JP4710185B2 - Method for producing mold release recovery resin composition - Google Patents

Method for producing mold release recovery resin composition Download PDF

Info

Publication number
JP4710185B2
JP4710185B2 JP2001220260A JP2001220260A JP4710185B2 JP 4710185 B2 JP4710185 B2 JP 4710185B2 JP 2001220260 A JP2001220260 A JP 2001220260A JP 2001220260 A JP2001220260 A JP 2001220260A JP 4710185 B2 JP4710185 B2 JP 4710185B2
Authority
JP
Japan
Prior art keywords
mold
resin composition
release
mold release
alpha olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001220260A
Other languages
Japanese (ja)
Other versions
JP2003082193A (en
Inventor
伸一 前佛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001220260A priority Critical patent/JP4710185B2/en
Publication of JP2003082193A publication Critical patent/JP2003082193A/en
Application granted granted Critical
Publication of JP4710185B2 publication Critical patent/JP4710185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体封止用金型離型回復樹脂組成物の製造方法に関するものである。
【0002】
【従来の技術】
近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、又半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。この要求に対応する様々な樹脂や添加剤が用いられた半導体封止用エポキシ樹脂組成物は、連続成形時に金型汚れが発生し、金型取られ、未充填等の成形不具合が起こり易くなり、そのため定期的に金型表面のクリーニングを行うことが通常となってきている。
【0003】
従来、半導体封止用金型のクリーニング材は、アミノ系樹脂のような成形収縮率の大きい樹脂と結晶破砕シリカ、ガラス繊維等の硬度の高い充填材等からなり、このクリーニング材を用いて金型表面の汚れを削り落とすというものが主体であった。クリーニング材を使用した後は金型表面が綺麗になる反面、金型表面の離型剤も取り去られているため、クリーニングした直後に成形された半導体装置は極端に離型性が悪くなるという問題があった。そのためクリーニング材の使用後に、金型離型回復樹脂組成物を用いて、金型表面に金型離型回復樹脂組成物中の離型剤を移行させ塗布し、離型性を回復させる必要がある。
【0004】
金型離型回復樹脂組成物の機能は、金型表面に離型剤を移行させ塗布し、速やかに離型性を回復することにあるが、多量の離型剤を移行させてしまうと、その後成形した半導体装置の表面に油浮きや汚れを起こすという問題があり、十分に離型剤を移行できない場合は離型性が回復できず、金型離型回復樹脂組成物を多量に用いる必要があるという問題が発生する。更に離型性回復後の離型性を長く持続できない場合は、頻繁に金型離型回復樹脂組成物を用いる必要があり生産性が低下するので、生産性向上等のため、より金型離型回復性に優れた半導体封止用金型離型回復樹脂組成物が求められている。
【0005】
【発明が解決しようとする課題】
本発明は、特定の製造方法で得られた金型離型回復樹脂組成物であって、該樹脂組成物は少量でも離型性を回復させ、離型性回復直後の半導体装置の表面に油浮きや汚れを生じず、離型性を長く維持できる半導体封止用金型離型回復樹脂組成物の製造方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、
[1](A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D1)酸化アルファオレフィンとエタノールアミンとの反応物及び/又は酸化アルファオレフィンとイソシアネートとの反応物、及び(E)無機充填材を必須成分とし、前記各成分を加熱混練冷却後4メッシュ以下の粉砕物とし、前記粉砕物に(D2)酸化アルファオレフィンとエタノールアミンとの反応物及び/又は酸化アルファオレフィンとイソシアネートとの反応物を添加混合して得られる金型離型回復樹脂組成物であって、その配合割合[(D1)+(D2)]が全樹脂組成物中の0.1〜3重量%、[(D2)]/[(D1)+(D2)]≧25重量%で、(D2)の粒度が60メッシュ以上16メッシュ以下であることを特徴とする半導体封止用金型離型回復樹脂組成物の製造方法、
[2]酸化アルファオレフィンの炭素数が、20〜70である第[1]項記載の半導体封止用金型離型回復樹脂組成物の製造方法、
である。
【0007】
【発明の実施の形態】
本発明で用いられるエポキシ樹脂としては、特に限定するものではないが、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは単独でも混合して用いてもよい。
【0008】
本発明で用いられるフェノール樹脂としては、特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン及び/又はジフェニレン骨格を有するフェノールアラルキル樹脂等が挙げられ、これらは単独でも混合して用いてもよい。
エポキシ樹脂とフェノール樹脂との配合割合は特に限定するものではないが、エポキシ基/フェルーノール性水酸基比としては、0.9〜1.2が好ましく、更に好ましくは0.95〜1.15が望ましい。この範囲から大きく外れると、樹脂組成物が充分に硬化せず離型性低下等の作業性の悪化が起こるおそれがある。
【0009】
本発明で用いられる硬化促進剤としては、前記エポキシ樹脂とフェノール樹脂との架橋反応の触媒となり得るものを指し、例えばトリブチルアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミン系化合物、トリフェニルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート塩等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。又これらの硬化促進剤は単独でも混合して用いてもよい。
【0010】
本発明で用いられる酸化アルファオレフィンとエタノールアミンとの反応物又はイソシアネートとの反応物は、石油留分から得られるアルファオレフィンを酸化して得られるカルボキシル基や水酸基を有する酸化アルファオレフィンとエタノールアミン又はイソシアネートとを反応させて得られる。一般的にアルファオレフィンは、エポキシ樹脂やフェノール樹脂成分との相溶性に乏しく、離型回復樹脂組成物の粘度が上昇し、更に成形時に金型表面に過度に染み出し、金型離型回復効果には優れるものの、離型性回復直後に成形した半導体装置に油浮きや汚れが生じるという欠点がある。そこで酸化アルファオレフィンを用いると、エポキシ樹脂やフェノール樹脂成分との適度な相溶性による半導体装置への油浮き、汚れの防止と、更に流動性を付与でき、優れた離型回復性を図ることができるが、離型回復後の金型を高温で長時間放置すると、酸化アルファオレフィンの一部が熱分解し離型性を悪化させ離型性が低下するという欠点もある。
本発明の酸化アルファオレフィンとエタノールアミンとの反応物又はイソシアネートとの反応物を用いると高温での熱分解を抑えることができ、離型回復後の金型を高温で長時間放置しても、優れた離型性を維持することができるという特徴がある。
本発明で用いられる酸化アルファオレフィンの炭素数としては、20〜70、更に好ましくは40〜60が望ましい。炭素数が20未満だと融点が低すぎてエポキシ樹脂やフェノール樹脂成分との相溶性には優れるが、十分な離型効果が発現されない場合がある。又70を越えると離型効果は発現されるが、離型回復樹脂組成物の粘度が上昇すること、エポキシ樹脂やフェノール樹脂成分との相溶性が極端に低下し、離型性回復直後に成形した半導体装置に油浮きや汚れが生じるおそれがある。なお本発明で用いる酸化アルファオレフィンの炭素数とは、分子中の全ての炭素のことを言う。
【0011】
酸化アルファオレフィンとエタノールアミンとの反応物のアミン化又は酸化アルファオレフィンとイソシアネートとの反応物のウレタン化の割合は、特に限定するものではないが、得られる離型剤中の窒素分としては0.3〜5重量%の含有率が望ましい。アミン化又はウレタン化部分が多過ぎると、離型剤自体の粘度が上昇し材料化が困難になるおそれがあり好ましくない。
エタノールアミン反応物は酸化アルファオレフィンの水酸基或いはカルボキシル基とをエタノールアミンと反応させアミン化させて得られ、一方イソシアネート反応物は酸化アルファオレフィンの水酸基或いはカルボキシル基とをメチレンジイソシアネート、トルエンジイソシアネート等のイソシアネート類と反応させウレタン化させて得られる。酸化アルファオレフィンとエタノールアミンとの反応物と酸化アルファオレフィンとイソシアネートとの反応物は、単独でも混合して用いてもよい。これらのものは、東洋ペトロライト(株)より市販されており市場より容易に入手できる。
【0012】
本発明で用いられる酸化アルファオレフィンとエタノールアミンとの反応物及び/又はイソシアネートとの反応物の配合量は、全樹脂組成物中に0.1〜3重量%が好ましく、更に好ましく0.5〜2重量%が望ましい。3重量%を越えると金型に過度に染み出し、離型回復直後の半導体装置に油浮きが生じるという問題がある。又0.1重量%未満だと金型表面に離型剤が充分に移行せず、期待されるような金型離型回復性が得られなないおそれがある。本発明の金型離型回復樹脂組成物の製造方法において、製造工程の前半で添加する離型剤(D1)と製造工程の後半で添加する離型剤(D2)の配合量[(D1)+(D2)]は、全樹脂組成物中0.1〜3重量%で、その配合割合[(D2)]/[(D1)+(D2)]≧25重量%であり、(D2)の粒度としては60メッシュ以上16メッシュ以下のものである。
【0013】
(D2)が60メッシュより小さい粒度の場合、成形時の熱により溶融した離型剤の一部が樹脂成分と相溶してしまい、金型表面への染み出しが少なくなり充分な離型性回復効果が発現されず、金型離型回復樹脂組成物の配合量が多くなり生産性が低下する。又16メッシュより大きい粒度の場合、過度に染み出した離型剤が金型に過度に移行し、半導体装置への油浮き、汚れが発生するという問題がある。
[(D2)]/[(D1)+(D2)]が25重量%未満では、金型離型回復樹脂組成物自体の離型性は充分なものの、金型表面へ移行し塗布出来る離型剤量が少なくなり、充分な離型回復効果が得られない。
【0014】
本発明で用いられる無機充填材としては、特に限定されるものではないが、一般に封止材料に用いられ、例えば溶融破砕シリカ、溶融球状シリカ、結晶シリカ等が挙げられ、特に溶融球状シリカが好ましい。形状は限りなく真球状が好ましく、又粒子の大きさの異なるものを混合することにより充填量を多くすることができる。これらは単独でも混合して用いてもよい。
【0015】
本発明の金型離型回復樹脂組成物には、(A)〜(E)成分の他に、必要に応じてカルナバワックス、ステアリン酸、モンタン酸ワックス等の離型剤やカップリング剤、カーボンブラック等の着色剤等の添加剤を用いてもよい。
本発明の金型離型回復樹脂組成物は、(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D1)酸化アルファオレフィンとエタノールアミンとの反応物及び/又は酸化アルファオレフィンとイソシアネートとの反応物、及び(E)無機充填材をミキサー等を用いて混合後、加熱ニーダ、熱ロール、押し出し機等を用いて加熱混練し、続いて冷却粉砕後4メッシュ以下の粉砕物とし、前記粉砕物に(D2)粒度が16メッシュ以下の酸化アルファオレフィンのエタノールアミン及び/又は酸化アルファオレフィンとイソシアネートとの反応物を添加混合した後タブレト化して得られる。4メッシュ以下の粉砕物と60メッシュ以上16メッシュ以下(D2)を混合する際に発熱するような混合法だと、(D2)が溶融しエポキシ樹脂やフェノール樹脂成分との相溶が起こり、金型離型回復樹脂組成物として、使用時に金型表面に離型剤が充分に移行し塗布することが出来ず充分な離型回復効果が発現できないので好ましくない。
【0016】
【実施例】
以下、本発明を実施例で具体的に説明する。配合割合は重量部とする。

Figure 0004710185
をミキサーを用いて各成分を混合した後、表面温度が95℃と25℃の2軸ロールを用いて20回混練して得られた混練物シートを冷却後粉砕した4メッシュ以下の粉砕物(組成物)98.5重量部に、離型剤1を更に1.5重量部配合混合後タブレット化した。
なお離型剤1は酸化アルファオレフィン(炭素数50)とモノエタノールアミンとの反応物と、酸化アルファオレフィン(炭素数50)とトルエンジイソシアネートとの反応物との重量比1:1の混合物(融点75℃、酸価2、鹸化価30)を32メッシュ以上16メッシュ以下の粒度に調整したもので、離型剤2は酸化アルファオレフィン(炭素数50)とトルエンジイソシアネートとの反応物(融点90、酸価12、鹸化価40)を32メッシュ以上16メッシュ以下の粒度に調整したものである。得られた金型離型回復樹脂組成物の特性を以下の方法で評価した。評価結果を表1に示す。
【0017】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で測定した。単位はcm。
離型回復性:金型表面をクリーニングするためのメラミン樹脂系クリーニング材を用いて、離型時荷重評価用金型で成形品を成形し、前記金型の表面の離型剤成分を取り除いた後、金型離型回復樹脂組成物を3回成形した後、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で評価用材料をトランスファー成形し、成形品抜き出し時の離型荷重を測定した。単位はMPa。なお離型時荷重評価用金型は、上型・中型・下型とからなり、成形後に中型に付着した14mmΦで1.5mm厚の円形の成形品に、中型の上部の穴からプッシュブルゲージを当て、成形品を突き出した際にかかる荷重を測定した。評価用材料としては、住友ベークライト(株)製・半導体封止用エポキシ成形材料EME−7351を用いた。
離型持続性:離型時荷重評価用金型で成形品を成形し、前記金型の表面の離型剤成分を取り除いた後、金型離型回復樹脂組成物を3回成形した後、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で前記評価用材料をトランスファー成形し、成形品抜き出し時の初期の離型荷重を測定した。離型荷重は、上型・中型・下型とからなる離型時荷重評価用金型を用いて成形し、成形後に中型に付着した14mmΦで1.5mm厚の円形の成形品に、中型の上部の穴からプッシュブルゲージを当て、成形品を突き出した際にかかる荷重とした。続けて評価用材料を200ショット成形し、離型荷重のショットごとの変化を測定した。このとき初期の離型荷重に対して30%以上離型荷重が増大したショット数で表現した。200<は、200ショット以上で初期の離型荷重に対して30%以下の離型荷重であることを表現したものである。
離型維持性:離型時荷重評価用金型で成形品を成形し、前記金型の表面の離型剤成分を取り除いた後、金型離型回復樹脂組成物を3回成形した後、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で評価用材料をトランスファー成形し、成形品抜き出し時の初期の離型荷重を測定した。離型荷重は、上型・中型・下型とからなる離型時荷重評価用金型を用いて成形し、成形後に中型に付着した14mmΦで1.5mm厚の円形の成形品に、中型の上部の穴からプッシュブルゲージを当て、成形品を突き出した際にかかる荷重とした。その後、金型を175℃で24時間加熱したまま放置した後に、再度同様に離型荷重を測定し初期値に対する離型荷重の増加割合を%で表示した。
製品汚れ:金型離型回復樹脂組成物の使用直後に成形した評価用材料の成形品表面の油浮きと汚れ具合を確認した。表面を拭いた時に拭き取れるものは油浮き、取れないものは汚れと判定した。製品表面に汚れが発生したものは×、汚れはないが油浮きがあるものを△、いずれもないものは○と表現した。
【0018】
実施例2〜5、比較例1〜6
表1、表2の配合に従い、実施例1と同様の金型離型回復樹脂組成物を得た。
実施例4、5、比較例4〜6で用いたビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX−4000)は、融点105℃、エポキシ当量195である。実施例4、5、比較例4〜6で用いたフェノールアラルキル樹脂(三井化学(株)製、XL−225)は、軟化点79℃、水酸基当量174である。
比較例1、4のマイクロクリスタリンワックスは、融点90℃。比較例1、2のポリエチレンワックスは、融点92℃。比較例3の酸化ポリエチレンワックスの融点は92℃である。マイクロクリスタリンワックス、ポリエチレンワックス及び酸化ポリエチレンワックスの粒度はいずれも32メッシュ以上16メッシュ以下に調整したものである。
【0019】
【表1】
Figure 0004710185
【0020】
【表2】
Figure 0004710185
【0021】
【発明の効果】
本発明の製造方法で得られた半導体封止用金型離型回復樹脂組成物を用いた後に、成形された半導体装置には油浮きや汚れがなく、離型回復性に優れており、更に離型性を長く維持することができるので生産性向上に寄与するため、産業上有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a mold release recovery resin composition for semiconductor encapsulation.
[0002]
[Prior art]
In recent years, electronic devices have become smaller, lighter, and higher in performance, and semiconductor elements have been increasingly integrated, and surface mounting of semiconductor devices has been promoted. The demand for things has become increasingly severe. Epoxy resin compositions for semiconductor encapsulation that use various resins and additives that meet this requirement are prone to mold contamination during continuous molding, and mold defects such as unfilling are likely to occur. Therefore, it has become normal to periodically clean the mold surface.
[0003]
Conventionally, a semiconductor sealing mold cleaning material consists of a resin having a high molding shrinkage such as an amino resin and a filler having high hardness such as crystal-crushed silica and glass fiber. The main thing was scraping off the dirt on the mold surface. After using the cleaning material, the mold surface becomes clean, but the mold release agent on the mold surface is also removed, so the semiconductor device molded immediately after cleaning is extremely poor in mold release There was a problem. Therefore, after using the cleaning material, it is necessary to transfer the mold release agent in the mold release recovery resin composition to the mold surface and apply the mold release recovery resin composition to recover the release characteristics. is there.
[0004]
The function of the mold release recovery resin composition is to transfer and apply the release agent to the mold surface, and to quickly recover the release property, but if a large amount of release agent is transferred, After that, there is a problem of causing oil floating and dirt on the surface of the molded semiconductor device. If the release agent cannot be transferred sufficiently, the mold release property cannot be recovered, and a large amount of mold release recovery resin composition needs to be used. The problem that there is. In addition, when the release property after the release property recovery cannot be sustained for a long time, it is necessary to frequently use the mold release recovery resin composition, and the productivity is lowered. There is a need for a mold release recovery resin composition for semiconductor encapsulation that is excellent in mold recovery.
[0005]
[Problems to be solved by the invention]
The present invention relates to a mold release recovery resin composition obtained by a specific manufacturing method, wherein the resin composition recovers the release property even in a small amount, and oil is applied to the surface of the semiconductor device immediately after the release property recovery. The present invention provides a method for producing a mold release recovery resin composition for semiconductor encapsulation, which can maintain a release property for a long time without causing floating or dirt.
[0006]
[Means for Solving the Problems]
The present invention
[1] (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D1) reaction product of oxidized alpha olefin and ethanolamine and / or reaction product of oxidized alpha olefin and isocyanate, and ( E) An inorganic filler is an essential component, and each component is heated and kneaded and cooled to a pulverized product of 4 mesh or less. The pulverized product includes (D2) a reaction product of an oxidized alpha olefin and ethanolamine and / or an oxidized alpha olefin. A mold release recovery resin composition obtained by adding and mixing a reaction product with isocyanate, and the blending ratio [(D1) + (D2)] is 0.1 to 3% by weight in the total resin composition [(D2)] / [(D1) + (D2)] ≧ 25% by weight, and the particle size of (D2) is not less than 60 mesh and not more than 16 mesh, Method for producing a recovery resin composition,
[2] The method for producing a mold release recovery resin composition for semiconductor encapsulation according to item [1], wherein the alpha olefin oxide has 20 to 70 carbon atoms,
It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Although it does not specifically limit as an epoxy resin used by this invention, For example, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a biphenyl type epoxy resin, a bisphenol type epoxy resin, a stilbene type epoxy resin, a triphenolmethane type Examples include epoxy resins, phenol aralkyl type epoxy resins, naphthalene type epoxy resins, alkyl-modified triphenol methane type epoxy resins, triazine nucleus-containing epoxy resins, dicyclopentadiene-modified phenol type epoxy resins, and these can be used alone or in combination. May be.
[0008]
The phenol resin used in the present invention is not particularly limited. And / or a phenol aralkyl resin having a diphenylene skeleton, and these may be used alone or in combination.
The blending ratio of the epoxy resin and the phenol resin is not particularly limited, but the epoxy group / fernoolic hydroxyl group ratio is preferably 0.9 to 1.2, more preferably 0.95 to 1.15. desirable. If it deviates greatly from this range, the resin composition may not be sufficiently cured, and workability such as a decrease in releasability may occur.
[0009]
The curing accelerator used in the present invention is one that can be a catalyst for the crosslinking reaction between the epoxy resin and the phenol resin, and examples thereof include tributylamine and 1,8-diazabicyclo (5,4,0) undecene-7. Examples include, but are not limited to, amine compounds, organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole. These curing accelerators may be used alone or in combination.
[0010]
A reaction product of an oxidized alpha olefin and ethanolamine or an isocyanate used in the present invention is an oxidized alpha olefin having a carboxyl group or a hydroxyl group obtained by oxidizing an alpha olefin obtained from a petroleum fraction and an ethanolamine or isocyanate. Obtained by reacting with. In general, alpha olefins have poor compatibility with epoxy resin and phenol resin components, increase the viscosity of the mold release recovery resin composition, and excessively ooze out from the mold surface during molding. However, there is a drawback that oil floating and dirt are generated in the semiconductor device molded immediately after the release of the mold. Therefore, if alpha olefin oxide is used, oil can float on the semiconductor device due to appropriate compatibility with the epoxy resin and phenol resin components, and dirt can be prevented. However, if the mold after the release of mold release is left at a high temperature for a long time, there is a disadvantage that a part of the alpha olefin oxide is thermally decomposed to deteriorate the release property and the release property is lowered.
When the reaction product of the alpha olefin oxide and ethanolamine or the reaction product of isocyanate of the present invention can be used, thermal decomposition at high temperature can be suppressed, and the mold after demolding recovery can be left at high temperature for a long time, There is a feature that excellent releasability can be maintained.
As carbon number of the oxidation alpha olefin used by this invention, 20-70, More preferably, 40-60 are desirable. When the number of carbon atoms is less than 20, the melting point is too low and the compatibility with the epoxy resin or phenol resin component is excellent, but a sufficient release effect may not be exhibited. Moreover, if it exceeds 70, the mold release effect is exhibited, but the viscosity of the mold release recovery resin composition increases, the compatibility with the epoxy resin and the phenol resin component is extremely reduced, and molding is performed immediately after the mold release is recovered. There is a risk of oil floating and contamination in the semiconductor device. The carbon number of the oxidized alpha olefin used in the present invention means all the carbons in the molecule.
[0011]
The ratio of the amination of the reaction product of the oxidized alpha olefin and ethanolamine or the urethanization of the reaction product of the oxidized alpha olefin and isocyanate is not particularly limited, but the nitrogen content in the obtained release agent is 0. A content of 3 to 5% by weight is desirable. If the amount of aminated or urethanized portion is too large, the viscosity of the release agent itself is increased, which may make it difficult to form a material.
Ethanolamine reactant is obtained by reacting hydroxyl group or carboxyl group of oxidized alpha olefin with ethanolamine and amination, while isocyanate reactant is isocyanate group such as methylene diisocyanate, toluene diisocyanate and the like. It can be obtained by reacting with urethan and making it urethane. The reaction product of the oxidized alpha olefin and ethanolamine and the reaction product of the oxidized alpha olefin and isocyanate may be used alone or in combination. These are commercially available from Toyo Petrolite Co., Ltd. and can be easily obtained from the market.
[0012]
The compounding amount of the reaction product of the oxidized alpha olefin and ethanolamine and / or the reaction product of isocyanate used in the present invention is preferably 0.1 to 3% by weight, more preferably 0.5 to 5% in the total resin composition. 2% by weight is desirable. When the amount exceeds 3% by weight, the mold is excessively oozed out, and there is a problem that oil floating occurs in the semiconductor device immediately after the release of the mold release. On the other hand, if it is less than 0.1% by weight, the mold release agent does not sufficiently migrate to the mold surface, and there is a possibility that the expected mold release recoverability cannot be obtained. In the method for producing a mold release recovery resin composition of the present invention, the blending amount of the release agent (D1) added in the first half of the production process and the release agent (D2) added in the second half of the production process [(D1) + (D2)] is 0.1 to 3% by weight in the total resin composition, and the blending ratio [(D2)] / [(D1) + (D2)] ≧ 25% by weight of (D2) The particle size is from 60 mesh to 16 mesh.
[0013]
When (D2) has a particle size smaller than 60 mesh, part of the release agent melted by the heat at the time of molding is compatible with the resin component, and exudation to the mold surface is reduced and sufficient release properties are obtained. The recovery effect is not manifested, and the compounding amount of the mold release recovery resin composition increases and the productivity is lowered. On the other hand, when the particle size is larger than 16 mesh, there is a problem that the release agent exuded excessively moves to the mold excessively, and oil floats on the semiconductor device and stains occur.
When [(D2)] / [(D1) + (D2)] is less than 25% by weight, the mold release recovery resin composition itself has a sufficient release property but can be transferred to the mold surface and applied. The amount of the agent is reduced, and a sufficient release recovery effect cannot be obtained.
[0014]
The inorganic filler used in the present invention is not particularly limited, but is generally used as a sealing material, and examples thereof include fused crushed silica, fused spherical silica, crystalline silica and the like, and particularly fused spherical silica is preferable. . The shape is not limited to a perfect sphere, and the amount of filling can be increased by mixing particles having different particle sizes. These may be used alone or in combination.
[0015]
In addition to the components (A) to (E), the mold release recovery resin composition of the present invention includes a release agent such as carnauba wax, stearic acid, and montanic acid wax, a coupling agent, and carbon as necessary. You may use additives, such as coloring agents, such as black.
The mold release recovery resin composition of the present invention comprises (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator, (D1) a reaction product of an oxidized alpha olefin and ethanolamine and / or an oxidized alpha. Mix the reaction product of olefin and isocyanate, and (E) inorganic filler using a mixer, etc., then heat knead using a heating kneader, hot roll, extruder, etc., then cool and pulverize 4 mesh or less It is obtained by adding and mixing (D2) ethanolamine of an alpha olefin oxide having a particle size of 16 mesh or less and / or a reaction product of an alpha olefin oxide with an isocyanate to the pulverized product. When mixing a pulverized product of 4 mesh or less and 60 mesh or more and 16 mesh or less (D2), heat is generated when (D2) melts and compatibility with epoxy resin or phenol resin component occurs, and gold The mold release recovery resin composition is not preferable because the release agent sufficiently migrates to the mold surface during use and cannot be applied and a sufficient release recovery effect cannot be exhibited.
[0016]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples. The blending ratio is parts by weight.
Figure 0004710185
After mixing each component using a mixer, the kneaded product sheet obtained by kneading 20 times using a biaxial roll having a surface temperature of 95 ° C. and 25 ° C. was cooled and pulverized, and the pulverized product of 4 mesh or less ( Composition) To 98.5 parts by weight, 1.5 parts by weight of release agent 1 was further blended and tableted.
The mold release agent 1 is a 1: 1 mixture (melting point) of a reaction product of an oxidized alpha olefin (50 carbon atoms) and monoethanolamine and a reaction product of an oxidized alpha olefin (50 carbon atoms) and toluene diisocyanate. 75 ° C., acid number 2, saponification number 30) adjusted to a particle size of 32 mesh or more and 16 mesh or less. The mold release agent 2 is a reaction product of an alpha olefin oxide (50 carbon atoms) and toluene diisocyanate (melting point 90, Acid value 12, saponification number 40) is adjusted to a particle size of 32 mesh or more and 16 mesh or less. The properties of the obtained mold release recovery resin composition were evaluated by the following methods. The evaluation results are shown in Table 1.
[0017]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. The unit is cm.
Mold release recovery: Using a melamine resin-based cleaning material for cleaning the mold surface, the molded product was molded with a mold for load release evaluation, and the mold release agent component on the mold surface was removed. Thereafter, the mold release recovery resin composition was molded three times, and then the evaluation material was transfer molded at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. The load was measured. The unit is MPa. The mold for load release evaluation consists of an upper mold, a middle mold, and a lower mold. After molding, a 14 mmφ and 1.5 mm thick circular molded product attached to the middle mold is pushed from the upper hole of the middle mold to a push bull gauge. And the load applied when the molded product was protruded was measured. As an evaluation material, Sumitomo Bakelite Co., Ltd.-manufactured epoxy molding material EME-7351 was used.
Mold release sustainability: After molding a molded product with a mold for load release evaluation, after removing the mold release agent component on the surface of the mold, after molding the mold release recovery resin composition three times, The material for evaluation was transfer molded at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes, and the initial release load at the time of extracting the molded product was measured. The mold release load was molded using a mold for load release evaluation consisting of an upper mold, a middle mold, and a lower mold, and after molding, a 14 mmΦ and 1.5 mm thick circular molded product adhered to the middle mold A push bull gauge was applied from the upper hole, and the load applied when the molded product was projected. Subsequently, 200 shots of the evaluation material were molded, and the change in the release load for each shot was measured. At this time, the number of shots in which the release load increased by 30% or more with respect to the initial release load was expressed. 200 <represents that the release load is 30% or less with respect to the initial release load at 200 shots or more.
Mold release maintainability: After molding a molded product with a mold for load release evaluation and removing the mold release agent component on the surface of the mold, after molding the mold release recovery resin composition three times, The material for evaluation was transfer molded at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes, and the initial release load at the time of extracting the molded product was measured. The mold release load was molded using a mold for load release evaluation consisting of an upper mold, a middle mold, and a lower mold, and after molding, a 14 mmΦ and 1.5 mm thick circular molded product adhered to the middle mold A push bull gauge was applied from the upper hole, and the load applied when the molded product was projected. Then, after leaving the mold heated at 175 ° C. for 24 hours, the release load was measured again in the same manner, and the increase rate of the release load with respect to the initial value was displayed in%.
Product dirt: Oil floating and dirt condition on the surface of the molded product of the evaluation material molded immediately after use of the mold release recovery resin composition were confirmed. What was wiped off when the surface was wiped was determined to be oil floating, and those that could not be removed were judged to be dirty. The case where the surface of the product was stained was expressed as “X”, the case where there was no contamination but oil floating was expressed as “△”, and the case where none was present was expressed as “◯”.
[0018]
Examples 2-5, Comparative Examples 1-6
According to the formulation in Tables 1 and 2, a mold release recovery resin composition similar to that in Example 1 was obtained.
The biphenyl type epoxy resins (manufactured by Japan Epoxy Resin Co., Ltd., YX-4000) used in Examples 4 and 5 and Comparative Examples 4 to 6 have a melting point of 105 ° C. and an epoxy equivalent of 195. The phenol aralkyl resin (Mitsui Chemicals, XL-225) used in Examples 4 and 5 and Comparative Examples 4 to 6 has a softening point of 79 ° C. and a hydroxyl group equivalent of 174.
The microcrystalline waxes of Comparative Examples 1 and 4 have a melting point of 90 ° C. The polyethylene waxes of Comparative Examples 1 and 2 have a melting point of 92 ° C. The melting point of the oxidized polyethylene wax of Comparative Example 3 is 92 ° C. The particle sizes of microcrystalline wax, polyethylene wax and oxidized polyethylene wax are all adjusted to 32 mesh or more and 16 mesh or less.
[0019]
[Table 1]
Figure 0004710185
[0020]
[Table 2]
Figure 0004710185
[0021]
【The invention's effect】
After using the mold release recovery resin composition for semiconductor sealing obtained by the manufacturing method of the present invention, the molded semiconductor device has no oil floating or dirt, and has excellent release recovery, Since the releasability can be maintained for a long time, it contributes to the improvement of productivity and is industrially useful.

Claims (2)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D1)酸化アルファオレフィンとエタノールアミンとの反応物及び/又は酸化アルファオレフィンとイソシアネートとの反応物、及び(E)無機充填材を必須成分とし、前記各成分を加熱混練冷却後4メッシュ以下の粉砕物とし、前記粉砕物に(D2)酸化アルファオレフィンとエタノールアミンとの反応物及び/又は酸化アルファオレフィンとイソシアネートとの反応物を添加混合して得られる金型離型回復樹脂組成物であって、その配合割合[(D1)+(D2)]が全樹脂組成物中の0.1〜3重量%、[(D2)]/[(D1)+(D2)]≧25重量%で、(D2)の粒度が60メッシュ以上16メッシュ以下であることを特徴とする半導体封止用金型離型回復樹脂組成物の製造方法。(A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D1) reaction product of oxidized alpha olefin and ethanolamine and / or reaction product of oxidized alpha olefin and isocyanate, and (E) inorganic The filler is an essential component, and each of the components is heated to kneaded and cooled to a pulverized product of 4 mesh or less. It is a mold release recovery resin composition obtained by adding and mixing reactants, and the blending ratio [(D1) + (D2)] is 0.1 to 3% by weight in the total resin composition, [( D2)] / [(D1) + (D2)] ≧ 25 wt%, and the particle size of (D2) is 60 mesh or more and 16 mesh or less, and the mold release recovery for semiconductor sealing is characterized in that Method for producing a fat composition. 酸化アルファオレフィンの炭素数が、20〜70である請求項1記載の半導体封止用金型離型回復樹脂組成物の製造方法。The method for producing a mold release recovery resin composition for semiconductor encapsulation according to claim 1, wherein the alpha olefin oxide has 20 to 70 carbon atoms.
JP2001220260A 2001-07-06 2001-07-19 Method for producing mold release recovery resin composition Expired - Fee Related JP4710185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220260A JP4710185B2 (en) 2001-07-06 2001-07-19 Method for producing mold release recovery resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001206000 2001-07-06
JP2001-206000 2001-07-06
JP2001206000 2001-07-06
JP2001220260A JP4710185B2 (en) 2001-07-06 2001-07-19 Method for producing mold release recovery resin composition

Publications (2)

Publication Number Publication Date
JP2003082193A JP2003082193A (en) 2003-03-19
JP4710185B2 true JP4710185B2 (en) 2011-06-29

Family

ID=26618268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220260A Expired - Fee Related JP4710185B2 (en) 2001-07-06 2001-07-19 Method for producing mold release recovery resin composition

Country Status (1)

Country Link
JP (1) JP4710185B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096164A (en) * 2001-07-16 2003-04-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP4590899B2 (en) * 2004-03-30 2010-12-01 住友ベークライト株式会社 Mold release recovery resin composition and method for manufacturing semiconductor device
JP4581455B2 (en) * 2004-03-30 2010-11-17 住友ベークライト株式会社 Mold release recovery resin composition and method for manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152465A (en) * 1991-12-02 1993-06-18 Hitachi Ltd Resin composition for sealing semiconductor
JPH06256663A (en) * 1992-05-21 1994-09-13 Nippon Seirou Kk Isocyanate-modified wax and toluene solution of this wax
JP2000281750A (en) * 1999-03-31 2000-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152465A (en) * 1991-12-02 1993-06-18 Hitachi Ltd Resin composition for sealing semiconductor
JPH06256663A (en) * 1992-05-21 1994-09-13 Nippon Seirou Kk Isocyanate-modified wax and toluene solution of this wax
JP2000281750A (en) * 1999-03-31 2000-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2003082193A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP5605394B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4788033B2 (en) Method for producing mold release recovery resin composition
JP4710185B2 (en) Method for producing mold release recovery resin composition
JP2008143950A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP5298310B2 (en) Resin composition for sealing electronic components and electronic component device using the same
JP2006328360A (en) Epoxy resin composition and semiconductor device
JP4590899B2 (en) Mold release recovery resin composition and method for manufacturing semiconductor device
JP4581455B2 (en) Mold release recovery resin composition and method for manufacturing semiconductor device
JP2002161189A (en) Resin composition for recovering mold releasability
JP5217148B2 (en) Epoxy resin composition
JP4654550B2 (en) Epoxy resin composition and semiconductor device
JP4622123B2 (en) Method for producing mold release recovery resin composition
JP3957270B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2006182801A (en) Mold release restoring resin composition and method for producing semiconductor device
JP4332972B2 (en) Epoxy resin composition and semiconductor device
JP2002161193A (en) Resin composition for recovering mold releasability
JP3941558B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2006037009A (en) Epoxy resin composition and semiconductor device
JP4765310B2 (en) Manufacturing method of resin-encapsulated semiconductor device
JP3582771B2 (en) Epoxy resin composition and semiconductor device
JP4581232B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4349054B2 (en) Epoxy resin composition for media card sealing and media card system
JP2004224849A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2005264040A (en) Resin composition for recovering mold releasability
JP2003048957A (en) Epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

LAPS Cancellation because of no payment of annual fees