JP4625941B2 - 太陽電池の性能評価装置 - Google Patents

太陽電池の性能評価装置 Download PDF

Info

Publication number
JP4625941B2
JP4625941B2 JP2003026597A JP2003026597A JP4625941B2 JP 4625941 B2 JP4625941 B2 JP 4625941B2 JP 2003026597 A JP2003026597 A JP 2003026597A JP 2003026597 A JP2003026597 A JP 2003026597A JP 4625941 B2 JP4625941 B2 JP 4625941B2
Authority
JP
Japan
Prior art keywords
solar cell
electrode
measurement
performance evaluation
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003026597A
Other languages
English (en)
Other versions
JP2004241449A (ja
Inventor
武 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003026597A priority Critical patent/JP4625941B2/ja
Publication of JP2004241449A publication Critical patent/JP2004241449A/ja
Application granted granted Critical
Publication of JP4625941B2 publication Critical patent/JP4625941B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の属する技術分野】
【0001】
本発明は、太陽電池の性能評価装置および性能評価方法に関し、特に太陽電池の局部の特性の測定を可能にし、かつ、面内の特性ばらつきを評価することのできる太陽電池の性能評価装置および性能評価方法に関するものである。
【0002】
【従来の技術】
太陽電池は、結晶系と薄膜系とに大別される。結晶系では、p型またはn型半導体基板(ウェハ)の表面にn型またはp型拡散層を形成し、基板表裏面に表面側電極と裏面電極とを形成することによって作製される。また、薄膜系太陽電池は、絶縁性基板上に裏面電極を形成しその上に、または、金属(ステンレス)基板上にp(またはn)型半導体層とn(またはp)型半導体層を成長させ、その上に表面電極を形成することによって作製される。
太陽電池ウェハは近年大面積化が図られているが、大面積化によって、均一な拡散や成膜が難しくなり、特性の面内均一化の維持が重要な課題となっている。また、膜厚および組成の不均一部分、ピンホール等が性能低下、経時的不安定要因になり易い。そこで、面内での拡散状況や成膜状態とそのばらつき程度を把握できるようにすることが求められている。
上記のようにして作製された太陽電池についての品質を評価する従来の方法は、電池全面に光を当て、発電性能を二端子から測定することによってなされ、平均性能として評価される。従って、従来の測定方法では電池内の局部の性能や面内での特性ばらつき程度を評価することはできない。しかし、太陽電池の局部情報を得たいというニーズは高く、これに対応して太陽電池受光面にレーザビームなどの光ビームを照射し電池面内の光電流分布を評価するレーザ光励起電流像 (LBIC:laser beam induced current) 法が開発され(例えば、非特許文献1参照)、測定器もすでに市販されている。この方法は、太陽電極に二端子を取り付けた後に光ビーム照射して二端子を利用して回路短絡電流の面分布を測定するものである。
【0003】
【非特許文献1】
Scott A. McHugo et al., Appl. Phys. Lett., Vol.72, No.26, 29 June 1998, pp.3482-3484
【0004】
【発明が解決しようとする課題】
太陽電池の特性を評価する指標には、回路短絡電流(Isc)のみならず、回路開放電圧(Voc)、曲線因子(FF)、出力電力特性(P)、最大出力(Pmax)があり、これらの値およびそのばらつき(面内およびウェハ間)を知ることは、製品評価、工程管理の面で重要であるにも拘らず、上述したLBIC法は回路短絡電流のみしか得られないため、新しい測定・評価方法が求められてきた。
本願発明の課題は、上述した従来技術の不備を解決することであって、その目的は、回路短絡電流のみならず、回路開放電圧、曲線因子、出力電力特性、最大出力等の局部値を知ることができるようにすることであり、これにより太陽電池の面内ばらつき、欠陥位置などの工程管理や経時的安定性について必要な情報を得ることができるようにしようとするものである。
【0005】
【課題を解決するための手段】
上記の目的を達成するため、本発明によれば、スポット光照射手段と、前記スポット光照射手段を囲み先端部が太陽電池の光照射面と接触することができる第1の電極部とを有する第1の接触部材と、前記第1の電極部と同等の外形形状を有し概第1の電極部と対向して配備されその先端部が太陽電池の裏面側のスポット光の外周部と接触することのできる第2の電極部を有する第2の接触部材と、太陽電池を保持する太陽電池保持部材と、前記第1および前記第2の電源と接続されてスポット光下の太陽電池の回路短絡電流または回路開放電圧または電流-電圧特性を測定する測定部と、を有する太陽電池の性能評価装置、が提供される。
【0006】
また、上記の目的を達成するため、本発明によれば、スポット光照射手段と、前記スポット光照射手段を囲み先端部が太陽電池の光照射面と接触することができる第1の電極部とを有する第1の接触部材と、太陽電池の裏面側または太陽電池の裏面電極と接触することのできる第2の電極部と、太陽電池を保持する太陽電池保持部材と、前記第1および前記第2の電源と接続されてスポット光下の太陽電池の回路短絡電流または回路開放電圧または電流-電圧特性を測定する測定部と、を有する太陽電池の性能評価装置、が提供される。
【0008】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明の第1の実施の形態を示す斜視図である。図1において、1は、太陽電池である被測定ウェハ、2は、装置本体が収容される遮光された暗ボックス、3はベース、4は、被測定ウェハを搬入・搬出するウェハ搬送台、5は、ウェハ搬送台4のガイドとなるガイドレール、6は、被測定ウェハ1を把持してX方向およびY方向に移動可能なウェハ保持手段、7は、ウェハ保持手段6のガイドとなる保持手段ガイド、8は、被測定ウェハ1に光を照射するとともにこれと接触して測定端子となる光源兼用測定電極、9は、被測定ウェハ1に裏面側から接触して測定端子となる対向測定電極、10、11は、それぞれ光源兼用測定電極8、対向測定電極9を保持して上下動する電極保持手段、12は、電極保持手段10、11を駆動する測定電極駆動手段である。また、13は、装置全体の動作をコントロールする制御部、14は、暗ボックス内の雰囲気(温度、湿度)を調整する空調部である。
【0009】
次に、図1に示される装置の概略の動作について説明する。被測定ウェハ1は、ウェハ搬送台4に載せられて暗ボックス2内に搬送されてくる。このとき、ウェハ保持手段6は、紙面手前側下方に位置している。ウェハ搬送台4が所定の位置に到着するとプッシャ(図示なし)が動作して被測定ウェハ1をウェハ保持手段6上に載置させる。ウェハ保持手段6は、被測定ウェハ1を把持して上昇した後水平方向に移動して、被測定ウェハ1の最初の測定点を測定電極8、9間に位置させる。このとき光源兼用測定電極8の光源は点灯状態にある。
【0010】
図2は、このときの状態を示す斜視図である。被測定ウェハ1の位置決めが完了すると、光源兼用測定電極8が降下し、対向測定電極9が上昇して被測定ウェハ1を両電極間に挟み込む。そして、図中Aにて示す、光照射スポット領域(電極接触部)の一つ(この場合は図の奥側左端のスポット領域)についての光−電気特性を測定する。すなわち、回路短絡電流、回路開放電圧、電流−電圧特性を測定する。ここで、被測定ウェハの裏面側には高不純物濃度拡散層または裏面電極が形成されているが、表面側には透明電極は形成されていなくてもよい。第1スポットについての測定が完了すると、光源兼用測定電極8が上昇、対向測定電極9が降下し、被測定ウェハ1が1ステップ矢印B方向に送られて被測定ウェハ1の次の光照射スポット領域Aが測定電極8下に送られる。そして、そのスポット領域についての測定が行われる。以下同様にして、被測定ウェハ1が1ステップずつ矢印B方向に送られて各スポット領域ごと測定が行われる.X方向の1行分の測定が完了すると、被測定ウェハ1は矢印C方向に1ステップ送られる。そして、第2行目のスポット領域についての測定が順次行われる。このとき、被測定ウェハ1は矢印Bと反対方向に1ステップずつ送られる。このようにして、被測定ウェハ1の全面に渡る測定が行われる。なお、光照射スポット領域Aは互いに接するようにするのが原則であるが、隣接する領域間に重複部が存在していてもよい。また、隣接する光照射スポット領域A同士が乖離していてもよい(すなわち、測定が飛び飛びの領域について行われるようにしてもよい)。
図1に戻り、被測定ウェハ1について全領域の測定が完了すると、被測定ウェハ1は、ウェハ保持手段6に把持された状態でまず図の手前側に送られ次いで下方に搬送される。次に、ウェハ保持手段6による保持が解除され、プッシャ(図示なし)により、押圧されてウェハ搬送台上へ移される。そして、暗ボックス2外へ搬出される。
【0011】
図3(a)、(b)は、光源兼用測定電極8の底面図と断面図である。図3において、81は、電極保持手段10に把持される固定部、82は、固定部81から下方に延びる、四重に形成された絶縁材からなる絶縁円筒部、83は、円筒状の電圧測定電極、84は、円筒状の電流測定電極、85は、ゴムなどの弾性絶縁材からなる絶縁リング、86は、単色LEDまたは白色LEDである光源、87は、絶縁円筒間に装着された、光源兼用測定電極8が被測定ウェハに接触した際に、電圧測定電極83、電流測定電極84、絶縁リング85を下方へ押圧するばねである。電圧測定電極83の内径は0.5〜50mmの範囲に設定される。
絶縁リング85は、必ずしも設ける必要はなく省略可能である。この実施の形態では、光源兼用測定電極8内にLEDを内蔵していたがこの構成に代え測定電極8の中空部に光ファイバを保持させ、任意点に配置された光源の光を光ファイバを介して被測定ウェハ上へ導くようにしてもよい。また、この実施の形態では、光源兼用測定電極8は円筒形状をしていたが、四角筒形状あるいは六角筒形状とすることもできる。
対向測定電極9は、光源兼用測定電極8から光源86を除去した構成を有するものである。光源86を除去した部分は、中空のままでもよいが充填物が充填されていてもよい。
【0012】
図4は、図1に示される制御部13の概略の構成を示すブロック図である。図4に示されるように、制御部13には、中央処理部131を中心として、ウェハ搬入・搬出部132、ウェハ駆動部133、光源制御部134、測定電極駆動部135、測定部136、演算部137、判定・選別部138、記録部139が設けられる。ウェハ搬入・搬出部132は、中央処理部131の指示を受け、被測定ウェハの搬入・搬出およびその初期位置を制御する。ウェハ駆動部133は、被測定ウェハのX方向およびY方向のステップ送りを制御する。光源制御部134は、光源のオン・オフおよびその輝度を制御する。測定電極駆動部135は、測定電極の上下動を制御する。測定部136は、中央処理部131より被測定ウェハの測定スポットに測定電極が接触したことの信号を受けると被測定ウェハの1光照射スポット領域のI−V特性を測定する。中央処理部131は、測定部134より1スポット領域のI−V特性の測定が完了したことを示す信号を受け取ると測定電極駆動部135、演算部137へ向けてトリガー信号を発信する。演算部137は、測定部136の測定データを受け取りこれに基づいて最大出力PmaxとFF値とを算出する。測定部136の測定データと演算部137の演算結果とは、判定・選別部138と記録部139とに伝達される。判定・選別部138は、被測定太陽電池の全面のデータを取得すると、その被測定太陽電池の良・不良の判別および不良発生個所の特定を行うと共に不良品が発生した場合には警告を発し、良品である場合にはその光−電気特性に応じてクラス分けを行う。警告が発せられると製造ラインへフィードバックがかけられる。
【0013】
図5は、図1〜図4に示される本実施の形態に係る太陽電池の測定装置を用いた処理の流れの一例を示すフローチャートである。この例では、光源は1ウェハの全スポット領域を測定する間常時点灯されているものとされる。また、ウェハのステップ送り回数はX方向にN、Y方向にM(測定されるスポット領域はX方向にN+1、Y方向にM+1)であるものとする。太陽電池処理部Aでは、ステップS101において、被測定ウェハが測定電極間に送られてきて位置決めされる。ステップS102において、m=0と設定され、ステップS103において、n=0と設定される。そして、ステップS104において、測定電極が被測定ウェハに接触し光−電気特性の測定が行われる。すなわち、光の照射されたスポット領域の電流−電圧特性が測定される。この測定が完了すると、ステップS105において、トリガー信号が発信され、測定電極が被測定ウェハから離れる。そして、ステップS106において、nがNであるか否かがチェックされる。nがNである場合には、ステップS107に至り、mがMであるか否かがチェックされる。mがMである場合には、ステップS108において、被測定ウェハは測定位置から外され、本装置外へ搬出される。
【0014】
ステップS106において、n=Nではないと判定された場合には、ステップS109に至り、mが偶数であるか否かがチェックされる。mが偶数である場合には、ステップS110において、被測定ウェハはX方向に1ステップ送られ、ステップS111に至る。ステップS109において、mが偶数でないと判定された場合には、ステップS112において、被測定ウェハは−X方向に1ステップ送られ、ステップS111に至る。ステップS111において、n=n+1とした後、ステップS104へ戻る。
ステップS107において、m=Mではないと判定された場合には、ステップS113に至り、被測定ウェハをY方向に1ステップ送り、ステップS114において、m=m+1とした後、ステップS103へ戻る。
【0015】
データ処理部Bでは、ウェハ処理部AのステップS101において、被測定ウェハの搬入が行われると、ステップS201において、p=0と設定し、ステップS202において、q=0と設定した後、ウェハ処理部Aより、トリガー信号が発信されるのを待つ。ステップS203において、ウェハ処理部AのステップS105にて発信されたトリガー信号が受信されると、ステップS204に移り、ウェハ処理部AのステップS104にて得られた測定データを取り込む。そして、ステップS205において、取得した測定データに基づいて最大出力Pmaxを求め、FF値を算出する。次いで、ステップS206において、qがNであるか否かがチェックされ、qがNである場合には、ステップS207へ移り、pがMであるか否かがチェックされ、pがMである場合には、ステップS208において、測定の終了した被測定ウェハの測定結果、演算結果を取得して、当該被測定ウェハについて判定・選別を行う。すなわち、不良品は除外され、良品は特性に応じてクラス分けされる。不良品が発生した場合には、製造ラインに対してフィードバックが行われる(ステップS209)。
【0016】
ステップS206において、qがNではないと判定された場合には、ステップS210に移り、q=q+1とした後、トリガー信号の発信を待ち、ステップS203へ進む。
ステップS207において、pがMではないと判定された場合には、ステップS211に移り、q=q+1とした後、ステップS202へ戻る。
【0017】
上述した第1の実施の形態は、被測定ウェハ1をX−Y方向へステップ移動させるものであったが、測定電極駆動手段12をX−Y平面上をステップ移動させることにより、測定電極8、9をX−Y方向にステップ移動させるようにしてもよい。あるいは、被測定ウェハ1を例えばX方向へのみステップ移動させ測定電極8、9をY方向にステップ移動させるようにして、被測定ウェハと測定電極の双方をステップ移動させるようにしてもよい。
【0018】
図6は、本発明の第2の実施の形態を示す要部斜視図である。図6において、図1に示した第1の実施の形態の部分と同等の機能を有する部材には同一の参照番号が付せられている。本実施の形態のおいては、被測定ウェハ1は、YおよびZ方向に移動可能なウェハ保持手段6により垂直に保持される。また、光源兼用測定電極8を保持する電極保持手段10と対向測定電極9を保持する電極保持手段11とは、測定電極駆動手段12により、左右方向に移動される。
本実施の形態の装置も第1の実施の形態装置と同様に動作し、第1の実施の形態装置と同様の効果を奏することができる。本実施の形態においても、測定電極側をYおよびZ方向にステップ移動可能に変更することも、測定電極と被測定ウェハの一方をY方向へステップ移動させ他方をZ方向へステップ移動させるように変更することも可能である。
【0019】
図7は、本発明の第3の実施の形態を示す斜視図である。図7において、図1に示した第1の実施の形態の部分と同等の機能を有する部材には同一の参照番号が付せられている。本実施の形態のおいては、被測定ウェハ1は、Y方向およびX方向へステップ移動するY-Xテーブル15上に固定される対向測定電極ステージ16上に載置される。被測定ウェハ1と対向測定電極ステージ16との間には、板状ないしマット状の対向測定電極(図示なし)が配置されており、被測定ウェハ1の裏面に形成された高不純物濃度層または裏面電極と接触している。光源兼用測定電極8は、電極保持手段10により上下動されて、対向測定電極との間に被測定ウェハ1を挟み込んで測定を行う。
本実施の形態の装置においても、被測定ウェハを固定し測定電極側をXおよびY方向にステップ移動できるようにしてもよい。また、測定電極と被測定ウェハの双方をステップ移動させるようにすることも可能である。
対向測定電極は以下のように変更することが可能である。すなわち、ポゴピンのように弾性的に接触することのできるピンを対向測定電極ステージ16に複数本林立させて対向測定電極とする。以上は、被測定ウェハの全面に対向測定電極を接触させるものであったが、ウェハ裏面に裏面電極が形成されている場合や金属基板を用いた場合には、その裏面電極や金属基板と部分的に接触する対向測定電極を用いることができる。また、薄膜系太陽電池の場合には、基板上に形成された裏面電極の露出部と弾性的に接触するクリップ電極を対向測定電極とすることができる。
【0020】
図8は、本発明の第4の実施の形態を示す要部斜視図である。本実施の形態の図1に示した第1の実施の形態と異なる点は、第1の実施の形態においては、光源兼用測定電極8と対向測定電極9とを1本ずつ設け、一光照射スポットごとに測定を行っているのに対し、本実施の形態においては、光源兼用測定電極8と対向測定電極9とはライン状に4本設けられている。そして、本実施の形態においては、四光照射スポットに対し一括して測定を行う。本実施の形態に拠れば、測定・評価の時間を短縮することができる。
【0021】
図9は、本発明の第5の実施の形態を示す要部斜視図である。本実施の形態の図8に示した第4の実施の形態と異なる点は、第4の実施の形態においては、光源兼用測定電極8と対向測定電極9とが1列にライン状に連続して配置されていたのに対し、本実施の形態においては、光源兼用測定電極8と対向測定電極9とは2列に、かつ、各測定電極はX方向およびY方向に一光照射スポット分の間隔を隔てて配置されている点である。第4の実施の形態の場合のように、光源兼用測定電極8を連続して設けた場合には隣接光照射スポット間での干渉により測定精度が低下する恐れがあるので、本実施の形態のように各測定電極間を離すことが望ましい。本実施の形態においては、X方向およびY方向に1ステップ移動させた後には3ステップ移動させる必要がある。
【0022】
図10(a)は、本発明の第6の実施の形態を示す要部斜視図であり、図10(b)は、その要部平面図である。図8に示した第4の実施の形態では、光源兼用測定電極8、対向測定電極9がライン状に配置されていたが、本実施の形態においては、被測定ウェハ1の受光領域の全面をカバーできるように、マトリックス状に配置される。そして、光源兼用測定電極8と対向測定電極9とは、それぞれ上下動可能な箱型の電極保持手段10、11に保持されている。また、第4、第5の実施の形態では、測定は複数スポットに対して同時に行われていたが、本実施の形態においては、1スポットずつ行なわれる。すなわち、光源用電源17および測定器18が、走査回路19を介して光源兼用測定電極8と対向測定電極9に順次接続され、光源の点灯とその光照射スポット領域の測定が順次行なわれる。
【0023】
次に、本実施の形態の動作について説明する。被測定ウェハ1が、搬送手段(図示なし)により、図10(a)に示されるように、電極保持手段10、11間に搬送されてきて位置決めされる。次に、電極保持手段10、11が駆動手段(図示なし)によりそれぞれ上昇、降下せしめられ、被測定ウェハ1が測定電極8、9間に挟持される。最初に、例えば、図10(b)の最上段左端の光源兼用測定電極8とその光源が走査回路19を介して測定器18、光源用電源17に接続され、またその測定電極8に対向する位置にある対向測定電極9が走査回路19を介して測定器18に接続され、その位置の光源が点灯され、そのスポット領域の測定が行われる。第1のスポット領域の測定が完了すると、走査回路19は、光源用電源17、測定器18の接続を最上段左端の右隣に位置する光源兼用測定電極8に切り換え、またその光源兼用測定電極8に対向する位置にある対向測定電極9に測定器18が接続されて、第2のスポット領域の測定が行われる。以下同様にして、走査回路19により、光源用電源17、測定器18の測定電極8、9への接続が順次切り換えられ、測定が繰り返される。被測定ウェハ1の受光領域全体の測定が完了すると、すなわち、すべての光源兼用測定電極8と対向測定電極9に対する走査回路19による走査が完了すると、電極保持手段10、11が駆動手段(図示なし)によりそれぞれ降下、上昇せしめられ、被測定ウェハ1が搬送手段(図示なし)により、外部へ搬出される。
被測定ウェハ1の裏面に高不純物濃度層または裏面電極が形成されているとき、マトリックス状に配置された複数の対向測定電極を用いるのに代え、1枚の板状ないしマット状の対向測定電極を用いることができる。あるいは、ポゴピンのような弾性的に接触することのできるピンを林立させて対向測定電極とすることもできる。また、薄膜系太陽電池の場合には、基板上に形成された裏面電極の露出部と弾性的に接触する電極を対向測定電極とすることができる。
【0024】
【実施例】
ガラス基板上にMo裏面電極が形成された受光面が36mm×27mmのCIGS太陽電池を、図7に示す装置を用い、裏面電極をクリップ電極で挟んで回路短絡電流Isc、回路開放電圧VocおよびI-V特性の測定を行った。スポット光径は3mmで、X-Y方向のステップ移動幅は3mmであり、測定スポット数は108である。
測定結果を相対値にて図11〜図14に示す。図11、図12、図13、図14は、それぞれ回路短絡電流Isc、回路開放電圧Voc、最大出力電力Pmax、曲線因子FFを示す図であって、各図の最上段は、Y=一定としてX方向に12スポット測定した結果を示す折れ線グラフを9本集めたものであり、各図において、異なる折れ線グラフはそれぞれY方向位置の異なる位置での測定結果を示している。また、各図の中段は、最上段に示すデータを基に作成した面内分布を示すグラフである。
各図の上段の図より、面内のデータのばらつき程度が判定できる。たとえば、Pmaxの分布では面内において3%のばらつき幅があることが分かる。合否判定基準は分布の幅と製品の要求品質レベル等に基づいて設定し、合否判定する。不合格となった場合、不合格の主要因である評価パラメータおよび他の評価パラメータの解析から改善案情報を作成することができ、これを製造過程にフィードバックすることができる。また、各図の中段の図から、電池受光面の異常の位置および広がりを把握できる。
【0025】
【発明の効果】
以上説明したように、本発明は、太陽電池受光面にスポット光を照射しスポット光照射部外周に測定電極を当接させて太陽電池の光-電気特性を測定するものであるので、太陽電池の局部的諸特性を測定することが可能になり、性能の内部均一性を評価することが可能になる。したがって、本発明によれば、太陽電池内部の局部劣化および異常の診断が可能になり、その情報を製造過程へフィードバックすることにより欠陥要素の除去された、経時変化の起こりにくい高品質の製品の供給が可能になる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態の概略の斜視図。
【図2】 本発明の第1の実施の形態の要部斜視図。
【図3】 本発明の評価装置において用いられる光源兼用測定電極の一例を示す底面図と断面図。
【図4】 本発明の第1の実施の形態における制御部のブロック図。
【図5】 本発明の第1の実施の形態における動作を示すフローチャート。
【図6】 本発明の第2の実施の形態の要部斜視図。
【図7】 本発明の第3の実施の形態の斜視図。
【図8】 本発明の第4の実施の形態の要部斜視図。
【図9】 本発明の第5の実施の形態の要部斜視図。
【図10】 本発明の第6の実施の形態の要部斜視図と要部平面図。
【図11】 本発明の一実施例でのCIGS太陽電池回路短絡電流Iscの面内スポット測定結果を示す折れ線グラフと相対面分布図。
【図12】 本発明の一実施例でのCIGS太陽電池回路開放電圧Vocの面内スポット測定結果を示す折れ線グラフと相対面分布図。
【図13】 本発明の一実施例でのCIGS太陽電池最大出力電力Pmaxの面内スポット測定結果を示す折れ線グラフと相対面分布図。
【図14】 本発明の一実施例でのCIGS太陽電池曲線因子FFの面内スポット測定結果を示す折れ線グラフと相対面分布図。
【符号の説明】
1 被測定ウェハ
2 暗ボックス
3 ベース
4 ウェハ搬送台
5 ガイドレール
6 ウェハ保持手段
7 保持手段ガイド
8 光源兼用測定電極
81 固定部
82 絶縁円筒部
83 電圧測定電極
84 電流測定電極
85 絶縁リング
86 光源
87 ばね
9 対向測定電極
10、11 電極保持手段
12 測定電極駆動手段
13 制御部
14 空調部
15 X−Yテーブル
16 対向測定電極ステージ

Claims (11)

  1. スポット光照射手段と、前記スポット光照射手段を囲み先端部が太陽電池の光照射面と接触することができ、電流測定電極と電圧測定電極とが備えられた第1の電極部を有する第1の接触部材と、前記第1の電極部と同等の外形形状を有し該第1の電極部と対向して配備されその先端部が太陽電池の前記第1の電極部の接触部の裏面側と接触することができ、電流測定電極と電圧測定電極とが備えられた第2の電極部を有する第2の接触部材と、太陽電池を保持する太陽電池保持部材と、前記第1および前記第2の電極部と接続されてスポット光下の太陽電池の電流−電圧特性を測定する測定部と、を有する太陽電池の性能評価装置。
  2. 前記第2の電極部は、筒型形状をなしておりその接触部はリング状をなしていることを特徴とする請求項1に記載の太陽電池の性能評価装置。
  3. 前記第1の電極部は、筒型形状をなしており中央中空部には前記スポット光照射手段が配備されその太陽電池への接触部はリング状をなしていることを特徴とする請求項1〜のいずれかに記載の太陽電池の性能評価装置。
  4. 前記スポット光照射手段が、一端が光源に対向した光ファイバまたは単色LEDまたは白色LEDであることを特徴とする請求項1〜のいずれかに記載の太陽電池の性能評価装置。
  5. 前記第1の電極と前記太陽電池保持部材の内の少なくとも一方はステップ状に移動可能であって、前記第1の電極は太陽電池上を、相対的にX−Y方向にステップ状に移動して光照射位置をステップ状に移動させることを特徴とする請求項1〜のいずれかに記載の太陽電池の性能評価装置。
  6. 第1の接触部材が複数個設けられ、それぞれの接触部材に測定部が設置されていることを特徴とする請求項1〜のいずれかに記載の太陽電池の性能評価装置。
  7. 第1の接触部材が複数個設けられ、前記測定部と第1の接触部材との接続を切り換える走査回路が設置されていることを特徴とする請求項1〜のいずれかに記載の太陽電池の性能評価装置。
  8. 第1の接触部材のスポット光照射手段による光照射が走査回路により順次切り換えられることを特徴とする請求項に記載の太陽電池の性能評価装置。
  9. 第1の接触部材が太陽電池の受光領域の全体を覆うように複数個設けられていることを特徴とする請求項またはに記載の太陽電池の性能評価装置。
  10. 太陽電池が暗所内に配置されることを特徴とする請求項1〜のいずれかに記載の太陽電池の性能評価装置。
  11. 太陽電池が配置される雰囲気を調整することができることを特徴とする請求項1〜1のいずれかに記載の太陽電池の性能評価装置。
JP2003026597A 2003-02-04 2003-02-04 太陽電池の性能評価装置 Expired - Lifetime JP4625941B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026597A JP4625941B2 (ja) 2003-02-04 2003-02-04 太陽電池の性能評価装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026597A JP4625941B2 (ja) 2003-02-04 2003-02-04 太陽電池の性能評価装置

Publications (2)

Publication Number Publication Date
JP2004241449A JP2004241449A (ja) 2004-08-26
JP4625941B2 true JP4625941B2 (ja) 2011-02-02

Family

ID=32954551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026597A Expired - Lifetime JP4625941B2 (ja) 2003-02-04 2003-02-04 太陽電池の性能評価装置

Country Status (1)

Country Link
JP (1) JP4625941B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790713A (zh) * 2016-04-28 2016-07-20 衢州学院 一种太阳能电池板的检测器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129010A2 (en) * 2007-04-19 2008-10-30 Oc Oerlikon Balzers Ag Test equipment for automated quality control of thin film solar modules
JP4153021B1 (ja) 2007-10-22 2008-09-17 日清紡績株式会社 太陽電池の検査装置
JP5274043B2 (ja) * 2008-02-12 2013-08-28 オルボテック リミテッド 半導体基板の検査装置
WO2009129030A2 (en) * 2008-04-14 2009-10-22 Applied Materials, Inc. Solar parametric testing module and processes
EP2159583A1 (en) * 2008-08-29 2010-03-03 ODERSUN Aktiengesellschaft System and method for localizing and passivating defects in a photovoltaic element
JP5134479B2 (ja) * 2008-09-19 2013-01-30 三菱重工業株式会社 光電変換装置モジュールの検査装置
US20100237895A1 (en) * 2009-03-19 2010-09-23 Kyo Young Chung System and method for characterizing solar cell conversion performance and detecting defects in a solar cell
JP5344595B2 (ja) * 2009-04-09 2013-11-20 レーザーテック株式会社 太陽電池の評価装置、評価方法、及び太陽電池の製造方法
LU91561B1 (en) * 2009-04-30 2010-11-02 Univ Luxembourg Electrical and opto-electrical characterisation oflarge-area semiconductor devices.
US20100330711A1 (en) * 2009-06-26 2010-12-30 Applied Materials, Inc. Method and apparatus for inspecting scribes in solar modules
US20110198322A1 (en) * 2009-08-06 2011-08-18 Applied Materials, Inc. In-line metrology methods and systems for solar cell fabrication
JP5509414B2 (ja) * 2010-01-28 2014-06-04 大日本スクリーン製造株式会社 太陽電池評価装置および太陽電池評価方法
CN101814185B (zh) * 2010-04-14 2012-10-10 天津大学 用于微小尺寸测量的线结构光视觉传感器标定方法
KR101104338B1 (ko) * 2011-04-01 2012-01-16 디아이티 주식회사 태양전지 성능 평가 장치 및 이를 이용한 태양전지 성능 평가 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790713A (zh) * 2016-04-28 2016-07-20 衢州学院 一种太阳能电池板的检测器

Also Published As

Publication number Publication date
JP2004241449A (ja) 2004-08-26

Similar Documents

Publication Publication Date Title
JP4625941B2 (ja) 太陽電池の性能評価装置
TWI429925B (zh) 用於薄膜太陽能模組之自動化品質控制的測試配備
US5834941A (en) Mobile charge measurement using corona charge and ultraviolet light
US20100237895A1 (en) System and method for characterizing solar cell conversion performance and detecting defects in a solar cell
JP2019102645A (ja) プローバ
JP3618865B2 (ja) 光起電力素子の特性検査装置及び製造方法
JP4765052B2 (ja) 集積型薄膜太陽電池の評価装置および評価方法
EP1220394A2 (en) Laser bar tester
US8319513B2 (en) Inspecting apparatus for solar cell and inspecting method using the same
JP2010238906A (ja) 太陽電池の出力特性測定装置および出力特性測定方法
US20100190275A1 (en) Scribing device and method of producing a thin-film solar cell module
JP5509414B2 (ja) 太陽電池評価装置および太陽電池評価方法
JP5579829B2 (ja) 広面積半導体装置の電気的および光電気的な特性
KR101447716B1 (ko) 에피웨이퍼의 검사 장치 및 에피웨이퍼의 검사 방법
CN114696744A (zh) 一种太阳能电池测试设备
KR20100009844A (ko) 태양전지 검사장치
KR101104338B1 (ko) 태양전지 성능 평가 장치 및 이를 이용한 태양전지 성능 평가 방법
KR101088261B1 (ko) 태양전지의 검사장치 및 검사방법
CN211507078U (zh) 一种Micro-LED器件和显示面板
Kim et al. A dual side electroluminescence measurement system for LED wafer manufacturing
WO2011052426A1 (ja) 太陽電池の評価装置及び評価方法
JP2013026395A (ja) 薄膜太陽電池の成膜検査装置及び方法
CN115940812A (zh) 一种反向背压探针式电流-电压测试装置及方法
WO2018077423A1 (en) Apparatus for testing solar cells, system for production of solar cells, and method for controlling an irradiation device for simulating a spectrum of solar radiation
KR20100010983A (ko) 태양전지 검사장치 및 이를 이용한 태양전지 검사방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4625941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term