JP2011094864A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2011094864A
JP2011094864A JP2009248730A JP2009248730A JP2011094864A JP 2011094864 A JP2011094864 A JP 2011094864A JP 2009248730 A JP2009248730 A JP 2009248730A JP 2009248730 A JP2009248730 A JP 2009248730A JP 2011094864 A JP2011094864 A JP 2011094864A
Authority
JP
Japan
Prior art keywords
way valve
heat exchanger
refrigerant
storage tank
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009248730A
Other languages
Japanese (ja)
Inventor
Yoshikazu Nishihara
義和 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009248730A priority Critical patent/JP2011094864A/en
Publication of JP2011094864A publication Critical patent/JP2011094864A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner enabling stable defrosting operation while continuing heating operation. <P>SOLUTION: The air conditioner is provided with: a heat pump type refrigerating cycle constituted by interconnecting a compressor 1, a four-way valve 2, an indoor heat exchanger 3, a decompression device 4 and outdoor heat exchangers 5a, 5b; a first bypass circuit 6 interconnecting the indoor heat exchanger 3 and the decompression device 4 and the four-way valve 2 and the suction side of the compressor 1 and having a thermal storage tank 8 and a first two-way valve 7; a second bypass circuit 9 interconnecting the thermal storage tank 8 and the second two-way valve 7 and the decompression device 4 and a connecting portion of the first bypass circuit 6; and a second two-way valve 10 provided between the first bypass circuit 6 connected between the indoor heat exchanger 3 and the decompression device 4 and the second bypass circuit 9. During defrosting of the outdoor heat exchangers 5a, 5b, the second two-way valve 10 is closed and the first two-way valve 7 is opened so as to make a refrigerant heated by heat retaining in the thermal storage tank 8 flow to the suction side of the compressor 1 and make liquid within the thermal storage tank 8 pass through the outdoor heat exchangers 5a, 5b by a liquid circulating pump 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空気調和装置に関するもので、特に、ヒートポンプ運転による暖房運転時において、暖房を継続しながら室外熱交換器に付着した霜を除霜する運転を行うことができる空気調和装置に関するものである。   The present invention relates to an air conditioner, and in particular, to an air conditioner that can perform an operation of defrosting frost attached to an outdoor heat exchanger while heating is continued during a heating operation by a heat pump operation. is there.

従来、この種のヒートポンプ式の空気調和装置の除霜方式は、一般的に四方弁を切り換え、冷凍サイクルの冷媒を逆方向に流す除霜方式をとっている。   Conventionally, the defrosting method of this type of heat pump type air conditioner generally employs a defrosting method in which the four-way valve is switched and the refrigerant in the refrigeration cycle is caused to flow in the reverse direction.

即ち、除霜運転は、冷房時と同じ冷媒の流動方向とし、室外熱交換器に高温高圧の冷媒を流して、室外熱交換器に付着した霜を融解するものである。   That is, in the defrosting operation, the refrigerant flows in the same direction as during cooling, and a high-temperature and high-pressure refrigerant flows through the outdoor heat exchanger to melt frost adhering to the outdoor heat exchanger.

この除霜方式では、除霜時は、室内側の熱交換器が蒸発器となるため、室内の部屋の温度が低下して、冷風感を感じるという基本的課題があった。   In this defrosting method, during the defrosting, since the indoor heat exchanger becomes an evaporator, there is a basic problem that the temperature of the room in the room is lowered and a feeling of cold air is felt.

この基本的課題への対策として、暖房継続しながら除霜運転するようにした空気調和装置が提案されている(例えば、特許文献1参照)。   As a countermeasure to this basic problem, an air conditioner that performs a defrosting operation while continuing heating has been proposed (see, for example, Patent Document 1).

図8は、上記特許文献1に記載された従来の空気調和装置の冷凍サイクルの構成図である。   FIG. 8 is a configuration diagram of the refrigeration cycle of the conventional air conditioner described in Patent Document 1.

同図に示すように、従来の空気調和装置は、圧縮機101、四方弁102、室内熱交換器110、膨張機構105および室外熱交換器103を冷媒回路で連結してなるヒートポンプ式冷凍サイクルを備え、この冷凍サイクルにおける前記膨張機構105と前記室外熱交換器103の間と、前記圧縮機101の吸入側の間を連結し、冷媒加熱器104を有する冷媒加熱回路と、前記冷凍サイクルにおける圧縮機101の吐出側と、前記室外熱交換器103と前記四方弁102の間を連結する除霜用回路109とを備え、前記冷凍サイクルのヒートポンプ運転時において、前記室外熱交換器103の除霜を行う際、前記冷媒加熱器104によって加熱された冷媒が、前記圧縮機101を通った後、前記室内熱交換器110を通る流れと、前記除霜用回路109から前記室外熱交換器103を通る流れとに分岐され、これらの分岐した冷媒の流れが前記冷媒加熱回路の入口で合流し、再び前記冷媒加熱器104によって加熱されるように構成されている。   As shown in the figure, a conventional air conditioner includes a heat pump refrigeration cycle in which a compressor 101, a four-way valve 102, an indoor heat exchanger 110, an expansion mechanism 105, and an outdoor heat exchanger 103 are connected by a refrigerant circuit. A refrigerant heating circuit having a refrigerant heater 104 connected between the expansion mechanism 105 and the outdoor heat exchanger 103 in the refrigeration cycle and the suction side of the compressor 101, and compression in the refrigeration cycle A defrosting circuit 109 for connecting the discharge side of the machine 101 and the outdoor heat exchanger 103 and the four-way valve 102, and the defrosting of the outdoor heat exchanger 103 during the heat pump operation of the refrigeration cycle. When the refrigerant is heated, the refrigerant heated by the refrigerant heater 104 passes through the compressor 101 and then passes through the indoor heat exchanger 110, and the defrosting. The circuit 109 is branched into a flow passing through the outdoor heat exchanger 103, and the branched refrigerant flows merge at the inlet of the refrigerant heating circuit and are heated again by the refrigerant heater 104. Yes.

上記特許文献1で課題として取り上げられているように、ヒートポンプ運転を行った際の室外機(図示せず)の除霜運転を行うときに、暖房を継続しながら、除霜運転を行うことは、条件が決まれば可能である。   As taken up as a problem in Patent Document 1, when performing a defrosting operation of an outdoor unit (not shown) when performing a heat pump operation, performing a defrosting operation while continuing heating Yes, if conditions are determined.

特開平11−182994号公報(図8)Japanese Patent Laid-Open No. 11-182994 (FIG. 8)

しかしながら、このような従来の空気調和装置の冷凍サイクルの方式では、次のような課題が発生する。   However, such a conventional air conditioning apparatus refrigeration cycle system has the following problems.

この冷凍サイクルの構成は、除霜運転を行う際に、二方弁109aを開放にして、室外
熱交換器103と四方弁102との間に、圧縮機101の吐出冷媒が流れることになるため、圧縮機101の吸入側に除霜するホットガス冷媒が流れないように二方弁106が必要となる。
In this refrigeration cycle, when the defrosting operation is performed, the two-way valve 109a is opened, and the refrigerant discharged from the compressor 101 flows between the outdoor heat exchanger 103 and the four-way valve 102. The two-way valve 106 is required so that the hot gas refrigerant to be defrosted does not flow to the suction side of the compressor 101.

この二方弁106は、圧縮機101の吸入側に連結され、冷房および暖房運転の圧損を低減するためには、口径の大きなものを採用することとなり、非常に高価な二方弁となってしまうという課題があった。   This two-way valve 106 is connected to the suction side of the compressor 101, and in order to reduce the pressure loss of the cooling and heating operation, a two-way valve having a large diameter is adopted and becomes a very expensive two-way valve. There was a problem of ending up.

またヒートポンプ運転から二方弁108を開放させて冷媒加熱運転に切り換え、除霜運転を行う方式で室外熱交換器103の冷媒の流れが逆転するため、除霜運転を行う前に、二方弁107を一端閉運転とする必要があり、この室外熱交換器103の入口に二方弁107が必要となる。   Also, the two-way valve 108 is opened from the heat pump operation to switch to the refrigerant heating operation, and the refrigerant flow in the outdoor heat exchanger 103 is reversed in the method of performing the defrosting operation. 107 must be closed at one end, and the two-way valve 107 is required at the inlet of the outdoor heat exchanger 103.

したがって、この冷凍サイクルでは、4個もの二方弁が必要となり、複雑で高価な方式となる。   Therefore, this refrigeration cycle requires as many as four two-way valves, which is a complicated and expensive method.

また除霜に供された後の冷媒と室内熱交換器110で放熱した後の冷媒が合流するため、合流箇所における冷媒圧力が除霜に供された後の冷媒の圧力よりも高ければ、室外熱交換器103に冷媒が流れ、逆であれば、室内側に冷媒が流れることになり、暖房しながら除霜運転を行うことが出来ない場合が発生する。   In addition, since the refrigerant after being defrosted and the refrigerant after being radiated by the indoor heat exchanger 110 merge, if the refrigerant pressure at the junction is higher than the refrigerant pressure after being defrosted, If the refrigerant flows through the heat exchanger 103 and vice versa, the refrigerant flows into the indoor side, and the defrosting operation cannot be performed while heating.

また、除霜に供された後の冷媒と、室内熱交換器110で放熱した後の冷媒が合流するため、冷媒音が発生しやすく、前記の圧力バランスの課題と冷媒音課題を解決するために冷媒合流器を必要とする場合が考えられる。   Moreover, since the refrigerant after being defrosted and the refrigerant after radiating heat in the indoor heat exchanger 110 merge, refrigerant noise is likely to occur, and the above pressure balance problem and refrigerant noise problem are solved. In some cases, a refrigerant merger is required.

また、前記合流箇所では、冷媒循環量が多くなり圧力損失が増加するため、その対策として配管(図示せず)の管径を大きくすることが必要となり、冷媒加熱器104が大型になってしまうという構造的課題もある。   Further, since the refrigerant circulation amount increases and the pressure loss increases at the junction, it is necessary to increase the pipe diameter (not shown) as a countermeasure, and the refrigerant heater 104 becomes large. There is also a structural problem.

また、連続暖房運転において、除霜運転中に多量に圧縮機101へ液冷媒が戻ることから、圧縮機101の運転周波数を高周波数に運転できず、連続暖房時の暖房能力が小さい運転となってしまう、という課題もあった。   In continuous heating operation, a large amount of liquid refrigerant returns to the compressor 101 during the defrosting operation. Therefore, the operation frequency of the compressor 101 cannot be operated at a high frequency, and the heating capacity during continuous heating is small. There was also the problem of end up.

本発明は、上記従来の課題を解決するもので、冷凍サイクルが簡単なバイパス回路で構成でき、除霜運転中の高効率運転が実現できて、冷媒音、圧力バランスの問題も発生しない安定した除霜運転を、暖房運転を継続しながら実施できる空気調和装置を提供することを目的としている。   The present invention solves the above-described conventional problems, and the refrigeration cycle can be configured with a simple bypass circuit, can realize high-efficiency operation during defrosting operation, and does not cause problems of refrigerant noise and pressure balance. It aims at providing the air conditioning apparatus which can implement a defrost operation, continuing heating operation.

上記従来の課題を解決するために、本発明の空気調和装置は、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結して構成されたヒートポンプ式冷凍サイクルと、前記室内熱交換器と前記減圧器の間と前記四方弁と前記圧縮機の吸入側の間を連結すると共に蓄熱槽と第1の二方弁を有する第1のバイパス回路と、前記蓄熱槽と前記第1の二方弁の間と前記減圧器と前記第一のバイパス回路の連結部分の間を連結する第2のバイパス回路と、前記室内熱交換器と前記減圧器の間に連結された前記第1のバイパス回路と前記第2のバイパス回路の間に設けられた第2の二方弁と、前記蓄熱槽の液体を前記室外熱交換器に通過させ、前記蓄熱槽に液体を戻す液体搬送配管と、前記液体搬送配管を通して前記液体を循環させる液体循環ポンプとを備え、前記室外熱交換器の除霜を行う際、前記第2の二方弁を閉塞し、前記第1の二方弁を開放して、前記蓄熱槽に溜まった熱で加熱された冷媒を前記圧縮機の吸入側に流すと共に、前記蓄熱槽の前記液体を前記室外熱
交換器に通過させるもので、高価な弁を使用せずに、暖房運転を行ないながら除霜運転を実施することができる。またこの構成は、除霜運転中の冷媒加熱をヒーターで行わず、暖房の残熱を蓄熱した熱を利用するため、高効率な除霜運転ができる。
In order to solve the above-described conventional problems, an air conditioner of the present invention includes a heat pump refrigeration cycle configured by connecting a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger with a refrigerant circuit. A first bypass circuit that connects between the indoor heat exchanger and the decompressor, between the four-way valve and the suction side of the compressor, and has a heat storage tank and a first two-way valve, and the heat storage A second bypass circuit that connects between the tank and the first two-way valve, and a connecting portion between the decompressor and the first bypass circuit, and is connected between the indoor heat exchanger and the decompressor. The second two-way valve provided between the first bypass circuit and the second bypass circuit, and the liquid in the heat storage tank are passed through the outdoor heat exchanger, and the liquid is supplied to the heat storage tank. A liquid transfer pipe to be returned, and a liquid for circulating the liquid through the liquid transfer pipe A circulation pump, and when the defrosting of the outdoor heat exchanger is performed, the second two-way valve is closed, the first two-way valve is opened, and the heat accumulated in the heat storage tank is heated. The refrigerant is caused to flow to the suction side of the compressor and the liquid in the heat storage tank is passed through the outdoor heat exchanger. A defrosting operation is performed while performing a heating operation without using an expensive valve. Can be implemented. Moreover, since this structure does not perform the refrigerant heating during the defrosting operation with the heater but uses the heat stored in the residual heat of the heating, a highly efficient defrosting operation can be performed.

また、連続暖房に冷媒回路を使用して、除霜運転を温水利用することから、冷媒音の発生がなく、除霜運転中も使用者には分からないことから快適な暖房運転ができる。   Moreover, since the refrigerant circuit is used for continuous heating and hot water is used for the defrosting operation, there is no generation of refrigerant noise, and the user does not know during the defrosting operation, so a comfortable heating operation can be performed.

また従来の除霜方法では、除霜したあとの液冷媒が圧縮機に戻り、圧縮機の信頼性を考慮して高い周波数運転ができず、除霜運転時の除霜能力アップができなかったが、この構成より、除霜を温水回路に変える事で、圧縮機の液冷媒が戻ることなく、除霜運転中でも高い圧縮機周波数運転ができることで、圧縮機の信頼性を確保しつつ高能力除霜ができることで、除霜運転の時間を短縮できることと連続暖房の高温風化が実現できる。   Moreover, in the conventional defrosting method, the liquid refrigerant after defrosting returns to the compressor, the high frequency operation cannot be performed in consideration of the reliability of the compressor, and the defrosting capacity cannot be increased during the defrosting operation. However, with this configuration, changing the defrosting to a hot water circuit enables high compressor frequency operation even during defrosting operation without returning the liquid refrigerant of the compressor, thereby ensuring high reliability while ensuring the reliability of the compressor By being able to defrost, it is possible to shorten the time of the defrosting operation and realize high-temperature weathering of continuous heating.

本発明の空気調和装置は、暖房運転を継続しながら、除霜を安定して実施することができる。   The air conditioning apparatus of the present invention can stably perform defrosting while continuing the heating operation.

本発明の実施の形態1における空気調和装置の構成図The block diagram of the air conditioning apparatus in Embodiment 1 of this invention 同空気調和装置の構成図(冷媒の流れおよび温水の流れを示す)Configuration of the air conditioner (showing refrigerant flow and hot water flow) 同空気調和装置の構成図(蓄熱冷媒の流れを示す)Configuration diagram of the air conditioner (showing the flow of heat storage refrigerant) (a)従来の空気調和装置の室外熱交換器パス配置図、(b)本願発明の空気調和装置の室外熱交換器パス配置図(A) Outdoor heat exchanger path layout of a conventional air conditioner, (b) Outdoor heat exchanger path layout of an air conditioner of the present invention 同空気調和装置の制御ブロック図Control block diagram of the air conditioner 同空気調和装置のタイムチャート(連続暖房+除霜)Time chart of the air conditioner (continuous heating + defrost) 同空気調和装置のタイムチャート(蓄熱)Time chart of the air conditioner (heat storage) 従来の空気調和装置の冷凍サイクル構成図Refrigeration cycle configuration diagram of a conventional air conditioner

第1の発明は、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結して構成されたヒートポンプ式冷凍サイクルと、前記室内熱交換器と前記減圧器の間と前記四方弁と前記圧縮機の吸入側の間を連結すると共に蓄熱槽と第1の二方弁を有する第1のバイパス回路と、前記蓄熱槽と前記第1の二方弁の間と前記減圧器と前記第一のバイパス回路の連結部分の間を連結する第2のバイパス回路と、前記室内熱交換器と前記減圧器の間に連結された前記第1のバイパス回路と前記第2のバイパス回路の間に設けられた第2の二方弁と、前記蓄熱槽の液体を前記室外熱交換器に通過させ、前記蓄熱槽に液体を戻す液体搬送配管と、前記液体搬送配管を通して前記液体を循環させる液体循環ポンプとを備え、前記室外熱交換器の除霜を行う際、前記第2の二方弁を閉塞し、前記第1の二方弁を開放して、前記蓄熱槽に溜まった熱で加熱された冷媒を前記圧縮機の吸入側に流すと共に、前記蓄熱槽の前記液体を前記室外熱交換器に通過させるもので、高価な弁を使用せずに、暖房運転を行ないながら除霜運転を実施することができる。またこの構成は、除霜運転中の冷媒加熱をヒーターで行わず、暖房の残熱を蓄熱した熱を利用するため、高効率な除霜運転ができる。   A first invention includes a heat pump refrigeration cycle configured by connecting a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger with a refrigerant circuit, and the indoor heat exchanger and the decompressor. And a first bypass circuit having a heat storage tank and a first two-way valve, and between the heat storage tank and the first two-way valve. A second bypass circuit connecting between the connection parts of the pressure reducer and the first bypass circuit; the first bypass circuit connected between the indoor heat exchanger and the pressure reducer; and the second A second two-way valve provided between the bypass circuit, a liquid transport pipe that passes the liquid in the heat storage tank through the outdoor heat exchanger and returns the liquid to the heat storage tank, and the liquid transport pipe through the liquid transport pipe A liquid circulation pump for circulating the liquid, and removing the outdoor heat exchanger. When performing the operation, the second two-way valve is closed, the first two-way valve is opened, and the refrigerant heated by the heat accumulated in the heat storage tank flows to the suction side of the compressor, The liquid in the heat storage tank is passed through the outdoor heat exchanger, and the defrosting operation can be performed while performing the heating operation without using an expensive valve. Moreover, since this structure does not perform the refrigerant heating during the defrosting operation with the heater but uses the heat stored in the residual heat of the heating, a highly efficient defrosting operation can be performed.

また、連続暖房に冷媒回路を使用して、除霜運転を温水利用することから、冷媒音の発生がなく、除霜運転中も使用者には分からないことから快適な暖房運転ができる。   Moreover, since the refrigerant circuit is used for continuous heating and hot water is used for the defrosting operation, there is no generation of refrigerant noise, and the user does not know during the defrosting operation, so a comfortable heating operation can be performed.

また従来の除霜方法では、除霜したあとの液冷媒が圧縮機に戻り、圧縮機の信頼性を考慮して高い周波数運転ができず、除霜運転時の除霜能力アップができなかったが、この構成より、除霜を温水回路に変える事で、圧縮機の液冷媒が戻ることなく、除霜運転中でも
高い圧縮機周波数運転ができることで、圧縮機の信頼性を確保しつつ高能力除霜ができることで、除霜運転の時間を短縮できることと連続暖房の高温風化が実現できる。
Moreover, in the conventional defrosting method, the liquid refrigerant after defrosting returns to the compressor, the high frequency operation cannot be performed in consideration of the reliability of the compressor, and the defrosting capacity cannot be increased during the defrosting operation. However, with this configuration, changing the defrosting to a hot water circuit enables high compressor frequency operation even during defrosting operation without returning the liquid refrigerant of the compressor, thereby ensuring high reliability while ensuring the reliability of the compressor By being able to defrost, it is possible to shorten the time of the defrosting operation and realize high-temperature weathering of continuous heating.

第2の発明は、特に、第1の発明の室内熱交換器に空気を通す室内送風機を設け、蓄熱槽に熱を蓄熱する場合に、暖房運転中に第2の二方弁を開放し、前記蓄熱槽の中に配置された第1のバイパス回路の中を暖房した後の残熱冷媒を通過させ、蓄熱を行い、前記室内送風機を低回転で運転させるもので、除霜運転中の冷媒加熱方法をヒータ等で加熱すると効率が1.0を下回った効率の悪い運転となってしまうが、暖房したあとの残熱を蓄熱させ、その熱を利用することで、1.0以上の効率で冷媒加熱できることになる。したがって、除霜運転中でも、ヒータに頼らない高高率なヒートポンプ運転ができる。また、室内送風機を低回転運転することで、冷媒の圧力を上昇させ、高温冷媒をつくり、蓄熱できる。特に室内暖房負荷が小さい場合には、暖房能力が多く必要とならないため、ヒートポンプの熱を効率よく蓄熱することができる。   In particular, the second invention provides an indoor fan for passing air through the indoor heat exchanger of the first invention, and when storing heat in the heat storage tank, the second two-way valve is opened during heating operation, Refrigerant during defrosting operation in which the residual heat refrigerant after heating in the first bypass circuit disposed in the heat storage tank is allowed to pass through to store heat and operate the indoor blower at a low speed. If the heating method is heated with a heater or the like, the efficiency becomes less efficient than 1.0. However, by storing the residual heat after heating and using the heat, the efficiency is 1.0 or more. It will be possible to heat the refrigerant. Therefore, even during the defrosting operation, a high-efficiency heat pump operation that does not rely on the heater can be performed. In addition, by operating the indoor blower at a low speed, the pressure of the refrigerant can be increased, a high-temperature refrigerant can be produced, and heat can be stored. In particular, when the indoor heating load is small, a large heating capacity is not required, so that the heat of the heat pump can be stored efficiently.

第3の発明は、特に、第1又は第2の発明の第2の二方弁が閉塞される前に、減圧器の絞りを閉方向に変更し、前記第2の二方弁が閉塞して、第1の二方弁が開方向に変更した後、前記減圧器を全開するもので、除霜開始判断の後、減圧器の絞りを閉方向にすることで、第2の二方弁動作時の冷媒流速を落として、二方弁動作時の動作信頼性を高めると共に、冷媒の流れが変わるときの冷媒音発生を抑える効果がある。また、第1の二方弁が動作したあとは、室外熱交換器に冷媒が溜まっているので、これを圧縮機に回収するために、減圧器は、全開に制御している。この冷媒回収することで、除霜運転中の冷媒不足運転を解決し、最適な冷媒で、圧縮機の温度上昇をさせることなく、信頼性の高い、高高率な運転ができる。   In particular, the third invention changes the throttle of the pressure reducer in the closing direction before the second two-way valve of the first or second invention is closed, and the second two-way valve closes. Then, after the first two-way valve is changed to the opening direction, the decompressor is fully opened. After the defrosting start determination, the second two-way valve is set by closing the throttle of the decompressor. There is an effect of reducing the refrigerant flow rate during operation to improve the operation reliability during the two-way valve operation and to suppress the generation of refrigerant sound when the refrigerant flow changes. In addition, after the first two-way valve is operated, since the refrigerant has accumulated in the outdoor heat exchanger, the decompressor is controlled to be fully opened in order to collect it in the compressor. By recovering the refrigerant, it is possible to solve the refrigerant shortage operation during the defrosting operation, and to perform an operation with high reliability and high reliability without increasing the temperature of the compressor with the optimum refrigerant.

第4の発明は、特に、第1〜3のいずれか一つの発明の室外熱交換器に設けられた冷媒が通過する配管と液体が通過する配管を、大気吸い込み側の縦1列の中で混在するように配置したもので、除霜運転で冷媒を室外熱交換器に通過させる必要がなく、冷媒が通過する室外熱交換器のパスの中で温水を通過させて除霜ができる。このことから、圧縮機の除霜運転中の信頼性向上が図れ、室外熱交換器のパスを効率配置できる。また、室外熱交換器の縦1列に冷媒通過回路と温水通過回路を構成することで通常の暖房運転の吸熱能力を落とさずに、除霜時の温水通過パスを組むことができる。   In the fourth aspect of the invention, in particular, a pipe through which the refrigerant and a pipe through which the liquid passes provided in the outdoor heat exchanger according to any one of the first to third aspects of the invention are arranged in a vertical line on the air suction side. Since they are arranged so as to be mixed, it is not necessary to pass the refrigerant through the outdoor heat exchanger in the defrosting operation, and defrosting can be performed by passing hot water through the path of the outdoor heat exchanger through which the refrigerant passes. From this, the reliability improvement during the defrosting operation of the compressor can be achieved, and the path of the outdoor heat exchanger can be arranged efficiently. Further, by configuring the refrigerant passage circuit and the hot water passage circuit in one vertical row of the outdoor heat exchanger, a hot water passage path at the time of defrosting can be assembled without reducing the heat absorption capability of the normal heating operation.

第5の発明は、特に、第1〜4のいずれか一つの発明の室外熱交換器の中で、液体が通過する配管の位置を、上部および下部の端に配置したもので、室外熱交換器に付着した霜や、比較的霜が氷となって残りやすい上部および下部に温水を通過させることで、完全に除霜、解氷することができる。   In the fifth aspect of the invention, in particular, in the outdoor heat exchanger of any one of the first to fourth aspects of the invention, the positions of the pipes through which the liquid passes are arranged at the upper and lower ends. By passing warm water through the upper part and the lower part of the frost adhering to the vessel and the frost that is likely to remain as ice, it can be completely defrosted and defrosted.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態により本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
本発明の実施の形態1における空気調和装置について、図1〜7を用いて説明する。図1は、本実施の形態1における空気調和装置の構成図である。
(Embodiment 1)
The air conditioning apparatus in Embodiment 1 of this invention is demonstrated using FIGS. FIG. 1 is a configuration diagram of the air-conditioning apparatus according to the first embodiment.

同図において、本実施の形態における空気調和装置の室外機20には、圧縮機1と、四方弁2と、減圧器4と、室外熱交換器5a、5bと、第1のバイパス回路6と、第1の二方弁7と、蓄熱槽8と、第2のバイパス回路9と、第2の二方弁10と、蓄熱液体循環回路11と、循環ポンプ12と、室外送風機19が配設されている。室内機18には、室内熱交換器3と、室内送風機17が配設されている。ここでの減圧器4は、電磁膨張弁でもよい。   In the figure, the outdoor unit 20 of the air conditioner in the present embodiment includes a compressor 1, a four-way valve 2, a decompressor 4, outdoor heat exchangers 5a and 5b, and a first bypass circuit 6. The first two-way valve 7, the heat storage tank 8, the second bypass circuit 9, the second two-way valve 10, the heat storage liquid circulation circuit 11, the circulation pump 12, and the outdoor blower 19 are disposed. Has been. The indoor unit 18 is provided with the indoor heat exchanger 3 and the indoor blower 17. The decompressor 4 here may be an electromagnetic expansion valve.

次に、図2は、本実施の形態における空気調和装置の冷媒の流れと温水の流れを示した図である。   Next, FIG. 2 is a diagram showing the refrigerant flow and hot water flow of the air-conditioning apparatus according to the present embodiment.

冷媒の流れは、実線の矢印で、温水の流れは、ブロック矢印でそれぞれ示している。   The refrigerant flow is indicated by solid arrows, and the hot water flow is indicated by block arrows.

除霜運転時は、冷媒回路で、連続暖房を運転し、蓄熱液体循環回路11では、除霜運転を行う。矢印に沿って冷媒の流れを説明すると、冷媒回路の連続暖房運転は、圧縮機1から出た冷媒が、四方弁2を通過して、室内熱交換器3に流れ、高温高圧の冷媒で暖房運転を行い、その後、室内機18で放熱された冷媒が、第2の二方弁10を閉状態にすることで、第1のバイパス回路6に冷媒が流れ、蓄熱槽8に冷媒が流れ、蓄熱槽8に溜まった熱により加熱される。その加熱された冷媒は、第1の二方弁7が開状態にすることで、圧縮機1の吸入側に戻り、暖房冷媒回路が構成される。   During the defrosting operation, continuous heating is operated in the refrigerant circuit, and in the heat storage liquid circulation circuit 11, the defrosting operation is performed. The flow of the refrigerant will be described along the arrows. In the continuous heating operation of the refrigerant circuit, the refrigerant discharged from the compressor 1 passes through the four-way valve 2 and flows into the indoor heat exchanger 3, and is heated with high-temperature and high-pressure refrigerant. After the operation, the refrigerant radiated by the indoor unit 18 causes the second two-way valve 10 to be in a closed state, whereby the refrigerant flows into the first bypass circuit 6 and the refrigerant flows into the heat storage tank 8. It is heated by the heat accumulated in the heat storage tank 8. The heated refrigerant returns to the suction side of the compressor 1 when the first two-way valve 7 is opened, and a heating refrigerant circuit is configured.

また、ブロック矢印に沿って、温水の流れを説明すると、蓄熱液体循環回路11の除霜運転は、蓄熱槽8から循環ポンプ12で温水を汲み上げ、室外熱交換器5a、5bに通過させる。その後、温水を室外熱交換器5a、5bから蓄熱槽8に蓄熱液体循環回路11でもどることで、除霜温水回路が構成される。22は、温水を通すための液体搬送配管である。   The flow of hot water will be described along the block arrows. In the defrosting operation of the heat storage liquid circulation circuit 11, hot water is pumped from the heat storage tank 8 by the circulation pump 12, and is passed through the outdoor heat exchangers 5a and 5b. Then, a defrost hot water circuit is comprised by returning warm water to the thermal storage tank 8 from the outdoor heat exchangers 5a and 5b by the thermal storage liquid circulation circuit 11. Reference numeral 22 denotes a liquid transport pipe for passing warm water.

図3は、本実施の形態1における空気調和装置の暖房運転時に残熱を蓄熱する運転を示している。   FIG. 3 shows an operation for storing the residual heat during the heating operation of the air-conditioning apparatus according to the first embodiment.

矢印に沿って冷媒の流れを説明すると、暖房運転中に第2の二方弁10を閉弁することで、第1のバイパス回路6に冷媒を通し、蓄熱槽8にて暖房した後の熱を蓄熱する。蓄熱した後は、もとの冷媒通過するメイン回路に冷媒を戻し、通常の暖房運転を継続する。   Explaining the flow of the refrigerant along the arrows, the heat after heating the refrigerant in the heat storage tank 8 by passing the refrigerant through the first bypass circuit 6 by closing the second two-way valve 10 during the heating operation. To store heat. After storing heat, the refrigerant is returned to the main circuit through which the original refrigerant passes, and normal heating operation is continued.

図4(a)は、従来の室外熱交換器パス配置を示すもので、図4(b)は、本実施の形態における室外熱交換器5a、5bの室外熱交換器パス配置を示している。   FIG. 4A shows a conventional outdoor heat exchanger path arrangement, and FIG. 4B shows an outdoor heat exchanger path arrangement of the outdoor heat exchangers 5a and 5b in the present embodiment. .

また、図4中の矢印の向きは、冷媒の流れを示しており、ブロック矢印は、温水の流れを示している。温水が通過する配管は、黒丸で示す。   Moreover, the direction of the arrow in FIG. 4 has shown the flow of the refrigerant | coolant, and the block arrow has shown the flow of warm water. Pipes through which hot water passes are indicated by black circles.

本実施の形態では、図4(b)に示すように、室内交換器5a、5bの列を3列とし、冷媒が通過する配管22a(○)と液体が通過する配管22b(●)を、大気吸い込み側の縦2列の中で混在するように配置している。これにより、除霜運転で冷媒を室外熱交換器5a、5bに通過させる必要がなく、冷媒が通過する室外熱交換器5a、5bのパスの中で温水を通過させて除霜ができる。このことから、圧縮機1の除霜運転中の信頼性向上が図れ、室外熱交換器5a、5bのパスを効率配置できる。また、室外熱交換器5a、5bの縦2列に冷媒通過回路と温水通過回路を構成することで通常の暖房運転の吸熱能力を落とさずに、除霜時の温水通過パスを組むことができる。   In the present embodiment, as shown in FIG. 4B, the indoor exchangers 5a and 5b are arranged in three rows, and the piping 22a (◯) through which the refrigerant passes and the piping 22b (●) through which the liquid passes are They are arranged so that they are mixed in two vertical rows on the air suction side. Thereby, it is not necessary to pass the refrigerant through the outdoor heat exchangers 5a and 5b in the defrosting operation, and defrosting can be performed by passing the hot water through the path of the outdoor heat exchangers 5a and 5b through which the refrigerant passes. From this, the reliability improvement during the defrosting operation of the compressor 1 can be achieved, and the paths of the outdoor heat exchangers 5a and 5b can be arranged efficiently. Further, by configuring the refrigerant passage circuit and the hot water passage circuit in the two vertical rows of the outdoor heat exchangers 5a and 5b, a hot water passage path at the time of defrosting can be assembled without degrading the heat absorption capability of normal heating operation. .

また、同図4(b)に示すように、液体が通過する配管22bの位置を、上部および下部の端に配置している。これにより、室外熱交換器5a、5bに付着した霜や、比較的霜が氷となって残りやすい上部および下部に温水を通過させることで、完全に除霜、解氷することができる。   Further, as shown in FIG. 4B, the positions of the pipes 22b through which the liquid passes are arranged at the upper and lower ends. Thereby, it is possible to completely defrost and defrost the frost adhering to the outdoor heat exchangers 5a and 5b or by passing warm water through the upper and lower portions where frost tends to remain as ice.

次に図5は、本実施の形態における空気調和装置の制御ブロック図である。   Next, FIG. 5 is a control block diagram of the air conditioning apparatus in the present embodiment.

図5では、室外機20側で、除霜開始判断が除霜開始判断手段50でなされ、除霜開始
と判断された時に、圧縮機運転手段51、第1の二方弁開閉手段52、第2の二方弁開閉手段53、膨張弁開度可変手段54、室外送風機運転手段55、四方弁切換え手段56、蓄熱液体循環ポンプ運転停止手段57、室外熱交換器温度検知手段58、外気温検知手段59で除霜運転が行われる。
In FIG. 5, on the outdoor unit 20 side, the defrosting start determination is made by the defrosting start determining means 50, and when it is determined that the defrosting is started, the compressor operating means 51, the first two-way valve opening / closing means 52, 2 two-way valve opening / closing means 53, expansion valve opening varying means 54, outdoor fan operating means 55, four-way valve switching means 56, heat storage liquid circulation pump operation stopping means 57, outdoor heat exchanger temperature detecting means 58, outdoor temperature detecting means. A defrosting operation is performed by means 59.

このとき室外機20からの除霜開始信号を室内機18で除霜開始信号受信手段60で受信して、除霜運転の判断より、室内送風機運転手段61で室内送風機17を制御する。   At this time, the defrosting start signal from the outdoor unit 20 is received by the defrosting start signal receiving unit 60 in the indoor unit 18, and the indoor fan 17 is controlled by the indoor fan operating unit 61 based on the determination of the defrosting operation.

次に図6で、本実施の形態1の同制御が動作したときの挙動を示すタイムチャートで説明する。   Next, FIG. 6 will be described with reference to a time chart showing the behavior when the control of the first embodiment is operated.

除霜開始の判断をすると、ステップ1のヒートポンプによる暖房運転からステップ2の連続暖房運転に移行する。このときに、第2の二方弁10が閉方向に制御され、第1の二方弁7が開制御される。このタイミングから、室内機18は、除霜開始を受け取り、除霜運転中の室内送風機17を制御移行する。   When it is determined to start defrosting, the heating operation by the heat pump in step 1 is shifted to the continuous heating operation in step 2. At this time, the second two-way valve 10 is controlled in the closing direction, and the first two-way valve 7 is controlled to open. From this timing, the indoor unit 18 receives the start of defrosting and shifts the control of the indoor blower 17 during the defrosting operation.

また、このとき減圧器4は、第2の二方弁10の閉制御より少し前に閉方向に制御を行う。   At this time, the pressure reducer 4 performs control in the closing direction slightly before the closing control of the second two-way valve 10.

また、閉塞運転をさせない理由から、第1の二方弁7の開制御を、第2の二方弁10の閉制御より早く動作させた方が良い。   In addition, for the reason that the closed operation is not performed, it is better to operate the opening control of the first two-way valve 7 earlier than the closing control of the second two-way valve 10.

次に、ステップ2からステップ3に移行するときに、圧縮機1の周波数をアップさせ、減圧器4を全開させる。   Next, when shifting from step 2 to step 3, the frequency of the compressor 1 is increased and the decompressor 4 is fully opened.

次に、ステップ3からステップ4に移行するときに、室外送風機19を停止して、循環ポンプ12を駆動させて、蓄熱槽8の温水を室外熱交換器5a、5bに通して、除霜運転を行う。   Next, when moving from step 3 to step 4, the outdoor blower 19 is stopped, the circulation pump 12 is driven, and the hot water in the heat storage tank 8 is passed through the outdoor heat exchangers 5a and 5b to perform the defrosting operation. I do.

また、このとき四方弁2は、暖房を継続するため、暖房回路のままで除霜中も切り替えしない。   At this time, since the four-way valve 2 continues heating, it remains in the heating circuit and does not switch during defrosting.

また室内送風機17は暖房を継続するので、停止することはない。   Moreover, since the indoor fan 17 continues heating, it does not stop.

次に除霜終了判断後に、ステップ4から5に移行する。このとき、圧縮機1の周波数は、通常暖房運転周波数に移行する。また第2の二方弁10は、開制御として、通常の暖房回路に冷媒回路を戻す。また第1の二方弁7は、閉弁制御を行う。また減圧器4は、通常暖房制御に移行する。また室外送風機19、室内送風機17は、通常の暖房運転に移行する。   Next, after the defrosting is determined, the process proceeds from step 4 to step 5. At this time, the frequency of the compressor 1 shifts to the normal heating operation frequency. Moreover, the 2nd two-way valve 10 returns a refrigerant circuit to a normal heating circuit as opening control. The first two-way valve 7 performs valve closing control. The decompressor 4 shifts to normal heating control. Moreover, the outdoor air blower 19 and the indoor air blower 17 shift to a normal heating operation.

ステップ5以降で通常のヒートポンプ暖房運転に復帰する。   After step 5, the normal heat pump heating operation is resumed.

本実施の形態1では、圧縮機1の運転周波数を変化させているが、一定速の圧縮機1でも暖房を継続して除霜運転を行うことができる。   In the first embodiment, the operating frequency of the compressor 1 is changed, but the defrosting operation can be performed by continuing the heating even with the constant speed compressor 1.

ここで、除霜の開始判断は、室外熱交換器5a、5bの温度および温度変化、外気温度、圧縮機1の運転時間等で一般的に検知し制御されることとする。   Here, the start determination of defrosting is generally detected and controlled based on the temperature and temperature change of the outdoor heat exchangers 5a and 5b, the outside air temperature, the operation time of the compressor 1, and the like.

次に図7の、本実施の形態1の蓄熱制御が動作したときの挙動を示すタイムチャートで説明する。   Next, the time chart showing the behavior when the heat storage control of the first embodiment is operated in FIG. 7 will be described.

通常暖房運転を行っている中で、室外気温度が5℃未満の場合に、除霜運転が発生する可能性がある場合または、室外気温度が5℃以上で室内温度が使用者の設定温度に近づき、暖房負荷が小さい場合は、蓄熱判断を行い、蓄熱開始運転をする。   During normal heating operation, if the outdoor air temperature is less than 5 ° C, there is a possibility of defrosting operation, or the outdoor air temperature is 5 ° C or higher and the room temperature is set by the user When the heating load is small, a heat storage determination is performed, and a heat storage start operation is performed.

蓄熱開始判断が出ると、ステップ1からステップ2に移行して、第2の二方弁10が閉弁制御を行う。冷媒は、第1のバイパス回路6に流れ、蓄熱槽8を通過することで、暖房した後の残熱を蓄熱することができる、その後冷媒は、減圧器4に流れ、通常の暖房運転を行う。   When the heat storage start determination is made, the process proceeds from step 1 to step 2, and the second two-way valve 10 performs valve closing control. The refrigerant flows into the first bypass circuit 6 and passes through the heat storage tank 8 so that the residual heat after heating can be stored. The refrigerant then flows into the decompressor 4 and performs normal heating operation. .

このステップ2では、冷媒の流れが変わることで、減圧器4の制御は、開方向で制御される。   In Step 2, the flow of the refrigerant is changed, so that the decompressor 4 is controlled in the opening direction.

また、室内の暖房負荷が小さい場合は、室内送風機17を低回転にして、冷媒の高圧を上げて、冷媒温度を上げ、蓄熱量をアップさせる。   Moreover, when the indoor heating load is small, the indoor blower 17 is rotated at a low speed, the high pressure of the refrigerant is increased, the refrigerant temperature is increased, and the amount of stored heat is increased.

なお、上記実施の形態において、第1のバイパス回路6の連結部を、圧縮機1の吸入側と四方弁2との間にしているが、四方弁2と室外熱交換器5a、5bとの間に第1のバイパス回路6を連結しても今回の除霜運転としては同じ効果が得られる。   In the above embodiment, the connecting portion of the first bypass circuit 6 is located between the suction side of the compressor 1 and the four-way valve 2, but the connection between the four-way valve 2 and the outdoor heat exchangers 5a and 5b. Even if the first bypass circuit 6 is connected between them, the same effect can be obtained as the current defrosting operation.

さらに、上記説明において、室外熱交換器5a、5bの列を3列(図4(b)参照)にしているが、従来と同等の2列の中で構成しても良い、また温水通過の配管径を変えて、冷媒配管の隙間に構成しても良く、今回の技術範囲に属するものである。   Further, in the above description, the outdoor heat exchangers 5a and 5b are arranged in three rows (see FIG. 4B). The pipe diameter may be changed to constitute a gap between the refrigerant pipes, which belongs to the present technical scope.

また、室外機20と室内機18とを冷媒配管を介して接続した空気調和装置を例にとり説明したが、本発明はこのように構成された空気調和装置に限定されるものではなく、室外機20と室内機18を一体化した屋外設置の空気調和装置等、冷凍サイクル装置であれば、その効果が期待できるものである。   Moreover, although the air conditioner which connected the outdoor unit 20 and the indoor unit 18 via the refrigerant | coolant piping was demonstrated to the example, this invention is not limited to the air conditioner comprised in this way, An outdoor unit The effect can be expected if it is a refrigeration cycle apparatus such as an outdoor air conditioner in which 20 and the indoor unit 18 are integrated.

以上のように本発明の空気調和装置は、暖房運転しながら、除霜運転を実施できるので、室外温度が非常に低温の寒冷地での空気調和装置にも適用できる。   As described above, since the air conditioner of the present invention can perform the defrosting operation while performing the heating operation, it can also be applied to an air conditioner in a cold district where the outdoor temperature is very low.

1 圧縮機
2 四方弁
3 室内熱交換器
4 減圧器
5a 室外熱交換器(外気吸い込み上流側)
5b 室外熱交換器(外気吸い込み下流側)
6 第1のバイパス回路
7 第1の二方弁
8 蓄熱槽
9 第2のバイパス回路
10 第2の二方弁
11 蓄熱液体循環回路
12 循環ポンプ
17 室内送風機
18 室内機
19 室外送風機
20 室外機
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Indoor heat exchanger 4 Decompressor 5a Outdoor heat exchanger (outside air suction upstream side)
5b Outdoor heat exchanger (outside air suction downstream side)
6 first bypass circuit 7 first two-way valve 8 heat storage tank 9 second bypass circuit 10 second two-way valve 11 heat storage liquid circulation circuit 12 circulation pump
17 Indoor blower 18 Indoor blower 19 Outdoor blower 20 Outdoor blower

Claims (5)

圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結して構成されたヒートポンプ式冷凍サイクルと、前記室内熱交換器と前記減圧器の間と前記四方弁と前記圧縮機の吸入側の間を連結すると共に蓄熱槽と第1の二方弁を有する第1のバイパス回路と、前記蓄熱槽と前記第1の二方弁の間と前記減圧器と前記第一のバイパス回路の連結部分の間を連結する第2のバイパス回路と、前記室内熱交換器と前記減圧器の間に連結された前記第1のバイパス回路と前記第2のバイパス回路の間に設けられた第2の二方弁と、前記蓄熱槽の液体を前記室外熱交換器に通過させ、前記蓄熱槽に液体を戻す液体搬送配管と、前記液体搬送配管を通して前記液体を循環させる液体循環ポンプとを備え、前記室外熱交換器の除霜を行う際、前記第2の二方弁を閉塞し、前記第1の二方弁を開放して、前記蓄熱槽に溜まった熱で加熱された冷媒を前記圧縮機の吸入側に流すと共に、前記蓄熱槽の前記液体を前記室外熱交換器に通過させることを特徴とする空気調和装置。 A heat pump refrigeration cycle configured by connecting a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger with a refrigerant circuit; and between the indoor heat exchanger and the decompressor, and the four-way valve A first bypass circuit connecting the suction side of the compressor and having a heat storage tank and a first two-way valve; between the heat storage tank and the first two-way valve; the decompressor; A second bypass circuit connecting between connection parts of one bypass circuit, and between the first bypass circuit and the second bypass circuit connected between the indoor heat exchanger and the pressure reducer. A second two-way valve provided, a liquid transfer pipe for passing the liquid in the heat storage tank through the outdoor heat exchanger and returning the liquid to the heat storage tank, and a liquid circulation for circulating the liquid through the liquid transfer pipe And when performing defrosting of the outdoor heat exchanger, The second two-way valve is closed, the first two-way valve is opened, and the refrigerant heated by the heat accumulated in the heat storage tank is caused to flow to the suction side of the compressor, and the heat storage tank An air conditioner that allows liquid to pass through the outdoor heat exchanger. 室内熱交換器に空気を通す室内送風機を設け、蓄熱槽に熱を蓄熱する場合に、暖房運転中に第2の二方弁を開放し、前記蓄熱槽の中に配置された第1のバイパス回路の中を暖房した後の残熱冷媒を通過させ、蓄熱を行い、前記室内送風機を低回転で運転させることを特徴とする請求項1に記載の空気調和装置。 A first bypass disposed in the heat storage tank when the indoor heat exchanger is provided with an indoor blower and heat is stored in the heat storage tank, the second two-way valve is opened during the heating operation. The air conditioning apparatus according to claim 1, wherein the residual heat refrigerant after heating in the circuit is allowed to pass through to store heat, and the indoor blower is operated at a low speed. 第2の二方弁が閉塞される前に、減圧器の絞りを閉方向に変更し、前記第2の二方弁が閉塞して、第1の二方弁が開方向に変更した後、前記減圧器を全開することを特徴とする請求項1又は2に記載の空気調和装置。 Before the second two-way valve is closed, the throttle of the decompressor is changed to the closing direction, the second two-way valve is closed, and the first two-way valve is changed to the opening direction, The air conditioner according to claim 1 or 2, wherein the decompressor is fully opened. 室外熱交換器に設けられた冷媒が通過する配管と液体が通過する配管を、大気吸い込み側の縦1列の中で混在するように配置したことを特徴とする請求項1〜3のいずれか1項に記載の空気調和装置。 The piping which the refrigerant | coolant passage provided in the outdoor heat exchanger passes and the piping which a liquid passes arrange | positions so that it may mix in the vertical 1 row | line | column by the side of atmospheric | air suction. Item 1. An air conditioner according to item 1. 室外熱交換器の中で、液体が通過する配管の位置を、上部および下部の端に配置したことを特徴とする請求項1〜4のいずれか1項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 4, wherein in the outdoor heat exchanger, positions of pipes through which the liquid passes are arranged at upper and lower ends.
JP2009248730A 2009-10-29 2009-10-29 Air conditioner Withdrawn JP2011094864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009248730A JP2011094864A (en) 2009-10-29 2009-10-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009248730A JP2011094864A (en) 2009-10-29 2009-10-29 Air conditioner

Publications (1)

Publication Number Publication Date
JP2011094864A true JP2011094864A (en) 2011-05-12

Family

ID=44111975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009248730A Withdrawn JP2011094864A (en) 2009-10-29 2009-10-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP2011094864A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620493A (en) * 2012-04-12 2012-08-01 东华大学 Heat pump defrosting system in winter
CN102944085A (en) * 2012-11-14 2013-02-27 合肥天鹅制冷科技有限公司 Liquid cooling system utilizing condensation heat to be self-adaptive to refrigerating capacity
CN104833151A (en) * 2015-05-08 2015-08-12 松下压缩机(大连)有限公司 Device and method for recovery of heat of condensation and defrosting of refrigerating unit
CN109945399A (en) * 2019-03-20 2019-06-28 珠海格力电器股份有限公司 Defrosting method and air-conditioning

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620493A (en) * 2012-04-12 2012-08-01 东华大学 Heat pump defrosting system in winter
CN102620493B (en) * 2012-04-12 2014-05-28 东华大学 Heat pump defrosting system in winter
CN102944085A (en) * 2012-11-14 2013-02-27 合肥天鹅制冷科技有限公司 Liquid cooling system utilizing condensation heat to be self-adaptive to refrigerating capacity
CN102944085B (en) * 2012-11-14 2014-12-31 合肥天鹅制冷科技有限公司 Liquid cooling system utilizing condensation heat to be self-adaptive to refrigerating capacity
CN104833151A (en) * 2015-05-08 2015-08-12 松下压缩机(大连)有限公司 Device and method for recovery of heat of condensation and defrosting of refrigerating unit
CN109945399A (en) * 2019-03-20 2019-06-28 珠海格力电器股份有限公司 Defrosting method and air-conditioning

Similar Documents

Publication Publication Date Title
CN100592007C (en) Air source heat pump type air conditioner and its defrosting method
WO2010070828A1 (en) Heat pump hot-water supply device and operation method therefor
KR100821728B1 (en) Air conditioning system
JP4622921B2 (en) Air conditioner
JP2006105560A (en) Air conditioner
WO2011045976A1 (en) Air-conditioning hot-water supply system
JP2007040658A (en) Air conditioner
CN104819600B (en) Refrigerating circulatory device
JP2013119954A (en) Heat pump hot water heater
JP5842310B2 (en) Refrigeration apparatus and defrost method for load cooler
JP2004218944A (en) Heat pump air conditioning and water heater
CN201314725Y (en) Heat pump type room air conditioner
JP2011094864A (en) Air conditioner
JP2006132797A (en) Air conditioner
CN214199278U (en) Air source heat pump unit with fluorine pump defrosting function
JP2011080733A (en) Air conditioner
JP4622901B2 (en) Air conditioner
JP4802602B2 (en) Air conditioner
CN107023917B (en) Air conditioner and refrigerator integrated machine and operation control method thereof
JP5747160B2 (en) Air conditioner
JP5516332B2 (en) Heat pump type hot water heater
JP2007051820A (en) Air conditioner
JP2009264716A (en) Heat pump hot water system
JP2014031930A (en) Refrigeration cycle device
JP2012127542A (en) Air conditioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130131