having a semi-interpenetrating network structure was prepared in the same manner as in Comparative Example 1 except that the following points in the formation of an interpenetrating network structure or a semi-interpenetrating network structure> were changed.
[0067] モノマーである 5molZLのアクリルアミド (AAm)水溶液 40mlと、開始剤である 0.  [0067] 40 ml of a 5 mol ZL acrylamide (AAm) aqueous solution as a monomer and 0.
ImolZLの 2—ォキソグルタル酸水溶液 lZ20ml (50 μ 1)とを混合し、水で調整し て水溶液 (浸漬溶液) 200mlを得た。この浸漬溶液における開始剤濃度は、 0. 005 mol%である。なお、この開始剤濃度の計算は以下の通りである。  ImolZL 2-oxoglutaric acid aqueous solution lZ20ml (50μ1) was mixed and adjusted with water to obtain 200ml of aqueous solution (immersion solution). The initiator concentration in this soaking solution is 0.005 mol%. The calculation of the initiator concentration is as follows.
[0068] { (0. lmol/L X l/20ml) / (5mol/L X 40ml) } X 100  [0068] {(0. lmol / L X l / 20ml) / (5mol / L X 40ml)} X 100
=0. 005mol%  = 0. 005mol%
[0069] また、浸漬溶液から取り出した後に 2枚のガラス板で挟持したゲル (半製品)に対し て、波長 365nmの UVランプ(30W、 0. 68A)を用いて紫外線を常温で、実施例 1 では 10時間、実施例 2では 8時間、並びに実施例 3では 6時間照射することにより、 前記ゲル (半製品)を構成する空洞部の散在する網目構造に、所定の重量平均分子 量 Mの非架橋ポリマーを生成すると伴に絡み付けて、セミ相互侵入網目構造を有 w  [0069] In addition, the gel (semi-finished product) sandwiched between two glass plates after being taken out from the dipping solution was irradiated with ultraviolet rays at room temperature using a 365 nm wavelength UV lamp (30W, 0.6A). By irradiating for 10 hours in Example 1, 8 hours in Example 2, and 6 hours in Example 3, the network structure in which cavities constituting the gel (semi-finished product) are scattered has a predetermined weight average molecular weight M. When a non-crosslinked polymer is formed, it is entangled and has a semi-interpenetrating network structure.
するゲルを得た。  A gel was obtained.
[0070] このようにして得られたセミ相互侵入網目構造を有するゲルをそれぞれ純水(良溶 媒)中で平衡膨潤させた。純水による平行膨潤時のゲルそれぞれにおいて、架橋ポ リマーの重量含有率は 1. 5%であり、非架橋ポリマーの重量含有率は 10. 5%であり 、純水の重量含有率は 88%であり、架橋ポリマーの平衡膨潤度は 44であり、ゲル自 体の平衡膨潤度は 8であった。これらのゲルの構成及び測定された特性につ!、て、 下記「表 1」にまとめて示す。  [0070] Each of the gels having a semi-interpenetrating network structure obtained in this manner was equilibratedly swollen in pure water (good solvent). In each gel in parallel swelling with pure water, the weight content of the crosslinked polymer is 1.5%, the weight content of the non-crosslinked polymer is 10.5%, and the weight content of pure water is 88%. The equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 8. The composition and measured properties of these gels are summarized in “Table 1” below.
[0071] (実施例 4)  [Example 4]
前記実施例 3と同様にして得られたセミ相互侵入網目構造を有するゲルにおける 非架橋ポリマーであるポリアクリルアミド (PAAm)に対して、次の手段を用いて化学 修飾を施した。 The polyacrylamide (PAAm), which is a non-crosslinked polymer in a gel having a semi-interpenetrating network structure obtained in the same manner as in Example 3, was chemically treated using the following means. Modified.
[0072] <マンニッヒ反応による PAAm側基の化学修飾 >  [0072] <Chemical modification of PAAm side group by Mannich reaction>
150mlの純水に 35%のホルムアルデヒド水溶液 1. 2mlを溶解し、トリエチルァミン をカロえて pH9. 0に調整後、 70度になるまで加熱した。この熱反応溶液中に、純水中 で平衡膨潤に達した板状 (厚さ約 5mm)のゲル 25gを入れて、メチロール化反応を 開始させた。反応開始から 1時間経過後、この板状のゲルを反応系外に取り出し、大 過剰の冷水に膨潤させてメチロールイ匕反応を停止させた。この反応により PAAmに 導入されたメチロール基の導入率を既知の方法により算出したところ、約 30%であつ た。  Dissolve 1.2 ml of 35% formaldehyde aqueous solution in 150 ml of pure water, calorie triethylamine, adjust to pH 9.0, and heat to 70 degrees. In this hot reaction solution, 25 g of a plate-like (about 5 mm thick) gel that reached equilibrium swelling in pure water was added to initiate the methylolation reaction. After 1 hour from the start of the reaction, this plate-like gel was taken out of the reaction system and swollen in a large excess of cold water to stop the methylol cocoon reaction. When the introduction rate of methylol groups introduced into PAAm by this reaction was calculated by a known method, it was about 30%.
[0073] このようにして得られたメチロールイ匕されたセミ相互侵入網目構造を有するゲルを 再度純水中で平衡膨潤させた。純水による平行膨潤時のゲルにおいて、架橋ポリマ 一の重量含有率は 1. 5%であり、非架橋ポリマーの重量含有率は 12. 5%であり、 純水の重量含有率は 86%であり、架橋ポリマーの平衡膨潤度は 44であり、ゲル自体 の平衡膨潤度は 7. 4であった。このゲルの構成及び測定された特性について、下記 「表 1」にまとめて示す。  [0073] The gel having a semi-interpenetrating network structure obtained in this manner was subjected to equilibrium swelling again in pure water. In the gel in parallel swelling with pure water, the weight content of the crosslinked polymer is 1.5%, the weight content of the non-crosslinked polymer is 12.5%, and the weight content of pure water is 86%. Yes, the equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 7.4. The composition and measured properties of this gel are summarized in “Table 1” below.
[0074] (比較例 2)  [0074] (Comparative Example 2)
<架橋ポリマーからなる空洞部の散在する網目構造の形成 >  <Formation of network structure with interspersed cavities made of crosslinked polymer>
100 X 100 X 0. 1mmのシリコン榭脂板からカッターで外辺長 80 X 80mm,幅 5m mの枠を切り出し、この枠の 1箇所に 3mmの溝を空けた。このシリコン榭脂枠を 2枚の 100 X 100 X 3mmのガラス板で挟み付け、重合容器を組み立てた。  A frame with an outer length of 80 x 80 mm and a width of 5 mm was cut out from a 100 x 100 x 0.1 mm silicone resin board with a cutter, and a 3 mm groove was made in one part of this frame. The silicone resin frame was sandwiched between two 100 × 100 × 3 mm glass plates to assemble a polymerization vessel.
[0075] モノマーである 2molZLの AMPS水溶液 25mlと、架橋剤である 2molZLの MB AA水溶液 lZ8ml(125 1)と、開始剤である 0. ImolZLの 2—ォキソダルタル酸 水溶液 lmlとを混合し、水で調整して水溶液 50mlを得た。  [0075] 25 ml of a 2 mol ZL AMPS aqueous solution as a monomer, 8 ml (125 1) of a 2 mol ZL MB AA aqueous solution as a cross-linking agent, and 1 ml of an ImolZL 2-oxodaltalic acid aqueous solution as an initiator were mixed with water. Adjustment was performed to obtain 50 ml of an aqueous solution.
[0076] この水溶液を窒素ガスを用いて脱酸素した。つづ 、て、この脱酸素水溶液を前記 重合容器の一方のガラス板に置かれたシリコン板の開口部に流し込み、シリコン板上 に他方のガラス板を重ねて前記開口部周辺をシールした後、波長 365nmの UVラン プ(30W、 0. 68A)を用いて紫外線を常温で 6時間照射して重合させることにより、 架橋度が 0. 5mol%で空洞部が散在する網目構造を有するゲル (半製品)を作製し た。なお、架橋度の計算は、以下の通りである。 [0076] This aqueous solution was deoxygenated using nitrogen gas. Subsequently, the deoxygenated aqueous solution is poured into an opening of a silicon plate placed on one glass plate of the polymerization vessel, and the other glass plate is overlaid on the silicon plate to seal the periphery of the opening, and then the wavelength. By using a 365nm UV lamp (30W, 0.668A) for UV irradiation at room temperature for 6 hours to polymerize, a gel with a network structure with a cross-linking degree of 0.5 mol% and interspersed cavities (semi-finished product) ) It was. The calculation of the degree of crosslinking is as follows.
[0077] { (MBAA水溶液濃度 X量) Z (モノマー濃度 X量) } X 100 [0077] {(MBAA aqueous solution concentration X amount) Z (monomer concentration X amount)} X 100
= { (2mol/L X 0. 125ml) / (2mol/L X 25ml) } X 100  = {(2mol / L X 0. 125ml) / (2mol / L X 25ml)} X 100
=0. 5mol%  = 0.5mol%
[0078] <相互侵入網目構造又はセミ相互侵入網目構造の形成 >  <Formation of mutual interpenetrating network structure or semi-interpenetrating network structure>
モノマーである 5molZLのアクリルアミド (AAm)水溶液 40mlと、架橋剤である 2m olZLである MBAA水溶液 lmlと、開始剤である 0. ImolZLの 2—ォキソグルタル 酸水溶液 lZ20ml (50 μ 1)とを混合し、水で調整して水溶液 (浸漬溶液) 200mlを 得た。この浸漬溶液を窒素ガスを用いて脱酸素した。この浸漬溶液における開始剤 濃度は、 0. 005mol%である。なお、開始剤濃度の計算は以下の通りである。  Mix 40 ml of 5 molZL acrylamide (AAm) aqueous solution as monomer, 1 ml of MBAA aqueous solution as 2 molZL as crosslinking agent, and 20 ml (50 μ1) of 2-Zoglutarate aqueous solution of 0.ImolZL as initiator. 200 ml of an aqueous solution (immersion solution) was obtained by adjusting with water. The soaking solution was deoxygenated using nitrogen gas. The initiator concentration in this soaking solution is 0.005 mol%. The calculation of the initiator concentration is as follows.
[0079] { (0. lmol/L X l/20ml) / (5mol/L X 40ml) } X 100 [0079] {(0. lmol / L X l / 20ml) / (5mol / L X 40ml)} X 100
=0. 005mol%  = 0. 005mol%
[0080] 次 ヽで、前記浸漬溶液と前記ゲル(半製品) 0. 3gをそのゲルより十分に大きな容 量のシール容器に入れた。この容器を 4°Cの冷蔵庫に 24時間設置し、前記浸漬溶 液中のモノマー、架橋剤及び開始剤を前記ゲル (半製品)に拡散させ浸透させた。こ の工程において、浸漬溶液の濃度を一様にする目的で時々容器を静かに振盪した 。この工程において、ゲル(半製品)が平衡膨潤してその体積が 250倍以上になった  [0080] Next, 0.3 g of the soaking solution and the gel (semi-finished product) was placed in a sealed container having a capacity sufficiently larger than the gel. This container was placed in a refrigerator at 4 ° C. for 24 hours, and the monomer, crosslinking agent and initiator in the immersion solution were diffused and permeated into the gel (semi-finished product). During this process, the container was sometimes gently shaken to make the concentration of the immersion solution uniform. In this process, the gel (semi-finished product) was equilibrium swollen and its volume increased more than 250 times.
[0081] 次いで、前記浸漬溶液からゲル (半製品)を取り出し、適当な大きさに裁断した後、 このゲルを 100 X 100 X 3mmの 2枚のガラス板を用いて、ガラス板の間に気泡が混 入しないようにして挟持した。この 2枚のガラス板の周囲 4辺をシールした後、波長 36 5nmの UVランプ(30W、 0. 68A)を用いて紫外線を常温で 10時間照射した。この とき、前記ゲル中に拡散した AAmモノマーが重合することにより、相互侵入網目構 造又はセミ相互侵入網目構造を有するゲルが得られた。 [0081] Next, after the gel (semi-finished product) was taken out from the soaking solution and cut into an appropriate size, air bubbles were mixed between the glass plates using two glass plates of 100 X 100 X 3mm. Clamped so as not to enter. After sealing the four sides around the two glass plates, ultraviolet rays were irradiated at room temperature for 10 hours using a UV lamp (30 W, 0.68 A) having a wavelength of 365 nm. At this time, a gel having an interpenetrating network structure or a semi-interpenetrating network structure was obtained by polymerization of the AAm monomer diffused in the gel.
[0082] このようにして得られたゲルを純水中で平衡膨潤させた。純水による平行膨潤時の ゲルにおいて、架橋ポリマーの重量含有率は 0. 1%であり、第二のポリマーの重量 含有率は 5. 9%であり、純水の重量含有率は 94%であり、架橋ポリマーの平衡膨潤 度は 1360であり、ゲル自体の平衡膨潤度は 17であった。このゲルの構成及び測定 された特性について、下記「表 1」にまとめて示す。 [0082] The gel thus obtained was subjected to equilibrium swelling in pure water. In the gel during parallel swelling with pure water, the weight content of the crosslinked polymer is 0.1%, the weight content of the second polymer is 5.9%, and the weight content of pure water is 94%. Yes, the equilibrium swelling degree of the crosslinked polymer was 1360, and the equilibrium swelling degree of the gel itself was 17. Composition and measurement of this gel The characteristics are summarized in “Table 1” below.
[0083] (比較例 3) [0083] (Comparative Example 3)
前記比較例 1において、く架橋ポリマー力 なる空洞部の散在する網目構造の形 成 >で使用される AMPS及び MBAAの重量含有率と、 <相互侵入網目構造又は セミ相互侵入網目構造の形成〉で使用される AAm及び MBAAの重量含有率とを 変更する以外は同様にして、相互侵入網目構造又はセミ相互侵入網目構造を有す るゲルを得た。  In Comparative Example 1, the weight content of AMPS and MBAA used in the formation of a network structure in which cavities having cross-linked polymer strength are scattered> and <formation of an interpenetrating network structure or a semi-interpenetrating network structure> A gel having an interpenetrating network structure or a semi-interpenetrating network structure was obtained in the same manner except that the weight content of AAm and MBAA used was changed.
[0084] このようにして得られたゲルを純水中で平衡膨潤させた。純水による平行膨潤時の ゲルにおいて、架橋ポリマーの重量含有率は 0. 7%であり、架橋ポリマーの架橋度 は 2mol%であり、第二のポリマーの重量含有率は 9. 3%であり、第二のポリマーの 架橋度は 0. lmol%であり、純水の重量含有率は 90%であり、架橋ポリマーの平衡 膨潤度は 103であり、ゲル自体の平衡膨潤度は 10であった。このゲルの構成及び測 定された特性について、下記「表 1」にまとめて示す。  [0084] The gel thus obtained was subjected to equilibrium swelling in pure water. In the gel during parallel swelling with pure water, the weight content of the crosslinked polymer is 0.7%, the degree of crosslinking of the crosslinked polymer is 2 mol%, and the weight content of the second polymer is 9.3%. The degree of crosslinking of the second polymer was 0.1 mol%, the weight content of pure water was 90%, the equilibrium swelling degree of the crosslinked polymer was 103, and the equilibrium swelling degree of the gel itself was 10. . The composition and measured properties of this gel are summarized in “Table 1” below.
[0085] (比較例 4)  [0085] (Comparative Example 4)
前記比較例 1において、く相互侵入網目構造又はセミ相互侵入網目構造の形成 >で MBAAを使用しない以外は同様にして、セミ相互侵入網目構造を有するゲル を得た。  A gel having a semi-interpenetrating network structure was obtained in the same manner as in Comparative Example 1 except that MBAA was not used in the formation of an interpenetrating network structure or a semi-interpenetrating network structure>.
[0086] このようにして得られたゲルを純水中で平衡膨潤させた。純水による平行膨潤時の ゲルにおいて、架橋ポリマーの重量含有率は 1. 5%であり、架橋ポリマーの架橋度 は 4mol%であり、非架橋ポリマーの重量含有率は 10. 5%であり、純水の重量含有 率は 88%であり、架橋ポリマーの平衡膨潤度は 44であり、ゲル自体の平衡膨潤度は 8であった。このゲルの構成及び測定された特性について、下記「表 1」にまとめて示 す。  [0086] The gel thus obtained was subjected to equilibrium swelling in pure water. In the gel at the time of parallel swelling with pure water, the weight content of the crosslinked polymer is 1.5%, the degree of crosslinking of the crosslinked polymer is 4 mol%, and the weight content of the non-crosslinked polymer is 10.5%, The weight content of pure water was 88%, the equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 8. The composition and measured properties of this gel are summarized in “Table 1” below.
[0087] (比較例 5)  [0087] (Comparative Example 5)
前記比較例 1において、く相互侵入網目構造又はセミ相互侵入網目構造の形成 >を次のように変更した以外は同様にして、セミ相互侵入網目構造を有するゲルを 得た。  A gel having a semi-interpenetrating network structure was obtained in the same manner as in Comparative Example 1 except that the formation of the interpenetrating network structure or semi-interpenetrating network structure> was changed as follows.
[0088] <セミ相互侵入網目構造ゲルの形成 > モノマーである 5molZLのアクリルアミド (AAm)水溶液 40mlと、開始剤である 0. ImolZLの 2 -ォキソダルタル酸水溶液 1 mlとを混合し、さらに連鎖移動剤として 2- メチルカプトエタノールを 5. 6 1加え、水で調整して水溶液(浸漬溶液) 200mlを得 た。この浸漬溶液に対して窒素ガスを用いて脱酸素した。この浸漬溶液における開 始剤濃度は、 0. lmol%である。なお、開始剤濃度の計算は以下の通りである。 [0088] <Formation of semi-interpenetrating network structure gel> Mix 40 ml of 5 molZL acrylamide (AAm) aqueous solution as monomer and 1 ml of 0. ImolZL 2-oxodaltaric acid aqueous solution as initiator, and then add 5.6 1 2-methylcaptoethanol as chain transfer agent. The solution was adjusted with water to obtain 200 ml of an aqueous solution (immersion solution). The immersion solution was deoxygenated using nitrogen gas. The initiator concentration in this immersion solution is 0.1 mol%. The calculation of the initiator concentration is as follows.
[0089] { (0. 2mol/L X lml) / (5mol/L X 40ml) } X 100 [0089] {(0. 2mol / L X lml) / (5mol / L X 40ml)} X 100
=0. lmol%  = 0. Lmol%
[0090] 次 、で、前記浸漬溶液とゲル(半製品) 4gをそのゲルより十分に大きな容量のシー ル容器に入れた。この容器を 4°Cの冷蔵庫に 24時間設置し、前記浸漬溶液中のモノ マー、架橋剤及び開始剤を前記ゲルに拡散させ浸透させた。この工程において、浸 漬液の濃度を一様にする目的で時々容器を静かに振盪した。この工程において、前 記ゲルが平衡膨潤してその体積が約十倍になることにより、網目構造の不均一性が 拡大して、空洞部が散在する網目構造が形成される。  Next, 4 g of the soaking solution and gel (semi-finished product) were placed in a seal container having a capacity sufficiently larger than the gel. This container was placed in a refrigerator at 4 ° C. for 24 hours, and the monomer, crosslinking agent and initiator in the soaking solution were diffused and permeated into the gel. During this process, the container was sometimes gently shaken to make the concentration of the immersion liquid uniform. In this step, the gel swells and becomes approximately ten times larger in volume, thereby increasing the non-uniformity of the network structure and forming a network structure in which cavities are scattered.
[0091] 次いで、この浸漬溶液からゲルを取り出し、適当な大きさに裁断した後、このゲルを 100 X 100 X 3mmの 2枚のガラス板を用いて、ガラス板の間に気泡が混入しないよう にして挟持した。この 2枚のガラス板の周囲 4辺をシールした後、波長 365nmの UV ランプ(30W、 0. 68A)を用いて紫外線を常温で 10時問照射した。このとき、前記ゲ ル中に拡散した AAmモノマーが重合することにより、セミ相互侵入網目構造を有す るゲルが得られた。  [0091] Next, after the gel is taken out from the soaking solution and cut into an appropriate size, this gel is used with two glass plates of 100 X 100 X 3mm so that air bubbles do not mix between the glass plates. I pinched it. After sealing the four sides around the two glass plates, ultraviolet rays were irradiated at room temperature for 10 hours using a UV lamp (30 W, 0.68 A) with a wavelength of 365 nm. At this time, a gel having a semi-interpenetrating network structure was obtained by polymerization of the AAm monomer diffused in the gel.
[0092] このようにして得られたゲルを純水中で平衡膨潤させた。純水による平行膨潤時の ゲルにおいて、架橋ポリマーの重量含有率は 1. 6%であり、架橋ポリマーの架橋度 は 4mol%であり、非架橋ポリマーの重量含有率は 8. 2%であり、純水の重量含有率 は 89%であり、架橋ポリマーの平衡膨潤度は 44であり、ゲル自体の平衡膨潤度は 8 . 5であった。このゲルの構成及び測定された特性について、下記「表 1」にまとめて 示す。  [0092] The gel thus obtained was equilibrated and swollen in pure water. In the gel at the time of parallel swelling with pure water, the weight content of the crosslinked polymer is 1.6%, the degree of crosslinking of the crosslinked polymer is 4 mol%, and the weight content of the non-crosslinked polymer is 8.2%. The weight content of pure water was 89%, the equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 8.5. The composition and measured properties of this gel are summarized in “Table 1” below.
[0093] (比較例 6)  [0093] (Comparative Example 6)
前記比較例 1において、く相互侵入網目構造又はセミ相互侵入網目構造の形成 >を次のように変更した以外は同様にして、セミ相互侵入網目構造を有するゲルを 得た。 A gel having a semi-interpenetrating network structure was prepared in the same manner as in Comparative Example 1 except that the formation of an interpenetrating network structure or a semi-interpenetrating network structure> was changed as follows. Obtained.
[0094] <セミ相互侵入網目構造ゲルの形成 >  [0094] <Formation of semi-interpenetrating network structure gel>
モノマーである 5molZLのアクリルアミド (AAm)水溶液 40mlと、開始剤である 0. ImolZLの 2—ォキソグルタル酸水溶液 lZ20ml (50 μ 1)とを混合し、水で調整し て水溶液 (浸漬溶液) 200mlを得た。この浸漬溶液に対して窒素ガスを用いて脱酸 素した。この浸漬溶液における開始剤濃度は、 0. 005mol%であった。なお、開始 剤濃度の計算は以下の通りである。  Mix 40ml of 5molZL acrylamide (AAm) aqueous solution as monomer and 0.ImolZL 2-oxoglutaric acid aqueous solution lZ20ml (50μ1) as initiator, and adjust with water to obtain 200ml of aqueous solution (immersion solution). It was. The immersion solution was deoxidized using nitrogen gas. The initiator concentration in this immersion solution was 0.005 mol%. The initiator concentration is calculated as follows.
[0095] { (0. lmol/L X l/20ml) / (5mol/L X 40ml) } X 100 [0095] {(0. lmol / L X l / 20ml) / (5mol / L X 40ml)} X 100
=0. 005mol%  = 0. 005mol%
[0096] 次 、で、前記浸漬溶液とゲル(半製品) 4gをそのゲルより十分に大きな容量のシー ル容器に入れた。この容器を 4°Cの冷蔵庫に 24時間設置し、前記浸漬溶液中のモノ マー、架橋剤および開始剤を前記ゲルに拡散させ浸透させた。この工程において、 浸漬液の濃度を一様にする目的で時々容器を静かに振盪した。この工程において、 前記ゲルが平衡膨潤してその体積が約十倍になることにより、網目構造の不均一性 が拡大して空洞部が散在する網目構造が形成される。  [0096] Next, 4 g of the dipping solution and gel (semi-finished product) were placed in a seal container having a capacity sufficiently larger than the gel. This container was placed in a refrigerator at 4 ° C. for 24 hours, and the monomer, crosslinking agent and initiator in the soaking solution were diffused and permeated into the gel. In this process, the container was sometimes gently shaken to make the concentration of the immersion liquid uniform. In this step, the gel is equilibrium swollen and its volume is increased by about ten times, so that the non-uniformity of the network structure is expanded and a network structure in which cavities are scattered is formed.
[0097] 次いで、前記浸漬溶液力 ゲルを取り出し、適当な大きさに裁断した後、このゲル を 100 X 100 X 3mmの 2枚のガラス板を用いて、ガラス板の間に気泡が混入しない ようにして挟持した。この 2枚のガラス板の周囲 4辺をシールした後、波長 365nmの UVランプ(30W、 0. 68A)を用いて紫外線を常温で 10時問照射した。前記ゲル中 に拡散した AAmモノマーが重合して非架橋ポリマーが生成されることにより、セミ相 互侵入網目構造を有するゲルが得られた。  [0097] Next, the immersion solution strength gel is taken out and cut into an appropriate size, and then the gel is used with two glass plates of 100 X 100 X 3mm so that air bubbles are not mixed between the glass plates. I pinched it. After sealing the four sides around the two glass plates, ultraviolet rays were irradiated for 10 hours at room temperature using a 365 nm wavelength UV lamp (30W, 0.68A). A gel having a semi-interpenetrating network structure was obtained by polymerizing the AAm monomer diffused in the gel to produce a non-crosslinked polymer.
[0098] <マンニッヒ反応による PAAm側基の化学修飾 >  [0098] <Chemical modification of PAAm side group by Mannich reaction>
150mlの純水に 35%のホルムアルデヒド水溶液 1. 2mlを溶解し、トリエチルァミン をカロえて pH9. 0に調節後、 70度なるまで加熱した。この熱反応溶液中に、純水中で 平衡膨潤に達した板状 (厚さ約 5mm)のセミ相互侵入網目構造を有する前記手段に よるゲル 25gを入れて、メチロールイ匕反応を開始させた。その反応開始から 1時間経 過後、その熱反応溶液中にさらに 50%ジメチルァミン水溶液 9. 5mlをカ卩えた。それ 力も 30分間経過後、前記ゲルを反応系外に取り出し、大過剰の冷水に膨潤させて 反応を停止させた。この反応により PAAmに導入されたメチロール基及びカチオン 基の導入率を既知の方法により算出したところ、それぞれ約 30%であった。 Dissolve 1.2 ml of 35% formaldehyde aqueous solution in 150 ml of pure water, calorie triethylamine, adjust to pH 9.0, and heat to 70 degrees. In this hot reaction solution, 25 g of the gel having the plate-like (thickness: about 5 mm) semi-interpenetrating network structure that reached equilibrium swelling in pure water was added to start the methylol-moist reaction. . After 1 hour from the start of the reaction, an additional 9.5 ml of 50% aqueous dimethylamine solution was added to the hot reaction solution. After 30 minutes, the gel is taken out of the reaction system and swollen in a large excess of cold water. The reaction was stopped. The introduction rate of methylol group and cation group introduced into PAAm by this reaction was calculated by a known method, and each was about 30%.
[0099] このようにして得られたメチロールイ匕及びカチオンィ匕されたセミ相互侵入網目構造 を有するゲルを再度純水中で平衡膨潤させた。純水による平行膨潤時のゲルにお いて、架橋ポリマーの重量含有率は 2. 2%であり、非架橋ポリマーの重量含有率は 1 4. 8%であり、純水の重量含有率は 83%であり、架橋ポリマーの平衡膨潤度は 44で あり、ゲル自体の平衡膨潤度は 6であった。このゲルの構成及び測定された特性に ついて、下記「表 1」にまとめて示す。  [0099] The thus-obtained gel having a methylol candy and a cationized semi-interpenetrating network structure was again subjected to equilibrium swelling in pure water. In the gel during parallel swelling with pure water, the weight content of the crosslinked polymer is 2.2%, the weight content of the non-crosslinked polymer is 14.8%, and the weight content of pure water is 83%. %, The equilibrium swelling degree of the crosslinked polymer was 44, and the equilibrium swelling degree of the gel itself was 6. The composition and measured properties of this gel are summarized in “Table 1” below.
[0100] [ゲルの諸特性の測定]  [0100] [Measurement of gel properties]
ゲルの「初期弾性率」及び「圧縮強度」の測定には、 ORIENTIC社製 TENSILON型 式 RTC- 1150A (試験機 A)又は ORIENTIC社製 TENSILON型式 RTC- 1150A型 式 RTC-1150A (試験機 B)と新居製作所社製 アタッチメント金具とを用いた。試験 機 Aは、 250N以下、試験機 Bは 10kN以下の応力を測定することができ、測定する ゲルの力学強度に応じて使い分けた。  To measure the “initial modulus” and “compressive strength” of the gel, ORIENTIC TENSILON model RTC-1150A (tester A) or ORIENTIC TENSILON model RTC-1150A model RTC-1150A (tester B) And attachment fittings manufactured by Arai Seisakusho Co., Ltd. were used. Testing machine A can measure stresses of 250N or less, and testing machine B can measure stresses of 10kN or less, and it was used depending on the mechanical strength of the gel to be measured.
[0101] 先ず圧縮試験を行い、ゲルを直径 9mmの円形状カッターにより厚さ 5mm程度の 円筒状に切り抜き、試験機 A又は Bに接続したアタッチメント金具 (上下圧縮板型)を 用いて、ゲルの高さ方向の歪に対して 10%Zmin (例えば、 5. Omm厚のゲルであ れば 0. 5mm/min)の圧縮速度でそのゲルに生じている応力を測定した。  [0101] First, a compression test was performed, and the gel was cut into a cylindrical shape with a thickness of about 5 mm using a circular cutter with a diameter of 9 mm, and the attachment metal (upper and lower compression plate type) connected to testing machine A or B was used. The stress generated in the gel was measured at a compression rate of 10% Zmin (for example, 0.5 mm / min for a 5. Omm thick gel) with respect to the strain in the height direction.
[0102] そして、ゲルの初期弾性率は、前記圧縮試験によって得られた歪一応力曲線の歪 が 10%未満で直線性の高い領域における曲線の傾きから以下の式によって算出し た。また、ゲルの圧縮強度は、ゲルが破壊されることにより、測定中リアルタイムでモ 二ターに出力される歪一応力曲線の傾きが変化したときの応力、或いはモニターに 出力される歪一応力曲線の傾きが変化しないとしてもゲルの破壊が確認された時の 応力と表面積とから以下の式によって算出した。  [0102] The initial elastic modulus of the gel was calculated from the slope of the curve in the region where the strain of the strain-stress curve obtained by the compression test was less than 10% and high in linearity by the following equation. The compressive strength of the gel is the stress when the slope of the strain-stress curve output to the monitor changes in real time during the measurement due to the gel being destroyed, or the strain-stress curve output to the monitor. Even if the slope of the film did not change, the following formula was calculated from the stress and the surface area when the fracture of the gel was confirmed.
[0103] (初期弾性率) = (応力) I (歪率)  [0103] (Initial modulus) = (Stress) I (Strain)
(圧縮強度) = (破断時の応力) / (非変形時の表面積)  (Compressive strength) = (Stress at break) / (Surface area without deformation)
[0104] また、ゲルの破壊エネルギーにつ ヽても試験機 A又は Bを用いて測定した。ゲルの 破壊エネルギーは、 JIS K— 6252 トラゥザ型 1/2サイズの金属性カッターで切 り抜いた厚さ 4. 0〜5. Ommのゲルを、アタッチメント金具(引っ張り試験用固定器具 )で固定し、定常的な破壊が起こる条件で 500mmZminの速度で引き裂き試験を行 い、その試験結果を以下の式に当てはめることによって算出した。 [0104] Further, the breaking energy of the gel was also measured using the tester A or B. The breaking energy of the gel is cut with JIS K-6252 Truza type 1/2 size metal cutter. Extruded thickness 4.0 ~ 5. Fix the Omm gel with the attachment bracket (fixing device for tensile test), and perform the tear test at a speed of 500mmZmin under the condition that steady fracture occurs. Was calculated by applying to the following equation.
[0105] 尚、通常、破壊された面としては、破壊の左右または上下など、破壊位置を基準と して、両側の二面が得られる力 ここでは議論を簡単にするため、片面のみのモデル を考える。 [0105] Normally, as the destroyed surface, the force that can obtain two surfaces on both sides, such as the left and right or top and bottom of the destruction, with reference to the destruction position. think of.
[0106] (破壊エネルギー) = (定常的な破壊に要した仕事) / (破断面積)  [0106] (Fracture energy) = (Work required for steady fracture) / (Fracture area)
= (定常的な破壊時の平均的な力) Z (ゲルの厚さ)  = (Average force at steady state failure) Z (gel thickness)
[0107] また、非架橋ポリマー間又は第二のポリマー間における「水素結合よりも強い分子 間相互作用の有無」については、ゲルに対して核磁気共鳴測定を行い、分子間相互 作用の存在によって現れるはずの化学シフトが観測される力否かによって判定した。  [0107] Regarding the “presence / absence of intermolecular interaction stronger than hydrogen bonding” between non-crosslinked polymers or between second polymers, a nuclear magnetic resonance measurement was performed on the gel, and the presence of intermolecular interaction was determined. Judgment was made based on whether or not the chemical shift that should appear was observed.
[0108] また、セミ相互侵入網目構造における非架橋ポリマーの重量平均分子量 Mは、予  [0108] The weight average molecular weight M of the non-crosslinked polymer in the semi-interpenetrating network structure is
w め非架橋ポリマーの重合条件とその重量平均分子量 M との相関を把握しておき、そ の相関に基づいて非架橋ポリマーの重合条件力 算出した。  2) The correlation between the polymerization conditions of the non-crosslinked polymer and its weight average molecular weight M was ascertained, and the polymerization condition force of the non-crosslinked polymer was calculated based on the correlation.
[0109] [表 1] [0109] [Table 1]
Figure imgf000028_0001
実施例 1〜実施例 3で得られたゲルの構成及び特性を対比することによ り、セミ相互侵入網目構造を構成する非架橋ポリマーの重量平均分子量 Mが大きく なるに従って、ゲルの破壊エネルギーが向上することが判る。なお、表 1では、非架 橋ポリマー(B)の重量平均分子量 Mは 10を底とする指数関数で表記されている。
Figure imgf000028_0001
By comparing the composition and properties of the gels obtained in Examples 1 to 3. Thus, it can be seen that the fracture energy of the gel improves as the weight average molecular weight M of the non-crosslinked polymer constituting the semi-interpenetrating network structure increases. In Table 1, the weight average molecular weight M of the unbridged polymer (B) is expressed as an exponential function with base 10.
[0111] 本明細書は、 2004年 6月 25日出願の特願 2004— 187954に基づく。この内容は すべてここに含めておく。  [0111] This specification is based on Japanese Patent Application No. 2004-187954 filed on Jun. 25, 2004. All this content is included here.
産業上の利用可能性  Industrial applicability
[0112] 本発明に係るハイド口ゲルは、力学強度及び破壊ヱネルギ一が高ぐ透明で、柔軟 性、物質透過性及び耐衝撃性を備えているので、ォムッ、衛生用品、除放剤、土木 材料、建築材料、通信材料 (例えば軸受、ケーブルやその継手)、土壌改質剤、コン タクトレンズ、眼内レンズ、ホロ一ファイバー、人工軟骨、人工関節、人工臓器 (例え ば人工血管や人工皮膚)、燃料電池用材料、ノ ッテリーセパレータ、床ずれ'褥瘦防 止マット、クッション、潤滑材、化粧水等の安定剤や増粘剤、細胞培養用基材、ドラッ グデリバリーシステム (DDS)、薬物の運搬架体、特定物質のセンサー又は力テーテ ルの先端に利用するソフトァクチユエ一ター等に利用することができる。 [0112] The Hyde Mouth Gel according to the present invention is transparent with high mechanical strength and fracture strength, and has flexibility, substance permeability and impact resistance. Materials, building materials, communication materials (e.g. bearings, cables and joints), soil modifiers, contact lenses, intraocular lenses, hollow fibers, artificial cartilage, artificial joints, artificial organs (e.g. artificial blood vessels and artificial skins) ), Fuel cell materials, knottery separators, bedsore prevention mats, cushions, lubricants, lotions and other stabilizers and thickeners, cell culture substrates, drug delivery systems (DDS), It can be used as a drug carrier, a sensor for a specific substance, or a software computer used at the tip of a force tail.

Claims

請求の範囲 The scope of the claims
[1] 架橋ポリマーで構成される網目構造に非架橋ポリマーが侵入し物理的に絡み付い たセミ相互侵入網目構造を有し、  [1] It has a semi-interpenetrating network structure in which a non-crosslinked polymer invades and physically entangles into a network structure composed of crosslinked polymers.
良溶媒による平衡膨潤時において、膨潤度が 5以上で、かつ、前記良溶媒の重量 含有率が 80%以上で、かつ、破壊エネルギーが 700jZm2以上 2000jZm2以下で あるゲル。 A gel having a swelling degree of 5 or more, a weight content of the good solvent of 80% or more, and a breaking energy of 700 jZm 2 or more and 2000 jZm 2 or less during equilibrium swelling with a good solvent.
[2] 前記良溶媒による平衡膨潤時において、前記非架橋ポリマー間に水素結合よりも 強 、分子間相互作用が存在しな 、、請求項 1記載のゲル。  [2] The gel according to claim 1, wherein, during equilibrium swelling with the good solvent, there is no intermolecular interaction stronger than hydrogen bonds between the non-crosslinked polymers.
[3] 前記非架橋ポリマーは、前記良溶媒による平衡膨潤度が 5〜: LOOOであり、 [3] The non-crosslinked polymer has an equilibrium swelling degree with the good solvent of 5 to: LOOO,
前記非架橋ポリマーは、その重量含有率が前記架橋ポリマーの重量含有率よりも 高い、  The non-crosslinked polymer has a weight content higher than the weight content of the crosslinked polymer,
請求項 1記載のゲル。  The gel according to claim 1.
[4] 前記非架橋ポリマーは、その重量含有率が、前記ゲルにおける前記良溶媒の重量 に対して 3. 5〜35%である、請求項 1記載のゲル。  [4] The gel according to claim 1, wherein the non-crosslinked polymer has a weight content of 3.5 to 35% with respect to the weight of the good solvent in the gel.
[5] 前記非架橋ポリマーの重量含有率が該ゲルにおける前記架橋ポリマー及び前記 溶媒の合計重量に対して 10〜40%である、請求項 1記載のゲル。  [5] The gel according to claim 1, wherein a weight content of the non-crosslinked polymer is 10 to 40% with respect to a total weight of the crosslinked polymer and the solvent in the gel.
[6] 前記架橋ポリマーおよび前記非架橋ポリマーの原料モノマーが、 2 アクリルアミド  [6] The raw material monomer of the crosslinked polymer and the non-crosslinked polymer is 2 acrylamide
2—メチルプロパンスルホン酸 (AMPS)、アクリルアミド (AAm)、アクリル酸 (AA) 、メタクリル酸、 N—イソプロピルアクリルアミド、ビュルピリジン、ヒドロキシェチルアタリ レート、酢酸ビニノレ、ジメチノレシロキサン、スチレン(St)、メチルメタクリレー HMMA )、トリフルォロェチルアタリレート(TFE)、スチレンスルホン酸(SS)、ジメチルアタリ ルアミド、 2, 2, 2 トリフルォロェチルメチルアタリレート、 2, 2, 3, 3, 3 ペンタフル ォロプロピルメタタリレート、 3 (ペルフルォロブチル) 2 ヒドロキシプロピルメタク リレート、 1H, 1H, 9H へキサデカフルォロノ-メタタリレート、 2, 2, 2 トリフルォ 口ェチルアタリレート、 2, 3, 4, 5, 6 ペンタフルォロスチレン、フッ化ビ-リデンから 選ばれる、請求項 1項記載のゲル。  2-methylpropanesulfonic acid (AMPS), acrylamide (AAm), acrylic acid (AA), methacrylic acid, N-isopropylacrylamide, butylpyridine, hydroxyethyl acrylate, vinylol acetate, dimethylol siloxane, styrene (St), Methyl methacrylate HMMA), trifluoroethyl acrylate (TFE), styrene sulfonate (SS), dimethyl acrylate, 2, 2, 2 trifluoroethyl acrylate, 2, 2, 3, 3, 3 pentafur Chloropropyl methacrylate, 3 (perfluorobutyl) 2 hydroxypropyl methacrylate, 1H, 1H, 9H hexadecafluorono-metatalylate, 2, 2, 2 trifluoromethyl etherate, 2, The gel according to claim 1, which is selected from 3, 4, 5, 6 pentafluorostyrene and vinylidene fluoride.
[7] 前記架橋ポリマーの重合に用いる架橋剤としては、 N, N'—メチレンビスアクリルァ ミド (MBAA)又はエチレングリコールジメタタリレートである、請求項 1記載のゲル。 7. The gel according to claim 1, wherein the crosslinking agent used for the polymerization of the crosslinked polymer is N, N′-methylenebisacrylamide (MBAA) or ethylene glycol dimetatalylate.
[8] 前記架橋ポリマーの原料モノマーと前記非架橋ポリマーの原料モノマーとのモル比 が約 1: 20である、請求項 1記載のゲル。 8. The gel according to claim 1, wherein the molar ratio of the raw material monomer of the crosslinked polymer and the raw material monomer of the non-crosslinked polymer is about 1:20.
[9] 前記セミ相互侵入網目構造の表面層に、電解質ポリマー力もなる自由末端鎖を有 する、請求項 1記載のゲル。 [9] The gel according to [1], wherein the surface layer of the semi-interpenetrating network has a free end chain that also has an electrolyte polymer force.
[10] 請求項 1記載のゲル力 溶媒を除去したものである吸水性榭脂。 [10] The water-absorbent resin obtained by removing the gel force solvent according to claim 1.
[11] 請求項 1記載のゲル力 なる潤滑材。 [11] The lubricant having gel force according to claim 1.
[12] 請求項 1記載のゲルからなる細胞培養用基材。 [12] A cell culture substrate comprising the gel according to claim 1.
[13] 第一の原料モノマーを溶媒中で架橋剤と共に重合させて、網目構造を有する架橋 ポリマーを構成することで、この架橋ポリマーと前記溶媒とからなる中間生成物として のゲルを得るステップと、  [13] A step of obtaining a gel as an intermediate product comprising the crosslinked polymer and the solvent by polymerizing the first raw material monomer together with a crosslinking agent in a solvent to form a crosslinked polymer having a network structure; ,
第二の原料モノマーを前記半製品ゲルに拡散 ·浸透させた後に重合させて非架橋 ポリマーを構成することで、この非架橋ポリマーが前記網目構造に物理的に絡み付 Vヽた構造を内包する最終生成物としてのゲルを得るステップと、を具備する製造方法 により製造され、  After the second raw material monomer is diffused and permeated into the semi-finished gel, it is polymerized to form a non-crosslinked polymer, and this non-crosslinked polymer is physically entangled with the network structure and includes a V-shaped structure. Obtaining a gel as a final product, and a manufacturing method comprising:
前記溶媒による平衡膨潤時において膨潤度が 5以上で、前記溶媒の重量含有率 力 ¾0%以上で、かつ、破壊エネルギーが 700jZm2以上 2000jZm2以下である、 ゲノレ。 A genore having a degree of swelling of 5 or more at the time of equilibrium swelling with the solvent, a weight content ratio of the solvent of ¾0% or more, and a fracture energy of 700 jZm 2 or more and 2000 jZm 2 or less.
[14] 前記製造方法は、多価イオン含有溶液に浸漬させ、内部にコロイドを形成するステ ップをさらに具備する、請求項 13記載のゲル。  [14] The gel according to [13], wherein the production method further comprises a step of immersing in a multivalent ion-containing solution to form a colloid therein.
[15] 前記非架橋ポリマーの重量含有率が該ゲルにおける前記架橋ポリマー及び前記 溶媒の合計重量に対して 10〜40%である、請求項 13記載のゲル。  15. The gel according to claim 13, wherein the weight content of the non-crosslinked polymer is 10 to 40% with respect to the total weight of the crosslinked polymer and the solvent in the gel.
[16] 前記原料モノマーが、 2 アクリルアミドー 2 メチルプロパンスルホン酸 (AMPS) 、アクリルアミド (AAm)、アクリル酸 (AA)、メタクリル酸、 N—イソプロピルアクリルアミ ド、ビュルピリジン、ヒドロキシェチルアタリレート、酢酸ビニル、ジメチルシロキサン、ス チレン(St)、メチルメタタリレート(MMA)、トリフルォロェチルアタリレート(TFE)、ス チレンスルホン酸(SS)、ジメチルアクリルアミド、 2, 2, 2—トリフルォロェチルメチル ァクジレー卜、 2, 2, 3, 3, 3 ペンタフノレ才 Pプ Pピノレメタクジレー卜、 3 (ぺノレフノレ才 ロブチル) 2 ヒドロキシプロピルメタタリレート、 1H, 1H, 9H—へキサデカフルォ ロノ-メタクリレー卜、 2, 2, 2—トリフルォロェチルアタリレー卜、 2, 3, 4, 5, 6—ペンタ フルォロスチレン、フッ化ビ-リデン力 選ばれる、請求項 13記載のゲル。 [16] The raw material monomer is 2 acrylamide-2 methylpropane sulfonic acid (AMPS), acrylamide (AAm), acrylic acid (AA), methacrylic acid, N-isopropyl acrylamide, butylpyridine, hydroxyethyl acrylate. Vinyl acetate, dimethylsiloxane, styrene (St), methyl methacrylate (MMA), trifluoroethyl acrylate (TFE), styrene sulfonic acid (SS), dimethylacrylamide, 2, 2, 2-trifluoro Tylmethyl akujire, 2, 2, 3, 3, 3 Pentafunole P P-Pinole metaclay, 3 (Penoleph butyl) 2 Hydroxypropyl metatalylate, 1H, 1H, 9H—Hexadecafluo 14. The gel according to claim 13, which is selected from Lonoh-methacrylate, 2,2,2-trifluoroethylatreate, 2, 3, 4, 5, 6-pentafluorostyrene, vinylidene fluoride force.
[17] 前記架橋剤としては、 N, N,一メチレンビスアクリルアミド (MBAA)又はエチレング リコールジメタタリレートである、請求項 13記載のゲル。 17. The gel according to claim 13, wherein the crosslinking agent is N, N, monomethylene bisacrylamide (MBAA) or ethylene glycol dimetatalylate.
[18] 前記第一の原料モノマーと前記第二の原料モノマーとのモル比が約 1: 20である、 請求項 13記載のゲル。 18. The gel according to claim 13, wherein the molar ratio of the first raw material monomer to the second raw material monomer is about 1:20.
[19] 架橋ポリマーで構成される網目構造に非架橋ポリマーが侵入し物理的に絡み付い たセミ相互侵入網目構造を有するゲルにおいて、前記非架橋ポリマーの側鎖を化学 修飾、又は前記架橋ポリマーの架橋度を調節することにより、前記ゲルの破壊エネル ギーを 700j/m2以上 2000j/m2以下の範囲で調節する、ゲルの製造方法。 [19] In a gel having a semi-interpenetrating network structure in which a non-crosslinked polymer invades and physically entangles with a network structure composed of a crosslinked polymer, the side chain of the noncrosslinked polymer is chemically modified, or the crosslinked polymer is crosslinked. The method for producing a gel, wherein the gel breaking energy is adjusted in a range of 700 j / m 2 or more and 2000 j / m 2 or less by adjusting the degree.
PCT/JP2005/011469 2004-06-25 2005-06-22 Gel, process for producing the same, water-absorbing resin, lubricating material, and substrate for cell culture WO2006001313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528567A JP5059407B2 (en) 2004-06-25 2005-06-22 Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004187954 2004-06-25
JP2004-187954 2004-06-25

Publications (1)

Publication Number Publication Date
WO2006001313A1 true WO2006001313A1 (en) 2006-01-05

Family

ID=35781774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011469 WO2006001313A1 (en) 2004-06-25 2005-06-22 Gel, process for producing the same, water-absorbing resin, lubricating material, and substrate for cell culture

Country Status (2)

Country Link
JP (1) JP5059407B2 (en)
WO (1) WO2006001313A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213868A (en) * 2005-02-04 2006-08-17 Hokkaido Univ Gel and its manufacturing method
JP2006249258A (en) * 2005-03-10 2006-09-21 Fuji Xerox Co Ltd Polymer gel composition, method for producing polymer gel composition and optical element
WO2008065756A1 (en) 2006-11-29 2008-06-05 National University Corporation Hokkaido University Bone filler for cartilage tissue regeneration treatment
JP2009051087A (en) * 2007-08-27 2009-03-12 Three M Innovative Properties Co Polymer gel structure and method for manufacturing the same
JP2010174063A (en) * 2009-01-27 2010-08-12 Mitsubishi Rayon Co Ltd Gel and method for producing the same
EP2353609A1 (en) 2010-02-04 2011-08-10 Sanofi Pasteur Immunization compositions and methods
JP2011236311A (en) * 2010-05-10 2011-11-24 Institute Of Physical & Chemical Research Electrically conductive hydrogel, electrically conductive dried gel, and method for producing the electrically conductive hydrogel
JP2012001596A (en) * 2010-06-15 2012-01-05 Mitsubishi Rayon Co Ltd Gel and manufacturing method for the same
JP2013533356A (en) * 2010-07-09 2013-08-22 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド Acrylic copolymer thickener blend
JP2015096560A (en) * 2013-11-15 2015-05-21 東亞合成株式会社 High-strength gel
JP2015138192A (en) * 2014-01-23 2015-07-30 株式会社リコー Organ model for manipulation training
JP2018127551A (en) * 2017-02-09 2018-08-16 国立大学法人山形大学 Method for manufacturing high strength gel having low friction surface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525464A (en) * 1997-12-05 2001-12-11 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Method for producing light-transmitting polymer material resistant to protein attachment, material obtained by the method, contact lens and intraocular lens produced from the material
JP2002212452A (en) * 2001-01-22 2002-07-31 Hokkaido Technology Licence Office Co Ltd Low-friction hydrogel having linear polymer and its production method
WO2003093337A1 (en) * 2002-05-01 2003-11-13 Hokkaido Technology Licensing Office Co., Ltd. Hydrogel of (semi)interpenetrating network structure and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525464A (en) * 1997-12-05 2001-12-11 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Method for producing light-transmitting polymer material resistant to protein attachment, material obtained by the method, contact lens and intraocular lens produced from the material
JP2002212452A (en) * 2001-01-22 2002-07-31 Hokkaido Technology Licence Office Co Ltd Low-friction hydrogel having linear polymer and its production method
WO2003093337A1 (en) * 2002-05-01 2003-11-13 Hokkaido Technology Licensing Office Co., Ltd. Hydrogel of (semi)interpenetrating network structure and process for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213868A (en) * 2005-02-04 2006-08-17 Hokkaido Univ Gel and its manufacturing method
JP2006249258A (en) * 2005-03-10 2006-09-21 Fuji Xerox Co Ltd Polymer gel composition, method for producing polymer gel composition and optical element
WO2008065756A1 (en) 2006-11-29 2008-06-05 National University Corporation Hokkaido University Bone filler for cartilage tissue regeneration treatment
US9539366B2 (en) 2006-11-29 2017-01-10 National University Corporation Hokkaido University Method for inducing regeneration of cartilage
JP5166282B2 (en) * 2006-11-29 2013-03-21 国立大学法人北海道大学 Bone filler for cartilage tissue regeneration treatment
US9453084B2 (en) 2007-08-27 2016-09-27 3M Innovative Properties Company Polymer gel structure and method for producing the same
JP2009051087A (en) * 2007-08-27 2009-03-12 Three M Innovative Properties Co Polymer gel structure and method for manufacturing the same
JP2010174063A (en) * 2009-01-27 2010-08-12 Mitsubishi Rayon Co Ltd Gel and method for producing the same
EP2353609A1 (en) 2010-02-04 2011-08-10 Sanofi Pasteur Immunization compositions and methods
JP2011236311A (en) * 2010-05-10 2011-11-24 Institute Of Physical & Chemical Research Electrically conductive hydrogel, electrically conductive dried gel, and method for producing the electrically conductive hydrogel
JP2012001596A (en) * 2010-06-15 2012-01-05 Mitsubishi Rayon Co Ltd Gel and manufacturing method for the same
JP2013533356A (en) * 2010-07-09 2013-08-22 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド Acrylic copolymer thickener blend
JP2015096560A (en) * 2013-11-15 2015-05-21 東亞合成株式会社 High-strength gel
JP2015138192A (en) * 2014-01-23 2015-07-30 株式会社リコー Organ model for manipulation training
JP2018127551A (en) * 2017-02-09 2018-08-16 国立大学法人山形大学 Method for manufacturing high strength gel having low friction surface

Also Published As

Publication number Publication date
JPWO2006001313A1 (en) 2008-05-29
JP5059407B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2006001313A1 (en) Gel, process for producing the same, water-absorbing resin, lubricating material, and substrate for cell culture
US7857447B2 (en) Interpenetrating polymer network hydrogel contact lenses
JP4381297B2 (en) (Semi) interpenetrating network structure hydrogel and method for producing the same
JP5324070B2 (en) Polymer gel structure and method for producing the same
CA2786738C (en) Nanocomposite hydrogel and method for preparing it, for industrial and medical applications
Nakajima et al. Tough double-network gels and elastomers from the nonprestretched first network
JP2006213868A (en) Gel and its manufacturing method
US20110166247A1 (en) Interpenetrating polymer network hydrogel contact lenses
JP2017026680A (en) Gel material for 3D printers
Shimizu et al. Effective reinforcement of poly (methyl methacrylate) composites with a well-defined bacterial cellulose nanofiber network
JP2009298971A (en) Polymer gel and its production method
CN113801262A (en) High-strength gel and preparation method thereof
JP6414193B2 (en) Polymer gel and method for producing the same
JP5048183B2 (en) Low friction hydrogel having linear polymer and method for producing the same
JP5200213B2 (en) Polymer gel and method for producing the same
JP7248967B2 (en) Hydrogel and method for producing hydrogel
WO2019070979A1 (en) Methods and compositions for improved comfort contact lens
Watson et al. Performance of a hydrogel coated nitinol with Oligonucleotide-modified nanoparticles within Turbulent conditions of blood-Contacting devices
MX2012008558A (en) Nanocomposite hydrogel and method for preparing it, for industrial and medical applications.
Shams Es-haghi Mechanics of Tough Chemically Cross-linked Hydrogels
JP2018127551A (en) Method for manufacturing high strength gel having low friction surface

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006528567

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase