JP4622921B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4622921B2
JP4622921B2 JP2006101764A JP2006101764A JP4622921B2 JP 4622921 B2 JP4622921 B2 JP 4622921B2 JP 2006101764 A JP2006101764 A JP 2006101764A JP 2006101764 A JP2006101764 A JP 2006101764A JP 4622921 B2 JP4622921 B2 JP 4622921B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
defrosting
way valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006101764A
Other languages
Japanese (ja)
Other versions
JP2007278536A (en
Inventor
徳哉 浅田
寛幸 大門
康裕 中村
義和 西原
淳 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006101764A priority Critical patent/JP4622921B2/en
Publication of JP2007278536A publication Critical patent/JP2007278536A/en
Application granted granted Critical
Publication of JP4622921B2 publication Critical patent/JP4622921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は室外熱交換器に付着した霜を除霜する除霜運転を行う空気調和機に関するものである。   The present invention relates to an air conditioner that performs a defrosting operation for defrosting frost adhering to an outdoor heat exchanger.

従来、この種の空気調和機は暖房運転停止時には四方弁を切換え、冷凍サイクルの冷媒を暖房時と逆方向に流す、即ち、冷房時と同じ冷媒の流動方向とし、室外熱交換器に高温高圧の冷媒を流して室外熱交換器に付着した霜を融解する除霜方式で、除霜運転を行った後、空気調和機の運転を停止するようにしている。これによって、特に夜間の暖房運転停止時にも除霜を十分行ってから停止できるので、翌朝の暖房運転開始時に着霜による能力不足を防止することができる(例えば、特許文献1参照)。   Conventionally, this type of air conditioner switches the four-way valve when heating operation is stopped, and flows the refrigerant in the refrigeration cycle in the opposite direction to that during heating, that is, the same refrigerant flow direction as in cooling, and the outdoor heat exchanger has a high temperature and high pressure. After the defrosting operation is performed by the defrosting method in which the frost attached to the outdoor heat exchanger is melted by flowing the refrigerant, the operation of the air conditioner is stopped. Thereby, since it can stop after fully performing defrost especially at the time of heating operation stop especially at night, the capability shortage by frost at the time of the heating operation start of the next morning can be prevented (for example, refer patent document 1).

一方、この種の除霜方式では、除霜時は室内側の熱交換器が蒸発器となるため、室内の部屋の温度が低下して冷風感を感じるという基本的課題があり、この基本的課題への対策として、暖房継続しながら除霜運転する除霜方式として、冷凍サイクルに冷媒加熱器を有する冷媒加熱回路と除霜用回路を設け、冷媒加熱器によって加熱された冷媒を圧縮機を通った後、室内熱交換器を通る流れと除霜用回路を介して室外熱交換器に暖房時とは逆に流れ込む流れとに分岐し、室内熱交換器による室内暖房と室外熱交換器の除霜を同時に行うものがある(例えば、特許文献2参照)。   On the other hand, in this type of defrosting system, the indoor heat exchanger becomes an evaporator during defrosting, so there is a basic problem that the temperature of the room in the room decreases and a cold air feeling is felt. As a countermeasure against the problem, as a defrosting method in which the defrosting operation is performed while continuing the heating, a refrigerant heating circuit having a refrigerant heater and a defrosting circuit are provided in the refrigeration cycle, and the refrigerant heated by the refrigerant heater is replaced with a compressor. After passing through, the flow branches through the flow through the indoor heat exchanger and the flow into the outdoor heat exchanger through the defrosting circuit in the opposite direction to that during heating, and the indoor heating by the indoor heat exchanger and the outdoor heat exchanger There exists what performs a defrost simultaneously (for example, refer patent document 2).

図9は、特許文献2に記載された従来の空気調和機の冷凍サイクルの構成図を示すものである。図9に示すように、圧縮機101、四方弁102、室内熱交換器110、膨張機構105および室外熱交換器103を冷媒回路で連結してなるヒートポンプ式冷凍サイクルで、膨張機構105と室外熱交換器103の間と、圧縮機101の吸入側の間とを連結して冷媒加熱器104を有する冷媒加熱回路と、圧縮機101の吐出側と、室外熱交換器103と四方弁102の間とを連結する除霜用回路とを備え、室外熱交換器103の除霜を行う際、冷媒加熱器104によって加熱された冷媒が圧縮機101を通った後、室内熱交換器110を通る流れと除霜用回路を介して室外熱交換器103を通る流れとに分岐され、これらの分岐した冷媒の流れが冷媒加熱回路の入口で合流し、再び冷媒加熱器104によって加熱されるように構成されている。   FIG. 9 shows a configuration diagram of a refrigeration cycle of a conventional air conditioner described in Patent Document 2. As shown in FIG. As shown in FIG. 9, in a heat pump refrigeration cycle in which a compressor 101, a four-way valve 102, an indoor heat exchanger 110, an expansion mechanism 105, and an outdoor heat exchanger 103 are connected by a refrigerant circuit, the expansion mechanism 105 and the outdoor heat A refrigerant heating circuit having a refrigerant heater 104 connected between the exchangers 103 and the suction side of the compressor 101, a discharge side of the compressor 101, and between the outdoor heat exchanger 103 and the four-way valve 102 When the defrosting of the outdoor heat exchanger 103 is performed, the refrigerant heated by the refrigerant heater 104 passes through the compressor 101 and then flows through the indoor heat exchanger 110. And the flow through the outdoor heat exchanger 103 via the circuit for defrosting, and the flow of the branched refrigerant merges at the inlet of the refrigerant heating circuit and is heated by the refrigerant heater 104 again. Been That.

以上の従来の発明から、暖房運転後に、室内温度の低下に伴う冷風感を感じさせずに、室外熱交換器の除霜を十分行ってから停止できるので、翌朝の暖房運転開始時に着霜による能力不足を防止することができる。また、四方弁を切換えることなく除霜運転することで、切換音による違和感・不快感を与えることがない。
特開昭61−17870号公報 特開平11−182994号公報
From the above conventional invention, after the heating operation, the outdoor heat exchanger can be sufficiently defrosted without causing a feeling of cold air accompanying a decrease in the room temperature, so that it can be stopped at the start of the heating operation the next morning. Insufficient capacity can be prevented. Further, by performing the defrosting operation without switching the four-way valve, there is no sense of discomfort or discomfort due to the switching sound.
Japanese Patent Laid-Open No. 61-17870 JP-A-11-182994

しかしながら、前記従来の構成では、暖房運転停止中にも関わらず、圧縮機を稼働して除霜していることから、冷媒音が発生し、使用者に違和感や不快感を与えることがあるという課題を有していた。   However, in the conventional configuration, although the compressor is operated and defrosted while the heating operation is stopped, refrigerant noise is generated, which may give the user a sense of discomfort and discomfort. Had problems.

本発明は、前記従来の課題を解決するもので、使用者に違和感や不快感を与えることなく、また、室内温度の低下に伴う冷風感を感じさせずに、室外熱交換器の除霜を十分行う空気調和機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and does not give the user a sense of incongruity or discomfort, and allows the outdoor heat exchanger to be defrosted without causing a feeling of cold air accompanying a decrease in indoor temperature. It aims at providing the air conditioner which performs enough.

前記従来の課題を解決するために、本発明の空気調和機は、暖房運転時に、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器、前記四方弁の順に冷媒が流れるように連結したヒートポンプ式冷凍サイクルと、前記室内熱交換器へ送風する室内送風機とを有し、前記ヒートポンプ式冷凍サイクルにおいて、前記室内熱交換器と前記減圧器との間と、前記四方弁と前記室外熱交換器との間とを連結する第1のバイパス回路、および、前記室内熱交換器と前記圧縮機との間と、前記減圧器と前記室外熱交換器との間とを連結する第2
のバイパス回路を備え、前記第1のバイパス回路には冷媒加熱用二方弁および内部に冷媒流路を有する冷媒加熱器を設け、前記第2のバイパス回路には除霜用二方弁を設け、前記室外熱交換器の除霜を行う際には、前記冷媒加熱用二方弁および前記除霜用二方弁を開放して、前記第1のバイパス回路に流れる冷媒を前記冷媒加熱器で加熱する第1のバイパス運転と、前記圧縮機で圧縮された冷媒を前記室外熱交換器に通過させる第2のバイパス運転とを行う空気調和装置であって、暖房運転終了時には、まず、前記冷媒加熱用二方弁を開いて前記減圧器を略閉塞とし第1のバイパス回路に冷媒を流す第1のバイパス運転を行い、所定時間経過後に、前記除霜用二方弁を開方向に制御して第2のバイパス回路に冷媒を流す第2のバイパス運転を行い、さらに、前記室内送風機は微少回転で運転を継続して、前記室外熱交換器の除霜運転を行い、前記除霜運転が終了後に前記圧縮機の運転を停止させるものである。
In order to solve the above-described conventional problems, the air conditioner of the present invention is configured so that the refrigerant flows in the order of the compressor, the four-way valve, the indoor heat exchanger, the decompressor, the outdoor heat exchanger , and the four-way valve during heating operation. a heat pump type refrigeration cycle linked to, and a indoor blower for blowing into the indoor heat exchanger, said in the heat pump type refrigeration cycle, and between said pressure reducer and said indoor heat exchanger, and the four-way valve A first bypass circuit connecting between the outdoor heat exchanger and the first bypass circuit connecting between the indoor heat exchanger and the compressor, and between the pressure reducer and the outdoor heat exchanger. 2
The first bypass circuit is provided with a refrigerant heating two-way valve and a refrigerant heater having a refrigerant passage therein, and the second bypass circuit is provided with a defrosting two-way valve When performing the defrosting of the outdoor heat exchanger, the refrigerant heating two-way valve and the two-way defrosting valve are opened, and the refrigerant flowing through the first bypass circuit is passed through the refrigerant heater. An air conditioner for performing a first bypass operation for heating and a second bypass operation for allowing the refrigerant compressed by the compressor to pass through the outdoor heat exchanger, and at the end of the heating operation, first, the refrigerant The two-way valve for heating is opened, the pressure reducer is substantially closed, a first bypass operation is performed in which a refrigerant flows through the first bypass circuit, and the two-way valve for defrosting is controlled to open in a predetermined time. The second bypass operation in which the refrigerant flows through the second bypass circuit. There further the indoor blower continues to operate at very small rotational performs defrosting operation of the outdoor heat exchanger, the defrosting operation is one that stops the operation of the compressor after completion.

これによって、暖房運転終了時には冷媒加熱器にて過熱された冷媒を室外熱交換器に流すことで四方弁を切換えることなく除霜を行え、室内熱交換器の温度の上昇を和らげ熱膨張によるきしみ音の発生を防止するとともに、圧縮機の吸入圧力を下げる効果があり、そのことにより高周波数高吸入圧力運転を避け圧縮機信頼性向上を図ることができ、また、室内温度の低下に伴う冷風感を感じさせずに、室外熱交換器の除霜を十分行うことができる。 As a result, at the end of the heating operation, the refrigerant heated by the refrigerant heater is allowed to flow to the outdoor heat exchanger, so that defrosting can be performed without switching the four-way valve, and the rise in the temperature of the indoor heat exchanger is mitigated, and the squeak is caused by thermal expansion. This has the effect of preventing the generation of noise and lowering the suction pressure of the compressor, thereby avoiding high frequency and high suction pressure operation and improving the reliability of the compressor. to not feel the feeling, Ru can be carried out defrosting of the outdoor heat exchanger enough.

本発明の空気調和機は、使用者に違和感や不快感を与えることなく、また、室内温度の低下に伴う冷風感を感じさせずに、安定した除霜運転を実施でき、次回運転開始より十分な暖房運転を行うことができるので、使用者に快適な空調環境をより安価に安定して提供することができる。   The air conditioner of the present invention can perform a stable defrosting operation without giving the user a sense of discomfort or discomfort, and without feeling the cold air accompanying a decrease in the room temperature, and is sufficient from the start of the next operation. Therefore, a comfortable air-conditioning environment can be stably provided at a lower cost to the user.

第1の発明の空気調和機は、暖房運転時に、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器、前記四方弁の順に冷媒が流れるように連結したヒートポンプ式冷凍サイクルと、前記室内熱交換器へ送風する室内送風機とを有し、前記ヒートポンプ式冷凍サイクルにおいて、前記室内熱交換器と前記減圧器との間と、前記四方弁と前記室外熱交換器との間とを連結する第1のバイパス回路、および、前記室内熱交換器と前記圧縮機との間と、前記減圧器と前記室外熱交換器との間とを連結する第2のバイパス回路を備え、前記第1のバイパス回路には冷媒加熱用二方弁および内部に冷媒流路を有する冷媒加熱器を設け、前記第2のバイパス回路には除霜用二方弁を設け、前記室外熱交換器の除霜を行う際には、前記冷媒加熱用二方弁および前記除霜用二方弁を開放して、前記第1のバイパス回路に流れる冷媒を前記冷媒加熱器で加熱する第1のバイパス運転と、前記圧縮機で圧縮された冷媒を前記室外熱交換器に通過させる第2のバイパス運転とを行う空気調和装置であって、暖房運転終了時には、まず、前記冷媒加熱用二方弁を開いて前記減圧器を略閉塞とし第1のバイパス回路に冷媒を流す第1のバイパス運転を行い、所定時間経過後に、前記除霜用二方弁を開方向に制御して第2のバイパス回路に冷媒を流す第2のバイパス運転を行い、さらに、前記室内送風機は微少回転で運転を継続して、前記室外熱交換器の除霜運転を行い、前記除霜運転が終了後に前記圧縮機の運転を停止させることにより、冷媒音や四方弁の切換音による違和感・不快感を使用者に与えることなく、また、室内温度の低下に伴う冷風感を感じさせずに、室外熱交換器の除霜を十分行うことができる。 The air conditioner of the first invention includes a heat pump refrigeration cycle in which a refrigerant flows in the order of a compressor, a four-way valve, an indoor heat exchanger, a decompressor, an outdoor heat exchanger , and the four-way valve during heating operation. And an indoor fan for blowing air to the indoor heat exchanger, and in the heat pump refrigeration cycle, between the indoor heat exchanger and the pressure reducer, and between the four-way valve and the outdoor heat exchanger. And a second bypass circuit that connects between the indoor heat exchanger and the compressor, and between the decompressor and the outdoor heat exchanger, The first bypass circuit is provided with a refrigerant heating two-way valve and a refrigerant heater having a refrigerant flow passage therein, the second bypass circuit is provided with a defrosting two-way valve, and the outdoor heat exchanger When performing defrosting, the refrigerant heating two-way valve and A first bypass operation for opening the two-way valve for defrosting and heating the refrigerant flowing in the first bypass circuit by the refrigerant heater, and the refrigerant compressed by the compressor in the outdoor heat exchanger The air conditioning apparatus performs the second bypass operation that passes through the air, and at the end of the heating operation, first, the refrigerant heating two-way valve is opened to substantially close the pressure reducer, and the refrigerant is supplied to the first bypass circuit. A first bypass operation is performed, and after a predetermined time has elapsed, a second bypass operation is performed in which the two-way valve for defrosting is controlled to open to flow a refrigerant through a second bypass circuit, and the indoor fan The operation continues with a slight rotation, performs the defrosting operation of the outdoor heat exchanger, and stops the operation of the compressor after the defrosting operation is completed, thereby causing uncomfortable feeling due to the refrigerant sound and the switching sound of the four-way valve.・ Do not give the user discomfort Further, without feel cold wind feeling due to lowering of the room temperature, it can be determined promptly by using an defrosting of the outdoor heat exchanger sufficiently.

また接続配管長が長くなる場合でも除霜回路が室外で行うため、配管長による除霜運転での圧縮機オイルレベルが下がることはなく長配管商品でも圧縮機の信頼性の高い運転ができる。   In addition, since the defrosting circuit is performed outdoors even when the length of the connecting pipe becomes long, the compressor oil level in the defrosting operation by the pipe length does not decrease, and the compressor can be operated with high reliability even with long pipe products.

また全体冷媒の一部を除霜用に利用するため、冷媒加熱部に極端に多くの冷媒が流れな
いことからコンパクトな冷媒加熱器で構成できる。
In addition, since a part of the whole refrigerant is used for defrosting, an extremely large amount of refrigerant does not flow through the refrigerant heating unit, so that a compact refrigerant heater can be used.

また冷房運転を行った場合でも、冷媒加熱器に高温高圧の冷媒ガスが滞留して、冷媒加熱器は常に雰囲気の露点温度以上に保たれるため、冷媒加熱器に結露が発生することもない。 Even when the cooling operation is performed, high-temperature and high-pressure refrigerant gas stays in the refrigerant heater, and the refrigerant heater is always kept above the dew point temperature of the atmosphere, so that no condensation occurs in the refrigerant heater. .

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における空気調和機の代表構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a representative configuration diagram of an air conditioner according to a first embodiment of the present invention.

図1において、室外機20は、圧縮機1、四方弁2、減圧器4、室外熱交換器5、室外送風機19から構成されている。ここでの減圧器4は、電磁膨張弁でもよい。   In FIG. 1, the outdoor unit 20 includes a compressor 1, a four-way valve 2, a decompressor 4, an outdoor heat exchanger 5, and an outdoor blower 19. The decompressor 4 here may be an electromagnetic expansion valve.

また、室内機18は、室内熱交換器3、室内送風機17から構成されている。   The indoor unit 18 includes the indoor heat exchanger 3 and the indoor blower 17.

更に室外機20には第1のバイパス回路6及び第2のバイパス回路9が具備されている。第1のバイパス回路6は、室内熱交換器3と減圧器4の間と四方弁2と室外熱交換器5の間を連結しており、冷媒加熱用二方弁7、冷媒加熱用減圧器12、冷媒加熱ヒータ13と冷媒通過管部14と蓄熱部15とからなる冷媒加熱器8を有している。   Further, the outdoor unit 20 is provided with a first bypass circuit 6 and a second bypass circuit 9. The first bypass circuit 6 connects between the indoor heat exchanger 3 and the decompressor 4, and between the four-way valve 2 and the outdoor heat exchanger 5, and includes a refrigerant heating two-way valve 7 and a refrigerant heating decompressor. 12, a refrigerant heater 8 including a refrigerant heater 13, a refrigerant passage pipe part 14, and a heat storage part 15 is provided.

第2のバイパス回路9は、四方弁2と室内熱交換器3の間と、減圧器4と室外熱交換器5の間を連結しており、除霜用二方弁10、除霜用減圧器11を有している。第2のバイパス回路9は、圧縮機1と四方弁2の間と、減圧器4と室外熱交換器5の間を連結してもよい。   The second bypass circuit 9 connects between the four-way valve 2 and the indoor heat exchanger 3, and between the pressure reducer 4 and the outdoor heat exchanger 5, and includes a defrosting two-way valve 10 and a defrosting pressure reduction. A container 11 is provided. The second bypass circuit 9 may connect between the compressor 1 and the four-way valve 2 and between the decompressor 4 and the outdoor heat exchanger 5.

通常の暖房運転において、冷媒加熱用二方弁7及び除霜用二方弁10は閉じており、第1のバイパス回路6及び第2のバイパス回路9を冷媒は流れず、圧縮機1で圧縮された冷媒は四方弁2を通って、室内熱交換器3で凝縮されて室内空気に放熱する。更に減圧器4で減圧されて室外熱交換器5で蒸発して、室外空気から熱量を取り込み、再び圧縮機1に戻り、圧縮されるという冷凍サイクルを繰り返し、室内を暖房するものである。   In the normal heating operation, the refrigerant heating two-way valve 7 and the defrosting two-way valve 10 are closed, the refrigerant does not flow through the first bypass circuit 6 and the second bypass circuit 9, and the compressor 1 compresses the refrigerant. The resulting refrigerant passes through the four-way valve 2, is condensed in the indoor heat exchanger 3, and dissipates heat to the indoor air. Further, the pressure is reduced by the pressure reducer 4 and evaporated by the outdoor heat exchanger 5 to take in the amount of heat from the outdoor air, return to the compressor 1 again, and be compressed again to heat the room.

しかし、室外気温が零下など非常に低い場合、室外熱交換器5に霜が付着し、室外空気との熱交換効率が低下し、暖房能力が落ちてしまうため、除霜する必要がある。   However, when the outdoor air temperature is very low, such as below zero, frost adheres to the outdoor heat exchanger 5, the heat exchange efficiency with the outdoor air is reduced, and the heating capacity is reduced, so that it is necessary to defrost.

特に、冬季の夜間暖房運転停止時に、除霜が十分できていない状態であった場合、翌朝の暖房運転開始に際しては、前夜の除霜が十分でないために或いは暖房運転開始直後に除霜運転が開始されるために、暖房能力が不十分で更に立上り速度が遅くなることで、特に暖房能力と立上り速度が必要とされる冬季早朝の暖房開始時に使用者の要望に応えられないこととなるので、室外熱交換器の除霜が必要となる。   In particular, when the nighttime heating operation is stopped in winter, when the defrosting is not sufficiently performed, when the heating operation in the next morning is started, the defrosting operation is not performed immediately after the heating operation is started because the previous night's defrosting is not sufficient. In order to start, the heating capacity is insufficient and the start-up speed is further slowed down, so that the user's request cannot be met especially at the start of heating in the early winter season when heating capacity and start-up speed are required. Defrosting of the outdoor heat exchanger is necessary.

図2は、本発明の第1の実施の形態における制御ブロック図、図3は、本発明の第1の実施の形態における制御のタイムチャートを示すものである。   FIG. 2 is a control block diagram according to the first embodiment of the present invention, and FIG. 3 is a time chart of control according to the first embodiment of the present invention.

図2では室外機側で除霜開始判断が除霜開始判断手段50でなされ、除霜開始と判断された時に圧縮機運転手段51、冷媒加熱用二方弁開閉手段52、除霜用二方弁開閉手段53、膨張弁開度可変手段54、室外送風機運転手段55、四方弁切換え手段56、加熱器ヒータ運転停止手段57が各動作をすることにより除霜運転が行われる。   In FIG. 2, the defrosting start determination is made by the defrosting start determining means 50 on the outdoor unit side, and when it is determined that the defrosting is started, the compressor operating means 51, the refrigerant heating two-way valve opening / closing means 52, and the defrosting two-way The defrosting operation is performed by the valve opening / closing means 53, the expansion valve opening varying means 54, the outdoor fan operating means 55, the four-way valve switching means 56, and the heater heater operation stopping means 57 performing the respective operations.

このとき室外機20からの除霜開始信号を室内機18の除霜開始信号受信手段58で受信して、除霜運転の判断より室内送風機運転手段59で室内送風機17を制御する。   At this time, the defrost start signal from the outdoor unit 20 is received by the defrost start signal receiving means 58 of the indoor unit 18, and the indoor fan 17 is controlled by the indoor fan operating means 59 based on the determination of the defrost operation.

図3に示すように、暖房運転終了時に除霜開始の判断をすると、ステップ1のヒートポンプによる暖房運転からステップ2の冷媒加熱運転による除霜運転に移行する。本実施の形態では、暖房運転終了毎に除霜を行うようにしているが、室外熱交換器の温度等に応じて除霜開始の判断条件を設定してもよい。   As shown in FIG. 3, when it is determined that the defrosting is started at the end of the heating operation, the heating operation by the heat pump in Step 1 is shifted to the defrosting operation by the refrigerant heating operation in Step 2. In the present embodiment, defrosting is performed every time the heating operation is completed, but the determination condition for starting defrosting may be set according to the temperature of the outdoor heat exchanger or the like.

ステップ2ではまず、冷媒加熱用二方弁7をONして開方向に制御し、また冷媒加熱ヒータ13をONして第1のバイパス回路6を導通させ、冷媒加熱運転を行う。このとき減圧器4である膨張弁は閉塞運転かまたは閉塞に近い運転を行う。   In Step 2, first, the refrigerant heating two-way valve 7 is turned on and controlled in the opening direction, and the refrigerant heater 13 is turned on to connect the first bypass circuit 6 to perform the refrigerant heating operation. At this time, the expansion valve, which is the pressure reducer 4, performs an operation close to or close to closing.

従って、室内熱交換器3で凝縮された冷媒は、大半が第1のバイパス回路6に流れ、冷媒加熱用二方弁7、冷媒加熱用減圧器12を通って冷媒加熱器8内の冷媒通過管部14を通り、冷媒加熱ヒータ13によって加熱される。   Therefore, most of the refrigerant condensed in the indoor heat exchanger 3 flows into the first bypass circuit 6, and passes through the refrigerant in the refrigerant heater 8 through the refrigerant heating two-way valve 7 and the refrigerant heating decompressor 12. It passes through the pipe part 14 and is heated by the refrigerant heater 13.

また、第1のバイパス回路6を通らずに室外熱交換器5に流れた僅かな冷媒は、四方弁2の手前で再び第1のバイパス回路6で加熱された冷媒と合流する。四方弁2は、暖房回路のままで除霜中も切換えしないので、冷媒は、四方弁2を通り、圧縮機1で圧縮される。   Further, the slight refrigerant that has flowed to the outdoor heat exchanger 5 without passing through the first bypass circuit 6 joins again with the refrigerant heated in the first bypass circuit 6 before the four-way valve 2. Since the four-way valve 2 remains in the heating circuit and is not switched during defrosting, the refrigerant passes through the four-way valve 2 and is compressed by the compressor 1.

圧縮機1の運転周波数はステップ1でのHzb1からステップ2ではHzb2へ変更する。Hzb1とHzb2は同じ周波数でも構わない。   The operating frequency of the compressor 1 is changed from Hzb1 in step 1 to Hzb2 in step 2. Hzb1 and Hzb2 may have the same frequency.

また、室内送風機17は停止する。これにより、室内熱交換器3での熱交換量は減少し、より多くの熱量を室外熱交換器5の除霜に利用することができ、また暖房運転停止であることから使用者に不要な違和感を抱かせず、除霜運転を行うことができる。   Moreover, the indoor blower 17 stops. As a result, the amount of heat exchange in the indoor heat exchanger 3 is reduced, and a larger amount of heat can be used for defrosting the outdoor heat exchanger 5, and since heating operation is stopped, it is unnecessary for the user. The defrosting operation can be performed without feeling uncomfortable.

尚、室内送風機17は停止中であることに違和感をもたせないような微少回転で運転継続してもよい。これにより、室内熱交換器3温度の上昇を和らげ熱膨張によるきしみ音の発生を防止するとともに、圧縮機1の吸入圧力を下げる効果があり、そのことにより高周波数高吸入圧力運転を避け圧縮機信頼性向上を図ることができる。   Note that the indoor blower 17 may be continuously operated with a slight rotation so as not to give a sense of incongruity to the fact that it is stopped. As a result, the rise in the temperature of the indoor heat exchanger 3 can be mitigated and the occurrence of squeak noise due to thermal expansion can be prevented, and the suction pressure of the compressor 1 can be reduced, thereby avoiding high frequency and high suction pressure operation. Reliability can be improved.

次にステップ3で、室外熱交換器5の除霜を行うために除霜用二方弁10をONして開方向に制御し、第2のバイパス回路9を導通させる。また圧縮機1は、除霜用の運転周波数Hzb3で運転する。また室外送風機19はOFF(停止)させる。   Next, in step 3, in order to defrost the outdoor heat exchanger 5, the two-way valve 10 for defrosting is turned on and controlled in the opening direction, and the second bypass circuit 9 is made conductive. The compressor 1 is operated at an operating frequency Hzb3 for defrosting. The outdoor blower 19 is turned off (stopped).

これにより、圧縮機1で室外熱交換器5の除霜に十分な状態に圧縮された冷媒は、一部が第2のバイパス回路9に流れ込み、除霜用二方弁10、除霜用減圧器11を通り、室外熱交換器5に入る。冷媒は室外熱交換器5の除霜に十分な状態に圧縮されており、更に室外送風機19は停止しているので、冷媒は室外空気とほとんど熱交換されず、従って、室外熱交換器5の除霜のためにその熱量が使用される。   As a result, a part of the refrigerant compressed by the compressor 1 into a state sufficient for defrosting of the outdoor heat exchanger 5 flows into the second bypass circuit 9, and the defrosting two-way valve 10 and the defrosting decompression. It passes through the vessel 11 and enters the outdoor heat exchanger 5. Since the refrigerant is compressed to a state sufficient for defrosting of the outdoor heat exchanger 5 and the outdoor blower 19 is stopped, the refrigerant hardly exchanges heat with the outdoor air. The amount of heat is used for defrosting.

以上のステップによって、室内温度の低下に伴う冷風感を感じさせずに安定した除霜運転を実施し、室外熱交換器5の除霜終了に続いてステップ4では室外熱交換器除霜中に蓄熱した熱を放熱して、室外送風機19周辺の氷霜の溶解運転を行う。   Through the above steps, a stable defrosting operation is performed without feeling the feeling of cold air accompanying a decrease in the room temperature. After the defrosting of the outdoor heat exchanger 5 is completed, in step 4, during the defrosting of the outdoor heat exchanger The stored heat is dissipated and the ice frost around the outdoor blower 19 is melted.

ステップ4は、冷媒加熱用二方弁7ONの開放運転、冷媒加熱ヒータ13ONの冷媒加熱運転かつ減圧器4である膨張弁は閉塞運転かまたは閉塞に近い運転、即ち第1のバイパ
ス回路6を導通したままで、除霜用二方弁10はOFFの閉制御で第2のバイパス回路9を遮断、圧縮機1を運転周波数Hzb4に変更して室外送風機19を運転させる、ステップ2と同様の制御とする。圧縮機1のを運転周波数Hzb4は除霜前の運転周波数Hzb2と同じでもよく、その場合はステップ2と全く同じ制御となる。
Step 4 is an operation for opening the refrigerant heating two-way valve 7ON, a refrigerant heating operation for the refrigerant heater 13ON, and the expansion valve as the decompressor 4 being closed or close to closing, that is, conducting the first bypass circuit 6. The defrosting two-way valve 10 is shut off and the second bypass circuit 9 is shut off, the compressor 1 is changed to the operating frequency Hzb4, and the outdoor fan 19 is operated. And The operation frequency Hzb4 of the compressor 1 may be the same as the operation frequency Hzb2 before defrosting, and in that case, the control is exactly the same as in Step 2.

従って、室内熱交換器3で凝縮された冷媒は、大半が第1のバイパス回路6に流れ、冷媒加熱用二方弁7、冷媒加熱用減圧器12を通って冷媒加熱器8内の冷媒通過管部14を通り、冷媒加熱ヒータ13によって加熱される。   Therefore, most of the refrigerant condensed in the indoor heat exchanger 3 flows into the first bypass circuit 6, and passes through the refrigerant in the refrigerant heater 8 through the refrigerant heating two-way valve 7 and the refrigerant heating decompressor 12. It passes through the pipe part 14 and is heated by the refrigerant heater 13.

また、第1のバイパス回路6を通らずに室外熱交換器5に流れた僅かな冷媒は、まだ十分な熱量を持っており、更に除霜の際に室外熱交換器5に蓄熱された熱量が十分残っているので、それらの熱量が室外送風機19に熱伝達され、室外送風機19周辺の氷霜が溶解される。   The slight amount of refrigerant that has flowed to the outdoor heat exchanger 5 without passing through the first bypass circuit 6 still has a sufficient amount of heat, and the amount of heat stored in the outdoor heat exchanger 5 during defrosting. Therefore, the amount of heat is transferred to the outdoor blower 19 and the ice frost around the outdoor blower 19 is melted.

その後、室外熱交換器5を通った冷媒は、四方弁2の手前で再び第1のバイパス回路6で加熱された冷媒と合流し、四方弁2を通り、圧縮機1で圧縮される。   Thereafter, the refrigerant that has passed through the outdoor heat exchanger 5 joins again with the refrigerant heated in the first bypass circuit 6 before the four-way valve 2, passes through the four-way valve 2, and is compressed by the compressor 1.

尚、本実施の形態では、室内送風機17は停止のままであるが、停止中であることに違和感をもたせないような微少回転で運転してもよい。これにより、室内熱交換器3温度の上昇を和らげ熱膨張によるきしみ音の発生を防止するとともに、圧縮機1の吸入圧力を下げる効果により高周波数高吸入圧力運転を避け圧縮機信頼性向上を図ることができる。   In the present embodiment, the indoor blower 17 remains stopped, but it may be operated with a slight rotation that does not give a sense of incongruity to the stopped state. As a result, the rise in the temperature of the indoor heat exchanger 3 is moderated to prevent the occurrence of squeaking noise due to thermal expansion, and the compressor 1 is improved in reliability by avoiding high frequency and high suction pressure operation due to the effect of lowering the suction pressure of the compressor 1. be able to.

以上のステップ2〜4により、室外熱交換器5の除霜、室外送風機19周辺の氷霜の溶解が完了し、次にステップ5で一旦、通常のヒートポンプ暖房運転に戻して圧縮機1の運転周波数をHzb5に変更して圧縮機1の停止準備に入り、ステップ6で圧縮機1、室外送風機19、室内送風機17の運転を停止する(圧縮機の運転周波数Hzb6を0とする)。尚、この通常のヒートポンプ暖房運転に一旦復帰するステップ5は省略してもよい。   Through the above steps 2 to 4, the defrosting of the outdoor heat exchanger 5 and the melting of the ice frost around the outdoor blower 19 are completed. Next, in step 5, the normal heat pump heating operation is once returned to the operation of the compressor 1. The frequency is changed to Hzb5, and the compressor 1 is ready to be stopped. In step 6, the operation of the compressor 1, the outdoor fan 19, and the indoor fan 17 is stopped (the compressor operating frequency Hzb6 is set to 0). Note that step 5 for returning to the normal heat pump heating operation may be omitted.

図4は、本発明の第1の実施の形態における通常除霜時と停止時除霜時の各ステップでの圧縮機運転周波数の対比図である。   FIG. 4 is a comparison diagram of compressor operating frequencies at each step during normal defrosting and during defrosting during stop according to the first embodiment of the present invention.

図4に示すように、通常除霜時の圧縮機運転周波数Hzaと停止時除霜時の圧縮機運転周波数Hzbを区別することで、停止時除霜中の冷媒音を低減することができる。   As shown in FIG. 4, by distinguishing the compressor operating frequency Hza at the time of normal defrosting from the compressor operating frequency Hzb at the time of defrosting, the refrigerant sound during the defrosting at the time of stopping can be reduced.

尚、通常除霜時と停止時除霜時とを圧縮機運転周波数以外の条件、たとえば除霜時間や除霜終了条件を変更しても同様の効果が得られる。   The same effect can be obtained by changing conditions other than the compressor operating frequency, such as the defrosting time and the defrosting end condition, during normal defrosting and during defrosting during stoppage.

また、特許文献2に記載された従来の空気調和機の冷凍サイクルの構成を利用する場合、制御等は特許文献2に記載されているので省略するが、それぞれのステップにおける圧縮機周波数を、通常除霜時と停止時除霜時とで異なるものとすればよい。   Moreover, when utilizing the structure of the refrigeration cycle of the conventional air conditioner described in Patent Document 2, control is omitted because it is described in Patent Document 2, but the compressor frequency in each step is usually What is necessary is just to make it different at the time of defrosting at the time of defrosting at the time of a stop.

以上のように、本実施の形態においてはヒートポンプ式冷凍サイクルに、冷媒加熱器を有するバイパス回路を設け、暖房運転終了時には前記冷媒加熱器にて過熱された冷媒を前記室外熱交換器に流すことで前記四方弁を切換えることなく前記室外熱交換器の除霜を行ったあと、停止する空気調和機であって、室内送風機は停止中であることに違和感をもたせないような微少回転で運転継続することで、室内熱交換器3温度の上昇を和らげ熱膨張によるきしみ音の発生を防止するとともに、圧縮機の吸入圧力を下げる効果があり、そのことにより高周波数高吸入圧力運転を避け圧縮機信頼性向上を図ることができる。また、室内温度の低下に伴う冷風感を感じさせずに、室外熱交換器の除霜を十分行うことができる。 As described above, in the present embodiment, the heat pump refrigeration cycle is provided with a bypass circuit having a refrigerant heater, and when the heating operation ends, the refrigerant heated by the refrigerant heater is caused to flow to the outdoor heat exchanger. After the defrosting of the outdoor heat exchanger without switching the four-way valve, the air conditioner is stopped, and the operation continues at a slight rotation so as not to give a sense of incongruity that the indoor blower is stopped. As a result, the rise in the temperature of the indoor heat exchanger 3 can be mitigated and the occurrence of squeak noise due to thermal expansion can be prevented, and the suction pressure of the compressor can be reduced, thereby avoiding high frequency high suction pressure operation and the compressor. Reliability can be improved. In addition, the outdoor heat exchanger can be sufficiently defrosted without causing a feeling of cold air accompanying a decrease in indoor temperature.

また、特に、バイパス回路を、冷凍サイクルに連結された室内熱交換器と減圧器の間と四方弁と室外熱交換器の間を連結する第1のバイパス回路に二方弁及び冷媒加熱器を設け、さらに冷凍サイクルに連結された四方弁と室内熱交換器の間と、減圧器と室外熱交換器の間、または冷凍サイクルに連結された圧縮機と四方弁の間と、減圧器と室外熱交換器の間を連結する第2のバイパス回路に二方弁を設けた構成とし、室外熱交換器の除霜を行う際、第1のバイパス回路の二方弁を開放して冷媒加熱器で加熱された冷媒を圧縮機の吸入側に流す第1のバイパス運転と、第2のバイパス回路の二方弁を開放して室外熱交換器に冷媒を通過させる第2のバイパス運転を行うことにより、圧縮機の吐出冷媒が圧縮機吸入側に流れたり、暖房運転から除霜運転に切換える際に室外熱交換器の冷媒の流れが逆転したりしない構成なので、高価な二方弁を必要とせず、簡単なバイパス回路で構成でき、冷媒加熱器に流入する冷媒循環量が多くならないので大型化する必要もなく、冷媒音、圧力バランスの問題も発生せず、室内温度の低下に伴う冷気を感じさせない、安定した除霜運転を実施できる。   In particular, the bypass circuit includes a two-way valve and a refrigerant heater in a first bypass circuit that connects between the indoor heat exchanger and the decompressor connected to the refrigeration cycle, and between the four-way valve and the outdoor heat exchanger. Furthermore, between the four-way valve connected to the refrigeration cycle and the indoor heat exchanger, between the pressure reducer and the outdoor heat exchanger, or between the compressor connected to the refrigeration cycle and the four-way valve, and between the pressure reducer and the outdoor When the outdoor heat exchanger is defrosted by opening the two-way valve of the first bypass circuit, the refrigerant heater is configured by providing a two-way valve in the second bypass circuit connecting between the heat exchangers. Performing a first bypass operation in which the refrigerant heated in the flow to the suction side of the compressor and a second bypass operation in which the two-way valve of the second bypass circuit is opened to allow the refrigerant to pass through the outdoor heat exchanger. As a result, the refrigerant discharged from the compressor flows to the compressor suction side or is removed from the heating operation. Since the refrigerant flow in the outdoor heat exchanger is not reversed when switching to operation, it does not require an expensive two-way valve, can be configured with a simple bypass circuit, and a large amount of refrigerant circulates into the refrigerant heater. Therefore, there is no need to increase the size, there is no problem of refrigerant sound and pressure balance, and a stable defrosting operation that does not feel cold air due to a decrease in room temperature can be performed.

また接続配管長が長くなる場合でも除霜回路が室外で行うため、配管長による除霜運転での圧縮機オイルレベルが下がることはなく長配管商品でも圧縮機の信頼性の高い運転ができる。   In addition, since the defrosting circuit is performed outdoors even when the length of the connecting pipe becomes long, the compressor oil level in the defrosting operation by the pipe length does not decrease, and the compressor can be operated with high reliability even with long pipe products.

また全体冷媒の一部を除霜用に利用するため、冷媒加熱部に極端に多くの冷媒が流れないことからコンパクトな冷媒加熱器で構成できる。   In addition, since a part of the whole refrigerant is used for defrosting, an extremely large amount of refrigerant does not flow in the refrigerant heating unit, so that a compact refrigerant heater can be used.

また冷房運転を行った場合でも、冷媒加熱器に高温高圧の冷媒ガスが滞留して、冷媒加熱器は常に雰囲気の露点温度以上に保たれるため、冷媒加熱器に結露が発生することもない。   Even when the cooling operation is performed, high-temperature and high-pressure refrigerant gas stays in the refrigerant heater, and the refrigerant heater is always kept above the dew point temperature of the atmosphere, so that no condensation occurs in the refrigerant heater. .

参考例
図5、図6、図7、図8は、本発明の参考例の空気調和機の代表構成図である。
( Reference example )
5, FIG. 6, FIG. 7, and FIG. 8 are representative configuration diagrams of an air conditioner according to a reference example of the present invention.

図5は図9と、図6、図7、図8は図1と同じ構成であり、前述したとおりであるが、実線で表した回路で矢印の方向に冷媒が流通するものである。   5 and FIG. 6, FIG. 7, and FIG. 8 have the same configuration as FIG. 1 and are as described above, but the refrigerant flows in the direction of the arrow in the circuit represented by the solid line.

図5において、暖房運転終了時に除霜する場合、二方弁21、22を閉じて室内熱交換器110への冷媒回路を遮断することで、冷媒加熱器104によって加熱された冷媒は圧縮機101を通った後、全て除霜用回路を介して室外熱交換器103を通り、除霜を行った後、再び冷媒加熱器104によって加熱されるので、圧縮機101からの高圧吐出冷媒と冷媒加熱器104双方によるエネルギーを全て室外機除霜に使用することができて除霜運転の短縮ができる。   In FIG. 5, when defrosting at the end of the heating operation, the refrigerant heated by the refrigerant heater 104 is compressed by the compressor 101 by closing the two-way valves 21 and 22 and shutting off the refrigerant circuit to the indoor heat exchanger 110. After passing through the outdoor heat exchanger 103 through the circuit for defrosting, and after defrosting, the refrigerant heater 104 heats again, so that the high-pressure discharged refrigerant from the compressor 101 and the refrigerant are heated. The energy from both of the units 104 can be used for the outdoor unit defrosting, and the defrosting operation can be shortened.

同様に図6において、暖房運転終了時に除霜する場合、二方弁21、22を閉じて室内熱交換器3への冷媒回路を遮断することで、圧縮機1で圧縮された冷媒は、全て第2のバイパス回路9に流れ込み、除霜用二方弁10、除霜用減圧器11を通り、第1のバイパス回路6を通る流れと室外熱交換器5を通る流れとに分岐され、室外熱交換器5で除霜を行った後、四方弁2の手前で再び第1のバイパス回路6で加熱された冷媒と合流し、四方弁2を通り、圧縮機1で圧縮される。即ち、圧縮機1からの高圧吐出冷媒と冷媒加熱器8双方によるエネルギーを全て室外機除霜に使用することができて除霜運転の短縮ができる。   Similarly, in FIG. 6, when defrosting at the end of the heating operation, all the refrigerant compressed by the compressor 1 is closed by closing the two-way valves 21 and 22 and shutting off the refrigerant circuit to the indoor heat exchanger 3. It flows into the second bypass circuit 9, passes through the defrosting two-way valve 10 and the defrosting decompressor 11, and is branched into a flow passing through the first bypass circuit 6 and a flow passing through the outdoor heat exchanger 5. After defrosting with the heat exchanger 5, it joins again with the refrigerant heated by the first bypass circuit 6 before the four-way valve 2, passes through the four-way valve 2, and is compressed by the compressor 1. That is, all of the energy from both the high-pressure discharged refrigerant from the compressor 1 and the refrigerant heater 8 can be used for the outdoor unit defrosting, and the defrosting operation can be shortened.

また、圧縮機1で室外熱交換器5の除霜に十分な状態に冷媒を圧縮している時には、冷媒加熱器8の冷媒加熱ヒータ13はOFFとして、省エネ運転を行ってもよい。   Further, when the refrigerant is compressed in a state sufficient for the defrosting of the outdoor heat exchanger 5 by the compressor 1, the refrigerant heater 13 of the refrigerant heater 8 may be turned off to perform an energy saving operation.

更に、図7において、暖房運転終了時に除霜する場合、二方弁21、22、第2のバイパス回路9の除霜用二方弁10を閉じて室内熱交換器3への冷媒回路、第2のバイパス回路9を遮断することで、圧縮機1を停止し、第1のバイパス回路6で加熱された冷媒は全て室外熱交換器5に流れ込み、室外熱交換器5で除霜を行った後、再び第1のバイパス回路6で加熱される。従って、第2のバイパス回路9へ冷媒が流れないので、その分熱量が浪費されず、より効率よく室外機除霜をすることができる。   Further, in FIG. 7, when defrosting at the end of the heating operation, the two-way valves 21 and 22, the defrosting two-way valve 10 of the second bypass circuit 9 are closed, and the refrigerant circuit to the indoor heat exchanger 3, By shutting off the bypass circuit 9, the compressor 1 is stopped, all the refrigerant heated in the first bypass circuit 6 flows into the outdoor heat exchanger 5, and defrosting is performed in the outdoor heat exchanger 5. Thereafter, it is heated again by the first bypass circuit 6. Therefore, since the refrigerant does not flow to the second bypass circuit 9, the amount of heat is not wasted, and the outdoor unit can be defrosted more efficiently.

また、図8において、暖房運転終了時に除霜する場合、二方弁21、22、第1のバイパス回路6の冷媒加熱用二方弁7を閉じて室内熱交換器3への冷媒回路、第1のバイパス回路6を遮断することで、冷媒加熱器8の冷媒加熱ヒータ13はOFFとし、圧縮機1で室外熱交換器5の除霜に十分な状態に圧縮された冷媒は、全て第2のバイパス回路9の除霜用二方弁10、除霜用減圧器11を通って、室外熱交換器5に流れ込み、室外熱交換器5で除霜を行った後、再び、圧縮機1で圧縮される。従って、圧縮機1からの高圧吐出冷媒だけで室外機除霜でき、第1のバイパス回路6での熱量浪費がないので、省エネ運転となる。   In FIG. 8, when defrosting is performed at the end of the heating operation, the two-way valves 21 and 22, the refrigerant heating two-way valve 7 of the first bypass circuit 6 are closed, and the refrigerant circuit to the indoor heat exchanger 3, By shutting off the bypass circuit 1, the refrigerant heater 13 of the refrigerant heater 8 is turned OFF, and all the refrigerant compressed to a state sufficient for defrosting of the outdoor heat exchanger 5 by the compressor 1 is second. After passing through the defrosting two-way valve 10 and the defrosting decompressor 11 of the bypass circuit 9 to the outdoor heat exchanger 5 and defrosting with the outdoor heat exchanger 5, the compressor 1 again Compressed. Therefore, the outdoor unit can be defrosted with only the high-pressure discharged refrigerant from the compressor 1 and there is no waste of heat in the first bypass circuit 6, so that the energy saving operation is performed.

以上のように、本実施の形態においては暖房運転終了時に除霜する場合、冷凍サイクルの室内熱交換器への冷媒回路を遮断することにより、圧縮機からの高圧吐出冷媒と冷媒加熱器双方によるエネルギーを全て室外機除霜に使用することができて除霜運転の短縮ができる。   As described above, in the present embodiment, when defrosting is performed at the end of the heating operation, the refrigerant circuit to the indoor heat exchanger of the refrigeration cycle is shut off, whereby both the high-pressure discharged refrigerant from the compressor and the refrigerant heater are used. All the energy can be used for the outdoor unit defrosting, and the defrosting operation can be shortened.

また、第2のバイパス回路の二方弁をも閉塞することにより、第2のバイパス回路へ冷媒が流れないのでその分熱量が浪費されず、より効率よく室外機除霜をすることができる。   Moreover, since the refrigerant does not flow to the second bypass circuit by closing the two-way valve of the second bypass circuit, the amount of heat is not wasted and the outdoor unit can be defrosted more efficiently.

また、第1のバイパス回路の二方弁をも閉塞することにより、第1のバイパス回路へ冷媒が流れないのでその分熱量が浪費されず、また、冷媒加熱器を使わず、圧縮機からの高圧吐出冷媒による熱エネルギーだけで除霜するので、より省エネルギーで室外機除霜をすることができる。   Further, by closing the two-way valve of the first bypass circuit, the refrigerant does not flow to the first bypass circuit, so that the amount of heat is not wasted, and the refrigerant heater is not used, Since the defrosting is performed only by the heat energy generated by the high-pressure discharge refrigerant, the outdoor unit can be defrosted with more energy saving.

尚、冷凍サイクルの室内熱交換器への冷媒回路の遮断と第2のバイパス回路の遮断若しくは第1のバイパス回路の遮断は同時に行ってもよいし、室外機除霜の状態に応じて、順次行ってもよい。   The refrigerant circuit to the indoor heat exchanger of the refrigeration cycle may be shut off and the second bypass circuit or the first bypass circuit may be shut off at the same time, or sequentially according to the state of the outdoor unit defrosting. You may go.

例えば、暖房運転停止直後は、冷凍サイクルの室内熱交換器への冷媒回路の遮断のみ行って、圧縮機1からの高圧吐出冷媒と冷媒加熱器8双方によるエネルギーを全て室外機除霜に使用し、素早く除霜を行い、霜がある程度除去されたら、第2のバイパス回路若しくは第1のバイパス回路を遮断して、省エネ運転に切換えてもよい。更に、実施の形態1で示した回路の遮断を行わない除霜運転と組み合わせてもよい。   For example, immediately after stopping the heating operation, only the refrigerant circuit is shut off to the indoor heat exchanger of the refrigeration cycle, and all the energy from both the high-pressure discharged refrigerant from the compressor 1 and the refrigerant heater 8 is used for the outdoor unit defrosting. When the frost is quickly removed and the frost is removed to some extent, the second bypass circuit or the first bypass circuit may be shut off to switch to the energy saving operation. Furthermore, you may combine with the defrost operation which does not interrupt | block the circuit shown in Embodiment 1. FIG.

以上のように、本発明にかかる空気調和機は、使用者に違和感や不快感を与えることなく、また、室内温度の低下に伴う冷風感を感じさせずに、安定した除霜運転の実施が可能となるので、ヒートポンプ給湯機等の用途にも適用できる。   As described above, the air conditioner according to the present invention can perform a stable defrosting operation without causing the user to feel uncomfortable or uncomfortable, and without causing a feeling of cold air accompanying a decrease in room temperature. Since it becomes possible, it is applicable also to uses, such as a heat pump water heater.

本発明の実施の形態1における空気調和機の代表構成図Representative configuration diagram of an air conditioner according to Embodiment 1 of the present invention 本発明の実施の形態1における制御ブロック図Control block diagram according to Embodiment 1 of the present invention 本発明の実施の形態1における制御のタイムチャートTime chart of control in Embodiment 1 of the present invention 本発明の実施の形態1における通常除霜時と停止時除霜時の各ステップでの圧縮機運転周波数の対比図Comparison chart of compressor operating frequency in each step during normal defrosting and defrosting during stop in Embodiment 1 of the present invention 参考例における空気調和機の代表構成図Representative configuration diagram of air conditioner in reference example 参考例における空気調和機の代表構成図Representative configuration diagram of air conditioner in reference example 参考例における空気調和機の代表構成図Representative configuration diagram of air conditioner in reference example 参考例における空気調和機の代表構成図Representative configuration diagram of air conditioner in reference example 従来の空気調和機の冷凍サイクルの構成図Configuration diagram of conventional air conditioner refrigeration cycle

1 圧縮機
2 四方弁
3 室内熱交換器
4 減圧器
5 室外熱交換器
6 第1のバイパス回路
7 冷媒加熱用二方弁
8 加熱器
9 第2のバイパス回路
10 除霜用二方弁
11 除霜用減圧器
12 冷媒加熱用減圧器
13 加熱器ヒータ
14 冷媒通過管部
15 蓄熱部
17 室内送風機
18 室内機
19 室外送風機
20 室外機
21、22 二方弁
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Indoor heat exchanger 4 Pressure reducer 5 Outdoor heat exchanger 6 First bypass circuit 7 Two-way valve for refrigerant heating 8 Heater 9 Second bypass circuit 10 Two-way valve for defrosting 11 Removal Frost decompressor 12 Refrigerant heating decompressor 13 Heater heater 14 Refrigerant passage tube part 15 Heat storage part 17 Indoor fan 18 Indoor unit 19 Outdoor fan 20 Outdoor unit 21, 22 Two-way valve

Claims (1)

暖房運転時に、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器、前記四方弁の順に冷媒が流れるように連結したヒートポンプ式冷凍サイクルと、前記室内熱交換器へ送風する室内送風機とを有し、前記ヒートポンプ式冷凍サイクルにおいて、前記室内熱交換器と前記減圧器との間と、前記四方弁と前記室外熱交換器との間とを連結する第1のバイパス回路、および、前記室内熱交換器と前記圧縮機との間と、前記減圧器と前記室外熱交換器との間とを連結する第2のバイパス回路を備え、前記第1のバイパス回路には冷媒加熱用二方弁および内部に冷媒流路を有する冷媒加熱器を設け、前記第2のバイパス回路には除霜用二方弁を設け、前記室外熱交換器の除霜を行う際には、前記冷媒加熱用二方弁および前記除霜用二方弁を開放して、前記第1のバイパス回路に流れる冷媒を前記冷媒加熱器で加熱する第1のバイパス運転と、前記圧縮機で圧縮された冷媒を前記室外熱交換器に通過させる第2のバイパス運転とを行う空気調和装置であって、暖房運転終了時には、まず、前記冷媒加熱用二方弁を開いて前記減圧器を略閉塞とし第1のバイパス回路に冷媒を流す第1のバイパス運転を行い、所定時間経過後に、前記除霜用二方弁を開方向に制御して第2のバイパス回路に冷媒を流す第2のバイパス運転を行い、さらに、前記室内送風機は微少回転で運転を継続して、前記室外熱交換器の除霜運転を行い、前記除霜運転が終了後に前記圧縮機の運転を停止させることを特徴とする空気調和機。 During heating operation, a compressor, a four-way valve, an indoor heat exchanger, a decompressor, an outdoor heat exchanger , a heat pump refrigeration cycle connected so that refrigerant flows in the order of the four-way valve, and a room for blowing air to the indoor heat exchanger A first bypass circuit that connects between the indoor heat exchanger and the decompressor, and between the four-way valve and the outdoor heat exchanger in the heat pump refrigeration cycle, and A second bypass circuit that connects between the indoor heat exchanger and the compressor and between the pressure reducer and the outdoor heat exchanger, the first bypass circuit being for heating the refrigerant When a two-way valve and a refrigerant heater having a refrigerant flow path are provided therein, a two-way valve for defrosting is provided in the second bypass circuit, and the defrosting of the outdoor heat exchanger is performed, the refrigerant Open the two-way valve for heating and the two-way valve for defrosting. The first bypass operation for heating the refrigerant flowing through the first bypass circuit with the refrigerant heater and the second bypass operation for allowing the refrigerant compressed by the compressor to pass through the outdoor heat exchanger are performed. In the air conditioner, at the end of the heating operation, first, the refrigerant heating two-way valve is opened, the decompressor is substantially closed, and a first bypass operation is performed in which the refrigerant flows through the first bypass circuit, and is performed for a predetermined time. After the elapse of time, the defrosting two-way valve is controlled in the opening direction to perform a second bypass operation for flowing the refrigerant to the second bypass circuit, and the indoor blower is continuously operated with a slight rotation, An air conditioner that performs a defrosting operation of an outdoor heat exchanger and stops the operation of the compressor after the defrosting operation is completed .
JP2006101764A 2006-04-03 2006-04-03 Air conditioner Expired - Fee Related JP4622921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101764A JP4622921B2 (en) 2006-04-03 2006-04-03 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101764A JP4622921B2 (en) 2006-04-03 2006-04-03 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007278536A JP2007278536A (en) 2007-10-25
JP4622921B2 true JP4622921B2 (en) 2011-02-02

Family

ID=38680157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101764A Expired - Fee Related JP4622921B2 (en) 2006-04-03 2006-04-03 Air conditioner

Country Status (1)

Country Link
JP (1) JP4622921B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106524389A (en) * 2015-09-15 2017-03-22 上海日立电器有限公司 Air conditioner defrosting method and air conditioner thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601890B2 (en) * 2010-06-08 2014-10-08 三菱電機株式会社 Air conditioner
JP2012037130A (en) * 2010-08-06 2012-02-23 Panasonic Corp Refrigeration cycle device
JP5293714B2 (en) * 2010-09-30 2013-09-18 パナソニック株式会社 Air conditioner
US9239183B2 (en) 2012-05-03 2016-01-19 Carrier Corporation Method for reducing transient defrost noise on an outdoor split system heat pump
JP2018096632A (en) * 2016-12-14 2018-06-21 三菱重工サーマルシステムズ株式会社 Refrigerant circuit system, control device and control method
CN107289578B (en) * 2017-05-23 2020-04-24 青岛海尔空调器有限总公司 Air conditioner and defrosting control method thereof
JP6980520B2 (en) * 2017-12-28 2021-12-15 三菱重工サーマルシステムズ株式会社 Air conditioner control device, air conditioner control method, air conditioner and control program
CN110469967B (en) * 2019-07-24 2022-05-31 重庆海尔空调器有限公司 Control method and device for defrosting of air conditioner and air conditioner
CN112665121B (en) * 2020-12-10 2022-02-08 珠海格力电器股份有限公司 Control method and device for air conditioner chilled water pump, controller and air conditioning system
CN114857663A (en) * 2022-05-12 2022-08-05 青岛海信日立空调系统有限公司 Air conditioning system and control method thereof
CN115371153A (en) * 2022-08-22 2022-11-22 珠海格力电器股份有限公司 Air conditioner and control method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971966A (en) * 1982-10-15 1984-04-23 シャープ株式会社 Air conditioner
JPS60259869A (en) * 1984-06-06 1985-12-21 松下冷機株式会社 Defrostation controller for heat pump type air conditioner
JPS6166037A (en) * 1984-09-07 1986-04-04 Matsushita Electric Ind Co Ltd Defrosting control unit of air conditioner
JPS62184376U (en) * 1986-05-15 1987-11-24
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JPH044674U (en) * 1990-04-24 1992-01-16
JPH04366341A (en) * 1991-06-13 1992-12-18 Daikin Ind Ltd Air conditioner
JPH08327194A (en) * 1995-05-31 1996-12-13 Toshiba Corp Air conditioner
JPH10132358A (en) * 1996-10-31 1998-05-22 Toshiba Corp Air conditioner
JPH11182994A (en) * 1997-12-18 1999-07-06 Toshiba Corp Air conditioner
JPH11294885A (en) * 1998-04-10 1999-10-29 Toshiba Corp Air conditioner
JP2000028186A (en) * 1998-07-14 2000-01-25 Toshiba Corp Air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971966A (en) * 1982-10-15 1984-04-23 シャープ株式会社 Air conditioner
JPS60259869A (en) * 1984-06-06 1985-12-21 松下冷機株式会社 Defrostation controller for heat pump type air conditioner
JPS6166037A (en) * 1984-09-07 1986-04-04 Matsushita Electric Ind Co Ltd Defrosting control unit of air conditioner
JPS62184376U (en) * 1986-05-15 1987-11-24
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JPH044674U (en) * 1990-04-24 1992-01-16
JPH04366341A (en) * 1991-06-13 1992-12-18 Daikin Ind Ltd Air conditioner
JPH08327194A (en) * 1995-05-31 1996-12-13 Toshiba Corp Air conditioner
JPH10132358A (en) * 1996-10-31 1998-05-22 Toshiba Corp Air conditioner
JPH11182994A (en) * 1997-12-18 1999-07-06 Toshiba Corp Air conditioner
JPH11294885A (en) * 1998-04-10 1999-10-29 Toshiba Corp Air conditioner
JP2000028186A (en) * 1998-07-14 2000-01-25 Toshiba Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106524389A (en) * 2015-09-15 2017-03-22 上海日立电器有限公司 Air conditioner defrosting method and air conditioner thereof
CN106524389B (en) * 2015-09-15 2020-11-10 上海海立电器有限公司 Air conditioner defrosting method and air conditioner

Also Published As

Publication number Publication date
JP2007278536A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4622921B2 (en) Air conditioner
KR100821728B1 (en) Air conditioning system
CN101382366B (en) Air conditioner
JP4654828B2 (en) Air conditioner
WO2010070828A1 (en) Heat pump hot-water supply device and operation method therefor
JP2007051825A (en) Air-conditioner
JP2006105560A (en) Air conditioner
JP2008082589A (en) Air conditioner
JP2010144940A (en) Air conditioner
JP2008116156A (en) Air conditioner
JP4304832B2 (en) Air conditioner
JP4605065B2 (en) Air conditioner
JP2011080733A (en) Air conditioner
JP2006132797A (en) Air conditioner
JP4622901B2 (en) Air conditioner
JP2017150687A (en) Air conditioner and method for controlling air conditioner
JP4830399B2 (en) Air conditioner
JP2008121918A (en) Air conditioner
JP4802602B2 (en) Air conditioner
JP2001263848A (en) Air conditioner
JP4661451B2 (en) Air conditioner
JP4687326B2 (en) Air conditioner
JP2011094864A (en) Air conditioner
JP5747160B2 (en) Air conditioner
JP3851201B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R151 Written notification of patent or utility model registration

Ref document number: 4622921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees