JP4622123B2 - Method for producing mold release recovery resin composition - Google Patents

Method for producing mold release recovery resin composition Download PDF

Info

Publication number
JP4622123B2
JP4622123B2 JP2001066422A JP2001066422A JP4622123B2 JP 4622123 B2 JP4622123 B2 JP 4622123B2 JP 2001066422 A JP2001066422 A JP 2001066422A JP 2001066422 A JP2001066422 A JP 2001066422A JP 4622123 B2 JP4622123 B2 JP 4622123B2
Authority
JP
Japan
Prior art keywords
mold
resin composition
mold release
release
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001066422A
Other languages
Japanese (ja)
Other versions
JP2002265755A (en
Inventor
誠 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001066422A priority Critical patent/JP4622123B2/en
Publication of JP2002265755A publication Critical patent/JP2002265755A/en
Application granted granted Critical
Publication of JP4622123B2 publication Critical patent/JP4622123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、半導体封止用金型離型回復樹脂組成物の製造方法に関するものである。
【0002】
【従来の技術】
近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、又半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。この要求に対応する様々な樹脂や添加剤が用いられた半導体封止用エポキシ樹脂組成物は、連続成形時に金型汚れが発生し、金型取られ、未充填等の成形不具合が起こりやすくなり、そのため定期的に金型表面のクリーニングを行うことが通常となってきている。
【0003】
従来、半導体封止用金型のクリーニング材は、アミノ系樹脂のような成形収縮率の大きい樹脂と結晶破砕シリカ、ガラス繊維等の硬度の高い充填材等からなり、このクリーニング材を用いて金型表面の汚れを削り落とすというものが主体であった。クリーニング材を使用した後は金型表面が綺麗になる反面、金型表面の離型剤も取り去られるため、クリーニングした直後に成形された半導体装置は極端に離型性が悪くなるという問題があった。そのためクリーニング材の使用後に、金型離型回復樹脂組成物を成形し、金型表面に金型離型回復樹脂組成物中の離型剤を移行させ塗布し、離型性を回復させる必要がある。
【0004】
金型離型回復樹脂組成物の機能は、金型表面に離型剤を移行させ塗布し、速やかに離型性を回復させることにあるが、多量の離型剤を移行させてしまうと、その後成形した半導体装置の表面に油浮きや汚れを起こすという問題があり、十分に離型剤を移行できない場合は離型性が回復できず、離型回復樹脂組成物を多量に用いる必要があるという問題が発生する。更に離型性回復後の離型性を長く持続できない場合は、頻繁に離型回復樹脂組成物を用いる必要があり生産性が低下するので、生産性向上等のため、より金型離型回復性に優れた半導体封止用金型離型回復樹脂組成物が求められている。
【0005】
【発明が解決しようとする課題】
本発明は、特定の製造方法で得られた半導体封止用金型離型回復樹脂組成物であって、この樹脂組成物は少量でも離型性を回復させ、離型性回復直後の半導体装置の表面に油浮きや汚れを生じず、離型性を長く維持できる半導体封止用金型離型回復樹脂組成物の製造方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、
[1](A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D1)グリセリンと炭素数24〜36の飽和脂肪酸のトリグリセリド、(E)酸化防止剤及び(F)無機充填材を必須成分とし、前記各成分を加熱混練冷却後4メッシュ以下の粉砕物とし、前記粉砕物に(D2)グリセリンと炭素数24〜36の飽和脂肪酸のトリグリセリドを添加混合して得られる金型離型回復樹脂組成物であって、その配合割合[(D1)+(D2)]が全樹脂組成物中の0.1〜2重量%、[(D2)]/[(D1)+(D2)]≧25重量%で、(D2)の粒度が16メッシュ以下で、かつ60メッシュ以上であることを特徴とする半導体封止用金型離型回復樹脂組成物の製造方法である。
【0007】
【発明の実施の形態】
本発明で用いられるエポキシ樹脂としては、特に限定するものではないが、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは単独でも混合して用いてもよい。
【0008】
本発明で用いられるフェノール樹脂としては、特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールアラルキル樹脂、トリフェノールメタン型樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン及び/又はジフェニレン骨格を有するフェノールアラルキル樹脂等が挙げられ、これらは単独でも混合して用いてもよい。
エポキシ樹脂とフェノール樹脂との配合割合は特に限定するものではないが、エポキシ基/フェノール性水酸基の比としては、0.9〜1.2が好ましく、更に好ましくは0.95〜1.15が望ましい。この範囲から大きく外れると、金型離型回復樹脂組成物が充分に硬化せず離型性低下等の作業性の悪化が起こるおそれがある。
【0009】
本発明で用いられる硬化促進剤としては、前記エポキシ樹脂とフェノール樹脂との架橋反応の触媒となり得るものを指し、例えば、トリブチルアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミン系化合物、トリフェニルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート塩等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。又これらの硬化促進剤は単独でも混合して用いてもよい。
【0010】
本発明で用いられるグリセリンと炭素数24〜36の飽和脂肪酸のトリグリセリドは、樹脂組成物に充分な流動性を付与し、更に離型性を向上させる機能を有しているため、これを用いた金型離型回復樹脂組成物は、クリーニング材使用後の優れた金型離型回復性を示す。グリセリンと炭素数24〜36の飽和脂肪酸のトリグリセリドの具体例としては、リグノセリン酸トリグリセリド、セロチン酸トリグリセリド、モンタン酸トリグリセリド等が挙げられる。これらは、単独でも混合して用いてもよい。
用いる飽和脂肪酸の炭素数が23以下では、十分な離型性が得られないため好ましくない。又炭素数が37以上では、分子量が大きいため流動性が低下し、更に金型表面に過度に染み出すことにより、金型離型回復性の効果の点では優れているが、離型性回復直後に成形した半導体装置に油浮きや汚れが生じるという欠点があるため好ましくない。又モノグリセリド、ジグリセリドでは、配合される樹脂成分と相溶しやすいため、成形時に金型表面に染み出しにくくなり、金型離型回復性の効果が低下するため好ましくない。なお本発明で言う飽和脂肪酸の炭素数とは、飽和脂肪酸中のアルキル基とカルボキシル基の炭素数を合計したものを指す。
【0011】
本発明で用いられるグリセリンと炭素数24〜36の飽和脂肪酸のトリグリセリドの配合量としては、全樹脂組成物中に0.1〜2重量%が好ましく、更に好ましくは0.5〜1.5重量%が望ましい。2重量%を越えると金型に過度に染み出し、離型回復直後に成形された半導体装置の表面に油浮きが生じるおそれがあり好ましくない。又0.1重量%未満だと金型表面に離型剤が充分に移行せず、期待されるような金型離型回復性が得られないおそれがあり好ましくない。
本発明の半導体封止用金型離型回復樹脂組成物の製造方法において、製造工程の前半で添加する(D1)と製造工程の後半で添加する(D2)の配合量[(D1)+(D2)]は、全樹脂組成物中0.1〜2重量%で、その配合割合[(D2)]/[(D1)+(D2)]≧25重量%であり、(D2)の粒度としては16メッシュ以下で、かつ60メッシュ以上のものである。
【0012】
(D2)の粒度が60メッシュ未満だと、成形時の熱により溶融した(D2)の一部が樹脂成分と相溶してしまい、金型表面への染み出しが少なくなり充分な離型性回復効果が得られず、離型回復樹脂組成物の添加量が多くなり生産性が低下する。又16メッシュを越えると、過度に染み出した(D2)が金型からの熱で徐々に酸化され、離型性が低下し、長時間離型性を維持することが難しく好ましくない。
[(D2)]/[(D1)+(D2)]が25重量%未満では、離型回復樹脂組成物自体の離型性は充分なものの、金型表面へ移行し塗布出来る離型剤量が少なくなり、充分な離型回復効果が得られない。
【0013】
本発明で用いられる酸化防止剤は、金型表面に染み出し離型剤の酸化を抑える機能を有し、長時間離型性を維持するためのものである。配合量については、特に限定しないが、全樹脂組成物中に0.1〜0.5重量%が望ましい。0.1重量%未満だとその効果が不十分で、0.5重量%を越えると酸化防止剤がブリードアウトして、半導体装置に汚れが付着するという問題がある。ここで用いられる酸化防止剤は、例えば2,6-ジターシャリーブチル-p-クレゾール等のBHT誘導体、p-ベンゾキノン等のキノン誘導体、ジラウリルチオプロピオネートといった硫黄系酸化防止剤、カテコール、ビタミンC,ビタミンE等が挙げられる。
本発明で用いられる無機充填材としては、一般に封止材料に用いられているものを使用すればよい。例えば溶融球状シリカ、結晶破砕シリカ等が挙げられる。
【0014】
本発明の半導体封止用金型離型回復樹脂組成物には、(A)〜(F)成分の他に、必要に応じてカルナバワックス、ステアリン酸、モンタン酸ワックスといった離型剤や、カップリング剤、酸化防止剤、カーボンブラック等の着色剤等の添加剤を用いてもよい。
本発明の半導体封止用金型離型回復樹脂組成物は、(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D1)グリセリンと炭素数24〜36の飽和脂肪酸のトリグリセリド、(E)酸化防止剤及び(F)無機充填材をミキサー等を用いて混合後、加熱ニーダ、熱ロール、押し出し機等を用いて加熱混練し、続いて冷却粉砕後4メッシュ以下の粉砕物とし、前記粉砕物に(D2)粒度が16メッシュ以下で、かつ60メッシュ以上のグリセリンと炭素数24〜36の飽和脂肪酸のトリグリセリドを添加混合した後タブレット化して得られる。4メッシュ以下の粉砕物と16メッシュ以下で、かつ60メッシュ以上の(D2)を混合する際に発熱するような混合法だと、(D2)が溶融し樹脂との相溶が起こり、離型回復樹脂組成物として、使用時に金型表面に(D2)が充分に移行し塗布することが出来ず充分な離型回復効果が発揮できないので好ましくない。
【0015】
【実施例】
以下、本発明を実施例で具体的に説明する。配合割合は重量部とする。
実施例1
組成物1
オルソクレゾールノボラック型エポキシ樹脂(軟化点65℃、エポキシ当量209)
21.7重量部
フェノールノボラック樹脂(軟化点90℃、水酸基当量104) 10.3重量部
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという)
0.2重量部
溶融球状シリカ 66.4重量部
モンタン酸トリグリセリド(炭素数28) 0.2重量部
カルナバワックス 0.2重量部
2,6−ジターシャリーブチル−p−クレゾール 0.2重量部
カーボンブラック 0.3重量部
をミキサーを用いて各成分を混合した後、表面温度が95℃と25℃の2軸ロールを用いて20回混練して得られた混練物シートを冷却後粉砕した4メッシュ以下の粉砕物99.5重量部に、(D2)成分の16メッシュ以下で、かつ60メッシュ以上の粒度のモンタン酸トリグリセリド0.5重量部を配合混合後タブレット化した。得られた樹脂組成物の特性を以下の方法で評価した。評価結果を表1に示す。
【0016】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で測定した。単位はcm。
離型回復性:金型表面をクリーニングするためのメラミン樹脂系クリーニング材を用いて、離型時荷重評価用金型で成形品を成形し、前記金型の表面の離型剤成分を取り除いた後、金型離型回復樹脂組成物を5回成形した後、金型温度175℃、注入圧力70kg/cm2、硬化時間2分の条件で評価用材料をトランスファー成形し、製品抜き出し時の離型荷重を測定した。単位はN。
離型時荷重評価用金型は、上型・中型・下型とからなり、成形後に中型に付着した14mmΦで1.5mm厚の円形の成形品に、中型の上部の穴からプッシュプルゲージを当て、成形品を突き出した際にかかる荷重を測定した。評価用材料としては、住友ベークライト(株)製・半導体封止用エポキシ樹脂成形材料EME−7351を用いた。
離型持続性:金型表面をクリーニングするためのメラミン樹脂系クリーニング材を用いて、離型時荷重評価用金型で成形品を成形し、前記金型の表面の離型剤成分を取り除いた後、金型離型回復樹脂組成物を5回成形した後、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で評価用材料をトランスファー成形し、製品抜き出し時の離型荷重を測定した。離型荷重は、上型・中型・下型とからなる離型時荷重評価用金型を用いて成形し、成形後に中型に付着した14.5mmΦで1.5mm厚の円形の成形品に、中型の上部の穴からプッシュブルゲージを当て、成形品を突き出した際にかかる荷重とした。続けて評価用材料を200ショット成形し、離型荷重のショットごとの変化を測定した。このとき初期の離型荷重に対して30%以上離型荷重が増大したショット数で表現した。200<は、200ショット以上で初期の離型荷重に対して30%以下の離型荷重であることを表現したものである。
成形品汚れ:金型離型回復樹脂組成物の使用直後に、成形した評価用材料の成形品表面の油浮きと汚れ具合を確認した。表面を拭いた時に拭き取れるものは油浮き、取れないものは汚れと判定した。製品表面に汚れが発生したものは×、汚れはないが油浮きがあるものを△、いずれもないものは○と表現した。
【0017】
実施例2〜6、比較例1〜6
表1、表2の配合に従い、実施例1と同様の樹脂組成物を作製し、実施例1と同様にして評価した結果を表1、表2に示す。なお実施例1以外で用いたエポキシ樹脂、フェノール樹脂、離型剤の詳細を以下に示す。
ビフェニル型エポキシ樹脂(融点105℃、エポキシ当量191)
フェノールアラルキル樹脂(軟化点75℃、水酸基当量174)
セロチン酸トリグリセリド(炭素数26)
ステアリン酸トリグリセリド(炭素数18)
長鎖脂肪酸トリグリセリド(炭素数37以上)
モンタン酸モノグリセリド(炭素数28)
【0018】
【表1】

Figure 0004622123
【0019】
【表2】
Figure 0004622123
【0020】
【発明の効果】
本発明の製造方法で得られた半導体封止用金型離型回復樹脂組成物を用いた後に、成形された半導体装置には油浮きや汚れがなく、離型回復性に優れており、更に離型性を長く維持することができるので生産性向上に寄与する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a mold release recovery resin composition for semiconductor encapsulation.
[0002]
[Prior art]
In recent years, electronic devices have become smaller, lighter, and higher in performance, and semiconductor elements have been increasingly integrated, and surface mounting of semiconductor devices has been promoted. The demand for things has become increasingly severe. Epoxy resin compositions for semiconductor encapsulation using various resins and additives that meet this requirement are prone to mold fouling during continuous molding, and mold defects such as unfilling are likely to occur. Therefore, it has become normal to periodically clean the mold surface.
[0003]
Conventionally, a semiconductor sealing mold cleaning material consists of a resin having a high molding shrinkage such as an amino resin and a filler having high hardness such as crystal-crushed silica and glass fiber. The main thing was scraping off the dirt on the mold surface. After using the cleaning material, the mold surface becomes clean, but the mold release agent on the mold surface is also removed, so that there is a problem that the moldability of the semiconductor device molded immediately after cleaning becomes extremely poor. It was. Therefore, after using the cleaning material, it is necessary to mold the mold release recovery resin composition, transfer the mold release agent in the mold release recovery resin composition to the mold surface, and apply it to recover the release properties. is there.
[0004]
The function of the mold release recovery resin composition is to transfer and apply the release agent to the mold surface, and to quickly recover the release property, but if a large amount of release agent is transferred, After that, there is a problem of causing oil floating and dirt on the surface of the molded semiconductor device. If the release agent cannot be sufficiently transferred, the release property cannot be recovered, and a large amount of the release recovery resin composition needs to be used. The problem occurs. In addition, if the mold release after recovery of mold release cannot be maintained for a long time, it is necessary to use a mold release recovery resin composition frequently, and the productivity decreases. There is a need for a mold release recovery resin composition for semiconductor encapsulation having excellent properties.
[0005]
[Problems to be solved by the invention]
The present invention relates to a mold release recovery resin composition for semiconductor encapsulation obtained by a specific manufacturing method, and this resin composition recovers the release property even in a small amount, and the semiconductor device immediately after the release property recovery It is intended to provide a method for producing a mold release recovery resin composition for semiconductor sealing, which can maintain the release property for a long time without causing oil floating or dirt on the surface of the resin.
[0006]
[Means for Solving the Problems]
The present invention
[1] (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D1) triglyceride of glycerin and saturated fatty acid having 24 to 36 carbon atoms, (E) antioxidant and (F) inorganic filling Mold obtained by using the material as an essential component, heating and kneading and cooling each component to a pulverized product of 4 mesh or less, and adding (D2) glycerin and a triglyceride of a saturated fatty acid having 24 to 36 carbon atoms to the pulverized product. Release-recovery resin composition, the blending ratio [(D1) + (D2)] is 0.1 to 2% by weight in the total resin composition, [(D2)] / [(D1) + (D2 )] ≧ 25 wt%, (D2) has a particle size of 16 mesh or less and 60 mesh or more, and a method for producing a mold release recovery resin composition for semiconductor encapsulation.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Although it does not specifically limit as an epoxy resin used by this invention, For example, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a biphenyl type epoxy resin, a bisphenol type epoxy resin, a stilbene type epoxy resin, a triphenolmethane Type epoxy resin, phenol aralkyl type epoxy resin, naphthalene type epoxy resin, alkyl-modified triphenol methane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene-modified phenol type epoxy resin, etc. It may be used.
[0008]
The phenolic resin used in the present invention is not particularly limited. Examples thereof include phenol aralkyl resins having a phenylene and / or diphenylene skeleton, and these may be used alone or in combination.
The blending ratio of the epoxy resin and the phenol resin is not particularly limited, but the ratio of epoxy group / phenolic hydroxyl group is preferably 0.9 to 1.2, more preferably 0.95 to 1.15. desirable. If it deviates significantly from this range, the mold release recovery resin composition may not be sufficiently cured, and workability such as deterioration of mold release may be deteriorated.
[0009]
The curing accelerator used in the present invention is one that can be a catalyst for the crosslinking reaction between the epoxy resin and the phenol resin, and examples thereof include tributylamine, 1,8-diazabicyclo (5,4,0) undecene-7, and the like. Amine compounds, organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or in combination.
[0010]
The glycerin used in the present invention and the triglyceride of saturated fatty acid having 24 to 36 carbon atoms are used because they have a function of imparting sufficient fluidity to the resin composition and further improving the releasability. The mold release recovery resin composition exhibits excellent mold release recovery after use of the cleaning material. Specific examples of glycerin and triglycerides of saturated fatty acids having 24 to 36 carbon atoms include lignoceric acid triglyceride, serotic acid triglyceride, and montanic acid triglyceride. These may be used alone or in combination.
If the saturated fatty acid used has 23 or less carbon atoms, it is not preferable because sufficient releasability cannot be obtained. On the other hand, when the number of carbon atoms is 37 or more, the fluidity is lowered due to the large molecular weight, and further, it exudes excessively to the mold surface. This is not preferable because there is a disadvantage that oil floating or dirt is generated in the semiconductor device molded immediately after that. Monoglycerides and diglycerides are not preferred because they are easily compatible with the resin component to be blended, so that they are difficult to ooze out on the mold surface during molding, and the mold release recovery effect is reduced. The carbon number of the saturated fatty acid referred to in the present invention refers to the sum of the carbon number of the alkyl group and the carboxyl group in the saturated fatty acid.
[0011]
As a compounding quantity of the glycerin used by this invention and the triglyceride of a C24-36 saturated fatty acid, 0.1 to 2 weight% is preferable in all the resin compositions, More preferably, it is 0.5 to 1.5 weight % Is desirable. Exceeding 2% by weight is not preferable because it may excessively ooze into the mold and cause oil floating on the surface of the semiconductor device formed immediately after the release of mold release. On the other hand, if it is less than 0.1% by weight, the mold release agent does not sufficiently migrate to the mold surface, and the mold mold release recoverability as expected may not be obtained.
In the method for producing a mold release recovery resin composition for semiconductor encapsulation of the present invention, the blending amount of (D1) added in the first half of the production process and (D2) added in the second half of the production process [(D1) + ( D2)] is 0.1 to 2% by weight in the total resin composition, and its blending ratio [(D2)] / [(D1) + (D2)] ≧ 25% by weight, and the particle size of (D2) Is 16 mesh or less and 60 mesh or more.
[0012]
If the particle size of (D2) is less than 60 mesh, a part of (D2) melted by the heat during molding will be compatible with the resin component, and exudation to the mold surface will be reduced and sufficient releasability A recovery effect cannot be obtained, and the amount of the release recovery resin composition added is increased, resulting in a decrease in productivity. On the other hand, if it exceeds 16 meshes, the excessively exuded (D2) is gradually oxidized by the heat from the mold, the releasability is lowered, and it is difficult to maintain the releasability for a long time.
If [(D2)] / [(D1) + (D2)] is less than 25% by weight, the release agent amount that can be transferred to the mold surface and applied, although the release property of the release recovery resin composition itself is sufficient. And a sufficient release recovery effect cannot be obtained.
[0013]
The antioxidant used in the present invention has a function of exuding on the mold surface and suppressing the oxidation of the release agent, and is for maintaining the release property for a long time. The blending amount is not particularly limited, but is preferably 0.1 to 0.5% by weight in the entire resin composition. If the amount is less than 0.1% by weight, the effect is insufficient. If the amount exceeds 0.5% by weight, the antioxidant bleeds out, causing a problem that the semiconductor device is contaminated. Antioxidants used here include, for example, BHT derivatives such as 2,6-ditertiarybutyl-p-cresol, quinone derivatives such as p-benzoquinone, sulfur-based antioxidants such as dilauryl thiopropionate, catechol, vitamins C, vitamin E and the like.
What is necessary is just to use what is generally used for the sealing material as an inorganic filler used by this invention. For example, fused spherical silica, crystal crushed silica and the like can be mentioned.
[0014]
In addition to the components (A) to (F), the mold release recovery resin composition for semiconductor encapsulation of the present invention includes a mold release agent such as carnauba wax, stearic acid, and montanic acid wax as needed. Additives such as colorants such as ring agents, antioxidants, and carbon black may be used.
The mold release recovery resin composition for semiconductor encapsulation of the present invention comprises (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator, (D1) glycerin and a saturated fatty acid having 24 to 36 carbon atoms. Triglyceride, (E) antioxidant and (F) inorganic filler are mixed using a mixer, etc., then heated and kneaded using a heating kneader, hot roll, extruder, etc., and then cooled and pulverized to 4 mesh or less. It is obtained by tableting after adding (D2) glycerin having a particle size of 16 mesh or less and 60 mesh or more and triglyceride of saturated fatty acid having 24 to 36 carbon atoms to the pulverized product. When mixing with a pulverized product of 4 mesh or less and (D2) of 16 mesh or less and (D2) of 60 mesh or more, (D2) melts and compatibility with the resin occurs, releasing the mold. As the recovery resin composition, (D2) is sufficiently transferred to the mold surface during use and cannot be applied, so that a sufficient release recovery effect cannot be exhibited.
[0015]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples. The blending ratio is parts by weight.
Example 1
Composition 1
Orthocresol novolac type epoxy resin (softening point 65 ° C., epoxy equivalent 209)
21.7 parts by weight Phenol novolac resin (softening point 90 ° C., hydroxyl group equivalent 104) 10.3 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU)
0.2 part by weight fused spherical silica 66.4 parts by weight montanic acid triglyceride (carbon number 28) 0.2 part by weight carnauba wax 0.2 part by weight 2,6-ditertiarybutyl-p-cresol 0.2 part by weight carbon After mixing 0.3 parts by weight of black using a mixer, each kneaded product sheet obtained by kneading 20 times using a biaxial roll having surface temperatures of 95 ° C. and 25 ° C. was crushed after cooling 4 To 99.5 parts by weight of the pulverized product below mesh, 0.5 parts by weight of montanic acid triglyceride having a particle size of 16 mesh or less and (D2) component of 60 mesh or more were blended and tableted. The characteristics of the obtained resin composition were evaluated by the following methods. The evaluation results are shown in Table 1.
[0016]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. The unit is cm.
Mold release recovery: Using a melamine resin-based cleaning material for cleaning the mold surface, the molded product was molded with a mold for load release evaluation, and the mold release agent component on the mold surface was removed. Thereafter, the mold release recovery resin composition was molded five times, and then the evaluation material was transfer molded under the conditions of a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. The mold load was measured. The unit is N.
The mold for load release evaluation consists of an upper mold, a middle mold, and a lower mold, and a push-pull gauge is formed from the upper hole of the middle mold into a circular molded product of 14 mmΦ and 1.5 mm thickness attached to the middle mold after molding. The load applied when the molded product was pushed out was measured. As an evaluation material, Sumitomo Bakelite Co., Ltd., epoxy resin molding material EME-7351 for semiconductor encapsulation was used.
Mold release sustainability: Using a melamine resin cleaning material for cleaning the mold surface, the molded product was molded with a mold for load release evaluation, and the mold release agent component on the mold surface was removed. Then, after molding the mold release recovery resin composition 5 times, the molding material was transfer molded at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes, and the mold release load when the product was extracted Was measured. The mold release load is molded using a mold for load evaluation at the time of mold release composed of an upper mold, a middle mold, and a lower mold. After molding, a 14.5 mmΦ and 1.5 mm thick circular molded product attached to the middle mold A push bull gauge was applied from the upper hole of the middle mold, and the load applied when the molded product was projected. Subsequently, 200 shots of the evaluation material were molded, and the change in the release load for each shot was measured. At this time, the number of shots in which the release load increased by 30% or more with respect to the initial release load was expressed. 200 <represents that the release load is 30% or less with respect to the initial release load at 200 shots or more.
Molded Product Stain: Immediately after using the mold release recovery resin composition, oil floatation on the molded product surface of the molded evaluation material and the degree of soiling were confirmed. What was wiped off when the surface was wiped was determined to be oil floating, and those that could not be removed were judged to be dirty. The case where the surface of the product was stained was expressed as “X”, the case where there was no contamination but oil floating was expressed as “△”, and the case where none was present was expressed as “◯”.
[0017]
Examples 2-6, Comparative Examples 1-6
According to the composition of Table 1 and Table 2, the same resin composition as that of Example 1 was prepared, and the results evaluated in the same manner as in Example 1 are shown in Tables 1 and 2. In addition, the detail of the epoxy resin, phenol resin, and mold release agent which were used except Example 1 is shown below.
Biphenyl type epoxy resin (melting point 105 ° C, epoxy equivalent 191)
Phenol aralkyl resin (softening point 75 ° C., hydroxyl group equivalent 174)
Serotic acid triglyceride (26 carbon atoms)
Stearic acid triglyceride (18 carbon atoms)
Long-chain fatty acid triglycerides (over 37 carbon atoms)
Montanic acid monoglyceride (28 carbon atoms)
[0018]
[Table 1]
Figure 0004622123
[0019]
[Table 2]
Figure 0004622123
[0020]
【The invention's effect】
After using the mold release recovery resin composition for semiconductor sealing obtained by the manufacturing method of the present invention, the molded semiconductor device has no oil floating or dirt, and has excellent release recovery, The mold releasability can be maintained for a long time, contributing to productivity improvement.

Claims (1)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D1)グリセリンと炭素数24〜36の飽和脂肪酸のトリグリセリド、(E)酸化防止剤及び(F)無機充填材を必須成分とし、前記各成分を加熱混練冷却後4メッシュ以下の粉砕物とし、前記粉砕物に(D2)グリセリンと炭素数24〜36の飽和脂肪酸のトリグリセリドを添加混合して得られる金型離型回復樹脂組成物であって、その配合割合[(D1)+(D2)]が全樹脂組成物中の0.1〜2重量%、[(D2)]/[(D1)+(D2)]≧25重量%で、(D2)の粒度が16メッシュ以下で、かつ60メッシュ以上であることを特徴とする半導体封止用金型離型回復樹脂組成物の製造方法。(A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D1) triglyceride of glycerin and saturated fatty acid having 24 to 36 carbon atoms, (E) antioxidant and (F) inorganic filler are essential Mold release recovery obtained by adding each component to a pulverized product of 4 mesh or less after heating, kneading and cooling, and adding (D2) glycerin and triglycerides of saturated fatty acids having 24 to 36 carbon atoms to the pulverized product. It is a resin composition, and the blending ratio [(D1) + (D2)] is 0.1 to 2% by weight in the total resin composition, [(D2)] / [(D1) + (D2)] ≧ 25. A method for producing a mold release recovery resin composition for semiconductor encapsulation, wherein the particle size of (D2) is 16 mesh or less and 60 mesh or more at 25% by weight.
JP2001066422A 2001-03-09 2001-03-09 Method for producing mold release recovery resin composition Expired - Fee Related JP4622123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066422A JP4622123B2 (en) 2001-03-09 2001-03-09 Method for producing mold release recovery resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066422A JP4622123B2 (en) 2001-03-09 2001-03-09 Method for producing mold release recovery resin composition

Publications (2)

Publication Number Publication Date
JP2002265755A JP2002265755A (en) 2002-09-18
JP4622123B2 true JP4622123B2 (en) 2011-02-02

Family

ID=18924910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066422A Expired - Fee Related JP4622123B2 (en) 2001-03-09 2001-03-09 Method for producing mold release recovery resin composition

Country Status (1)

Country Link
JP (1) JP4622123B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581455B2 (en) * 2004-03-30 2010-11-17 住友ベークライト株式会社 Mold release recovery resin composition and method for manufacturing semiconductor device
JP4590899B2 (en) * 2004-03-30 2010-12-01 住友ベークライト株式会社 Mold release recovery resin composition and method for manufacturing semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152465A (en) * 1991-12-02 1993-06-18 Hitachi Ltd Resin composition for sealing semiconductor
JPH07309998A (en) * 1994-05-18 1995-11-28 Hitachi Chem Co Ltd Mold surface release treatment resin composition, release treatment of surface of mold using the composition, production of thermosetting resin molded product using mold release-treated with the composition
JPH0873703A (en) * 1994-09-01 1996-03-19 Hitachi Chem Co Ltd Epoxy resin composition and optical semiconductor device produced using the composition
JP2000281750A (en) * 1999-03-31 2000-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002161189A (en) * 2000-11-27 2002-06-04 Sumitomo Bakelite Co Ltd Resin composition for recovering mold releasability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152465A (en) * 1991-12-02 1993-06-18 Hitachi Ltd Resin composition for sealing semiconductor
JPH07309998A (en) * 1994-05-18 1995-11-28 Hitachi Chem Co Ltd Mold surface release treatment resin composition, release treatment of surface of mold using the composition, production of thermosetting resin molded product using mold release-treated with the composition
JPH0873703A (en) * 1994-09-01 1996-03-19 Hitachi Chem Co Ltd Epoxy resin composition and optical semiconductor device produced using the composition
JP2000281750A (en) * 1999-03-31 2000-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002161189A (en) * 2000-11-27 2002-06-04 Sumitomo Bakelite Co Ltd Resin composition for recovering mold releasability

Also Published As

Publication number Publication date
JP2002265755A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
JP5605394B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4946115B2 (en) Epoxy resin composition and semiconductor device
JP4747593B2 (en) Epoxy resin composition and semiconductor device
JP4788033B2 (en) Method for producing mold release recovery resin composition
JP4622123B2 (en) Method for producing mold release recovery resin composition
JP2008143950A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP5008222B2 (en) Epoxy resin composition and semiconductor device
JP2006328360A (en) Epoxy resin composition and semiconductor device
JP5298310B2 (en) Resin composition for sealing electronic components and electronic component device using the same
JP4590899B2 (en) Mold release recovery resin composition and method for manufacturing semiconductor device
JP2002161193A (en) Resin composition for recovering mold releasability
JP4710185B2 (en) Method for producing mold release recovery resin composition
JP3957270B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP4581455B2 (en) Mold release recovery resin composition and method for manufacturing semiconductor device
JP2006282876A (en) Epoxy resin composition and semiconductor device
JP2006182801A (en) Mold release restoring resin composition and method for producing semiconductor device
JP2006037009A (en) Epoxy resin composition and semiconductor device
JP2007091813A (en) Epoxy resin composition for sealing semiconductor and semiconductor device obtained from the same
JP4765310B2 (en) Manufacturing method of resin-encapsulated semiconductor device
JP4524832B2 (en) Epoxy resin composition and semiconductor device
JP2002161189A (en) Resin composition for recovering mold releasability
JP2004224849A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP4524835B2 (en) Epoxy resin composition and semiconductor device
JP2005264040A (en) Resin composition for recovering mold releasability
JP2006335828A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees